201
|
Ebolavirus VP35 coats the backbone of double-stranded RNA for interferon antagonism. J Virol 2013; 87:10385-8. [PMID: 23824825 DOI: 10.1128/jvi.01452-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recognition of viral double-stranded RNA (dsRNA) activates interferon production and immune signaling in host cells. Crystal structures of ebolavirus VP35 show that it caps dsRNA ends to prevent sensing by pattern recognition receptors such as RIG-I. In contrast, structures of marburgvirus VP35 show that it primarily coats the dsRNA backbone. Here, we demonstrate that ebolavirus VP35 also coats the dsRNA backbone in solution, although binding to the dsRNA ends probably constitutes the initial binding event.
Collapse
|
202
|
Harris KG, Coyne CB. Enter at your own risk: how enteroviruses navigate the dangerous world of pattern recognition receptor signaling. Cytokine 2013; 63:230-6. [PMID: 23764548 DOI: 10.1016/j.cyto.2013.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 12/25/2022]
Abstract
Enteroviruses are the most common human viral pathogens worldwide. This genus of small, non-enveloped, single stranded RNA viruses includes coxsackievirus, rhinovirus, echovirus, and poliovirus species. Infection with these viruses can induce mild symptoms that resemble the common cold, but can also be associated with more severe syndromes such as poliomyelitis, neurological diseases including aseptic meningitis and encephalitis, myocarditis, and the onset of type I diabetes. In humans, polarized epithelial cells lining the respiratory and/or digestive tracts represent the initial sites of infection by enteroviruses. Control of infection in the host is initiated through the engagement of a variety of pattern recognition receptors (PRRs). PRRs act as the sentinels of the innate immune system and serve to alert the host to the presence of a viral invader. This review assembles the available data annotating the role of PRRs in the response to enteroviral infection as well as the myriad ways by which enteroviruses both interrupt and manipulate PRR signaling to enhance their own replication, thereby inducing human disease.
Collapse
Affiliation(s)
- Katharine G Harris
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 427 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA.
| | | |
Collapse
|
203
|
Abstract
Cells are equipped with mechanisms that allow them to rapidly detect and respond to viruses. These defense mechanisms rely partly on receptors that monitor the cytosol for the presence of atypical nucleic acids associated with virus infection. RIG-I-like receptors detect RNA molecules that are absent from the uninfected host. DNA receptors alert the cell to the abnormal presence of that nucleic acid in the cytosol. Signaling by RNA and DNA receptors results in the induction of restriction factors that prevent virus replication and establish cell-intrinsic antiviral immunity. In light of these formidable obstacles, viruses have evolved mechanisms of evasion, masking nucleic acid structures recognized by the host, sequestering themselves away from the cytosol or targeting host sensors, and signaling adaptors for deactivation or degradation. Here, we detail recent advances in the molecular understanding of cytosolic nucleic acid detection and its evasion by viruses.
Collapse
Affiliation(s)
- Delphine Goubau
- Immunobiology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Safia Deddouche
- Immunobiology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| |
Collapse
|
204
|
Childs KS, Randall RE, Goodbourn S. LGP2 plays a critical role in sensitizing mda-5 to activation by double-stranded RNA. PLoS One 2013; 8:e64202. [PMID: 23671710 PMCID: PMC3650065 DOI: 10.1371/journal.pone.0064202] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/10/2013] [Indexed: 12/24/2022] Open
Abstract
The DExD/H box RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation associated gene-5 (mda-5) sense viral RNA in the cytoplasm of infected cells and activate signal transduction pathways that trigger the production of type I interferons (IFNs). Laboratory of genetics and physiology 2 (LGP2) is thought to influence IFN production by regulating the activity of RIG-I and mda-5, although its mechanism of action is not known and its function is controversial. Here we show that expression of LGP2 potentiates IFN induction by polyinosinic-polycytidylic acid [poly(I:C)], commonly used as a synthetic mimic of viral dsRNA, and that this is particularly significant at limited levels of the inducer. The observed enhancement is mediated through co-operation with mda-5, which depends upon LGP2 for maximal activation in response to poly(I:C). This co-operation is dependent upon dsRNA binding by LGP2, and the presence of helicase domain IV, both of which are required for LGP2 to interact with mda-5. In contrast, although RIG-I can also be activated by poly(I:C), LGP2 does not have the ability to enhance IFN induction by RIG-I, and instead acts as an inhibitor of RIG-I-dependent poly(I:C) signaling. Thus the level of LGP2 expression is a critical factor in determining the cellular sensitivity to induction by dsRNA, and this may be important for rapid activation of the IFN response at early times post-infection when the levels of inducer are low.
