201
|
Bruusgaard JC, Egner IM, Larsen TK, Dupre-Aucouturier S, Desplanches D, Gundersen K. No change in myonuclear number during muscle unloading and reloading. J Appl Physiol (1985) 2012; 113:290-6. [PMID: 22582213 DOI: 10.1152/japplphysiol.00436.2012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Muscle fibers are the cells in the body with the largest volume, and they have multiple nuclei serving different domains of cytoplasm. A large body of previous literature has suggested that atrophy induced by hindlimb suspension leads to a loss of "excessive" myonuclei by apoptosis. We demonstrate here that atrophy induced by hindlimb suspension does not lead to loss of myonuclei despite a strong increase in apoptotic activity of other types of nuclei within the muscle tissue. Thus hindlimb suspension turns out to be similar to other atrophy models such as denervation, nerve impulse block, and antagonist ablation. We discuss how the different outcome of various studies can be attributed to difficulties in separating myonuclei from other nuclei, and to systematic differences in passive properties between normal and unloaded muscles. During reload, after hindlimb suspension, a radial regrowth is observed, which has been believed to be accompanied by recruitment of new myonuclei from satellite cells. The lack of nuclear loss during unloading, however, puts these findings into question. We observed that reload led to an increase in cross sectional area of 59%, and fiber size was completely restored to the presuspension levels. Despite this notable growth there was no increase in the number of myonuclei. Thus radial regrowth seems to differ from de novo hypertrophy in that nuclei are only added during the latter. We speculate that the number of myonuclei might reflect the largest size the muscle fibers have had in its previous history.
Collapse
Affiliation(s)
- J C Bruusgaard
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
202
|
Longtine MS, Chen B, Odibo AO, Zhong Y, Nelson DM. Villous trophoblast apoptosis is elevated and restricted to cytotrophoblasts in pregnancies complicated by preeclampsia, IUGR, or preeclampsia with IUGR. Placenta 2012. [PMID: 22341340 DOI: 10.1016/j.placenta.2012.01.017.villous] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Human placental villi are surfaced by an outer multinucleated syncytiotrophoblast and underlying mononucleated cytotrophoblasts. Conflicting data have attributed one, or the other, of these villous trophoblast phenotypes to undergo enhanced apoptosis in complicated pregnancies, compared to term, normotensive pregnancies. We use high-resolution confocal microscopy after co-staining for E-cadherin, as a trophoblast plasma membrane marker, and for the cleavage products of cytokeratin 18 and PARP1, as markers for caspase-mediated apoptosis, to distinguish between apoptotic cytotrophoblasts and apoptosis within the syncytiotrophoblast. We test the hypothesis that increased caspase-mediated apoptosis occurs in villi of placentas derived from pregnancies complicated by preeclampsia, intrauterine growth restriction (IUGR), or both. We find significantly elevated apoptosis in villous cytotrophoblasts from women with preeclampsia and/or IUGR, compared to term, normotensive pregnancies. Apoptosis of cytotrophoblasts in villi from complicated pregnancies appears to progress similarly to what we found previously for apoptotic cytotrophoblasts in villi from in term, normotensive pregnancies. Notably, caspase-mediated apoptosis was not detectable in regions with intact syncytiotrophoblast, suggesting strong repression of apoptosis in this trophoblast phenotype in vivo. We suggest that the elevated apoptosis in cytotrophoblasts in preeclampsia contributes to the placental dysfunction characteristic of this disorder. We also propose that repression of apoptosis in the syncytiotrophoblast is important to prevent apoptosis sweeping throughout the syncytium, which would result in widespread death of this essential interface for maternal-fetal exchange.
