201
|
Grunz H. Gene expression and pattern formation during early embryonic development in amphibians. J Biosci 1999. [DOI: 10.1007/bf02942663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
202
|
Monzen K, Shiojima I, Hiroi Y, Kudoh S, Oka T, Takimoto E, Hayashi D, Hosoda T, Habara-Ohkubo A, Nakaoka T, Fujita T, Yazaki Y, Komuro I. Bone morphogenetic proteins induce cardiomyocyte differentiation through the mitogen-activated protein kinase kinase kinase TAK1 and cardiac transcription factors Csx/Nkx-2.5 and GATA-4. Mol Cell Biol 1999; 19:7096-105. [PMID: 10490646 PMCID: PMC84704 DOI: 10.1128/mcb.19.10.7096] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) have been shown to induce ectopic expression of cardiac transcription factors and beating cardiomyocytes in nonprecardiac mesodermal cells in chicks, suggesting that BMPs are inductive signaling molecules that participate in the development of the heart. However, the precise molecular mechanisms by which BMPs regulate cardiac development are largely unknown. In the present study, we examined the molecular mechanisms by which BMPs induce cardiac differentiation by using the P19CL6 in vitro cardiomyocyte differentiation system, a clonal derivative of P19 embryonic teratocarcinoma cells. We established a permanent P19CL6 cell line, P19CL6noggin, which constitutively overexpresses the BMP antagonist noggin. Although almost all parental P19CL6 cells differentiate into beating cardiomyocytes when treated with 1% dimethyl sulfoxide, P19CL6noggin cells did not differentiate into beating cardiomyocytes nor did they express cardiac transcription factors or contractile protein genes. The failure of differentiation was rescued by overexpression of BMP-2 or addition of BMP protein to the culture media, indicating that BMPs were indispensable for cardiomyocyte differentiation in this system. Overexpression of TAK1, a member of the mitogen-activated protein kinase kinase kinase superfamily which transduces BMP signaling, restored the ability of P19CL6noggin cells to differentiate into cardiomyocytes and concomitantly express cardiac genes, whereas overexpression of the dominant negative form of TAK1 in parental P19CL6 cells inhibited cardiomyocyte differentiation. Overexpression of both cardiac transcription factors Csx/Nkx-2.5 and GATA-4 but not of Csx/Nkx-2.5 or GATA-4 alone also induced differentiation of P19CL6noggin cells into cardiomyocytes. These results suggest that TAK1, Csx/Nkx-2.5, and GATA-4 play a pivotal role in the cardiogenic BMP signaling pathway.
Collapse
Affiliation(s)
- K Monzen
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Onichtchouk D, Chen YG, Dosch R, Gawantka V, Delius H, Massagué J, Niehrs C. Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature 1999; 401:480-5. [PMID: 10519551 DOI: 10.1038/46794] [Citation(s) in RCA: 554] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Members of the transforming growth factor-beta (TGF-beta) superfamily, including TGF-beta, bone morphogenetic proteins (BMPs), activins and nodals, are vital for regulating growth and differentiation. These growth factors transduce their signals through pairs of transmembrane type I and type II receptor kinases. Here, we have cloned a transmembrane protein, BAMBI, which is related to TGF-beta-family type I receptors but lacks an intracellular kinase domain. We show that BAMBI is co-expressed with the ventralizing morphogen BMP4 (refs 5, 6) during Xenopus embryogenesis and that it requires BMP signalling for its expression. The protein stably associates with TGF-beta-family receptors and inhibits BMP and activin as well as TGF-beta signalling. Finally, we provide evidence that BAMBI's inhibitory effects are mediated by its intracellular domain, which resembles the homodimerization interface of a type I receptor and prevents the formation of receptor complexes. The results indicate that BAMBI negatively regulates TGF-beta-family signalling by a regulatory mechanism involving the interaction of signalling receptors with a pseudoreceptor.
Collapse
Affiliation(s)
- D Onichtchouk
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
204
|
Scott IC, Blitz IL, Pappano WN, Imamura Y, Clark TG, Steiglitz BM, Thomas CL, Maas SA, Takahara K, Cho KW, Greenspan DS. Mammalian BMP-1/Tolloid-related metalloproteinases, including novel family member mammalian Tolloid-like 2, have differential enzymatic activities and distributions of expression relevant to patterning and skeletogenesis. Dev Biol 1999; 213:283-300. [PMID: 10479448 DOI: 10.1006/dbio.1999.9383] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vertebrate bone morphogenetic protein 1 (BMP-1) and Drosophila Tolloid (TLD) are prototypes of a family of metalloproteases with important roles in various developmental events. BMP-1 affects morphogenesis, at least partly, via biosynthetic processing of fibrillar collagens, while TLD affects dorsal-ventral patterning by releasing TGFbeta-like ligands from latent complexes with the secreted protein Short Gastrulation (SOG). Here, in a screen for additional mammalian members of this family of developmental proteases, we identify novel family member mammalian Tolloid-like 2 (mTLL-2) and compare enzymatic activities and expression domains of all four known mammalian BMP-1/TLD-like proteases [BMP-1, mammalian Tolloid (mTLD), mammalian Tolloid-like 1 (mTLL-1), and mTLL-2]. Despite high sequence similarities, distinct differences are shown in ability to process fibrillar collagen precursors and to cleave Chordin, the vertebrate orthologue of SOG. As previously demonstrated for BMP-1 and mTLD, mTLL-1 is shown to specifically process procollagen C-propeptides at the physiologically relevant site, while mTLL-2 is shown to lack this activity. BMP-1 and mTLL-1 are shown to cleave Chordin, at sites similar to procollagen C-propeptide cleavage sites, and to counteract dorsalizing effects of Chordin upon overexpression in Xenopus embryos. Proteases mTLD and mTLL-2 do not cleave Chordin. Differences in enzymatic activities and expression domains of the four proteases suggest BMP-1 as the major Chordin antagonist in early mammalian embryogenesis and in pre- and postnatal skeletogenesis.
Collapse
Affiliation(s)
- I C Scott
- Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, 1300 University Avenue, Madison, Wisconsin, 53706, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Mishina Y, Crombie R, Bradley A, Behringer RR. Multiple roles for activin-like kinase-2 signaling during mouse embryogenesis. Dev Biol 1999; 213:314-26. [PMID: 10479450 DOI: 10.1006/dbio.1999.9378] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The members of the transforming growth factor-beta (TGF-beta) superfamily are secreted proteins that interact with cell-surface receptors to elicit signals that regulate a variety of biological processes during vertebrate embryogenesis. Alk2, also known as ActRIA, Tsk7L, and SKR1, encodes a type I TGF-beta family receptor for activins and BMP-7. Initially, Alk2 transcripts are detected in the visceral endoderm of gastrula stage mouse embryos, suggesting a signaling role in extraembryonic tissues during development. To study the role of Alk2 during mammalian development, Alk2 mutant mice were generated. After embryonic day 9.5 (E9.5), no homozygous mutants were recovered from heterozygote matings. Homozygous mutants with morphological defects were first detected at E7.0 and were smaller than controls. Morphological and molecular examination demonstrated that Alk2 mutant embryos formed a primitive streak, although abnormally thickened, and were arrested in their development around the late streak stage. These gastrulation defects were rescued in chimeric embryos generated by injection of Alk2 mutant embryonic stem (ES) cells into wild-type blastocysts. This rescue of gastrulation defects was also observed in chimeric embryos generated by aggregation of Alk2 homozygous mutant ES cells with tetraploid wild-type embryos. However, at E9.5, these embryos that were completely ES-derived also had defects. In contrast, chimeric embryos generated by injection of wild-type ES cells into Alk2 mutant blastocysts did not show rescue of the gastrulation defects. These results suggest that signaling through this type I receptor is essential in extraembryonic tissues at the time of gastrulation for normal mesoderm formation and also suggest that subsequent Alk2 signaling is essential for normal development after gastrulation.