Collapse
Affiliation(s)
- Kay S. Childs
- Division of Biomedical Sciences, St. George's, University of London, London, United Kingdom
| | - Richard E. Randall
- School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Stephen Goodbourn
- Division of Biomedical Sciences, St. George's, University of London, London, United Kingdom
| |
Collapse
|
205
|
Fullam A, Schröder M. DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential host factors for viral replication. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:854-65. [PMID: 23567047 PMCID: PMC7157912 DOI: 10.1016/j.bbagrm.2013.03.012] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 12/17/2022]
Abstract
Traditional functions of DExD/H-box helicases are concerned with RNA metabolism; they have been shown to play a part in nearly every cellular process that involves RNA. On the other hand, it is accepted that DexD/H-box helicases also engage in activities that do not require helicase activity. A number of DExD/H-box helicases have been shown to be involved in anti-viral immunity. The RIG-like helicases, RIG-I, mda5 and lgp2, act as important cytosolic pattern recognition receptors for viral RNA. Detection of viral nucleic acids by the RIG-like helicases or other anti-viral pattern recognition receptors leads to the induction of type I interferons and pro-inflammatory cytokines. More recently, additional DExD/H-box helicases have also been implicated to act as cytosolic sensors of viral nucleic acids, including DDX3, DDX41, DHX9, DDX60, DDX1 and DHX36. However, there is evidence that at least some of these helicases might have more downstream functions in pattern recognition receptor signalling pathways, as signalling adaptors or transcriptional regulators. In an interesting twist, a lot of DExD/H-box helicases have also been identified as essential host factors for the replication of different viruses, suggesting that viruses 'hijack' their RNA helicase activities for their benefit. Interestingly, DDX3, DDX1 and DHX9 are among the helicases that are required for the replication of a diverse range of viruses. This might suggest that these helicases are highly contested targets in the ongoing 'arms race' between viruses and the host immune system. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Anthony Fullam
- National University of Ireland, Maynooth, Kildare, Ireland.
| | | |
Collapse
|
206
|
MDA5 localizes to stress granules, but this localization is not required for the induction of type I interferon. J Virol 2013; 87:6314-25. [PMID: 23536668 DOI: 10.1128/jvi.03213-12] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Virus infection can initiate a type I interferon (IFN-α/β) response via activation of the cytosolic RNA sensors retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). Furthermore, it can activate kinases that phosphorylate eukaryotic translation initiation factor 2α (eIF2α), which leads to inhibition of (viral) protein translation and formation of stress granules (SG). Most viruses have evolved mechanisms to suppress these cellular responses. Here, we show that a mutant mengovirus expressing an inactive leader (L) protein, which we have previously shown to be unable to suppress IFN-α/β, triggered SG formation in a protein kinase R (PKR)-dependent manner. Furthermore, we show that infection of cells that are defective in SG formation yielded higher viral RNA levels, suggesting that SG formation acts as an antiviral defense mechanism. Since the induction of both IFN-α/β and SG is suppressed by mengovirus L, we set out to investigate a potential link between these pathways. We observed that MDA5, the intracellular RNA sensor that recognizes picornaviruses, localized to SG. However, activation of the MDA5 signaling pathway did not trigger and was not required for SG formation. Moreover, cells that were unable to form SG-by protein kinase R (PKR) depletion, using cells expressing a nonphosphorylatable eIF2α protein, or by drug treatment that inhibits SG formation-displayed a normal IFN-α/β response. Thus, although MDA5 localizes to SG, this localization seems to be dispensable for induction of the IFN-α/β pathway.
