201
|
Abstract
Heterogeneity is an omnipresent feature of mammalian cells in vitro and in vivo. It has been recently realized that even mouse and human embryonic stem cells under the best culture conditions are heterogeneous containing pluripotent as well as partially committed cells. Somatic stem cells in adult organs are also heterogeneous, containing many subpopulations of self-renewing cells with distinct regenerative capacity. The differentiated progeny of adult stem cells also retain significant developmental plasticity that can be induced by a wide variety of experimental approaches. Like normal stem cells, recent data suggest that cancer stem cells (CSCs) similarly display significant phenotypic and functional heterogeneity, and that the CSC progeny can manifest diverse plasticity. Here, I discuss CSC heterogeneity and plasticity in the context of tumor development and progression, and by comparing with normal stem cell development. Appreciation of cancer cell plasticity entails a revision to the earlier concept that only the tumorigenic subset in the tumor needs to be targeted. By understanding the interrelationship between CSCs and their differentiated progeny, we can hope to develop better therapeutic regimens that can prevent the emergence of tumor cell variants that are able to found a new tumor and distant metastases.
Collapse
|
202
|
Kaufmann KB, Gründer A, Hadlich T, Wehrle J, Gothwal M, Bogeska R, Seeger TS, Kayser S, Pham KB, Jutzi JS, Ganzenmüller L, Steinemann D, Schlegelberger B, Wagner JM, Jung M, Will B, Steidl U, Aumann K, Werner M, Günther T, Schüle R, Rambaldi A, Pahl HL. A novel murine model of myeloproliferative disorders generated by overexpression of the transcription factor NF-E2. ACTA ACUST UNITED AC 2012; 209:35-50. [PMID: 22231305 PMCID: PMC3260873 DOI: 10.1084/jem.20110540] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mice expressing a transgene encoding the transcription factor NF-E2 in hematopoietic cells exhibit features of myeloproliferative neoplasms, including thrombocytosis, Epo-independent colony formation, stem and progenitor cell overabundance, leukocytosis, and progression to acute myeloid leukemia. The molecular pathophysiology of myeloproliferative neoplasms (MPNs) remains poorly understood. Based on the observation that the transcription factor NF-E2 is often overexpressed in MPN patients, independent of the presence of other molecular aberrations, we generated mice expressing an NF-E2 transgene in hematopoietic cells. These mice exhibit many features of MPNs, including thrombocytosis, leukocytosis, Epo-independent colony formation, characteristic bone marrow histology, expansion of stem and progenitor compartments, and spontaneous transformation to acute myeloid leukemia. The MPN phenotype is transplantable to secondary recipient mice. NF-E2 can alter histone modifications, and NF-E2 transgenic mice show hypoacetylation of histone H3. Treatment of mice with the histone deacetylase inhibitor (HDAC-I) vorinostat restored physiological levels of histone H3 acetylation, decreased NF-E2 expression, and normalized platelet numbers. Similarly, MPN patients treated with an HDAC-I exhibited a decrease in NF-E2 expression. These data establish a role for NF-E2 in the pathophysiology of MPNs and provide a molecular rationale for investigating epigenetic alterations as novel targets for rationally designed MPN therapies.
Collapse
Affiliation(s)
- Kai B Kaufmann
- Department of Experimental Anaesthesiology, Center for Clinical Research, University Hospital Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Kalamarz ME, Paddibhatla I, Nadar C, Govind S. Sumoylation is tumor-suppressive and confers proliferative quiescence to hematopoietic progenitors in Drosophila melanogaster larvae. Biol Open 2011. [DOI: 10.1242/bio.2011043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Summary
How cell-intrinsic regulation of the cell cycle and the extrinsic influence of the niche converge to provide proliferative quiescence, safeguard tissue integrity, and provide avenues to stop stem cells from giving rise to tumors is a major challenge in gene therapy and tissue engineering. We explore this question in sumoylation-deficient mutants of Drosophila. In wild type third instar larval lymph glands, a group of hematopoietic stem/progenitor cells acquires quiescence; a multicellular niche supports their undifferentiated state. However, how proliferative quiescence is instilled in this population is not understood. We show that Ubc9 protein is nuclear in this population. Loss of the SUMO-activating E1 enzyme, Aos1/Uba2, the conjugating E2 enzyme, Ubc9, or the E3 SUMO ligase, PIAS, results in a failure of progenitors to quiesce; progenitors become hyperplastic, misdifferentiate, and develop into microtumors that eventually detach from the dorsal vessel. Significantly, dysplasia and lethality of Ubc9 mutants are rescued when Ubc9wt is provided specifically in the progenitor populations, but not when it is provided in the niche or in the differentiated cortex. While normal progenitors express high levels of the Drosophila cyclin-dependent kinase inhibitor p21 homolog, Dacapo, the corresponding overgrown mutant population exhibits a marked reduction in Dacapo. Forced expression of either Dacapo or human p21 in progenitors shrinks this population. The selective expression of either protein in mutant progenitor cells, but not in other hematopoietic populations, limits overgrowth, blocks tumorogenesis, and restores organ integrity. We discuss an essential and complex role for sumoylation in preserving the hematopoietic progenitor states for stress response and in the context of normal development of the fly.
Collapse
Affiliation(s)
- Marta E. Kalamarz
- Biology Department, The City College of the City University of New York, 138th Street and Convent Avenue, New York, NY 10031, USA
- The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Indira Paddibhatla
- Biology Department, The City College of the City University of New York, 138th Street and Convent Avenue, New York, NY 10031, USA
- The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Christina Nadar
- Biology Department, The City College of the City University of New York, 138th Street and Convent Avenue, New York, NY 10031, USA
| | - Shubha Govind
- Biology Department, The City College of the City University of New York, 138th Street and Convent Avenue, New York, NY 10031, USA
- The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| |
Collapse
|
204
|
Guerrouahen BS, Al-Hijji I, Tabrizi AR. Osteoblastic and vascular endothelial niches, their control on normal hematopoietic stem cells, and their consequences on the development of leukemia. Stem Cells Int 2011; 2011:375857. [PMID: 22190963 PMCID: PMC3236318 DOI: 10.4061/2011/375857] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 10/19/2011] [Indexed: 12/28/2022] Open
Abstract
Stem cell self-renewal is regulated by intrinsic mechanisms and extrinsic signals mediated via specialized microenvironments called “niches.” The best-characterized stem cell is the hematopoietic stem cell (HSC). Self-renewal and differentiation ability of HSC are regulated by two major elements: endosteal and vascular regulatory elements. The osteoblastic niche localized at the inner surface of the bone cavity might serve as a reservoir for long-term HSC storage in a quiescent state. Whereas the vascular niche, which consists of sinusoidal endothelial cell lining blood vessel, provides an environment for short-term HSC proliferation and differentiation. Both niches act together to maintain hematopoietic homeostasis. In this paper, we provide some principles applying to the hematopoietic niches, which will be useful in the study and understanding of other stem cell niches. We will discuss altered microenvironment signaling leading to myeloid lineage disease. And finally, we will review some data on the development of acute myeloid leukemia from a subpopulation called leukemia-initiating cells (LIC), and we will discuss on the emerging evidences supporting the influence of the microenvironment on chemotherapy resistance.