Collapse
Affiliation(s)
- M S Longtine
- Department of Obstetrics and Gynecology, Washington University School of Medicine, Campus Box 8064, 4566 Scott Ave., St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
203
|
Kurosaka M, Naito H, Ogura Y, Machida S, Katamoto S. Satellite cell pool enhancement in rat plantaris muscle by endurance training depends on intensity rather than duration. Acta Physiol (Oxf) 2012; 205:159-66. [PMID: 22040028 DOI: 10.1111/j.1748-1716.2011.02381.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AIM Increases in the number of satellite cells are necessary for the maintenance of normal muscle function. Endurance training enhances the satellite cell pool. However, it remains unclear whether exercise intensity or exercise duration is more important to enhance the satellite cell pool. This study examined the effects of different intensity and duration of endurance training on the satellite cell pool in rat skeletal muscle. METHODS Forty-one 17-week-old female Sprague-Dawley rats were assigned to control (n = 8), high intensity and high duration (n = 7), high intensity and low duration (n = 8), low intensity and high duration (n = 9) and low intensity and low duration (n = 9) groups. Training groups exercised 5 days per week on a motor driven treadmill for 10 weeks. After the training period, animals were anaesthetized and the plantaris muscles were removed, weighed and analysed for immunohistochemical and histochemical properties. RESULTS Although no significant differences were found in muscle mass, mean fibre area and myonuclei per muscle fibre between all groups, the percentage of satellite cells was significantly higher in the high-intensity groups than in the other groups (P < 0.05). CONCLUSION Increases in the satellite cell pool of skeletal muscle following endurance training depend on the intensity rather than duration of exercise.
Collapse
Affiliation(s)
- M Kurosaka
- Department of Exercise Physiology, School of Physical Education, Tokai University, Hiratsuka, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
204
|
Hanssen K, Kvamme N, Nilsen T, Rønnestad B, Ambjørnsen I, Norheim F, Kadi F, Hallèn J, Drevon C, Raastad T. The effect of strength training volume on satellite cells, myogenic regulatory factors, and growth factors. Scand J Med Sci Sports 2012; 23:728-39. [DOI: 10.1111/j.1600-0838.2012.01452.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2012] [Indexed: 12/01/2022]
Affiliation(s)
- K.E. Hanssen
- Faculty of Education; Østfold University College; Halden Norway
- Norwegian School of Sport Sciences; Oslo Norway
| | - N.H. Kvamme
- Norwegian School of Sport Sciences; Oslo Norway
| | - T.S. Nilsen
- Norwegian School of Sport Sciences; Oslo Norway
| | - B. Rønnestad
- Lillehammer University College; Lillehammer Norway
| | - I.K. Ambjørnsen
- Faculty of Health; Østfold University College; Fredrikstad Norway
| | - F. Norheim
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - F. Kadi
- School of Medicine and Health Sciences; University of Örebro; Örebro Sweden
| | - J. Hallèn
- Norwegian School of Sport Sciences; Oslo Norway
| | - C.A. Drevon
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - T. Raastad
- Norwegian School of Sport Sciences; Oslo Norway
| |
Collapse
|
205
|
Wang Q, McPherron AC. Myostatin inhibition induces muscle fibre hypertrophy prior to satellite cell activation. J Physiol 2012; 590:2151-65. [PMID: 22393251 DOI: 10.1113/jphysiol.2011.226001] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Muscle fibres are multinucleated post-mitotic cells that can change dramatically in size during adulthood. It has been debated whether muscle fibre hypertrophy requires activation and fusion of muscle stem cells, the satellite cells. Myostatin (MSTN) is a negative regulator of skeletal muscle growth during development and in the adult, and MSTN inhibition is therefore a potential therapy for muscle wasting diseases, some of which are associated with a depletion of satellite cells. Conflicting results have been obtained in previous analyses of the role of MSTN on satellite cell quiescence. Here, we inhibited MSTN in adult mice with a soluble activin receptor type IIB and analysed the incorporation of new nuclei using 5-bromo-2-deoxyuridine (BrdU) labelling by isolating individual myofibres. We found that satellite cells are activated by MSTN inhibition. By varying the dose and time course for MSTN inhibition, however, we found that myofibre hypertrophy precedes the incorporation of new nuclei, and that the overall number of new nuclei is relatively low compared to the number of total myonuclei. These results reconcile some of the previous work obtained by other methods. In contrast with previous reports, we also found that Mstn null mice do not have increased satellite cell numbers during adulthood and are not resistant to sarcopaenia. Our results support a previously proposed model of hypertrophy in which hypertrophy can precede satellite cell activation. Studies of the metabolic and functional effects of postnatal MSTN inhibition are needed to determine the consequences of increasing the cytoplasm/myonuclear ratio after MSTN inhibition.