Collapse
Affiliation(s)
- Y Mishina
- Department of Molecular Genetics, University of Texas, M. D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | | | | | | |
Collapse
|
206
|
Abstract
The Wnt family of secreted polypeptides participate in a variety of developmental processes in which embryonic polarity is established. To study a role for Wnt ligands in vertebrate axis determination, we interfered with Wnt signaling in the embryo using the extracellular domain of Xenopus Frizzled 8 (ECD8), which blocks Wnt-dependent activation of a target gene in Xenopus ectodermal explants. Expression of ECD8 in ventral blastomeres resulted in formation of secondary axes containing abundant notochord and head structures. These results suggest that Wnt signaling is required to maintain ventral cell fates and has to be suppressed for dorsal development to occur.
Collapse
Affiliation(s)
- K Itoh
- Department of Microbiology and Molecular Genetics, Harvard Medical School and Molecular Medicine Unit, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215 USA
| | | |
Collapse
|
207
|
Marom K, Fainsod A, Steinbeisser H. Patterning of the mesoderm involves several threshold responses to BMP-4 and Xwnt-8. Mech Dev 1999; 87:33-44. [PMID: 10495269 DOI: 10.1016/s0925-4773(99)00137-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Two secreted signaling molecules, Xwnt-8 and BMP-4, play an essential role in the dorso-ventral patterning of the mesoderm in Xenopus. Here we investigate how the Wnt-8 and the BMP-4 pathways are connected and how they regulate target genes in the lateral and ventral marginal zone. BMP-4 regulates the transcription of Xwnt-8 in a threshold dependent manner. High levels of BMP-4 induce the expression of the Wnt antagonist sizzled in the ventral marginal zone, independent of Xwnt-8 signaling. Xwnt-8 induces the early muscle marker myf-5 in the lateral marginal zone in a BMP independent manner. The expression of the homeobox gene Xvent-1 can be modulated through both the BMP-4 and the Xwnt-8 pathways. The spatial distribution and the level of BMP-4 activity in the lateral and ventral marginal zone is reflected in the dynamic expression pattern of Xwnt-8. The data support the view that Xwnt-8 is involved in the specification of lateral (somitogenic) mesoderm and BMP-4 in the specification of ventral mesoderm.
Collapse
Affiliation(s)
- K Marom
- Department of Cellular Biochemistry, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | | | | |
Collapse
|
208
|
Abstract
Bone morphogenetic proteins (BMPs) are typically members of the transforming growth factor beta (TGF-beta) family with diverse roles in embryonic development. At least five genes with homology to BMPs are expressed during Xenopus development, along with their receptors and intracellular signalling pathways. The evidence suggests that BMPs have roles to play in both mesoderm induction and dorsoventral patterning. Studies in Xenopus have also identified a number of inhibitory binding proteins for the classical BMPs, encoded by genes such as chordin and noggin. These proteins appear to be responsible for establishing a morphogen gradient of BMP4 activity, which specifies different dorsoventral fates in early gastrulae. An emerging theme is that inhibition of BMP signalling is an important mechanism regulating cell fate decisions in early development.
Collapse
Affiliation(s)
- L Dale
- Department of Anatomy and Developmental Biology, University College London, London WC1E 6BT, UK.
| | | |
Collapse
|
209
|
Feledy JA, Beanan MJ, Sandoval JJ, Goodrich JS, Lim JH, Matsuo-Takasaki M, Sato SM, Sargent TD. Inhibitory patterning of the anterior neural plate in Xenopus by homeodomain factors Dlx3 and Msx1. Dev Biol 1999; 212:455-64. [PMID: 10433834 DOI: 10.1006/dbio.1999.9374] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patterning of the embryonic ectoderm is dependent upon the action of negative (antineural) and positive (neurogenic) transcriptional regulators. Msx1 and Dlx3 are two antineural genes for which the anterior epidermal-neural boundaries of expression differ, probably due to differential sensitivity to BMP signaling in the ectoderm. In the extreme anterior neural plate, Dlx3 is strongly expressed while Msx1 is silent. While both of these factors prevent the activation of genes specific to the nascent central nervous system, Msx1 inhibits anterior markers, including Otx2 and cement gland-specific genes. Dlx3 has little, if any, effect on these anterior neural plate genes, instead providing a permissive environment for their expression while repressing more panneural markers, including prepattern genes belonging to the Zic family and BF-1. These properties define a molecular mechanism for translating the organizer-dependent morphogenic gradient of BMP activity into spatially restricted gene expression in the prospective anterior neural plate.
Collapse
Affiliation(s)
- J A Feledy
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Wardle FC, Welch JV, Dale L. Bone morphogenetic protein 1 regulates dorsal-ventral patterning in early Xenopus embryos by degrading chordin, a BMP4 antagonist. Mech Dev 1999; 86:75-85. [PMID: 10446267 DOI: 10.1016/s0925-4773(99)00114-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bone morphogenetic protein 1 (BMP1) is a metalloprotease that ventralises dorsal mesoderm when overexpressed in early Xenopus embryos. Here we show that Xenopus BMP1 blocks the dorsalising activity of chordin, but not noggin or DeltaxBMPR, when coexpressed in the ventral marginal zone and degrades chordin protein in vitro. We also show that a dominant-negative mutation for XBMP1 (dnBMP1) dorsalises ventral mesoderm in vivo, and blocks degradation of chordin by both XBMP1 and Xolloid, a closely related Xenopus metalloprotease, in vitro. dnBMP1 does not dorsalise ventral mesoderm in UV-irradiated embryos, demonstrating that this activity is dependent upon a functional organiser--the natural source of chordin in Xenopus gastrulae. Our results suggest that XBMP1 may regulate the availability of chordin during vertebrate embryogenesis.