Collapse
Affiliation(s)
- Bella S Guerrouahen
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10022, USA
| | | | | |
Collapse
|
205
|
Nouspikel T. Attenuated nucleotide excision repair leads to mutagenesis in cancer cells. Future Oncol 2011; 7:1361-3. [PMID: 22112311 DOI: 10.2217/fon.11.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
206
|
Ali HR, Dawson SJ, Blows FM, Provenzano E, Pharoah PD, Caldas C. Cancer stem cell markers in breast cancer: pathological, clinical and prognostic significance. Breast Cancer Res 2011; 13:R118. [PMID: 22112299 PMCID: PMC3326560 DOI: 10.1186/bcr3061] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION The cancer stem cell (CSC) hypothesis states that tumours consist of a cellular hierarchy with CSCs at the apex driving tumour recurrence and metastasis. Hence, CSCs are potentially of profound clinical importance. We set out to establish the clinical relevance of breast CSC markers by profiling a large cohort of breast tumours in tissue microarrays (TMAs) using immunohistochemistry (IHC). METHODS We included 4, 125 patients enrolled in the SEARCH population-based study with tumours represented in TMAs and classified into molecular subtype according to a validated IHC-based five-marker scheme. IHC was used to detect CD44/CD24, ALDH1A1, aldehyde dehydrogenase family 1 member A3 (ALDH1A3) and integrin alpha-6 (ITGA6). A 'Total CSC' score representing expression of all four CSC markers was also investigated. Association with breast cancer specific survival (BCSS) at 10 years was assessed using a Cox proportional-hazards model. This study was complied with REMARK criteria. RESULTS In ER negative cases, multivariate analysis showed that ITGA6 was an independent prognostic factor with a time-dependent effect restricted to the first two years of follow-up (hazard ratio (HR) for 0 to 2 years follow-up, 2.4; 95% confidence interval (95% CI), 1.2 to 4.8; P = 0.009). The composite 'Total CSC' score carried independent prognostic significance in ER negative cases for the first four years of follow-up (HR for 0 to 4 years follow-up, 1.3; 95% CI, 1.1 to 1.6; P = 0.006). CONCLUSIONS Breast CSC markers do not identify identical subpopulations in primary tumours. Both ITGA6 and a composite Total CSC score show independent prognostic significance in ER negative disease. The use of multiple markers to identify tumours enriched for CSCs has the greatest prognostic value. In the absence of more specific markers, we propose that the effective translation of the CSC hypothesis into patient benefit will necessitate the use of a panel of markers to robustly identify tumours enriched for CSCs.
Collapse
Affiliation(s)
- H Raza Ali
- Department of Oncology, University of Cambridge, Cambridge CB1 9RN, UK.
| | | | | | | | | | | |
Collapse
|
207
|
Rodriguez-Brenes IA, Komarova NL, Wodarz D. Evolutionary dynamics of feedback escape and the development of stem-cell-driven cancers. Proc Natl Acad Sci U S A 2011; 108:18983-8. [PMID: 22084071 PMCID: PMC3223454 DOI: 10.1073/pnas.1107621108] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cancers are thought to arise in tissue stem cells, and similar to healthy tissue, are thought to be maintained by a small population of tumor stem or initiating cells, whereas the majority of tumor cells are more differentiated with limited replicative potential. Healthy tissue homeostasis is achieved by feedback loops, and particular importance has been attached to signals secreted from differentiated cells that inhibit stem-cell division and stem-cell self-renewal, as documented in the olfactory epithelium and other tissues. Therefore, a key event in carcinogenesis must be escape from these feedback loops, which is studied here using evolutionary computational models. We find that out of all potential evolutionary pathways, only one unique sequence of phenotypic transitions can lead to complete escape in stem-cell-driven tumors, even though the required mutations for these transitions are certainly tissue specific. This insight, supported by data, facilitates the search for driver mutations and for therapeutic targets. Different growth patterns can result from feedback escape, which we call "inhibited," "uninhibited," and "sigmoidal," and which are found in published data. The finding of inhibited growth patterns in data indicates that besides architecture, the regulatory mechanisms of healthy tissue continue to operate to a degree in tumors.
Collapse
|
208
|
Spike BT, Wahl GM. p53, Stem Cells, and Reprogramming: Tumor Suppression beyond Guarding the Genome. Genes Cancer 2011; 2:404-19. [PMID: 21779509 DOI: 10.1177/1947601911410224] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
p53 is well recognized as a potent tumor suppressor. In its classic role, p53 responds to genotoxic insults by inducing cell cycle exit or programmed cell death to limit the propagation of cells with corrupted genomes. p53 is also implicated in a variety of other cellular processes in which its involvement is less well understood including self-renewal, differentiation, and reprogramming. These activities represent an emerging area of intense interest for cancer biologists, as they provide potential mechanistic links between p53 loss and the stem cell-like cellular plasticity that has been suggested to contribute to tumor cell heterogeneity and to drive tumor progression. Despite accumulating evidence linking p53 loss to stem-like phenotypes in cancer, it is not yet understood how p53 contributes to acquisition of "stemness" at the molecular level. Whether and how stem-like cells confer survival advantages to propagate the tumor also remain to be resolved. Furthermore, although it seems reasonable that the combination of p53 deficiency and the stem-like state could contribute to the genesis of cancers that are refractory to treatment, direct linkages and mechanistic underpinnings remain under investigation. Here, we discuss recent findings supporting the connection between p53 loss and the emergence of tumor cells bearing functional and molecular similarities to stem cells. We address several potential molecular and cellular mechanisms that may contribute to this link, and we discuss implications of these findings for the way we think about cancer progression.
Collapse
Affiliation(s)
- Benjamin T Spike
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | |
Collapse
|
209
|
Fuka G, Kauer M, Kofler R, Haas OA, Panzer-Grümayer R. The leukemia-specific fusion gene ETV6/RUNX1 perturbs distinct key biological functions primarily by gene repression. PLoS One 2011; 6:e26348. [PMID: 22028862 PMCID: PMC3197637 DOI: 10.1371/journal.pone.0026348] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/25/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND ETV6/RUNX1 (E/R) (also known as TEL/AML1) is the most frequent gene fusion in childhood acute lymphoblastic leukemia (ALL) and also most likely the crucial factor for disease initiation; its role in leukemia propagation and maintenance, however, remains largely elusive. To address this issue we performed a shRNA-mediated knock-down (KD) of the E/R fusion gene and investigated the ensuing consequences on genome-wide gene expression patterns and deducible regulatory functions in two E/R-positive leukemic cell lines. FINDINGS Microarray analyses identified 777 genes whose expression was substantially altered. Although approximately equal proportions were either up- (KD-UP) or down-regulated (KD-DOWN), the effects on biological processes and pathways differed considerably. The E/R KD-UP set was significantly enriched for genes included in the "cell activation", "immune response", "apoptosis", "signal transduction" and "development and differentiation" categories, whereas in the E/R KD-DOWN set only the "PI3K/AKT/mTOR signaling" and "hematopoietic stem cells" categories became evident. Comparable expression signatures obtained from primary E/R-positive ALL samples underline the relevance of these pathways and molecular functions. We also validated six differentially expressed genes representing the categories "stem cell properties", "B-cell differentiation", "immune response", "cell adhesion" and "DNA damage" with RT-qPCR. CONCLUSION Our analyses provide the first preliminary evidence that the continuous expression of the E/R fusion gene interferes with key regulatory functions that shape the biology of this leukemia subtype. E/R may thus indeed constitute the essential driving force for the propagation and maintenance of the leukemic process irrespective of potential consequences of associated secondary changes. Finally, these findings may also provide a valuable source of potentially attractive therapeutic targets.
Collapse
Affiliation(s)
- Gerhard Fuka
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Maximilian Kauer
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Reinhard Kofler
- Division of Molecular Pathophysiology, Tyrolean Cancer Research Institute and Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | - Renate Panzer-Grümayer
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
- St. Anna Kinderspital, Vienna, Austria
| |
Collapse
|
210
|
Abbas HA, Pant V, Lozano G. The ups and downs of p53 regulation in hematopoietic stem cells. Cell Cycle 2011; 10:3257-62. [PMID: 21957490 DOI: 10.4161/cc.10.19.17721] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hematopoietic stem cells provide an indispensible source for replenishing the blood with all its constituents throughout the organism's lifetime. Mice with a compromised hematopoietic stem cell compartment cannot survive. p53, a major tumor suppressor gene, has been implicated in regulation of hematopoiesis. In particular, p53 plays a role in homeostasis by regulating HSC quiescence and self renewal. We recently utilized a hypomorphic p53(515C) allele in conjunction with Mdm2, a negative regulator of p53 to gain insights into the role of p53 in hematopoietic regulation. Our analyses revealed that p53(515C/515C) Mdm2(-/-) double mutant mice die soon after birth due to hematopoietic failure. Further mechanistic studies revealed that in the absence of Mdm2, ROS induced postnatal p53 activity depletes hematopoietic stem cells, progenitors and differentiated cells.