Collapse
Affiliation(s)
- Qian Wang
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
206
|
Smith HK, Merry TL. Voluntary resistance wheel exercise during post-natal growth in rats enhances skeletal muscle satellite cell and myonuclear content at adulthood. Acta Physiol (Oxf) 2012; 204:393-402. [PMID: 21854550 DOI: 10.1111/j.1748-1716.2011.02350.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AIM To determine whether voluntary free wheel (FW) or resistance wheel (RW) exercise or reduced muscle activity would influence maturational increases in muscle mass and the number of satellite cells (SCs) and myonuclei (MN) accrued by adulthood. METHODS Hind limb muscles of male rats housed with, or without, FWs from 4 to 5, 7 or 10 weeks of age, and rats housed with RWs from 4 to 10 week of age, were evaluated. To assess the effect of reduced muscle activity, gastrocnemius muscles of 4-week-old rats were injected with botulinum toxin (Btx) and collected at 7 weeks of age. Muscle fibre size and the frequency of Pax7-positive SCs and MN were determined in 7- and 10-week-old muscles via immunohistochemical methods. RESULTS Free wheel exercise enhanced muscle growth and the frequency of SCs in the medial gastrocnemius (MG) (threefold) and vastus lateralis (VL) (twofold) of rats at 10 week of age. Resistance wheel exercise increased the number of SCs and MN (22-30%), with more muscle fibre nuclei being associated with larger fibre size, in the soleus, MG and VL muscles. Btx impaired the normal increases in muscle fibre size and the accrual of MN but not SCs. CONCLUSION A greater volume of exercise during maturational growth was important for enhancing SC numbers, whereas their conversion to MN required higher-intensity exercise. The enhanced muscle fibre nuclear populations may influence the capacity of the muscle to adapt to exercise, injury or disuse in later adulthood.
Collapse
Affiliation(s)
- H K Smith
- Department of Sport and Exercise Science, University of Auckland, New Zealand.
| | | |
Collapse
|
207
|
Villous trophoblast apoptosis is elevated and restricted to cytotrophoblasts in pregnancies complicated by preeclampsia, IUGR, or preeclampsia with IUGR. Placenta 2012; 33:352-9. [PMID: 22341340 DOI: 10.1016/j.placenta.2012.01.017] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/19/2012] [Accepted: 01/20/2012] [Indexed: 12/21/2022]
Abstract
Human placental villi are surfaced by an outer multinucleated syncytiotrophoblast and underlying mononucleated cytotrophoblasts. Conflicting data have attributed one, or the other, of these villous trophoblast phenotypes to undergo enhanced apoptosis in complicated pregnancies, compared to term, normotensive pregnancies. We use high-resolution confocal microscopy after co-staining for E-cadherin, as a trophoblast plasma membrane marker, and for the cleavage products of cytokeratin 18 and PARP1, as markers for caspase-mediated apoptosis, to distinguish between apoptotic cytotrophoblasts and apoptosis within the syncytiotrophoblast. We test the hypothesis that increased caspase-mediated apoptosis occurs in villi of placentas derived from pregnancies complicated by preeclampsia, intrauterine growth restriction (IUGR), or both. We find significantly elevated apoptosis in villous cytotrophoblasts from women with preeclampsia and/or IUGR, compared to term, normotensive pregnancies. Apoptosis of cytotrophoblasts in villi from complicated pregnancies appears to progress similarly to what we found previously for apoptotic cytotrophoblasts in villi from in term, normotensive pregnancies. Notably, caspase-mediated apoptosis was not detectable in regions with intact syncytiotrophoblast, suggesting strong repression of apoptosis in this trophoblast phenotype in vivo. We suggest that the elevated apoptosis in cytotrophoblasts in preeclampsia contributes to the placental dysfunction characteristic of this disorder. We also propose that repression of apoptosis in the syncytiotrophoblast is important to prevent apoptosis sweeping throughout the syncytium, which would result in widespread death of this essential interface for maternal-fetal exchange.