Collapse
|
207
|
Abstract
Idiopathic inflammatory myopathies (IIM) are chronic inflammatory diseases of muscle characterized by proximal muscle weakness. There are three main groups of diseases, dermatomyositis, polymyositis and inclusion body myositis. The muscle tissue is invaded by the humoral autoantibody producing immune system (B-cells) and by the cellular immune system with autoaggressive and inflammation modulating cells (e.g. dendritic cells, monocytes/macrophages, CD4 + and CD8 + T-cells and natural killer cells). The presence of specific or associated autoantibodies and inflammatory cellular infiltrates with cytotoxic and immune autoreactive properties are characteristic for IIM diseases. The pathogenesis is still unknown; nevertheless, there are several hints that exogenic factors might be involved in initiation and disease progression and bacterial, fungal and viral infections are thought to be possible initiators. Up to now information on prognostic markers to help with decision-making for individual treatment are limited. In addition, there has been only limited therapeutic success including conventional or novel drugs and biologicals and comparative validation studies are needed using similar outcome measurements. Moreover, to facilitate the use and development of novel therapies, elaboration of intracellular and cell-specific regulation could be useful to understand the etiopathogenesis and allow a better diagnosis, prognosis and possibly also a prediction for individualized subgroup treatment.
Collapse
|
208
|
Abstract
Paramyxoviruses evade antiviral immune response using a small nonstructural protein, V, which binds to the host dsRNA sensor MDA5 and prevents it from activating the interferon signaling pathway. A recent crystal structure of the V protein in complex with MDA5, published in Science, revealed that V disrupts the structure of MDA5 and is integrated into the MDA5 protein fold, providing an intriguing new example of viral mimicry as a countermeasure against the host immune system.
Collapse
|
209
|
Motz C, Schuhmann KM, Kirchhofer A, Moldt M, Witte G, Conzelmann KK, Hopfner KP. Paramyxovirus V proteins disrupt the fold of the RNA sensor MDA5 to inhibit antiviral signaling. Science 2013; 339:690-3. [PMID: 23328395 DOI: 10.1126/science.1230949] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) melanoma differentiation-associated protein 5 (MDA5) senses cytoplasmic viral RNA and activates antiviral innate immunity. To reveal how paramyxoviruses counteract this response, we determined the crystal structure of the MDA5 adenosine 5'-triphosphate (ATP)-hydrolysis domain in complex with the viral inhibitor V protein. The V protein unfolded the ATP-hydrolysis domain of MDA5 via a β-hairpin motif and recognized a structural motif of MDA5 that is normally buried in the conserved helicase fold. This leads to disruption of the MDA5 ATP-hydrolysis site and prevention of RNA-bound MDA5 filament formation. The structure explains why V proteins inactivate MDA5, but not RIG-I, and mutating only two amino acids in RIG-I induces robust V protein binding. Our results suggest an inhibition mechanism of RLR signalosome formation by unfolding of receptor and inhibitor.