Collapse
Affiliation(s)
- F C Wardle
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
211
|
Shapira E, Marom K, Yelin R, Levy A, Fainsod A. A role for the homeobox gene Xvex-1 as part of the BMP-4 ventral signaling pathway. Mech Dev 1999; 86:99-111. [PMID: 10446269 DOI: 10.1016/s0925-4773(99)00120-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BMP-4 is believed to play a central role in the patterning of the mesoderm by providing a strong ventral signal. As part of this ventral patterning signal, BMP-4 has to activate a number of transcription factors to fulfill this role. Among the transcription factors regulated by BMP-4 are the Xvent and the GATA genes. A novel homeobox gene has been isolated termed Xvex-1 which represents a new class of homeobox genes. Transcription of Xvex-1 initiates soon after the midblastula transition. Xvex-1 transcripts undergo spatial restriction from the onset of gastrulation to the ventral marginal zone, and the transcripts will remain in this localization including at the tailbud stage in the proctodeum. Expression of Xvex-1 during gastrula stages requires normal BMP-4 activity as evidenced from the injection of BMP-4, Smad1, Smad5 and Smad6 mRNA and antisense BMP-4 RNA. Xvex-1 overexpression ventralizes the Xenopus embryo in a dose dependent manner. Partial loss of Xvex-1 activity induced by antisense RNA injection results in the dorsalization of embryos and the induction of secondary axis formation. Xvex-1 can rescue the effects of overexpressing the dominant negative BMP receptor. These results place Xvex-1 downstream of BMP-4 during gastrulation and suggest that it represents a novel homeobox family in Xenopus which is part of the ventral signaling pathway.
Collapse
Affiliation(s)
- E Shapira
- Department of Cellular Biochemistry, Faculty of Medicine, Hebrew University, P.O. Box 12272, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
212
|
Moore KB, Moody SA. Animal-vegetal asymmetries influence the earliest steps in retina fate commitment in Xenopus. Dev Biol 1999; 212:25-41. [PMID: 10419683 DOI: 10.1006/dbio.1999.9338] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An individual retina descends from a restricted and invariant group of nine animal blastomeres at the 32-cell stage. We tested which molecular signaling pathways are responsible for the competence of animal blastomeres to contribute to the retina. Inactivation of activin/Vg1 or fibroblast growth factor (FGF) signaling by expression of dominant-negative receptors does not prevent an animal blastomere from contributing to the retina. However, increasing bone morphogenetic protein (BMP) signaling in the retina-producing blastomeres significantly reduces their contribution. Conversely, reducing BMP signaling by expression of a dominant-negative BMP receptor or Noggin allows other animal blastomeres to contribute to the retina. Thus, the initial step in the retinal lineage is regulated by position within the BMP/Noggin field of epidermal versus neural induction. Vegetal tier blastomeres, in contrast, cannot contribute to the retina even when given access to the appropriate position and signaling fields by transplantation to the dorsal animal pole. We tested whether expression of molecules within the mesoderm inducing (activin, FGF), mesoderm-modifying (Wnt), or neural-inducing (BMP, Noggin) pathways impart a retinal fate on vegetal cell descendants. None of these, several of which induce secondary head structures, caused vegetal cells to contribute to retina. This was true even if the injected blastomeres were transplanted to the dorsal animal pole. Two pathways that specifically induce head tissues also were investigated. The simultaneous blockade of Wnt and BMP signaling, which results in the formation of a complete secondary axis with head and eyes, did not cause the vegetal clone to give rise to retina. However, Cerberus, a secreted protein that also induces an ectopic head with eyes, redirected vegetal progeny into the retina. These experiments indicate that vegetal blastomere incompetence to express a retinal fate is not due to a lack of components of known signaling pathways, but relies on a specific pathway of head induction.
Collapse
Affiliation(s)
- K B Moore
- Department of Anatomy and Cell Biology, Institute for Biomedical Sciences, The George Washington University Medical Center, 2300 Eye Street NW, Ross Hall, Washington, DC, 20037, USA
| | | |
Collapse
|
213
|
Melby AE, Clements WK, Kimelman D. Regulation of dorsal gene expression in Xenopus by the ventralizing homeodomain gene Vox. Dev Biol 1999; 211:293-305. [PMID: 10395789 DOI: 10.1006/dbio.1999.9296] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Patterning in the vertebrate embryo is controlled by an interplay between signals from the dorsal organizer and the ventrally expressed BMPs. Here we examine the function of Vox, a homeodomain-containing gene that is activated by the ventralizing signal BMP-4. Inhibition of BMP signaling using a dominant negative BMP receptor (DeltaBMPR) leads to the ectopic activation of dorsal genes in the ventral marginal zone, and this activation is prevented by co-injection of Vox. chordin is the most strongly activated of those genes that are up-regulated by DeltaBMPR and is the gene most strongly inhibited by Vox expression. We demonstrate that Vox acts as a transcriptional repressor, showing that the activity of native Vox is mimicked by a Vox-repressor fusion (VoxEnR) and that a Vox-activator fusion (VoxG4A) acts as an antimorph, causing the formation of a partial secondary axis when expressed on the ventral side of the embryo. Although Vox can ectopically activate BMP-4 expression in whole embryos, we see no activation of BMP-4 by VoxG4A, demonstrating that this activation is indirect. Using a hormone-inducible version of VoxG4A, we find that a critical time window for Vox function is during the late blastula period. Using this construct, we demonstrate that only a subset of dorsal genes is directly repressed by Vox, revealing that there are different modes of regulation for organizer genes. Since the major direct target for Vox repression is chordin, we propose that Vox acts in establishing a BMP-4 morphogen gradient by restricting the expression domain of chordin.
Collapse
Affiliation(s)
- A E Melby
- Department of Biochemistry, University of Washington, Seattle, Washington, 98195-7350, USA
| | | | | |
Collapse
|
214
|
Hollnagel A, Oehlmann V, Heymer J, Rüther U, Nordheim A. Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J Biol Chem 1999; 274:19838-45. [PMID: 10391928 DOI: 10.1074/jbc.274.28.19838] [Citation(s) in RCA: 417] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are morphogenetic signaling molecules essential for embryonic patterning. To obtain molecular insight into the influence of BMPs on morphogenesis, we searched for new genes directly activated by BMP signaling. In vitro cultured mouse embryonic stem (ES) cells were used, cultivated in chemically defined growth medium (CDM). CDM-cultured ES cells responded very selectively to stimulation by various mesoderm inducers (BMP2/4, activin A, and basic fibroblast growth factor). BMP2/4 rapidly induced transcript levels of the homeobox genes Msx-1 and Msx-2 and the proto-oncogene JunB, whereas c-jun transcripts displayed delayed albeit prolonged increase. Using differential display cDNA cloning, six direct BMP target genes were identified. These include Id3, which showed strong mRNA induction, and the moderately induced Cyr61, DEK, and eIF4AII genes, as well as a gene encoding a GC-binding protein. Besides Id3, also the Id1 and Id2 genes were activated by BMP4 in both ES cells and a range of different cell lines. Id genes encode negative regulators of basic helix-loop-helix transcription factors. In vivo we observed local ectopic expression of Id3 and Msx-2 mRNAs in Ft/+ embryos at overlapping regions of ectopic Bmp4 misexpression. We therefore propose that the Msx and Id genes are direct target genes of embryonic BMP4 signaling in vivo.