Collapse
Affiliation(s)
- Hussein A Abbas
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
211
|
Nieto-Sampedro M, Valle-Argos B, Gómez-Nicola D, Fernández-Mayoralas A, Nieto-Díaz M. Inhibitors of Glioma Growth that Reveal the Tumour to the Immune System. Clin Med Insights Oncol 2011; 5:265-314. [PMID: 22084619 PMCID: PMC3201112 DOI: 10.4137/cmo.s7685] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Treated glioblastoma patients survive from 6 to 14 months. In the first part of this review, we describe glioma origins, cancer stem cells and the genomic alterations that generate dysregulated cell division, with enhanced proliferation and diverse response to radiation and chemotherapy. We review the pathways that mediate tumour cell proliferation, neo-angiogenesis, tumor cell invasion, as well as necrotic and apoptotic cell death. Then, we examine the ability of gliomas to evade and suppress the host immune system, exhibited at the levels of antigen recognition and immune activation, limiting the effective signaling between glioma and host immune cells.The second part of the review presents current therapies and their drawbacks. This is followed by a summary of the work of our laboratory during the past 20 years, on oligosaccharide and glycosphingolipid inhibitors of astroblast and astrocytoma division. Neurostatins, the O-acetylated forms of gangliosides GD1b and GT1b naturally present in mammalian brain, are cytostatic for normal astroblasts, but cytotoxic for rat C6 glioma cells and human astrocytoma grades III and IV, with ID50 values ranging from 200 to 450 nM. The inhibitors do not affect neurons or fibroblasts up to concentrations of 4 μM or higher.At least four different neurostatin-activated, cell-mediated antitumoral processes, lead to tumor destruction: (i) inhibition of tumor neovascularization; (ii) activation of microglia; (iii) activation of natural killer (NK) cells; (iv) activation of cytotoxic lymphocytes (CTL). The enhanced antigenicity of neurostatin-treated glioma cells, could be related to their increased expression of connexin 43. Because neurostatins and their analogues show specific activity and no toxicity for normal cells, a clinical trial would be the logical next step.
Collapse
Affiliation(s)
- Manuel Nieto-Sampedro
- Instituto Cajal de Neurobiología, CSIC, 28002 Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Beatriz Valle-Argos
- Instituto Cajal de Neurobiología, CSIC, 28002 Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Diego Gómez-Nicola
- Instituto Cajal de Neurobiología, CSIC, 28002 Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | | | | |
Collapse
|
212
|
Antigenic and Genotypic Similarity between Primary Glioblastomas and Their Derived Neurospheres. JOURNAL OF ONCOLOGY 2011; 2011:314962. [PMID: 21869887 PMCID: PMC3159011 DOI: 10.1155/2011/314962] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/04/2011] [Accepted: 06/06/2011] [Indexed: 01/20/2023]
Abstract
Formation of neurospheres (NS) in cultures of glioblastomas (GBMs), with self-renewal, clonogenic capacities, and tumorigenicity following transplantation into immunodeficient mice, may denounce the existence of brain tumor stem cells (BTSCs) in vivo. In sixteen cell lines from resected primary glioblastomas, NS showed the same genetic alterations as primary tumors and the expression of stemness antigens. Adherent cells (AC), after adding 10% of fetal bovine serum (FBS) to the culture, were genetically different from NS and prevailingly expressed differentiation antigens. NS developed from a highly malignant tumor phenotype with proliferation, circumscribed necrosis, and high vessel density. Beside originating from transformed neural stem cells (NSCs), BTSCs may be contained within or correspond to dedifferentiated cells after mutation accumulation, which reacquire the expression of stemness antigens.
Collapse
|
213
|
Heuser M, Yun H, Berg T, Yung E, Argiropoulos B, Kuchenbauer F, Park G, Hamwi I, Palmqvist L, Lai CK, Leung M, Lin G, Chaturvedi A, Thakur BK, Iwasaki M, Bilenky M, Thiessen N, Robertson G, Hirst M, Kent D, Wilson NK, Göttgens B, Eaves C, Cleary ML, Marra M, Ganser A, Humphries RK. Cell of origin in AML: susceptibility to MN1-induced transformation is regulated by the MEIS1/AbdB-like HOX protein complex. Cancer Cell 2011; 20:39-52. [PMID: 21741595 PMCID: PMC3951989 DOI: 10.1016/j.ccr.2011.06.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 04/03/2011] [Accepted: 06/06/2011] [Indexed: 12/14/2022]
Abstract
Pathways defining susceptibility of normal cells to oncogenic transformation may be valuable therapeutic targets. We characterized the cell of origin and its critical pathways in MN1-induced leukemias. Common myeloid (CMP) but not granulocyte-macrophage progenitors (GMP) could be transformed by MN1. Complementation studies of CMP-signature genes in GMPs demonstrated that MN1-leukemogenicity required the MEIS1/AbdB-like HOX-protein complex. ChIP-sequencing identified common target genes of MN1 and MEIS1 and demonstrated identical binding sites for a large proportion of their chromatin targets. Transcriptional repression of MEIS1 targets in established MN1 leukemias demonstrated antileukemic activity. As MN1 relies on but cannot activate expression of MEIS1/AbdB-like HOX proteins, transcriptional activity of these genes determines cellular susceptibility to MN1-induced transformation and may represent a promising therapeutic target.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Genes, Dominant/genetics
- Granulocyte-Macrophage Progenitor Cells/metabolism
- Granulocyte-Macrophage Progenitor Cells/pathology
- Homeodomain Proteins/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Inbred C57BL
- Models, Biological
- Multiprotein Complexes/metabolism
- Myeloid Ecotropic Viral Integration Site 1 Protein
- Neoplasm Proteins/metabolism
- Promoter Regions, Genetic/genetics
- Protein Binding
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Michael Heuser
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Haiyang Yun
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Tobias Berg
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Eric Yung
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Bob Argiropoulos
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Florian Kuchenbauer
- Department of Internal Medicine III, University Hospital Medical Center, 89075 Ulm, Germany
| | - Gyeongsin Park
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Iyas Hamwi
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Lars Palmqvist
- Institute of Biomedicine, Sahlgrenska University Hospital, 413 45 Göteborg, Sweden
| | - Courteney K. Lai
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Malina Leung
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Grace Lin
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Anuhar Chaturvedi
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Basant Kumar Thakur
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Masayuki Iwasaki
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Mikhail Bilenky
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Nina Thiessen
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Gordon Robertson
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Martin Hirst
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - David Kent
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Nicola K. Wilson
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Bertie Göttgens
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Connie Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Michael L. Cleary
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Marco Marra
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - R. Keith Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| |
Collapse
|
214
|
The miR 302-367 cluster drastically affects self-renewal and infiltration properties of glioma-initiating cells through CXCR4 repression and consequent disruption of the SHH-GLI-NANOG network. Cell Death Differ 2011; 19:232-44. [PMID: 21720384 DOI: 10.1038/cdd.2011.89] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common form of primary brain tumor in adults, often characterized by poor survival. Glioma-initiating cells (GiCs) are defined by their extensive self-renewal, differentiation, and tumor initiation properties. GiCs are known to be involved in tumor growth and recurrence, and in resistance to conventional treatments. One strategy to efficiently target GiCs in GBM consists in suppressing their stemness and consequently their tumorigenic properties. In this study, we show that the miR-302-367 cluster is strongly induced during serum-mediated stemness suppression. Stable miR-302-367 cluster expression is sufficient to suppress the stemness signature, self-renewal, and cell infiltration within a host brain tissue, through inhibition of the CXCR4 pathway. Furthermore, inhibition of CXCR4 leads to the disruption of the sonic hedgehog (SHH)-GLI-NANOG network, which is involved in self-renewal and expression of the embryonic stem cell-like signature. In conclusion, we demonstrated that the miR-302-367 cluster is able to efficiently trigger a cascade of inhibitory events leading to the disruption of GiCs stem-like and tumorigenic properties.