Collapse
Affiliation(s)
- Carina Motz
- Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
210
|
Wu B, Peisley A, Hur S. 196 Mechanisms of viral dsRNA detection and antiviral signal activation by MDA5 filament. J Biomol Struct Dyn 2013. [DOI: 10.1080/07391102.2013.786438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
211
|
Wu B, Peisley A, Richards C, Yao H, Zeng X, Lin C, Chu F, Walz T, Hur S. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 2012; 152:276-89. [PMID: 23273991 DOI: 10.1016/j.cell.2012.11.048] [Citation(s) in RCA: 410] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/12/2012] [Accepted: 11/20/2012] [Indexed: 12/31/2022]
Abstract
MDA5, a viral double-stranded RNA (dsRNA) receptor, shares sequence similarity and signaling pathways with RIG-I yet plays essential functions in antiviral immunity through distinct specificity for viral RNA. Revealing the molecular basis for the functional divergence, we report here the crystal structure of MDA5 bound to dsRNA, which shows how, using the same domain architecture, MDA5 recognizes the internal duplex structure, whereas RIG-I recognizes the terminus of dsRNA. We further show that MDA5 uses direct protein-protein contacts to stack along dsRNA in a head-to-tail arrangement, and that the signaling domain (tandem CARD), which decorates the outside of the core MDA5 filament, also has an intrinsic propensity to oligomerize into an elongated structure that activates the signaling adaptor, MAVS. These data support a model in which MDA5 uses long dsRNA as a signaling platform to cooperatively assemble the core filament, which in turn promotes stochastic assembly of the tandem CARD oligomers for signaling.
Collapse
Affiliation(s)
- Bin Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Luo D, Kohlway A, Pyle AM. Duplex RNA activated ATPases (DRAs): platforms for RNA sensing, signaling and processing. RNA Biol 2012; 10:111-20. [PMID: 23228901 PMCID: PMC3590228 DOI: 10.4161/rna.22706] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Double-stranded RNAs are an important class of functional macromolecules in living systems. They are usually found as part of highly specialized intracellular machines that control diverse cellular events, ranging from virus replication, antiviral defense, RNA interference, to regulation of gene activities and genomic integrity. Within different intracellular machines, the RNA duplex is often found in association with specific RNA-dependent ATPases, including Dicer, RIG-I and DRH-3 proteins. These duplex RNA-activated ATPases represent an emerging group of motor proteins within the large and diverse super family 2 nucleic acid-dependent ATPases (which are historically defined as SF2 helicases). The duplex RNA-activated ATPases share characteristic molecular features for duplex RNA recognition, including motifs (e.g., motifs IIa and Vc) and an insertion domain (HEL2i), and they require double-strand RNA binding for their enzymatic activities. Proteins in this family undergo large conformational changes concomitant with RNA binding, ATP binding and ATP hydrolysis in order to achieve their functions, which include the release of signaling domains and the recruitment of partner proteins. The duplex RNA-activated ATPases represent a distinct and fascinating group of nanomechanical molecular motors that are essential for duplex RNA sensing and processing in diverse cellular pathways.
Collapse
Affiliation(s)
- Dahai Luo
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.
| | | | | |
Collapse
|
213
|
Kolakofsky D, Kowalinski E, Cusack S. A structure-based model of RIG-I activation. RNA (NEW YORK, N.Y.) 2012; 18:2118-27. [PMID: 23118418 PMCID: PMC3504664 DOI: 10.1261/rna.035949.112] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A series of high-resolution crystal structures of RIG-I and RIG-I:dsRNA cocrystals has recently been reported. Comparison of these structures provides considerable insight into how this innate immune pattern recognition receptor is activated upon detecting and binding a certain class of viral RNAs.
Collapse
Affiliation(s)
- Daniel Kolakofsky
- Department of Microbiology and Molecular Medicine, University of Geneva School of Medicine, CMU, 1211 Geneva, Switzerland.