Collapse
Affiliation(s)
- A Hollnagel
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
215
|
Streit A, Stern CD. Mesoderm patterning and somite formation during node regression: differential effects of chordin and noggin. Mech Dev 1999; 85:85-96. [PMID: 10415349 DOI: 10.1016/s0925-4773(99)00085-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Xenopus, one of the properties defining Spemann's organizer is its ability to dorsalise the mesoderm. When placed ajacent to prospective lateral/ventral mesoderm (blood, mesenchyme), the organizer causes these cells to adopt a more axial/dorsal fate (muscle). It seems likely that a similar property patterns the primitive streak of higher vertebrate embryos, but this has not yet been demonstrated clearly. Using quail/chick chimaeras and a panel of molecular markers, we show that Hensen's node (the amniote organizer) can induce posterior primitive streak (prospective lateral plate) to form somites (but not notochord) at the early neurula stage. We tested two BMP antagonists, noggin and chordin (both of which are expressed in the organizer), for their ability to generate somites and intermediate mesoderm from posterior streak, and find that noggin, but not chordin, can do this. Conversely, earlier in development, chordin can induce an ectopic primitive streak much more effectively than noggin, while neither BMP antagonist can induce neural tissue from extraembryonic epiblast. Neurulation is accompanied by regression of the node, which brings the prospective somite territory into a region expressing BMP-2, -4 and -7. One function of noggin at this stage may be to protect the prospective somite cells from the inhibitory action of BMPs. Our results suggest that the two BMP antagonists, noggin and chordin, may serve different functions during early stages of amniote development.
Collapse
Affiliation(s)
- A Streit
- Department of Genetics and Development, Columbia University, 701 West 168th Street #1602, New York, NY 10032, USA
| | | |
Collapse
|
216
|
Newfeld SJ, Wisotzkey RG, Kumar S. Molecular evolution of a developmental pathway: phylogenetic analyses of transforming growth factor-beta family ligands, receptors and Smad signal transducers. Genetics 1999; 152:783-95. [PMID: 10353918 PMCID: PMC1460638 DOI: 10.1093/genetics/152.2.783] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intercellular signaling by transforming growth factor-beta (TGF-beta) proteins coordinates developmental decisions in many organisms. A receptor complex and Smad signal transducers are required for proper responses to TGF-beta signals. We have taken a phylogenetic approach to understanding the developmental evolutionary history of TGF-beta signaling pathways. We were interested in detecting evolutionary influences among the physically interacting multigene families encoding TGF-beta ligands, receptors, and Smads. Our analyses included new ligands and Smads identified from genomic sequence as well as the newest published family members. From an evolutionary perspective we find that (1) TGF-beta pathways do not predate the divergence of animals, plants, and fungi; (2) ligands of the TGF-beta/activin subfamily likely originated after the divergence of nematodes and arthropods; (3) type I receptors from Caenorhabditis elegans are distinct from other receptors and may reflect an ancestral transitional state between type I and type II receptors; and (4) the Smad family appears to be evolving faster than, and independently of, ligands and receptors. From a developmental perspective we find (1) numerous phylogenetic associations not previously detected in each multigene family; (2) that there are unidentified pathway components that discriminate between type I and type II receptors; (3) that there are more Smads to be discovered in Drosophila and mammals; and (4) that the number of C-terminal serines is the best predictor of a Smad's role in TGF-beta signal transduction. We discuss these findings with respect to the coevolution of physically interacting genes.
Collapse
Affiliation(s)
- S J Newfeld
- Department of Biology, Arizona State University, Tempe, Arizona 85287-1501, USA.
| | | | | |
Collapse
|
217
|
Dale L, Wardle FC. A gradient of BMP activity specifies dorsal-ventral fates in early Xenopus embryos. Semin Cell Dev Biol 1999; 10:319-26. [PMID: 10441546 DOI: 10.1006/scdb.1999.0308] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BMP-4 is an extracellular signalling molecule belonging to the TGF-beta superfamily that plays a central role in dorsoventral patterning in vertebrate gastrulae. We review the evidence indicating that BMP-4 acts as a morphogen, specifying dorsoventral positional values in a concentration-dependent manner. An activity gradient of BMP-4 is established not by simple diffusion from a localised source, but by diffusion of inhibitory binding proteins that act on a uniform level of BMP-4 protein. These in turn are regulated by the activity of tolloid-related metalloproteases, such as Xenopus xolloid and zebrafish tolloid.
Collapse
Affiliation(s)
- L Dale
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | | |
Collapse
|
218
|
Asashima M, Kinoshita K, Ariizumi T, Malacinski GM. Role of activin and other peptide growth factors in body patterning in the early amphibian embryo. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 191:1-52. [PMID: 10343391 DOI: 10.1016/s0074-7696(08)60156-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The amphibian body plan is established as the result of a series of inductive interactions. During early cleavage stages cells in the vegetal hemisphere induce overlying animal hemisphere cells to form mesoderm. The interaction represents the first major body-patterning event and is mediated by peptide growth factors. Various peptide growth factors have been implicated in mesoderm development, including most notably members of the transforming growth factor-beta superfamily. Identification of the so-called "natural" inducer from among the several candidate peptide growth factors is being achieved by employing several experimental strategies, including the use of a tissue explant assay for testing potential inducers, cloning of marker genes as indices of early induction events, and microinjection of altered peptide growth factor receptors to disrupt normal embryonic inductions. Activin emerges as the most likely choice for assignment of the role of endogenous mesoderm inducer, because it currently best fulfills the rigorous set of criteria expected of such an important embryonic signaling molecule. Activin, however, may not act alone in mesoderm induction. Other peptide growth factors such as fibroblast growth factor might be involved, especially in the regional patterning of the mesoderm. In addition, several genes (e.g., Wnt and noggin), which are expressed after the mesoderm is initially induced, probably assist in further definition of the mesoderm pattern. Following mesoderm induction, the primary embryonic organizer tissue (first described in 1924 by Spemann) develops and contributes further to body patterning by its action as a neural inducer. Peptide growth factors such as activin may also be involved in the inductive event, either directly (by facilitating gene expression) or indirectly (by serving to constrain pathways).
Collapse
Affiliation(s)
- M Asashima
- Department of Life Science, University of Tokyo, Japan
| | | | | | | |
Collapse
|
219
|
Xu RH, Lechleider RJ, Shih HM, Hao CF, Sredni D, Roberts AB, Kung HF. Functional analysis of human Smad1: role of the amino-terminal domain. Biochem Biophys Res Commun 1999; 258:366-73. [PMID: 10329393 DOI: 10.1006/bbrc.1999.0598] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The signals originating from transforming growth factor beta/activin/bone morphogenetic proteins (BMPs) are transduced by a set of evolutionarily conserved family of Smad proteins which, upon activation, directly translocate to the nucleus where they may activate transcription. Smad proteins of different species contain conserved amino- (N) and carboxy- (C) terminal domains separated by a proline-rich linker. Human, Drosophila, and Xenopus Smad1 all have been shown to mediate the biological effects of BMP-4 in Xenopus embryos. We have investigated the functional domains of human Smad1 (hSmad1) using the Xenopus embryo system. Dorsal injection of hSmad1 RNA into the 4-cell-stage embryos results in embryonic ventralization. Since the C-terminus of Smads has been shown to mediate the transcriptional activity, whereas this activity is masked by the presence of the N-terminus, we tested the effect of a hSmad1 construct lacking the C-terminal domain [hSmad1(N)] in the Xenopus embryo system. Surprisingly, we found that hSmad1(N) not only synergizes with hSmad1 in embryonic ventralization, but induces ventralization by itself. Ectopic expression of a dominant negative BMP receptor (DN-BR) as well as neural inducers noggin and chordin induce neurogenesis in the animal cap, which is inhibited by co-expression of either hSmad1 or hSmad1(N). Ventral expression of DN-BR induces formation of a second body axis at tailbud stage, which is also prevented by hSmad1 and hSmad1(N). It has recently been reported that calmodulin interacts with the N-terminal domain of Smad proteins. We demonstrate that the ventralizing activity of hSmad1 and hSmad1(N) is markedly inhibited by calmodulin. Thus, calmodulin acts as a Smad1 inhibitor. A model is proposed to accomodate these findings.