Collapse
|
208
|
Valero MC, Huntsman HD, Liu J, Zou K, Boppart MD. Eccentric exercise facilitates mesenchymal stem cell appearance in skeletal muscle. PLoS One 2012; 7:e29760. [PMID: 22253772 PMCID: PMC3256189 DOI: 10.1371/journal.pone.0029760] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/03/2011] [Indexed: 01/13/2023] Open
Abstract
Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether stem cells other than satellite cells accumulate in muscle in response to exercise and contribute to post-exercise repair and/or growth. In this study, stem cell antigen-1 (Sca-1) positive, non-hematopoetic (CD45-) cells were evaluated in wild type (WT) and α7 integrin transgenic (α7Tg) mouse muscle, which is resistant to injury yet liable to strain, 24 hr following a single bout of eccentric exercise. Sca-1+CD45− stem cells were increased 2-fold in WT muscle post-exercise. The α7 integrin regulated the presence of Sca-1+ cells, with expansion occurring in α7Tg muscle and minimal cells present in muscle lacking the α7 integrin. Sca-1+CD45− cells isolated from α7Tg muscle following exercise were characterized as mesenchymal-like stem cells (mMSCs), predominantly pericytes. In vitro multiaxial strain upregulated mMSC stem cells markers in the presence of laminin, but not gelatin, identifying a potential mechanistic basis for the accumulation of these cells in muscle following exercise. Transplantation of DiI-labeled mMSCs into WT muscle increased Pax7+ cells and facilitated formation of eMHC+DiI− fibers. This study provides the first demonstration that mMSCs rapidly appear in skeletal muscle in an α7 integrin dependent manner post-exercise, revealing an early event that may be necessary for effective repair and/or growth following exercise. The results from this study also support a role for the α7 integrin and/or mMSCs in molecular- and cellular-based therapeutic strategies that can effectively combat disuse muscle atrophy.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Ataxin-1
- Ataxins
- Biomarkers/metabolism
- Cell Proliferation/drug effects
- Cell Separation
- Connective Tissue Cells/cytology
- Female
- Gelatin/pharmacology
- Integrin alpha Chains/metabolism
- Laminin/metabolism
- Leukocyte Common Antigens/metabolism
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/metabolism
- Mice
- Mice, Transgenic
- Multipotent Stem Cells/cytology
- Multipotent Stem Cells/drug effects
- Muscle Development/drug effects
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Nerve Tissue Proteins/metabolism
- Nuclear Proteins/metabolism
- PAX7 Transcription Factor/metabolism
- Pericytes/cytology
- Pericytes/drug effects
- Physical Conditioning, Animal
- Stem Cell Transplantation
- Stress, Mechanical
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- M. Carmen Valero
- Department of Kinesiology and Community Health, and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, United States of America
| | - Heather D. Huntsman
- Department of Kinesiology and Community Health, and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, United States of America
| | - Jianming Liu
- Department of Kinesiology and Community Health, and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, United States of America
| | - Kai Zou
- Department of Kinesiology and Community Health, and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, United States of America
| | - Marni D. Boppart
- Department of Kinesiology and Community Health, and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
209
|
Srf-dependent paracrine signals produced by myofibers control satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 2012; 15:25-37. [PMID: 22225874 DOI: 10.1016/j.cmet.2011.12.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 07/20/2011] [Accepted: 12/02/2011] [Indexed: 11/23/2022]
Abstract
Adult skeletal muscles adapt their fiber size to workload. We show that serum response factor (Srf) is required for satellite cell-mediated hypertrophic muscle growth. Deletion of Srf from myofibers and not satellite cells blunts overload-induced hypertrophy, and impairs satellite cell proliferation and recruitment to pre-existing fibers. We reveal a gene network in which Srf within myofibers modulates interleukin-6 and cyclooxygenase-2/interleukin-4 expressions and therefore exerts a paracrine control of satellite cell functions. In Srf-deleted muscles, in vivo overexpression of interleukin-6 is sufficient to restore satellite cell proliferation but not satellite cell fusion and overall growth. In contrast cyclooxygenase-2/interleukin-4 overexpression rescue satellite cell recruitment and muscle growth without affecting satellite cell proliferation, identifying altered fusion as the limiting cellular event. These findings unravel a role for Srf in the translation of mechanical cues applied to myofibers into paracrine signals, which in turn will modulate satellite cell functions and support muscle growth.