Collapse
|
215
|
Fre S, Bardin A, Robine S, Louvard D. Notch signaling in intestinal homeostasis across species: the cases of Drosophila, Zebrafish and the mouse. Exp Cell Res 2011; 317:2740-7. [PMID: 21745469 DOI: 10.1016/j.yexcr.2011.06.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/21/2011] [Accepted: 06/21/2011] [Indexed: 01/10/2023]
Abstract
Notch signaling has been recently shown to have a fundamental role in stem cell maintenance and control of proper homeostasis in the intestine of different species. Here, we briefly review the current literature on Notch signals in the intestine of Drosophila, Zebrafish and the mouse, and try to highlight conserved and divergent Notch functions across species. Notch signals show a remarkably conserved role in skewing cell fate choices in intestinal lineages throughout evolution. Genetic analysis demonstrates that loss of Notch signaling invariably leads to increased numbers of secretory cells and loss of enterocytes, while gain of Notch function will completely block secretory cell differentiation. Finally, we discuss the potential contribution of Notch signaling to the initiation of colorectal cancer by controlling the maintenance of the undifferentiated state of intestinal neoplastic cells and speculate on the therapeutic consequences of affecting cancer stem cells.
Collapse
Affiliation(s)
- Silvia Fre
- Morphogenesis and Intracellular Signaling, Institut Curie, UMR 144 CNRS, Paris, France
| | | | | | | |
Collapse
|
216
|
Richardson RB. Stem cell niches and other factors that influence the sensitivity of bone marrow to radiation-induced bone cancer and leukaemia in children and adults. Int J Radiat Biol 2011; 87:343-59. [PMID: 21204614 PMCID: PMC3072695 DOI: 10.3109/09553002.2010.537430] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 09/08/2010] [Accepted: 10/26/2010] [Indexed: 01/10/2023]
Abstract
PURPOSE This paper reviews and reassesses the internationally accepted niches or 'targets' in bone marrow that are sensitive to the induction of leukaemia and primary bone cancer by radiation. CONCLUSIONS The hypoxic conditions of the 10 μm thick endosteal/osteoblastic niche where preleukemic stem cells and hematopoietic stem cells (HSC) reside provides a radioprotective microenvironment that is 2- to 3-fold less radiosensitive than vascular niches. This supports partitioning the whole marrow target between the low haematological cancer risk of irradiating HSC in the endosteum and the vascular niches within central marrow. There is a greater risk of induced bone cancer when irradiating a 50 μm thick peripheral marrow adjacent to the remodelling/reforming portion of the trabecular bone surface, rather than marrow next to the quiescent bone surface. This choice of partitioned bone cancer target is substantiated by the greater radiosensitivity of: (i) Bone with high remodelling rates, (ii) the young, (iii) individuals with hypermetabolic benign diseases of bone, and (iv) the epidemiology of alpha-emitting exposures. Evidence is given to show that the absence of excess bone-cancer in atomic-bomb survivors may be partially related to the extremely low prevalence among Japanese of Paget's disease of bone. Radiation-induced fibrosis and the wound healing response may be implicated in not only radiogenic bone cancers but also leukaemia. A novel biological mechanism for adaptive response, and possibility of dynamic targets, is advocated whereby stem cells migrate from vascular niches to stress-mitigated, hypoxic niches.
Collapse
Affiliation(s)
- Richard B Richardson
- Radiological Protection Research and Instrumentation Branch, Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, Canada.
| |
Collapse
|
217
|
Abbas HA, Maccio DR, Coskun S, Jackson JG, Hazen AL, Sills TM, You MJ, Hirschi KK, Lozano G. Mdm2 is required for survival of hematopoietic stem cells/progenitors via dampening of ROS-induced p53 activity. Cell Stem Cell 2011; 7:606-17. [PMID: 21040902 DOI: 10.1016/j.stem.2010.09.013] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 05/20/2010] [Accepted: 08/25/2010] [Indexed: 01/13/2023]
Abstract
Mdm2 is an E3 ubiquitin ligase that targets p53 for degradation. p53(515C) (encoding p53R172P) is a hypomorphic allele of p53 that rescues the embryonic lethality of Mdm2(-/-) mice. Mdm2(-/-) p53(515C/515C) mice, however, die by postnatal day 13 resulting from hematopoietic failure. Hematopoietic stem cells and progenitors of Mdm2(-/-) p53(515C/515C) mice were normal in fetal livers but were depleted in postnatal bone marrows. After birth, these mice had elevated reactive oxygen species (ROS) thus activating p53R172P. In the absence of Mdm2, stable p53R172P induced ROS and cell cycle arrest, senescence, and cell death in the hematopoietic compartment. This phenotype was partially rescued with antioxidant treatment and upon culturing of hematopoietic cells in methycellulose at 3% oxygen. p16 was also stabilized because of ROS, and its loss increased cell cycling and partially rescued hematopoiesis and survival. Thus, Mdm2 is required to control ROS-induced p53 levels for sustainable hematopoiesis.
Collapse
Affiliation(s)
- Hussein A Abbas
- Program in Genes and Development of The Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Linley AJ, Ahmad M, Rees RC. Tumour-associated antigens: considerations for their use in tumour immunotherapy. Int J Hematol 2011; 93:263-273. [DOI: 10.1007/s12185-011-0783-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 02/01/2011] [Indexed: 12/19/2022]
|
219
|
Soltanian S, Matin MM. Cancer stem cells and cancer therapy. Tumour Biol 2011; 32:425-40. [PMID: 21318290 DOI: 10.1007/s13277-011-0155-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 01/10/2011] [Indexed: 12/31/2022] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of tumour cells that possess the stem cell properties of self-renewal and differentiation. Stem cells might be the target cells responsible for malignant transformation, and tumour formation may be a disorder of stem cell self-renewal pathway. Epigenetic alterations and mutations of genes involved in signal transmissions may promote the formation of CSCs. These cells have been identified in many solid tumours including breast, brain, lung, prostate, testis, ovary, colon, skin, liver, and also in acute myeloid leukaemia. The CSC theory clarifies not only the issue of tumour initiation, development, metastasis and relapse, but also the ineffectiveness of conventional cancer therapies. Treatments directed against the bulk of the cancer cells may produce striking responses but they are unlikely to result in long-term remissions if the rare CSCs are not targeted. In this review, we consider the properties of CSCs and possible strategies for controlling the viability and tumourigenecity of these cells, including therapeutic models for selective elimination of CSCs and induction of their proper differentiation.
Collapse
Affiliation(s)
- Sara Soltanian
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
220
|
Dauguet N, Récher C, Demur C, Fournié J, Poupot M, Poupot R. Pre-eminence and persistence of immature natural killer cells in acute myeloid leukemia patients in first complete remission. Am J Hematol 2011; 86:209-13. [PMID: 21264910 DOI: 10.1002/ajh.21906] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 10/13/2010] [Accepted: 10/13/2010] [Indexed: 11/10/2022]
Abstract
Despite substantial progress in the treatment of AML, a proportion of patients do not achieve first complete remission (1(st) CR) with the induction chemotherapy, and, among patients achieving it, a majority is expected to relapse within three years. As allogeneic hematopoietic stem cell transplantation has been established as the most effective form of antileukemic therapy in patients with AML in remission, many studies have focused on the reconstitution and the functionality of the innate immune system in this context, especially regarding cytotoxic effectors such as natural killer (NK) cells. On the contrary, very few data are available concerning the innate immune system of patients in 1st CR. Herein we investigated the phenotype of autologous NK cells of AML patients in 1st CR. We showed that immature NK cells were pre-eminent in the blood of these patients and that this immature phenotype was persistent during the first months after 1st CR.