Collapse
Affiliation(s)
- R H Xu
- Intramural Research Support Program, SAIC Frederick, National Cancer Institute-Frederick Cancer Research and Developmental Center, Frederick, Maryland 21702, USA.
| | | | | | | | | | | | | |
Collapse
|
220
|
Xu RH, Ault KT, Kim J, Park MJ, Hwang YS, Peng Y, Sredni D, Kung HF. Opposite effects of FGF and BMP-4 on embryonic blood formation: roles of PV.1 and GATA-2. Dev Biol 1999; 208:352-61. [PMID: 10191050 DOI: 10.1006/dbio.1999.9205] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In adult vertebrates, fibroblast growth factor (FGF) synergizes with many hematopoietic cytokines to stimulate the proliferation of hematopoietic progenitors. In vertebrate development, the FGF signaling pathway is important in the formation of some derivatives of ventroposterior mesoderm. However, the function of FGF in the specification of the embryonic erythropoietic lineage has remained unclear. Here we address the role of FGF in the specification of the erythropoietic lineage in the Xenopus embryo. We report that ventral injection of embryonic FGF (eFGF) mRNA at as little as 10 pg at the four-cell stage suppresses ventral blood island (VBI) formation, whereas expression of the dominant negative form of the FGF receptor in the lateral mesoderm, where physiologically no blood tissue is formed, results in a dramatic expansion of the VBI. Similar results were observed in isolated ventral marginal zones and animal caps. Bone morphogenetic protein-4 (BMP-4) is known to induce erythropoiesis in the Xenopus embryo. Therefore, we examined how the BMP-4 and FGF signaling pathways might interact in the decision of ventral mesoderm to form blood. We observed that eFGF inhibits BMP-4-induced erythropoiesis by differentially regulating expression of the BMP-4 downstream effectors GATA-2 and PV.1. GATA-2, which stimulates erythropoiesis, is suppressed by FGF. PV.1, which we demonstrate to inhibit blood development, is enhanced by FGF. Additionally, PV.1 and GATA-2 negatively regulate transcription of each other. Thus, BMP-4 induces two transcription factors which have opposing effects on blood development. The FGF and BMP-4 signaling pathways interact to regulate the specification of the erythropoietic lineage.
Collapse
Affiliation(s)
- R H Xu
- Intramural Research Support Program, SAIC Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland, 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Nikaido M, Tada M, Ueno N. Restricted expression of the receptor serine/threonine kinase BMPR-IB in zebrafish. Mech Dev 1999; 82:219-22. [PMID: 10354489 DOI: 10.1016/s0925-4773(99)00023-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Bone morphogenetic proteins (BMPs) comprise a rapidly expanding subclass of the transforming growth factor-beta superfamily. They are known to regulate a diverse range of developmental phenomena including cell differentiation, morphogenesis and apoptosis. In this study, we have isolated a zebrafish homolog of BMP type IB receptor (BMPR-IB) and examined the localization of the transcripts during embryogenesis. Whole-mount in situ hybridization analysis revealed that unlike other type I and type II receptors that mediate BMP signal, it is expressed in developing somite and in mid-hind brain region in a restricted manner.
Collapse
Affiliation(s)
- M Nikaido
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | | | | |
Collapse
|
222
|
Sun BI, Bush SM, Collins-Racie LA, LaVallie ER, DiBlasio-Smith EA, Wolfman NM, McCoy JM, Sive HL. derriere: a TGF-beta family member required for posterior development in Xenopus. Development 1999; 126:1467-82. [PMID: 10068640 DOI: 10.1242/dev.126.7.1467] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
TGF-beta signaling plays a key role in induction of the Xenopus mesoderm and endoderm. Using a yeast-based selection scheme, we isolated derriere, a novel TGF-beta family member that is closely related to Vg1 and that is required for normal mesodermal patterning, particularly in posterior regions of the embryo. Unlike Vg1, derriere is expressed zygotically, with RNA localized to the future endoderm and mesoderm by late blastula, and to the posterior mesoderm by mid-gastrula. The derriere expression pattern appears to be identical to the zygotic expression domain of VegT (Xombi, Brat, Antipodean), and can be activated by VegT as well as fibroblast growth factor (FGF). In turn, derriere activates expression of itself, VegT and eFGF, suggesting that a regulatory loop exists between these genes. derriere is a potent mesoderm and endoderm inducer, acting in a dose-dependent fashion. When misexpressed ventrally, derriere induces a secondary axis lacking a head, an effect that is due to dorsalization of the ventral marginal zone. When misexpressed dorsally, derriere suppresses head formation. derriere can also posteriorize neurectoderm, but appears to do so indirectly. Together, these data suggest that derriere expression is compatible only with posterior fates. In order to assess the in vivo function of derriere, we constructed a dominant interfering Derriere protein (Cm-Derriere), which preferentially blocks Derriere activity relative to that of other TGFbeta family members. Cm-derriere expression in embryos leads to posterior truncation, including defects in blastopore lip formation, gastrulation and neural tube closure. Normal expression of anterior and hindbrain markers is observed; however, paraxial mesodermal gene expression is ablated. This phenotype can be rescued by wild-type derriere and by VegT. Our findings indicate that derriere plays a crucial role in mesodermal patterning and development of posterior regions in Xenopus.
Collapse
Affiliation(s)
- B I Sun
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge MA 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Abstract
The Xvent homeobox multigene family is essential for the patterning of the ventral mesoderm in Xenopus embryos. We have identified two novel members of this family, Xvent-1B and Xvent-2B, and have characterized their genomic structures. These two genes show a clustered organization and have probably arisen by gene duplication with subsequent inversion. Cis-regulatory elements within the promoters of both genes have been identified which contribute to their spatial activation. Xvent-2B is activated by BMP-2/4 in the absence of de novo protein synthesis, suggesting that this gene is a direct target of BMP-signalling. In contrast, Xvent-1B does not directly respond to BMP-2/4, but is activated by Xvent-2B. This activation is documented by Xvent-1B promoter/reporter studies, Xvent-2B overexpression and loss-of-function analysis using a dominant-negative Xvent-2 mutant. However, cycloheximide experiments reveal that Xvent-2B by itself is not sufficient to activate transcription of the Xvent-1B gene, but that there is a requirement for additional factor(s) being synthesized after midblastula transition.