Collapse
|
210
|
Garibotto G, Bonanni A, Verzola D. Effect of kidney failure and hemodialysis on protein and amino acid metabolism. Curr Opin Clin Nutr Metab Care 2012; 15:78-84. [PMID: 22108097 DOI: 10.1097/mco.0b013e32834d9df6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Despite technological innovations in renal replacement therapy, mortality is still high in patients with end-stage renal disease. This increase in mortality is not only limited to dialysis patients, but also includes all stages of chronic kidney disease (CKD) and is mainly because of cardiovascular disease. Protein-energy wasting becomes clinically manifest at an advanced CKD stage, early before or during the dialytic stage, and increases the morbidity and mortality in this patients' population. The purpose of this article is to review the recent observations on alterations of amino acid and protein metabolism which cause wasting and increase cardiovascular risk. RECENT FINDINGS Recent studies have consistently increased our understanding of mechanisms causing wasting and vascular disease in CKD patients. These include changes in amino acid and lipoprotein metabolism potentially leading to alterations of biology and function of the vascular wall, anorexia and endocrine dysfunction, altered muscle intracellular signaling through the insulin receptor substrate/phosphatidylinositol 3-kinase/Akt pathway, and defective myocyte regeneration. These mechanisms may trigger wasting through an increase in protein degradation and/or acceleration of apoptotic processes in skeletal muscle and may be accelerated by hemodialysis, leading to progression of vascular disease and wasting. SUMMARY The new understanding holds promise for new treatments which can prevent/treat vascular diseases and wasting in CKD patients.
Collapse
Affiliation(s)
- Giacomo Garibotto
- Department of Internal Medicine, University of Genoa, Azienda Ospedaliera Universitaria San Martino, Genoa, Italy.
| | | | | |
Collapse
|
211
|
Armand AS, Laziz I, Djeghloul D, Lécolle S, Bertrand AT, Biondi O, De Windt LJ, Chanoine C. Apoptosis-inducing factor regulates skeletal muscle progenitor cell number and muscle phenotype. PLoS One 2011; 6:e27283. [PMID: 22076146 PMCID: PMC3208607 DOI: 10.1371/journal.pone.0027283] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 10/13/2011] [Indexed: 12/22/2022] Open
Abstract
Apoptosis Inducing Factor (AIF) is a highly conserved, ubiquitous flavoprotein localized in the mitochondrial intermembrane space. In vivo, AIF provides protection against neuronal and cardiomyocyte apoptosis induced by oxidative stress. Conversely in vitro, AIF has been demonstrated to have a pro-apoptotic role upon induction of the mitochondrial death pathway, once AIF translocates to the nucleus where it facilitates chromatin condensation and large scale DNA fragmentation. Given that the aif hypomorphic harlequin (Hq) mutant mouse model displays severe sarcopenia, we examined skeletal muscle from the aif hypomorphic mice in more detail. Adult AIF-deficient skeletal myofibers display oxidative stress and a severe form of atrophy, associated with a loss of myonuclei and a fast to slow fiber type switch, both in "slow" muscles such as soleus, as well as in "fast" muscles such as extensor digitorum longus, most likely resulting from an increase of MEF2 activity. This fiber type switch was conserved in regenerated soleus and EDL muscles of Hq mice subjected to cardiotoxin injection. In addition, muscle regeneration in soleus and EDL muscles of Hq mice was severely delayed. Freshly cultured myofibers, soleus and EDL muscle sections from Hq mice displayed a decreased satellite cell pool, which could be rescued by pretreating aif hypomorphic mice with the manganese-salen free radical scavenger EUK-8. Satellite cell activation seems to be abnormally long in Hq primary culture compared to controls. However, AIF deficiency did not affect myoblast cell proliferation and differentiation. Thus, AIF protects skeletal muscles against oxidative stress-induced damage probably by protecting satellite cells against oxidative stress and maintaining skeletal muscle stem cell number and activation.