| | | | | |
Collapse
|
214
|
Abstract
Filoviruses, marburgvirus (MARV) and ebolavirus (EBOV), are causative agents of highly lethal hemorrhagic fever in humans. MARV and EBOV share a common genome organization but show important differences in replication complex formation, cell entry, host tropism, transcriptional regulation, and immune evasion. Multifunctional filoviral viral protein (VP) 35 proteins inhibit innate immune responses. Recent studies suggest double-stranded (ds)RNA sequestration is a potential mechanism that allows EBOV VP35 to antagonize retinoic-acid inducible gene-I (RIG-I) like receptors (RLRs) that are activated by viral pathogen-associated molecular patterns (PAMPs), such as double-strandedness and dsRNA blunt ends. Here, we show that MARV VP35 can inhibit IFN production at multiple steps in the signaling pathways downstream of RLRs. The crystal structure of MARV VP35 IID in complex with 18-bp dsRNA reveals that despite the similar protein fold as EBOV VP35 IID, MARV VP35 IID interacts with the dsRNA backbone and not with blunt ends. Functional studies show that MARV VP35 can inhibit dsRNA-dependent RLR activation and interferon (IFN) regulatory factor 3 (IRF3) phosphorylation by IFN kinases TRAF family member-associated NFkb activator (TANK) binding kinase-1 (TBK-1) and IFN kB kinase e (IKKe) in cell-based studies. We also show that MARV VP35 can only inhibit RIG-I and melanoma differentiation associated gene 5 (MDA5) activation by double strandedness of RNA PAMPs (coating backbone) but is unable to inhibit activation of RLRs by dsRNA blunt ends (end capping). In contrast, EBOV VP35 can inhibit activation by both PAMPs. Insights on differential PAMP recognition and inhibition of IFN induction by a similar filoviral VP35 fold, as shown here, reveal the structural and functional plasticity of a highly conserved virulence factor.
Collapse
|
215
|
Berke IC, Li Y, Modis Y. Structural basis of innate immune recognition of viral RNA. Cell Microbiol 2012; 15:386-94. [DOI: 10.1111/cmi.12061] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/22/2012] [Accepted: 10/24/2012] [Indexed: 12/24/2022]
Affiliation(s)
- Ian C. Berke
- Department of Molecular Biophysics & Biochemistry; Yale University; New Haven; CT; 06520; USA
| | - Yue Li
- Department of Molecular Biophysics & Biochemistry; Yale University; New Haven; CT; 06520; USA
| | - Yorgo Modis
- Department of Molecular Biophysics & Biochemistry; Yale University; New Haven; CT; 06520; USA
| |
Collapse
|
216
|
Feng Q, Hato SV, Langereis MA, Zoll J, Virgen-Slane R, Peisley A, Hur S, Semler BL, van Rij RP, van Kuppeveld FJM. MDA5 detects the double-stranded RNA replicative form in picornavirus-infected cells. Cell Rep 2012; 2:1187-96. [PMID: 23142662 PMCID: PMC7103987 DOI: 10.1016/j.celrep.2012.10.005] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 06/26/2012] [Accepted: 10/08/2012] [Indexed: 12/24/2022] Open
Abstract
RIG-I and MDA5 are cytosolic RNA sensors that play a critical role in innate antiviral responses. Major advances have been made in identifying RIG-I ligands, but our knowledge of the ligands for MDA5 remains restricted to data from transfection experiments mostly using poly(I:C), a synthetic dsRNA mimic. Here, we dissected the IFN-α/β-stimulatory activity of different viral RNA species produced during picornavirus infection, both by RNA transfection and in infected cells in which specific steps of viral RNA replication were inhibited. Our results show that the incoming genomic plus-strand RNA does not activate MDA5, but minus-strand RNA synthesis and production of the 7.5 kbp replicative form trigger a strong IFN-α/β response. IFN-α/β production does not rely on plus-strand RNA synthesis and thus generation of the partially double-stranded replicative intermediate. This study reports MDA5 activation by a natural RNA ligand under physiological conditions.