Collapse
Affiliation(s)
- Nicolas Dauguet
- INSERM, U.563, Centre de Physiopathologie de Toulouse‐Purpan, Toulouse, F‐31300 France, Université Paul‐Sabatier, Toulouse, F‐31400 France
| | - Christian Récher
- Department of Clinical Hematology, Toulouse University Hospital, Toulouse, F‐31300 France
| | - Cécile Demur
- Department of Clinical Hematology, Toulouse University Hospital, Toulouse, F‐31300 France
| | - Jean‐Jacques Fournié
- INSERM, U.563, Centre de Physiopathologie de Toulouse‐Purpan, Toulouse, F‐31300 France, Université Paul‐Sabatier, Toulouse, F‐31400 France
| | - Mary Poupot
- INSERM, U.563, Centre de Physiopathologie de Toulouse‐Purpan, Toulouse, F‐31300 France, Université Paul‐Sabatier, Toulouse, F‐31400 France
| | - Rémy Poupot
- INSERM, U.563, Centre de Physiopathologie de Toulouse‐Purpan, Toulouse, F‐31300 France, Université Paul‐Sabatier, Toulouse, F‐31400 France
| |
Collapse
|
221
|
Strauss R, Li ZY, Liu Y, Beyer I, Persson J, Sova P, Möller T, Pesonen S, Hemminki A, Hamerlik P, Drescher C, Urban N, Bartek J, Lieber A. Analysis of epithelial and mesenchymal markers in ovarian cancer reveals phenotypic heterogeneity and plasticity. PLoS One 2011; 6:e16186. [PMID: 21264259 PMCID: PMC3021543 DOI: 10.1371/journal.pone.0016186] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 12/13/2010] [Indexed: 12/18/2022] Open
Abstract
In our studies of ovarian cancer cells we have identified subpopulations of cells that are in a transitory E/M hybrid stage, i.e. cells that simultaneously express epithelial and mesenchymal markers. E/M cells are not homogenous but, in vitro and in vivo, contain subsets that can be distinguished based on a number of phenotypic features, including the subcellular localization of E-cadherin, and the expression levels of Tie2, CD133, and CD44. A cellular subset (E/M-MP) (membrane E-cadherin(low)/cytoplasmic E-cadherin(high)/CD133(high), CD44(high), Tie2(low)) is highly enriched for tumor-forming cells and displays features which are generally associated with cancer stem cells. Our data suggest that E/M-MP cells are able to differentiate into different lineages under certain conditions, and have the capacity for self-renewal, i.e. to maintain a subset of undifferentiated E/M-MP cells during differentiation. Trans-differentiation of E/M-MP cells into mesenchymal or epithelial cells is associated with a loss of stem cell markers and tumorigenicity. In vivo xenograft tumor growth is driven by E/M-MP cells, which give rise to epithelial ovarian cancer cells. In contrast, in vitro, we found that E/M-MP cells differentiate into mesenchymal cells, in a process that involves pathways associated with an epithelial-to-mesenchymal transition. We also detected phenotypic plasticity that was dependent on external factors such as stress created by starvation or contact with either epithelial or mesenchymal cells in co-cultures. Our study provides a better understanding of the phenotypic complexity of ovarian cancer and has implications for ovarian cancer therapy.
Collapse
Affiliation(s)
- Robert Strauss
- Division of Medical Genetics, University of Washington, Seattle, Washington, United States of America
- Danish Cancer Society, Department of Cell Cycle and Cancer, Center for Genotoxic Stress Research, Copenhagen, Denmark
| | - Zong-Yi Li
- Division of Medical Genetics, University of Washington, Seattle, Washington, United States of America
| | - Ying Liu
- Division of Medical Genetics, University of Washington, Seattle, Washington, United States of America
| | - Ines Beyer
- Division of Medical Genetics, University of Washington, Seattle, Washington, United States of America
| | - Jonas Persson
- Division of Medical Genetics, University of Washington, Seattle, Washington, United States of America
| | - Pavel Sova
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Thomas Möller
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
| | - Sari Pesonen
- Cancer Gene Therapy Group, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Petra Hamerlik
- Danish Cancer Society, Department of Cell Cycle and Cancer, Center for Genotoxic Stress Research, Copenhagen, Denmark
- Laboratory of Genomic Integrity and Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech Republic
| | - Charles Drescher
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Nicole Urban
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jiri Bartek
- Danish Cancer Society, Department of Cell Cycle and Cancer, Center for Genotoxic Stress Research, Copenhagen, Denmark
- Laboratory of Genomic Integrity and Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech Republic
| | - André Lieber
- Division of Medical Genetics, University of Washington, Seattle, Washington, United States of America
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
222
|
Kim DH, Yun JY, Lee JH, Myoung H, Kim SM. Cancer stem cell theory and update in oral squamous cell carcinoma. J Korean Assoc Oral Maxillofac Surg 2011. [DOI: 10.5125/jkaoms.2011.37.2.97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Deok-Hun Kim
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jun-Yong Yun
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, School of Dentistry, Seoul National University, Seoul, Korea
| | - Ju-Hyun Lee
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, School of Dentistry, Seoul National University, Seoul, Korea
| | - Hoon Myoung
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, School of Dentistry, Seoul National University, Seoul, Korea
| | - Soung-Min Kim
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
223
|
Schwarz K, Romanski A, Puccetti E, Wietbrauk S, Vogel A, Keller M, Scott JW, Serve H, Bug G. The deacetylase inhibitor LAQ824 induces notch signalling in haematopoietic progenitor cells. Leuk Res 2011; 35:119-25. [DOI: 10.1016/j.leukres.2010.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/08/2010] [Accepted: 06/28/2010] [Indexed: 01/31/2023]
|
224
|
Lee GY, Shim JS, Cho B, Jung JY, Lee DS, Oh IH. Stochastic acquisition of a stem cell-like state and drug tolerance in leukemia cells stressed by radiation. Int J Hematol 2010; 93:27-35. [DOI: 10.1007/s12185-010-0734-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 11/11/2010] [Accepted: 11/21/2010] [Indexed: 01/22/2023]
|
225
|
Alison MR, Islam S, Wright NA. Stem cells in cancer: instigators and propagators? J Cell Sci 2010; 123:2357-68. [PMID: 20592182 DOI: 10.1242/jcs.054296] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is growing realization that many - if not all - cancer-cell populations contain a subpopulation of self-renewing stem cells known as cancer stem cells (CSCs). Unlike normal adult stem cells that remain constant in number, CSCs can increase in number as tumours grow, and give rise to progeny that can be both locally invasive and colonise distant sites - the two hallmarks of malignancy. Immunodeficient mouse models in which human tumours can be xenografted provide persuasive evidence that CSCs are present in human leukaemias and many types of solid tumour. In addition, many studies have found similar subpopulations in mouse tumours that show enhanced tumorigenic properties when they are transplanted into histocompatible mice. In this Commentary, we refer to CSCs as tumour-propagating cells (TPCs), a term that reflects the assays that are currently employed to identify them. We first discuss evidence that cancer can originate from normal stem cells or closely related descendants. We then outline the attributes of TPCs and review studies in which they have been identified in various cancers. Finally, we discuss the implications of these findings for successful cancer therapies.
Collapse
Affiliation(s)
- Malcolm R Alison
- Centre for Diabetes, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK.
| | | | | |
Collapse
|
226
|
|
227
|
García-Fernández M, Kissel H, Brown S, Gorenc T, Schile AJ, Rafii S, Larisch S, Steller H. Sept4/ARTS is required for stem cell apoptosis and tumor suppression. Genes Dev 2010; 24:2282-93. [PMID: 20952537 DOI: 10.1101/gad.1970110] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inhibitor of Apoptosis Proteins (IAPs) are frequently overexpressed in tumors and have become promising targets for developing anti-cancer drugs. IAPs can be inhibited by natural antagonists, but a physiological requirement of mammalian IAP antagonists remains to be established. Here we show that deletion of the mouse Sept4 gene, which encodes the IAP antagonist ARTS, promotes tumor development. Sept4-null mice have increased numbers of hematopoietic stem and progenitor cells, elevated XIAP protein, increased resistance to cell death, and accelerated tumor development in an Eμ-Myc background. These phenotypes are partially suppressed by inactivation of XIAP. Our results suggest that apoptosis plays an important role as a frontline defense against cancer by restricting the number of normal stem cells.
Collapse
Affiliation(s)
- María García-Fernández
- Laboratory of Apoptosis and Cancer Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
228
|
Vizirianakis IS, Chatzopoulou M, Bonovolias ID, Nicolaou I, Demopoulos VJ, Tsiftsoglou AS. Toward the development of innovative bifunctional agents to induce differentiation and to promote apoptosis in leukemia: clinical candidates and perspectives. J Med Chem 2010; 53:6779-810. [PMID: 20925433 DOI: 10.1021/jm100189a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ioannis S Vizirianakis
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences,Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | | | | | | | | | | |
Collapse
|
229
|
Abstract
The genetic origins of the development of malignant haematological disorders have been established at the beginning of the 80ies. Systematic characterization of chromosomal structural abnormalities and, more recently by DNA microarray approaches and sequencing of tumour genomes have allowed the identification of a large number of genes that are mutated during malignant transformation in humans. Functional studies of these human oncogenes have shown that most of them were not able to transform a haematologic progenitor when acting alone and that cooperation with other oncogenic events was required. The present challenges are the evaluation of the role of each mutation in malignant transformation and the definition of the chronology of their emergence. From these data, the development of efficient therapeutic approaches will be possible by targeting the early oncogenic events which are at the origin of the malignant transformation.