Collapse
Affiliation(s)
- Anne-Sophie Armand
- Centre d’Etude de la Sensori-Motricité, UMR 8194 CNRS, Université Paris Descartes, Centre Universitaire des Saints-Pères, Paris, France
| | - Iman Laziz
- Centre d’Etude de la Sensori-Motricité, UMR 8194 CNRS, Université Paris Descartes, Centre Universitaire des Saints-Pères, Paris, France
| | - Dounia Djeghloul
- Centre d’Etude de la Sensori-Motricité, UMR 8194 CNRS, Université Paris Descartes, Centre Universitaire des Saints-Pères, Paris, France
| | - Sylvie Lécolle
- Centre d’Etude de la Sensori-Motricité, UMR 8194 CNRS, Université Paris Descartes, Centre Universitaire des Saints-Pères, Paris, France
| | - Anne T. Bertrand
- The Hubrecht Institute and Interuniversity Cardiology Institute Netherlands, Royal Netherlands Academy of Sciences, Utrecht, The Netherlands
| | - Olivier Biondi
- Centre d’Etude de la Sensori-Motricité, UMR 8194 CNRS, Université Paris Descartes, Centre Universitaire des Saints-Pères, Paris, France
| | - Leon J. De Windt
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Christophe Chanoine
- Centre d’Etude de la Sensori-Motricité, UMR 8194 CNRS, Université Paris Descartes, Centre Universitaire des Saints-Pères, Paris, France
| |
Collapse
|
212
|
Longtine MS, Chen B, Odibo AO, Zhong Y, Nelson DM. Caspase-mediated apoptosis of trophoblasts in term human placental villi is restricted to cytotrophoblasts and absent from the multinucleated syncytiotrophoblast. Reproduction 2011; 143:107-21. [PMID: 22046053 PMCID: PMC3631347 DOI: 10.1530/rep-11-0340] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human placental villi are surfaced by a multinucleated and terminally differentiated epithelium, the syncytiotrophoblast, with a subjacent layer of mononucleated cytotrophoblasts that can divide and fuse to replenish the syncytiotrophoblast. The objectives of this study were i) to develop an approach to definitively identify and distinguish cytotrophoblasts from the syncytiotrophoblast, ii) to unambiguously determine the relative susceptibility of villous cytotrophoblasts and syncytiotrophoblast to constitutive and stress-induced apoptosis mediated by caspases, and iii) to understand the progression of apoptosis in villous trophoblasts. Confocal microscopy with co-staining for E-cadherin and DNA allowed us to clearly distinguish the syncytiotrophoblast from cytotrophoblasts and identified that many cytotrophoblasts are deeply interdigitated into the syncytiotrophoblast. Staining for specific markers of caspase-mediated apoptosis indicate that apoptosis occurs readily in cytotrophoblasts but is remarkably inhibited in the syncytiotrophoblast. To determine if an apoptotic cell or cell fragment was from a cytotrophoblast or syncytiotrophoblast, we found co-staining with E-cadherin along with a marker for apoptosis was essential: in the absence of E-cadherin staining, apoptotic cytotrophoblasts would easily be mistaken as representing localized regions of apoptosis in the syncytiotrophoblast. Regions with perivillous fibrin-containing fibrinoid contain the remnants of trophoblast apoptosis, and we propose this apoptosis occurs only after physical isolation of a region of the syncytium from the main body of the syncytium. We propose models for the progression of apoptosis in villous cytotrophoblasts and for why caspase-mediated apoptosis does not occur within the syncytium of placental villi.
Collapse
Affiliation(s)
- Mark S Longtine
- Department of Obstetrics and Gynecology, School of Medicine, Washington University, 4566 Scott Avenue, St Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
213
|
McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB, Srikuea R, Lawson BA, Grimes B, Keller C, Van Zant G, Campbell KS, Esser KA, Dupont-Versteegden EE, Peterson CA. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 2011; 138:3657-66. [PMID: 21828094 DOI: 10.1242/dev.068858] [Citation(s) in RCA: 463] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca(2+) sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells.