Collapse
Affiliation(s)
- S Rastegar
- Abteilung Biochemie, Universität Ulm, Albert Einstein Allee 11, 89081, Ulm, Germany
| | | | | | | |
Collapse
|
224
|
Goto T, Kinoshita T. Maternal transcripts of mitotic checkpoint gene, Xbub3, are accumulated in the animal blastomeres of Xenopus early embryo. DNA Cell Biol 1999; 18:227-34. [PMID: 10098604 DOI: 10.1089/104454999315448] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Maternally transcribed mRNAs play the important role during early embryogenesis. Especially in patterning, distribution of the maternal transcripts has a causal relation to axis formation in the early embryo. We compared the quantity of mRNAs among four blastomeres of Xenopus 8-cell-stage embryos by the differential display method. A novel gene, Xbub3, was cloned by screening the oocyte cDNA library with an animal blastomere-enriched PCR product. Xbub3 is a homolog of the human mitotic checkpoint gene hBub3. A transcript of Xbub3 was 2940 bp and encoded a predicted protein of 330 amino acids with six WD repeats. Expression of Xbub3 was observed from oocyte to tadpole. Whole-mount in situ hybridization showed that Xbub3 mRNAs were uniformly distributed in the early stages of oogenesis but gradually localized to the animal hemisphere, especially in the perinuclear cytoplasm of full-grown oocytes. In the cleavage-stage embryos, the maternal transcripts of Xbub3 were recruited into each blastomere, associating closely with chromosomes. Zygotic expression of Xbub3 was widely detected in gastrula ectoderm and was gradually restricted to the central nervous systems, eyes, and branchial arches by the tadpole stage. This evidence contributes to understanding of the regulatory mechanism of the cell cycle and cell differentiation in the early embryo.
Collapse
Affiliation(s)
- T Goto
- Developmental Biology, Faculty of Science, Kwansei Gakuin University, Nishinomiya, Japan
| | | |
Collapse
|
225
|
Laurent MN, Cho KW. Bone morphogenetic protein antagonism of Spemann's organizer is independent of Wnt signaling. Dev Biol 1999; 206:157-62. [PMID: 9986729 DOI: 10.1006/dbio.1998.9143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Xenopus homeobox gene twin is involved in the Wnt-mediated induction of Spemann's organizer. Additionally, several lines of evidence indicate that bone morphogenetic proteins (BMPs) play a role in repressing the formation of the organizer by antagonizing the expression of genes involved in organizer establishment. In order to determine at what level BMPs exert their effect, we measured the activity of different genes expressed within the organizer region. We report that BMP signaling can antagonize the induction of the dorsal-specific gene goosecoid but is unable to affect Wnt signaling at the level of twin. These results suggest that the antagonistic activities of BMPs in organizer formation occur postzygotically, independent of twin regulation, and that Wnt-like dorsal determinant signaling pathways do not crosstalk with BMPs.
Collapse
Affiliation(s)
- M N Laurent
- Department of Developmental and Cell Biology and the Developmental Biology Center, University of California at Irvine, Irvine, California, 92697-2300, USA
| | | |
Collapse
|
226
|
Wardle FC, Angerer LM, Angerer RC, Dale L. Regulation of BMP signaling by the BMP1/TLD-related metalloprotease, SpAN. Dev Biol 1999; 206:63-72. [PMID: 9918695 DOI: 10.1006/dbio.1998.9127] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have used the Xenopus embryo as a test system for analyzing the activity of SpAN, a sea urchin metalloprotease in the astacin family containing BMP1 and tolloid. Embryos expressing SpAN initiated gastrulation on a time scale indistinguishable from controls, but invagination of the vegetal pole was subsequently delayed by several hours. At tailbud stages the most severely affected embryos were completely ventralized, lacking all dorsal structures. Molecular analysis of injected embryos, using probes for both dorsal (xgsc and xnot) and ventral (xhox3 and xwnt8) mesoderm, indicates that SpAN ventralizes dorsal mesoderm during gastrula stages. These results mirror those previously obtained with BMP4, suggesting that SpAN may enhance the activity of this ventralizing factor. Consistent with this suggestion, we have shown that SpAN blocks the dorsalizing activity of noggin and chordin, two inhibitory binding proteins for BMP4, but not that of a dominant-negative receptor for BMP4. In contrast, a dominant-negative SpAN, in which the metalloprotease domain has been deleted, dorsalizes ventral mesoderm, a phenotype that can be rescued by coexpressing either SpAN or XBMP1. This suggests that SpAN is mimicking a Xenopus metalloprotease responsible for regulating the activity of Xenopus BMPs during gastrulation. Moreover, our results raise the possibility that SpAN may function to facilitate BMP signaling in early sea urchin embryos.
Collapse
Affiliation(s)
- F C Wardle
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
227
|
Carroll T, Wallingford J, Seufert D, Vize PD. Molecular regulation of pronephric development. Curr Top Dev Biol 1999; 44:67-100. [PMID: 9891877 DOI: 10.1016/s0070-2153(08)60467-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- T Carroll
- Department of Zoology, University of Texas, Austin 78712, USA
| | | | | | | |
Collapse
|
228
|
Yamaguchi K, Nagai S, Ninomiya-Tsuji J, Nishita M, Tamai K, Irie K, Ueno N, Nishida E, Shibuya H, Matsumoto K. XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J 1999; 18:179-87. [PMID: 9878061 PMCID: PMC1171113 DOI: 10.1093/emboj/18.1.179] [Citation(s) in RCA: 295] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Signals elicited by transforming growth factor-beta (TGF-beta) superfamily ligands are generated following the formation of heteromeric receptor complexes consisting of type I and type II receptors. TAK1, a member of the MAP kinase kinase kinase family, and its activator, TAB1, participate in the bone morphogenetic protein (BMP) signaling pathway involved in mesoderm induction and patterning in early Xenopus embryos. However, the events leading from receptor activation to TAK1 activation remain to be identified. A yeast interaction screen was used to search for proteins that function in the pathway linking the receptors and TAB1-TAK1. The human X-chromosome-linked inhibitor of apoptosis protein (XIAP) was isolated as a TAB1-binding protein. XIAP associated not only with TAB1 but also with the BMP receptors in mammalian cells. Injection of XIAP mRNA into dorsal blastomeres enhanced the ventralization of Xenopus embryos in a TAB1-TAK1-dependent manner. Furthermore, a truncated form of XIAP lacking the TAB1-binding domain partially blocked the expression of ventral mesodermal marker genes induced by a constitutively active BMP type I receptor. These results suggest that XIAP participates in the BMP signaling pathway as a positive regulator linking the BMP receptors and TAB1-TAK1.
Collapse
Affiliation(s)
- K Yamaguchi
- Department of Molecular Biology, Graduate School of Science, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Nikaido M, Tada M, Takeda H, Kuroiwa A, Ueno N. In vivo analysis using variants of zebrafish BMPR-IA: range of action and involvement of BMP in ectoderm patterning. Development 1999; 126:181-90. [PMID: 9834197 DOI: 10.1242/dev.126.1.181] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been an intriguing problem whether the polypeptide growth factors belonging to the transforming growth factor-beta (TGF-beta) superfamily function as direct and long-range signaling molecules in pattern formation of the early embryo. In this study, we examined the mechanism of signal propagation of bone morphogenetic protein (BMP) in the ectodermal patterning of zebrafish embryos, in which BMP functions as an epidermal inducer and a neural inhibitor. To estimate the effective range of zbmp-2, we first performed whole-mount in situ hybridization analysis. The zbmp-2-expressing domain and the neuroectoderm, marked by otx-2 expression, were complementary, suggesting that BMP has a short-range effect in vivo. Moreover, mosaic experiments using a constitutively active form of a zebrafish BMP type I receptor (CA-BRIA) demonstrated that the cell-fate conversion, revealed by ectopic expression of gata-3 and repression of otx-2, occurred in a cell-autonomous manner, denying the involvement of the relay mechanism. We also found that zbmp-2 was induced cell autonomously within the transplanted cells in the host ectoderm, suggesting that BMP cannot influence even the neighboring cells. This result is consistent with the observation that there is no gap between the expression domains of zbmp-2 and otx-2. Taken together, we propose that, in ectodermal patterning, BMP exerts a direct and cell-autonomous effect to fate uncommitted ectodermal cells to become epidermis.