Collapse
|
230
|
Lin CY, Wang L, Than K, Marca FL, Park P. Cancer stem cell markers: what is their diagnostic value? ACTA ACUST UNITED AC 2010; 4:473-81. [PMID: 23496228 DOI: 10.1517/17530059.2010.512363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Cancer resistance to conventional therapies has been attributed to cancer stem cells (CSCs). Although a variety of markers have been reported, a universal marker has not yet been found to identify CSCs. Better identification of these CSCs may lead to new therapies that selectively target these cells and thereby result in more effective treatment. This article categorizes the types of marker that have been identified and explores their potential diagnostic and therapeutic value. AREAS COVERED IN THIS REVIEW A focused literature review of studies relating to CSCs and their identification was conducted. Databases evaluated include MEDLINE and Web of Science through 2009. WHAT THE READER WILL GAIN The ideal identification method needs to be effective and practical in terms of application. The measurement of aldehyde dehydrogenase activity is simple to accomplish compared with other reported identification methods; however, cell surface antigens have been studied most frequently in the therapeutic targeting of CSCs. TAKE HOME MESSAGE Although specific targeting methods have been reported for various cancers, there does not appear to be a proven universal marker for CSCs that would apply to all cancers. Each particular identification method appears to have advantages and disadvantages. From a therapeutic standpoint, targeting of these CSCs should improve prognosis.
Collapse
Affiliation(s)
- Chia-Ying Lin
- University of Michigan Medical School, Spine Research Laboratory, Department of Neurosurgery, Biomedical Science Research Building, Room 5007, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA +1734 615 0371 ; +1734 763 7322 ;
| | | | | | | | | |
Collapse
|
231
|
Alison MR, Lim SML, Nicholson LJ. Cancer stem cells: problems for therapy? J Pathol 2010; 223:147-61. [PMID: 21125672 DOI: 10.1002/path.2793] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 09/13/2010] [Accepted: 09/21/2010] [Indexed: 12/20/2022]
Abstract
Many, if not all, tumours contain a sub-population of self-renewing and expanding stem cells known as cancer stem cells (CSCs). The symmetric division of CSCs is one mechanism enabling expansion in their numbers as tumours grow, while epithelial-mesenchymal transition (EMT) is an increasingly recognized mechanism to generate further CSCs endowed with a more invasive and metastatic phenotype. Putative CSCs are prospectively isolated using methods based on either a surface marker or an intracellular enzyme activity and then assessed by a 'sphere-forming' assay in non-adherent culture and/or by their ability to initiate new tumour growth when xenotransplanted into immunocompromised mice-hence, these cells are often referred to as tumour-propagating cells (TPCs). Cell sub-populations enriched for tumour-initiating ability have also been found in murine tumours, countering the argument that xenografting human cells merely select human cells with an ability to grow in mice. Cancer progression can be viewed as an evolutionary process that generates new/multiple clones with a fresh identity; this may be a major obstacle to successful cancer stem cell eradication if treatment targets only a single type of stem cell. In this review, we first briefly discuss evidence that cancer can originate from normal stem cells or closely related descendants. We then outline the attributes of CSCs and review studies in which they have been identified in various cancers. Finally, we discuss the implications of these findings for successful cancer therapies, concentrating on the self-renewal pathways (Wnt, Notch, and Hedgehog), aldehyde dehydrogenase activity, EMT, miRNAs, and other epigenetic modifiers as potential targets for therapeutic manipulation.
Collapse
Affiliation(s)
- Malcolm R Alison
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | | | | |
Collapse
|
232
|
Targeting the mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis. JOURNAL OF ONCOLOGY 2010; 2011:941876. [PMID: 20981352 PMCID: PMC2958340 DOI: 10.1155/2011/941876] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/14/2010] [Indexed: 02/06/2023]
Abstract
Despite advances in treatment, cancer remains the 2nd most common cause of death in the United States. Poor cure rates may result from the ability of cancer to recur and spread after initial therapies have seemingly eliminated detectable signs of disease. A growing body of evidence supports a role for cancer stem cells (CSCs) in tumor regrowth and spread after initial treatment. Thus, targeting CSCs in combination with traditional induction therapies may improve treatment outcomes and survival rates. Unfortunately, CSCs tend to be resistant to chemo- and radiation therapy, and a better understanding of the mechanisms underlying CSC resistance to treatment is necessary. This paper provides an update on evidence that supports a fundamental role for CSCs in cancer progression, summarizes potential mechanisms of CSC resistance to treatment, and discusses classes of drugs currently in preclinical or clinical testing that show promise at targeting CSCs.
Collapse
|
233
|
Li H, Lu Y, Piao L, Wu J, Liu S, Marcucci G, Ratnam M, Lee RJ. Targeting human clonogenic acute myelogenous leukemia cells via folate conjugated liposomes combined with receptor modulation by all-trans retinoic acid. Int J Pharm 2010; 402:57-63. [PMID: 20883757 DOI: 10.1016/j.ijpharm.2010.09.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 09/15/2010] [Accepted: 09/22/2010] [Indexed: 01/22/2023]
Abstract
Our previous data demonstrated that folate receptor β (FR-β) targeted liposomal doxorubicin (FT-L-DOX) showed enhanced cytotoxicity relative to non-targeted liposomal doxorubicin (CON-L-DOX), and the effect was enhanced by selective FR-β upregulation by all-trans retinoic acid (ATRA) in AML blast cells. In this study, the enhanced cytotoxicity was investigated in the proliferating human AML clonogenic cells by combining FT-L-DOX with ATRA. Also, pharmacokinetic properties by pretreatment of ATRA were evaluated using FR-targeted liposomal calcein (FT-L-Calcein). Pharmacokinetic study showed that the area under the concentration curve (AUC) of FT-L-Calcein was decreased and total clearance was increased by pretreatment with ATRA. Meanwhile, the volume of distribution was significantly increased by pretreatment of ATRA. Moreover, calcein level in the liver, spleen and kidney was increased following intravenous administration of FT-L-Calcein by pretreatment of ATRA. In vitro cytotoxicity of FT-L-DOX was higher than that of CON-L-DOX and was increased by pretreatment with ATRA. Colony formation in AML cells was lower due to treatment with FT-L-DOX compared with CON-L-DOX and colony formation further decreased upon pretreatment with ATRA. Moreover, FT-L-DOX was more toxic to AML clonogenic cells than to AML blast cells. The results demonstrate that the efficiency of FR-mediated targeting of FT-L-DOX was preferentially enhanced by ATRA induced FR-β upregulation in AML clonogenic cells.
Collapse
Affiliation(s)
- Hong Li
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Oancea C, Rüster B, Henschler R, Puccetti E, Ruthardt M. The t(6;9) associated DEK/CAN fusion protein targets a population of long-term repopulating hematopoietic stem cells for leukemogenic transformation. Leukemia 2010; 24:1910-9. [PMID: 20827285 DOI: 10.1038/leu.2010.180] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The t(6;9)-positive acute myeloid leukemia (AML) is classified as a separate clinical entity because of its early onset and poor prognosis. The hallmark of t(6;9) AML is the expression of the DEK/CAN fusion protein. The leukemogenic potential of DEK/CAN has been called into question, because it was shown to be unable to block the differentiation of hematopoietic progenitors. We found that DEK/CAN initiated leukemia from a small subpopulation within the hematopoietic stem cell (HSC) population expressing a surface marker pattern of long-term (LT) HSC. The propagation of established DEK/CAN-positive leukemia was not restricted to the LT-HSC population, but occurred even from more mature and heterogeneous cell populations. This finding indicates that in DEK/CAN-induced leukemia, there is a difference between 'leukemia-initiating cells' (L-ICs) and 'leukemia-maintaining cells' (L-MCs). In contrast to the L-IC cells represented by a very rare subpopulation of LT-HSC, the L-MC seem to be represented by a larger and phenotypically heterogeneous cell population.