Collapse
Affiliation(s)
- John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Quadrilatero J, Alway SE, Dupont-Versteegden EE. Skeletal muscle apoptotic response to physical activity: potential mechanisms for protection. Appl Physiol Nutr Metab 2011; 36:608-17. [PMID: 21936642 DOI: 10.1139/h11-064] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Apoptosis is a highly conserved type of cell death that plays a critical role in tissue homeostasis and disease-associated processes. Skeletal muscle is unique with respect to apoptotic processes, given its multinucleated morphology and its apoptosis-associated differences related to muscle and (or) fiber type as well as mitochondrial content and (or) subtype. Elevated apoptotic signaling has been reported in skeletal muscle during aging, stress-induced states, and disease; a phenomenon that plays a role in muscle dysfunction, degradation, and atrophy. Exercise is a strong physiological stimulus that can influence a number of extracellular and intracellular signaling pathways, which may directly or indirectly influence apoptotic processes in skeletal muscle. In general, acute strenuous and eccentric exercise are associated with a proapoptotic phenotype and increased DNA fragmentation (a hallmark of apoptosis), whereas regular exercise training or activity is associated with an antiapoptotic environment and reduced DNA fragmentation in skeletal muscle. Interestingly, the protective effect of regular activity on skeletal muscle apoptotic processes has been observed in healthy, aged, stress-induced, and diseased rodent models. Several mechanisms for this protective response have been proposed, including altered anti- and proapoptotic protein expression, increased mitochondrial biogenesis and improved mitochondrial function, and reduced reactive oxygen species generation and (or) enhanced antioxidant status. Given the current literature, we propose that regular physical activity may represent an effective strategy to decrease apoptotic signaling, and possibly muscle wasting and dysfunction, during aging and disease.
Collapse
Affiliation(s)
- Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | | | | |
Collapse
|
215
|
Lueders TN, Zou K, Huntsman HD, Meador B, Mahmassani Z, Abel M, Valero MC, Huey KA, Boppart MD. The α7β1-integrin accelerates fiber hypertrophy and myogenesis following a single bout of eccentric exercise. Am J Physiol Cell Physiol 2011; 301:C938-46. [PMID: 21753185 DOI: 10.1152/ajpcell.00515.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The α(7)β(1)-integrin is a heterodimeric transmembrane protein that adheres to laminin in the extracellular matrix, representing a critical link that maintains structure in skeletal muscle. In addition to preventing exercise-induced skeletal muscle injury, the α(7)-integrin has been proposed to act as an intrinsic mechanosensor, initiating cellular growth in response to mechanical strain. The purpose of this study was to determine the extent to which the α(7)-integrin regulates muscle hypertrophy following eccentric exercise. Wild-type (WT) and α(7)-integrin transgenic (α(7)Tg) mice completed a single bout of downhill running exercise (-20°, 17 m/min, 60 min), and gastrocnemius-soleus complexes were collected 1, 2, 4, and 7 days (D) postexercise (PE). Maximal isometric force was maintained and macrophage accumulation was suppressed in α(7)Tg muscle 1D PE. Mean fiber cross-sectional area was unaltered in WT mice but increased 40% in α(7)Tg mice 7D PE. In addition, a rapid and striking fivefold increase in embryonic myosin heavy chain-positive fibers appeared in α(7)Tg mice 2D PE. Although Pax7-positive satellite cells were increased in α(7)Tg muscle 1D PE, the number of nuclei per myofiber was not altered 7D PE. Phosphorylation of mammalian target of rapamycin (mTOR) was significantly elevated in α(7)Tg 1D PE. This study provides the first demonstration that the presence of the α(7)β(1)-integrin in skeletal muscle increases fiber hypertrophy and new fiber synthesis in the early time course following a single bout of eccentric exercise. Further studies are necessary to elucidate the precise mechanism by which the α(7)-integrin can enhance muscle hypertrophy following exercise.