Collapse
Affiliation(s)
- M Nikaido
- Department of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | | | |
Collapse
|
230
|
Christen B, Slack JM. Spatial response to fibroblast growth factor signalling in Xenopus embryos. Development 1999; 126:119-25. [PMID: 9834191 DOI: 10.1242/dev.126.1.119] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have examined the spatial pattern of activation of the extracellular signal-regulated protein kinase (ERK) during Xenopus development, and show that it closely resembles the expression of various fibroblast growth factors (FGFs). Until the tailbud stage of development, all ERK activation domains are sensitive to the dominant negative FGF receptor, showing that activation is generated by endogenous FGF signalling. ERK is not activated by application of other growth factors like BMP4 or activin, nor is endogenous activation blocked by the respective dominant negative receptors. This shows that various domains of FGF expression, including the periblastoporal region and the midbrain-hindbrain boundary, are also sites of FGF signalling in vivo. Wounding induces a transient (<60 minutes) activation of ERK which is not significantly reduced by the dominant negative FGF receptor. An artificial FGF source, created by injection of eFGF mRNA into cleavage stage embryos, provokes ERK activation outside of its injection site over a range of several cell diameters. The range and extent of ERK activation outside the source region is unchanged by co-injection of a dominant negative form of Ras, which blocks ERK-activation within the source. This suggests that FGF protein can diffuse over several cell diameters.
Collapse
Affiliation(s)
- B Christen
- Developmental Biology Programme, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | |
Collapse
|
231
|
Bauer H, Meier A, Hild M, Stachel S, Economides A, Hazelett D, Harland RM, Hammerschmidt M. Follistatin and noggin are excluded from the zebrafish organizer. Dev Biol 1998; 204:488-507. [PMID: 9882485 DOI: 10.1006/dbio.1998.9003] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The patterning activity of the Spemann organizer in early amphibian embryos has been characterized by a number of organizer-specific secreted proteins including Chordin, Noggin, and Follistatin, which all share the same inductive properties. They can neuralize ectoderm and dorsalize ventral mesoderm by blocking the ventralizing signals Bmp2 and Bmp4. In the zebrafish, null mutations in the chordin gene, named chordino, lead to a severe reduction of organizer activity, indicating that Chordino is an essential, but not the only, inductive signal generated by the zebrafish organizer. A second gene required for zebrafish organizer function is mercedes, but the molecular nature of its product is not known as yet. To investigate whether and how Follistatin and Noggin are involved in dorsoventral (D-V) patterning of the zebrafish embryo, we have now isolated and characterized their zebrafish homologues. Overexpression studies demonstrate that both proteins have the same dorsalizing properties as their Xenopus homologues. However, unlike the Xenopus genes, zebrafish follistatin and noggin are not expressed in the organizer region, nor are they linked to the mercedes mutation. Expression of both genes starts at midgastrula stages. While no patterned noggin expression was detectable by in situ hybridization during gastrulation stages, later expression is confined to presumptive cartilage cells in the branchial arches and the neurocranium and to proximal regions of the pectoral fin buds. follistatin transcripts in gastrulating embryos are confined to anterior paraxial regions, which give rise to head mesoderm and the first five somites. The dorsolateral extent of this expression domain is regulated by Bmp2b, Chordino, and Follistatin itself. In addition, transient expression was observed in a subset of cells in the posterior notochord anlage. Later, follistatin is expressed in brain, eyes, and somites. Comparison of the spatiotemporal expression pattern of follistatin and noggin with those of bmp2b and bmp4 and overexpression studies suggest that Noggin and Follistatin may function as Bmp antagonists in later processes of zebrafish development, including late phases of D-V patterning, to refine the early pattern set up by the interaction of Chordino and Bmp2/4. It thus appears that many, but not all, aspects of early dorsoventral patterning are shared among different vertebrate species.
Collapse
Affiliation(s)
- H Bauer
- Max-Planck Institut für Immunbiologie, Stübeweg 51, 79108 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
232
|
Sykes TG, Rodaway AR, Walmsley ME, Patient RK. Suppression of GATA factor activity causes axis duplication in Xenopus. Development 1998; 125:4595-605. [PMID: 9806909 DOI: 10.1242/dev.125.23.4595] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Xenopus, the dorsoventral axis is patterned by the interplay between active signalling in ventral territories, and secreted antagonists from Spemann's organiser. Two signals are important in ventral cells, bone morphogenetic protein-4 (BMP-4) and Wnt-8. BMP-4 plays a conserved role in patterning the vertebrate dorsoventral axis, whilst the precise role of Wnt-8 and its relationship with BMP-4, are still unclear. Here we have investigated the role played by the GATA family of transcription factors, which are expressed in ventral mesendoderm during gastrulation and are required for the differentiation of blood and endodermal tissues. Injection ventrally of a dominant-interfering GATA factor (called G2en) induced the formation of secondary axes that phenocopy those induced by the dominant-negative BMP receptor. However, unlike inhibiting BMP signalling, inhibiting GATA activity in the ectoderm does not lead to neuralisation. In addition, analysis of gene expression in G2en injected embryos reveals that at least one known target gene for BMP-4, the homeobox gene Vent-2, is unaffected. In contrast, the expression of Wnt-8 and the homeobox gene Vent-1 is suppressed by G2en, whilst the organiser-secreted BMP antagonist chordin becomes ectopically expressed. These data therefore suggest that GATA activity is essential for ventral cell fate and that subsets of ventralising and dorsalising genes require GATA activity for their expression and suppression, respectively. Finally, using G2en, we show that suppression of Wnt-8 expression, in conjunction with blocked BMP signalling, does not lead to head formation, suggesting that the head-suppressing Wnt signal may not be Wnt-8.
Collapse
Affiliation(s)
- T G Sykes
- Developmental Biology Research Centre, The Randall Institute, King's College London, London WC2B 5RL, UK
| | | | | | | |
Collapse
|
233
|
Abstract
Neocortical neurons begin to differentiate soon after they are generated by mitoses at the surface of the ventricular zone (VZ). We provide evidence here that bone morphogenetic protein (BMP) triggers neuronal differentiation of neocortical precursors within the VZ. In cultures of dissociated neocortical neuroepithelial cells, BMPs increase the number of MAP-2- and TUJ1-positive cells within 24 hr of treatment. In explant cultures, BMP-4 treatment leads to an increase in the number of TUJ1-positive cells within the ventricular zone. Furthermore, truncated, dominant-negative, BMP type I receptor, introduced into neocortical precursors by retrovirus-mediated gene transfer, blocks neurite elaboration and migration out of the VZ. Finally, immunocytochemistry indicates that BMP protein is present at the VZ surface. Together, these results indicate that BMP protein is present within the VZ, that BMP is capable of promoting neuronal differentiation, and that signaling through BMP receptors triggers neuronal precursors to differentiate and migrate out of the VZ.