Collapse
Affiliation(s)
- Qian Feng
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, PO Box 9101, 6500 HB, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Luo D, Kohlway A, Vela A, Pyle AM. Visualizing the determinants of viral RNA recognition by innate immune sensor RIG-I. Structure 2012; 20:1983-8. [PMID: 23022350 PMCID: PMC3515076 DOI: 10.1016/j.str.2012.08.029] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 08/17/2012] [Accepted: 08/22/2012] [Indexed: 12/25/2022]
Abstract
Retinoic acid inducible gene-I (RIG-I) is a key intracellular immune receptor for pathogenic RNAs, particularly from RNA viruses. Here, we report the crystal structure of human RIG-I bound to a 5' triphosphorylated RNA hairpin and ADP nucleotide at 2.8 Å resolution. The RNA ligand contains all structural features that are essential for optimal recognition by RIG-I, as it mimics the panhandle-like signatures within the genome of negative-stranded RNA viruses. RIG-I adopts an intermediate, semiclosed conformation in this product state of ATP hydrolysis. The structure of this complex allows us to visualize the first steps in RIG-I recognition and activation upon viral infection.
Collapse
Affiliation(s)
- Dahai Luo
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Andrew Kohlway
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Adriana Vela
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| |
Collapse
|
218
|
Berke IC, Yu X, Modis Y, Egelman EH. MDA5 assembles into a polar helical filament on dsRNA. Proc Natl Acad Sci U S A 2012; 109:18437-41. [PMID: 23090998 PMCID: PMC3494895 DOI: 10.1073/pnas.1212186109] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Melanoma differentiation-associated protein 5 (MDA5) detects viral dsRNA in the cytoplasm. On binding of RNA, MDA5 forms polymers, which trigger assembly of the signaling adaptor mitochondrial antiviral-signaling protein (MAVS) into its active fibril form. The molecular mechanism of MDA5 signaling is not well understood, however. Here we show that MDA5 forms helical filaments on dsRNA and report the 3D structure of the filaments using electron microscopy (EM) and image reconstruction. MDA5 assembles into a polar, single-start helix around the RNA. Fitting of an MDA5 homology model into the structure suggests a key role for the MDA5 C-terminal domain in cooperative filament assembly. Our study supports a signal transduction mechanism in which the helical array of MDA5 within filaments nucleates the assembly of MAVS fibrils. We conclude that MDA5 is a polymerization-dependent signaling platform that uses the amyloid-like self-propagating properties of MAVS to amplify signaling.
Collapse
Affiliation(s)
- Ian C. Berke
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520; and
| | - Xiong Yu
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908
| | - Yorgo Modis
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520; and
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
219
|
Kinetic mechanism for viral dsRNA length discrimination by MDA5 filaments. Proc Natl Acad Sci U S A 2012; 109:E3340-9. [PMID: 23129641 DOI: 10.1073/pnas.1208618109] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The viral sensor MDA5 distinguishes between cellular and viral dsRNAs by length-dependent recognition in the range of ~0.5-7 kb. The ability to discriminate dsRNA length at this scale sets MDA5 apart from other dsRNA receptors of the immune system. We have shown previously that MDA5 forms filaments along dsRNA that disassemble upon ATP hydrolysis. Here, we demonstrate that filament formation alone is insufficient to explain its length specificity, because the intrinsic affinity of MDA5 for dsRNA depends only moderately on dsRNA length. Instead, MDA5 uses a combination of end disassembly and slow nucleation kinetics to "discard" short dsRNA rapidly and to suppress rebinding. In contrast, filaments on long dsRNA cycle between partial end disassembly and elongation, bypassing nucleation steps. MDA5 further uses this repetitive cycle of assembly and disassembly processes to repair filament discontinuities, which often are present because of multiple, internal nucleation events, and to generate longer, continuous filaments that more accurately reflect the length of the underlying dsRNA scaffold. Because the length of the continuous filament determines the stability of the MDA5-dsRNA interaction, the mechanism proposed here provides an explanation for how MDA5 uses filament assembly and disassembly dynamics to discriminate between self vs. nonself dsRNA.