Collapse
Affiliation(s)
- C Oancea
- Department of Hematology, Goethe University, Frankfurt, Germany
| | | | | | | | | |
Collapse
|
235
|
Identification and characterization of side population cells in human lung adenocarcinoma SPC-A1 cells. Chin J Cancer Res 2010. [DOI: 10.1007/s11670-010-0211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
236
|
Xiong Y, Jia X. [Reasearch advances on lung cancer stem cell]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2010; 13:260-4. [PMID: 20673525 PMCID: PMC6000543 DOI: 10.3779/j.issn.1009-3419.2010.03.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/21/2009] [Indexed: 11/17/2022]
Affiliation(s)
- Yanlei Xiong
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | | |
Collapse
|
237
|
Zhao Z, Zuber J, Diaz-Flores E, Lintault L, Kogan SC, Shannon K, Lowe SW. p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal. Genes Dev 2010; 24:1389-402. [PMID: 20595231 DOI: 10.1101/gad.1940710] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The p53 tumor suppressor limits proliferation in response to cellular stress through several mechanisms. Here, we test whether the recently described ability of p53 to limit stem cell self-renewal suppresses tumorigenesis in acute myeloid leukemia (AML), an aggressive cancer in which p53 mutations are associated with drug resistance and adverse outcome. Our approach combined mosaic mouse models, Cre-lox technology, and in vivo RNAi to disable p53 and simultaneously activate endogenous Kras(G12D)-a common AML lesion that promotes proliferation but not self-renewal. We show that p53 inactivation strongly cooperates with oncogenic Kras(G12D) to induce aggressive AML, while both lesions on their own induce T-cell malignancies with long latency. This synergy is based on a pivotal role of p53 in limiting aberrant self-renewal of myeloid progenitor cells, such that loss of p53 counters the deleterious effects of oncogenic Kras on these cells and enables them to self-renew indefinitely. Consequently, myeloid progenitor cells expressing oncogenic Kras and lacking p53 become leukemia-initiating cells, resembling cancer stem cells capable of maintaining AML in vivo. Our results establish an efficient new strategy for interrogating oncogene cooperation, and provide strong evidence that the ability of p53 to limit aberrant self-renewal contributes to its tumor suppressor activity.
Collapse
Affiliation(s)
- Zhen Zhao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | | | |
Collapse
|
238
|
Stevenson DJ, Gunn-Moore F, Dholakia K. Light forces the pace: optical manipulation for biophotonics. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:041503. [PMID: 20799781 DOI: 10.1117/1.3475958] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The biomedical sciences have benefited immensely from photonics technologies in the last 50 years. This includes the application of minute forces that enable the trapping and manipulation of cells and single molecules. In terms of the area of biophotonics, optical manipulation has made a seminal contribution to our understanding of the dynamics of single molecules and the microrheology of cells. Here we present a review of optical manipulation, emphasizing its impact on the areas of single-molecule studies and single-cell biology, and indicating some of the key experiments in the fields.
Collapse
Affiliation(s)
- David James Stevenson
- University of St Andrews, Scottish Universities Physics Alliance, School of Physics and Astronomy, North Haugh, Fife, United Kingdom.
| | | | | |
Collapse
|
239
|
Starczynowski DT, Karsan A. Innate immune signaling in the myelodysplastic syndromes. Hematol Oncol Clin North Am 2010; 24:343-59. [PMID: 20359630 DOI: 10.1016/j.hoc.2010.02.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Myelodysplastic syndromes (MDS) are heterogeneous clonal hematologic malignancies characterized by cytopenias caused by ineffective hematopoiesis and propensity to progress to acute myeloid leukemia. Innate immunity provides immediate protection against pathogens by coordinating activation of signaling pathways in immune cells. Given the prominent role of the innate immune pathway in regulating hematopoiesis, it is not surprising that aberrant signaling of this pathway is associated with hematologic malignancies. Increased activation of the innate immune pathway may contribute to dysregulated hematopoiesis, dysplasia, and clonal expansion in myelodysplastic syndromes.
Collapse
Affiliation(s)
- Daniel T Starczynowski
- Genome Sciences Centre, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada
| | | |
Collapse
|
240
|
Molecular pathways to CML stem cells. Int J Hematol 2010; 91:748-52. [DOI: 10.1007/s12185-010-0615-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/24/2010] [Indexed: 12/30/2022]
|
241
|
Greco V, Guo S. Compartmentalized organization: a common and required feature of stem cell niches? Development 2010; 137:1586-94. [PMID: 20430743 DOI: 10.1242/dev.041103] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A key question in the stem cell field is how to balance the slow cycling of stem cells with active organ growth. Recent studies of the hair follicle stem cell niche have shown that this can be achieved by organizing the stem cell niche into two compartments: one that engages in immediate, rapid new growth and one that contributes later to long-term growth that fuels hair regeneration. Based on these and other recent findings, we propose that several other adult stem cell niches, including those in the blood, intestine and brain, have a similar bi-compartmental organization and that stem cells might work cooperatively with their progeny to sustain tissue regeneration.
Collapse
Affiliation(s)
- Valentina Greco
- Department of Genetics, Yale University School of Medicine and Yale Stem Cell Center, SHM I 141A, New Haven, CT 06510, USA.
| | | |
Collapse
|
242
|
Twist modulates breast cancer stem cells by transcriptional regulation of CD24 expression. Neoplasia 2010; 11:1318-28. [PMID: 20019840 DOI: 10.1593/neo.91084] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/13/2009] [Accepted: 08/17/2009] [Indexed: 01/16/2023] Open
Abstract
The cancer stem cell paradigm postulates that dysregulated tissue-specific stem cells or progenitor cells are precursors for cancer biogenesis. Consequently, identifying cancer stem cells is crucial to our understanding of cancer progression and for the development of novel therapeutic agents. In this study, we demonstrate that the overexpression of Twist in breast cells can promote the generation of a breast cancer stem cell phenotype characterized by the high expression of CD44, little or no expression of CD24, and increased aldehyde dehydrogenase 1 activity, independent of the epithelial-mesenchymal transition. In addition, Twist-overexpressing cells exhibit high efflux of Hoechst 33342 and Rhodamine 123 as a result of increased expression of ABCC1 (MRP1) transporters, a property of cancer stem cells. Moreover, we show that transient expression of Twist can induce the stem cell phenotype in multiple breast cell lines and that decreasing Twist expression by short hairpin RNA in Twist-overexpressing transgenic cell lines MCF-10A/Twist and MCF-7/Twist as well as in MDA-MB-231 partially reverses the stem cell molecular signature. Importantly, we show that inoculums of only 20 cells of the Twist-overexpressing CD44(+)/CD24(-/low) subpopulation are capable of forming tumors in the mammary fat pad of severe combined immunodeficient mice. Finally, with respect to mechanism, we provide data to indicate that Twist transcriptionally regulates CD24 expression in breast cancer cells. Taken together, our data demonstrate the direct involvement of Twist in generating a breast cancer stem cell phenotype through down-regulation of CD24 expression and independent of an epithelial-mesenchymal transition.