Collapse
Affiliation(s)
- Tara N Lueders
- Department of Kinesiology and Community Health, University of Illinois, Urbana, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Ogasawara R, Yasuda T, Sakamaki M, Ozaki H, Abe T. Effects of periodic and continued resistance training on muscle CSA and strength in previously untrained men. Clin Physiol Funct Imaging 2011; 31:399-404. [PMID: 21771261 DOI: 10.1111/j.1475-097x.2011.01031.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Riki Ogasawara
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Japan
| | | | | | | | | |
Collapse
|
217
|
Duddy WJ, Cohen T, Duguez S, Partridge TA. The isolated muscle fibre as a model of disuse atrophy: characterization using PhAct, a method to quantify f-actin. Exp Cell Res 2011; 317:1979-93. [PMID: 21635888 DOI: 10.1016/j.yexcr.2011.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 04/08/2011] [Accepted: 05/13/2011] [Indexed: 10/18/2022]
Abstract
Research into muscle atrophy and hypertrophy is hampered by limitations of the available experimental models. Interpretation of in vivo experiments is confounded by the complexity of the environment while in vitro models are subject to the marked disparities between cultured myotubes and the mature myofibres of living tissues. Here we develop a method (PhAct) based on ex vivo maintenance of the isolated myofibre as a model of disuse atrophy, using standard microscopy equipment and widely available analysis software, to measure f-actin content per myofibre and per nucleus over two weeks of ex vivo maintenance. We characterize the 35% per week atrophy of the isolated myofibre in terms of early changes in gene expression and investigate the effects on loss of muscle mass of modulatory agents, including Myostatin and Follistatin. By tracing the incorporation of a nucleotide analogue we show that the observed atrophy is not associated with loss or replacement of myonuclei. Such a completely controlled investigation can be conducted with the myofibres of a single muscle. With this novel method we can distinguish those features and mechanisms of atrophy and hypertrophy that are intrinsic to the muscle fibre from those that include activities of other tissues and systemic agents.
Collapse
Affiliation(s)
- William J Duddy
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| | | | | | | |
Collapse
|
218
|
Gundersen K. Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise. Biol Rev Camb Philos Soc 2010; 86:564-600. [PMID: 21040371 PMCID: PMC3170710 DOI: 10.1111/j.1469-185x.2010.00161.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Muscle fibres have different properties with respect to force, contraction speed, endurance, oxidative/glycolytic capacity etc. Although adult muscle fibres are normally post-mitotic with little turnover of cells, the physiological properties of the pre-existing fibres can be changed in the adult animal upon changes in usage such as after exercise. The signal to change is mainly conveyed by alterations in the patterns of nerve-evoked electrical activity, and is to a large extent due to switches in the expression of genes. Thus, an excitation-transcription coupling must exist. It is suggested that changes in nerve-evoked muscle activity lead to a variety of activity correlates such as increases in free intracellular Ca2+ levels caused by influx across the cell membrane and/or release from the sarcoplasmatic reticulum, concentrations of metabolites such as lipids and ADP, hypoxia and mechanical stress. Such correlates are detected by sensors such as protein kinase C (PKC), calmodulin, AMP-activated kinase (AMPK), peroxisome proliferator-activated receptor δ (PPARδ), and oxygen dependent prolyl hydroxylases that trigger intracellular signaling cascades. These complex cascades involve several transcription factors such as nuclear factor of activated T-cells (NFAT), myocyte enhancer factor 2 (MEF2), myogenic differentiation factor (myoD), myogenin, PPARδ, and sine oculis homeobox 1/eyes absent 1 (Six1/Eya1). These factors might act indirectly by inducing gene products that act back on the cascade, or as ultimate transcription factors binding to and transactivating/repressing genes for the fast and slow isoforms of various contractile proteins and of metabolic enzymes. The determination of size and force is even more complex as this involves not only intracellular signaling within the muscle fibres, but also muscle stem cells called satellite cells. Intercellular signaling substances such as myostatin and insulin-like growth factor 1 (IGF-1) seem to act in a paracrine fashion. Induction of hypertrophy is accompanied by the satellite cells fusing to myofibres and thereby increasing the capacity for protein synthesis. These extra nuclei seem to remain part of the fibre even during subsequent atrophy as a form of muscle memory facilitating retraining. In addition to changes in myonuclear number during hypertrophy, changes in muscle fibre size seem to be caused by alterations in transcription, translation (per nucleus) and protein degradation.
Collapse
Affiliation(s)
- Kristian Gundersen
- Department of Molecular Biosciences, University of Oslo, P.O. Box 1041, Blindern, N-0316 Oslo, Norway.
| |
Collapse
|