Collapse
|
220
|
Triantafilou K, Vakakis E, Kar S, Richer E, Evans GL, Triantafilou M. Visualisation of direct interaction of MDA5 and the dsRNA replicative intermediate form of positive strand RNA viruses. J Cell Sci 2012; 125:4761-9. [PMID: 22797917 DOI: 10.1242/jcs.103887] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The innate immune system is a vital part of the body's defences against viral pathogens. The proteins retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation associated gene 5 (MDA5) function as cytoplasmic pattern recognition receptors that are involved in the elimination of actively replicating RNA viruses. Their location and their differential responses to RNA viruses emphasises the complexity of the innate detection system. Despite the wealth of information on the types of RNA that trigger RIG-I, much less is known about the nature of the RNAs that act as agonists for MDA5. In order to identify which RNA species triggers MDA5 activation during infection, we isolated viral ssRNA and replicative intermediates of RNA from positive sense ssRNA viruses. We reveal that MDA5 recognises not the genomic ssRNA but the dsRNA generated by the replication of these viruses. Furthermore, using fluorescent imaging we present the first report of the visualisation of dsRNA and MDA5, which provides unique evidence of the relationship between viral dsRNA and MDA5 and proves without a doubt that MDA5 is the key sensor for the dsRNA replicative intermediate form of positive sense ssRNA viruses.
Collapse
Affiliation(s)
- Kathy Triantafilou
- University of Cardiff, Department of Child Health, School of Medicine, University Hospital of Wales, Heath Park, UK
| | | | | | | | | | | |
Collapse
|
221
|
Multi-level regulation of cellular recognition of viral dsRNA. Cell Mol Life Sci 2012; 70:1949-63. [PMID: 22960755 PMCID: PMC7079809 DOI: 10.1007/s00018-012-1149-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/20/2012] [Accepted: 08/23/2012] [Indexed: 12/13/2022]
Abstract
Effective antiviral immunity depends on accurate recognition of viral RNAs by the innate immune system. Double-stranded RNA (dsRNA) often accumulates in virally infected cells and was initially considered a unique viral signature that was sufficient to initiate antiviral response through dsRNA receptors and dsRNA-dependent effectors such as Toll-like receptor 3, retinoic acid inducible gene-1, protein kinase RNA-activated and oligoadenylate synthetase. However, dsRNA is also present in many cellular RNAs, raising a question of how these receptors and effectors discriminate between viral and cellular dsRNAs. Accumulating evidence suggests that innate immune sensors detect not only dsRNA structure but also other and often multiple features of RNA such as length, sequence, cellular location, post-transcriptional processing and modification, which are divergent between viral and cellular RNAs. This review summarizes recent findings on the substrate specificities of a few selected dsRNA-dependent effectors and receptors, which have revealed more complex mechanisms involved in cellular discrimination between self and non-self RNA.
Collapse
|
222
|
Bale S, Julien JP, Bornholdt ZA, Kimberlin CR, Halfmann P, Zandonatti MA, Kunert J, Kroon GJA, Kawaoka Y, MacRae IJ, Wilson IA, Saphire EO. Marburg virus VP35 can both fully coat the backbone and cap the ends of dsRNA for interferon antagonism. PLoS Pathog 2012; 8:e1002916. [PMID: 23028316 PMCID: PMC3441732 DOI: 10.1371/journal.ppat.1002916] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/06/2012] [Indexed: 12/24/2022] Open
Abstract
Filoviruses, including Marburg virus (MARV) and Ebola virus (EBOV), cause fatal hemorrhagic fever in humans and non-human primates. All filoviruses encode a unique multi-functional protein termed VP35. The C-terminal double-stranded (ds)RNA-binding domain (RBD) of VP35 has been implicated in interferon antagonism and immune evasion. Crystal structures of the VP35 RBD from two ebolaviruses have previously demonstrated that the viral protein caps the ends of dsRNA. However, it is not yet understood how the expanses of dsRNA backbone, between the ends, are masked from immune surveillance during filovirus infection. Here, we report the crystal structure of MARV VP35 RBD bound to dsRNA. In the crystal structure, molecules of dsRNA stack end-to-end to form a pseudo-continuous oligonucleotide. This oligonucleotide is continuously and completely coated along its sugar-phosphate backbone by the MARV VP35 RBD. Analysis of dsRNA binding by dot-blot and isothermal titration calorimetry reveals that multiple copies of MARV VP35 RBD can indeed bind the dsRNA sugar-phosphate backbone in a cooperative manner in solution. Further, MARV VP35 RBD can also cap the ends of the dsRNA in solution, although this arrangement was not captured in crystals. Together, these studies suggest that MARV VP35 can both coat the backbone and cap the ends, and that for MARV, coating of the dsRNA backbone may be an essential mechanism by which dsRNA is masked from backbone-sensing immune surveillance molecules.