Collapse
|
243
|
Wang L, Park P, Zhang H, La Marca F, Lin CY. Prospective identification of tumorigenic osteosarcoma cancer stem cells in OS99-1 cells based on high aldehyde dehydrogenase activity. Int J Cancer 2010; 128:294-303. [PMID: 20309879 DOI: 10.1002/ijc.25331] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 02/24/2010] [Indexed: 12/15/2022]
Abstract
High aldehyde dehydrogenase (ALDH) activity has recently been used to identify tumorigenic cell fractions in many cancer types. Herein we hypothesized that a subpopulation of cells with cancer stem cells (CSCs) properties could be identified in established human osteosarcoma cell lines based on high ALDH activity. We previously showed that a subpopulation of cells with high ALDH activity were present in 4 selected human osteosarcoma cell lines, of which a significantly higher ALDH activity was present in the OS99-1 cell line that was originally derived from a highly aggressive primary human osteosarcoma. Using a xenograft model in which OS99-1 cells were grown in NOD/SCID mice, we identified a highly tumorigenic subpopulation of osteosarcoma cells based on their high ALDH activity. Cells with high ALDH activity (ALDH(br) cells) from the OS99-1 xenografts were much less frequent, averaging 3% of the entire tumor population, compared to those isolated directly from the OS99-1 cell line. ALDH(br) cells from the xenograft were enriched with greater tumorigenicity compared to their counterparts with low ALDH activity (ALDH(lo) cells), generating new tumors with as few as 100 cells in vivo. The highly tumorigenic ALDH(br) cells illustrated the stem cell characteristics of self-renewal, the ability to produce differentiated progeny and increased expression of stem cell marker genes OCT3/4A, Nanog and Sox-2. The isolation of osteosarcoma CSCs by their high ALDH activity may provide new insight into the study of osteosarcoma-initiating cells and may potentially have therapeutic implications for human osteosarcoma.
Collapse
Affiliation(s)
- Lin Wang
- Department of Neurosurgery, Spine Research Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
244
|
Han YC, Park CY, Bhagat G, Zhang J, Wang Y, Fan JB, Liu M, Zou Y, Weissman IL, Gu H. microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. ACTA ACUST UNITED AC 2010; 207:475-89. [PMID: 20212066 PMCID: PMC2839143 DOI: 10.1084/jem.20090831] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The function of microRNAs (miRNAs) in hematopoietic stem cells (HSCs), committed progenitors, and leukemia stem cells (LSCs) is poorly understood. We show that miR-29a is highly expressed in HSC and down-regulated in hematopoietic progenitors. Ectopic expression of miR-29a in mouse HSC/progenitors results in acquisition of self-renewal capacity by myeloid progenitors, biased myeloid differentiation, and the development of a myeloproliferative disorder that progresses to acute myeloid leukemia (AML). miR-29a promotes progenitor proliferation by expediting G1 to S/G2 cell cycle transitions. miR-29a is overexpressed in human AML and, like human LSC, miR-29a-expressing myeloid progenitors serially transplant AML. Our data indicate that miR-29a regulates early hematopoiesis and suggest that miR-29a initiates AML by converting myeloid progenitors into self-renewing LSC.
Collapse
Affiliation(s)
- Yoon-Chi Han
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Hamilton A, Gallipoli P, Nicholson E, Holyoake TL. Targeted therapy in haematological malignancies. J Pathol 2010; 220:404-18. [PMID: 20041451 DOI: 10.1002/path.2669] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 11/27/2009] [Indexed: 12/13/2022]
Abstract
The recent and rapid development of molecularly targeted therapy is best illustrated by advances in the management of haematological malignancy. In myeloid diseases we have seen dramatic improvements in the overall survival and quality of life for patients with chronic myeloid leukaemia treated with ABL and Src/ABL kinase inhibitors and we are poised to discover whether JAK2 inhibitors may offer similar benefit in myeloproliferative diseases. For acute myeloid leukaemia, the introduction of ATRA and myelotarg have had major impacts on the design of therapy regimens and many novel targeted agents, including farnesyl transferase, FLT3 and histone deacetylase inhibitors, are now in clinical trial. In lymphoid malignancies the highlight has been the introduction of rituximab, with significant improvements in the management of non-Hodgkin lymphoma and chronic lymphocytic leukaemia. The last 10 years has experienced a rapidly expanding interest and acceptance that leukaemic stem cells, including an improved ability to target them, may hold the key to improved response and reduced relapse rates across both myeloid and lymphoid disease. We now eagerly anticipate an era in which a wealth of preclinical discoveries are progressed to the clinic.
Collapse
Affiliation(s)
- Ashley Hamilton
- Section of Experimental Haematology, Cancer Division, Faculty of Medicine, University of Glasgow, and Paul O'Gorman Leukaemia Research Centre, Gartnavel General Hospital, Glasgow, UK
| | | | | | | |
Collapse
|
246
|
Vuletic A, Konjevic G, Milanovic D, Ruzdijic S, Jurisic V. Antiproliferative effect of 13-cis-retinoic acid is associated with granulocyte differentiation and decrease in cyclin B1 and Bcl-2 protein levels in G0/G1 arrested HL-60 cells. Pathol Oncol Res 2010; 16:393-401. [PMID: 20084480 DOI: 10.1007/s12253-009-9241-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Accepted: 12/16/2009] [Indexed: 11/29/2022]
Abstract
Retinoic acid (RA), similar to specific growth factors, can induce differentiation of proliferating promyelocytic precursors into terminally differentiated granulocytes, although little is known about effects of its 13-cis isomer on promyelocytic leukemia (PML). In this study we demonstrate that 13-cis-RA has a dose and time-dependent antiproliferative effect on HL-60 PML cell line, that it induces cell accumulation in resting G0/G1 phase of the cell cycle followed by an increase in CD11b granulocyte differentiation antigen expression. The obtained increase in the percentage of HL-60 cells in G0/G1 phase and complementary decrease in S phase of the cell cycle are accompanied by a decrease in the expression of cell cycle regulatory molecule cyclin B1. We also show the induction of interferon regulatory factor-1 (IRF-1) transcription that can, also, to some extent contribute to the antiproliferative effect of 13-cis-RA. Furthermore, down-regulation of Bcl-2 protein expression in 13-cis-RA treated HL-60 cells may contribute to sensitivity to apoptosis of growth arrested HL-60 promyelocytic cells.
Collapse
Affiliation(s)
- Ana Vuletic
- Institute for Oncology and Radiology of Serbia, Beograd, Serbia.
| | | | | | | | | |
Collapse
|
247
|
|
248
|
Zhu W, Hai T, Ye L, Cote GJ. Medullary thyroid carcinoma cell lines contain a self-renewing CD133+ population that is dependent on ret proto-oncogene activity. J Clin Endocrinol Metab 2010; 95:439-44. [PMID: 19897677 PMCID: PMC2805480 DOI: 10.1210/jc.2009-1485] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT Medullary thyroid carcinoma (MTC) is a cancer of the parafollicular C cells commonly caused by an inherited or acquired RET proto-oncogene mutation. Therapeutic resistance and recurrence of the disease imply the presence of cancer stem cells in MTC. OBJECTIVE In this study, we sought to identify and characterize cancer stem cell-like cells in MTC. MAIN OUTCOME MEASURES The characterization of stem cell properties was performed using immunostaining, flow cytometry, sphere formation assay, rederivation assay, Western blotting, and quantitative RT-PCR of defined markers of neural stem and progenitor cells. The role of ret proto-oncogene activation was assessed through RNA interference knockdown. RESULTS CD133 positivity was identified by immunostaining patient MTC. Flow cytometry confirmed a subpopulation of CD133(+) cells in two MTC cell lines. The CD133(+) cells could be expanded by sphere formation assay, passaged multiple times, and expressed neural progenitor markers beta-tubulin 3 and glial fibrillary acidic protein. The MZ-CRC-1 cell line, which harbors a M918T RET mutation, had greater CD133(+) cell numbers and sphere-forming ability than the TT cell line, which harbors the less active C634W mutation. Sphere formation was more dependent on ret proto-oncogene activity than epidermal growth factor or fibroblast growth factor. CONCLUSION Our data support the existence of cancer stem-like cells in MTC, which exhibit the features of self-renewal and of multiple lineage differentiation that is dependent on ret proto-oncogene receptor activity. These findings may provide new insights to develop more promising therapy for MTC.
Collapse
Affiliation(s)
- Wen Zhu
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
249
|
Yamada Y, Watanabe A. Epigenetic Codes in Stem Cells and Cancer Stem Cells. EPIGENETICS AND CANCER, PART A 2010; 70:177-99. [DOI: 10.1016/b978-0-12-380866-0.60007-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
250
|
SPIRO SG, TANNER NT, SILVESTRI GA, JANES SM, LIM E, VANSTEENKISTE JF, PIRKER R. Lung cancer: Progress in diagnosis, staging and therapy. Respirology 2010; 15:44-50. [DOI: 10.1111/j.1440-1843.2009.01674.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|