Collapse
Affiliation(s)
- Shridhar Bale
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jean-Philippe Julien
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Zachary A. Bornholdt
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Christopher R. Kimberlin
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Peter Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Michelle A. Zandonatti
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - John Kunert
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Gerard J. A. Kroon
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ian J. MacRae
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ian A. Wilson
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
223
|
Leung DW, Amarasinghe GK. Structural insights into RNA recognition and activation of RIG-I-like receptors. Curr Opin Struct Biol 2012; 22:297-303. [PMID: 22560447 PMCID: PMC3383332 DOI: 10.1016/j.sbi.2012.03.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 03/25/2012] [Indexed: 12/24/2022]
Abstract
RIG-I like receptors (RLR) that recognize non-self RNA play critical roles in activating host innate immune pathways in response to viral infections. Not surprisingly, RLRs and their associated signaling networks are also targeted by numerous antagonists that facilitate viral pathogenesis. Although the role of RLRs in orchestrating antiviral signaling has been recognized for some time, our knowledge of the complex regulatory mechanisms that control signaling through these key molecules is incomplete. A series of recent structural studies shed new light into the structural basis for dsRNA recognition and activation of RLRs. Collectively, these studies suggest that the repression of RLRs is facilitated by a cis element that makes multiple contacts with domains within the helicase and that RNA binding initiated by the C-terminal RNA binding domain is important for ATP hydrolysis and release of the CARD domain containing signaling module from the repressed conformation. These studies also highlight potential differences between RIG-I and MDA5, two RLR members. Together with previous studies, these new results bring us a step closer to uncovering the complex regulatory process of a key protein that protects host cells from invading pathogens.
Collapse
Affiliation(s)
- Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Avenue, St Louis, MO 63110, United States.
| | | |
Collapse
|
224
|
MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA. EMBO J 2012; 31:1714-26. [PMID: 22314235 DOI: 10.1038/emboj.2012.19] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/10/2012] [Indexed: 12/24/2022] Open
Abstract
Melanoma differentiation-associated gene-5 (MDA5) detects viral double-stranded RNA in the cytoplasm. RNA binding induces MDA5 to activate the signalling adaptor MAVS through interactions between the caspase recruitment domains (CARDs) of the two proteins. The molecular mechanism of MDA5 signalling is not well understood. Here, we show that MDA5 cooperatively binds short RNA ligands as a dimer with a 16-18-basepair footprint. A crystal structure of the MDA5 helicase-insert domain demonstrates an evolutionary relationship with the archaeal Hef helicases. In X-ray solution structures, the CARDs in unliganded MDA5 are flexible, and RNA binds on one side of an asymmetric MDA5 dimer, bridging the two subunits. On longer RNA, full-length and CARD-deleted MDA5 constructs assemble into ATP-sensitive filaments. We propose a signalling model in which the CARDs on MDA5-RNA filaments nucleate the assembly of MAVS filaments with the same polymeric geometry.
Collapse
|