Collapse
|
234
|
Shibata K, Ishimura A, Maéno M. GATA-1 inhibits the formation of notochord and neural tissue in Xenopus embryo. Biochem Biophys Res Commun 1998; 252:241-8. [PMID: 9813177 DOI: 10.1006/bbrc.1998.9490] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression of GATA-1, which encodes for a hemopoietic transcription factor, initiates at gastrula stage in the Xenopus embryo (1). In order to examine a possible function of GATA-1 in dorso-ventral patterning of mesoderm and ectoderm derivatives, the synthesized RNA of GATA-1 was overexpressed in embryonic cells to assess its biological effects. In the embryos injected with GATA-1 RNA in the dorsal marginal zone at 4-cell stage, dorsal epidermis did not cover the vegetal cells so that the gastrulation was not completed. The same dose of GATA-1 RNA injected into ventral marginal zone did not influence the development, and GATA-2 RNA transcribed from the same vector had little effect, suggesting that this phenomenon is physiologically important. The morphological and immunohistochemical studies revealed that notochord and neural tissue were mostly eliminated in the embryos or the dorsal marginal zone explants after injection of GATA-1 RNA. GATA-1 also inhibited neurogenesis in animal cap explants, which was induced by the injection with noggin RNA. Northern blot analysis using dorsal marginal zone explants showed, however, that only a slight amount of alpha-globin message was induced, and cardiac alpha-actin message was retained. Therefore, GATA-1 did not convert completely the dorsal phenotype to the ventral one. Furthermore, the injection of GATA-1 RNA didnot alter the expression of early dorsal and ventral markers at the onset of gastrulation. These results suggest that GATA-1 is an potential inhibitor of the dorsalization and the neurogenesis, but it affects on the specification of dorsal tissues in relatively later steps.
Collapse
Affiliation(s)
- K Shibata
- Department of Biology, Faculty of Science, Niigata University, Ikarashi, Niigata, 950-2181, Japan
| | | | | |
Collapse
|
235
|
Li W, Cogswell CA, LoTurco JJ. Neuronal differentiation of precursors in the neocortical ventricular zone is triggered by BMP. J Neurosci 1998; 18:8853-62. [PMID: 9786991 PMCID: PMC6793519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/1998] [Revised: 08/10/1998] [Accepted: 08/12/1998] [Indexed: 02/09/2023] Open
Abstract
Neocortical neurons begin to differentiate soon after they are generated by mitoses at the surface of the ventricular zone (VZ). We provide evidence here that bone morphogenetic protein (BMP) triggers neuronal differentiation of neocortical precursors within the VZ. In cultures of dissociated neocortical neuroepithelial cells, BMPs increase the number of MAP-2- and TUJ1-positive cells within 24 hr of treatment. In explant cultures, BMP-4 treatment leads to an increase in the number of TUJ1-positive cells within the ventricular zone. Furthermore, truncated, dominant-negative, BMP type I receptor, introduced into neocortical precursors by retrovirus-mediated gene transfer, blocks neurite elaboration and migration out of the VZ. Finally, immunocytochemistry indicates that BMP protein is present at the VZ surface. Together, these results indicate that BMP protein is present within the VZ, that BMP is capable of promoting neuronal differentiation, and that signaling through BMP receptors triggers neuronal precursors to differentiate and migrate out of the VZ.
Collapse
Affiliation(s)
- W Li
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269-4156, USA
| | | | | |
Collapse
|
236
|
Abstract
Vertebrate embryos, despite quite diverse early morphologies, appear to employ similar cellular strategies and conserved biochemical pathways in their development (Eyal-Giladi, 1997). In the past decade, a small tropical teleost, zebrafish (Danio rerio), became an important model system in which to study development (Streisinger et al., 1981). By combining embryology with molecular and classical genetic methods, our understanding of early inductive and morphogenetic events during vertebrate embryogenesis significantly advanced. In zebrafish, dorsal-ventral polarity is established during early cleavage and is dependent on microtubular transport of determinants from the vegetal pole to the blastomeres positioned on top of the yolk cell. The syncytium forming from these marginal blastomeres in the early blastula exhibits dorsal-ventral asymmetry with beta-catenin localized to the nuclei on the presumptive dorsal side of the syncytium. The yolk cell is a source of signals that induce and pattern overlying blastoderm. Therefore, the dorsal yolk syncytial layer is equivalent to the Nieuwkoop center of the amphibian embryo. The embryonic shield, a thickening of the dorsal blastoderm margin, exhibits properties similar to the amphibian Spemann organizer. However, certain inductive and patterning signals from the organizer might be produced before the shield forms or might originate outside of the shield. Similar to the amphibian embryo, the key patterning functions of the fish dorsal organizer (i.e., dorsalization of mesoderm, ectoderm, and coordination of gastrulation movements) are performed by secreted molecules that antagonize the ventralizing activity of the swil (zbmp-2) and zbmp-4 gene products expressed on the ventral side of the embryo. These functions of the dorsal organizer require the activity of the chordino gene (a zebrafish homologue of chordin), bozozok, mercedes and ogon loci.
Collapse
Affiliation(s)
- L Solnica-Krezel
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| |
Collapse
|
237
|
Kim J, Ault KT, Chen HD, Xu RH, Roh DH, Lin MC, Park MJ, Kung HF. Transcriptional regulation of BMP-4 in the Xenopus embryo: analysis of genomic BMP-4 and its promoter. Biochem Biophys Res Commun 1998; 250:516-30. [PMID: 9753664 DOI: 10.1006/bbrc.1998.9280] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent experiments in the Xenopus embryo suggest that proper regulation of BMP-4 signaling is critical to the dorsal ventral specification of both mesoderm and ectoderm. Regulation of BMP-4 signaling is known to occur extracellularly by direct binding with chordin, noggin, and follistatin, and intracellularly through the antagonistic signal interaction with dorsalizing TGF-beta family member activin. However, tight repressional regulation of BMP transcription may also be required to sustain the dorsal and neural status of the induced cells. Here we demonstrate that the dominant negative mutant of the BMP receptor (DN-BR) or the BMP-4 antagonizers, chordin and noggin, negatively regulate BMP-4 transcription in animal cap explants. We suggest that repression of BMP-4 transcription is important in the maintenance of dorsal fate and that continuous input of BMP-4 signaling is required to sustain the expression of BMP-4 transcription in the maintenance of epidermal/ventral fate. Consistent with this postulation, we found that the promoter region of the isolated BMP-4 genomic DNA includes several consensus binding sites for transcriptional regulators functioning under BMP-4 signaling such as GATA binding and ventralizing homeobox genes. In a functional assay we found that the GATA binding and ventral homeobox proteins can positively modulate BMP-4 promoter activity. We also observed that DN-BR decreases BMP-4 promoter activity. This was likely due to a repression of the above-mentioned transcription factors. The significance of these observations to embryonic patterning is discussed.
Collapse
Affiliation(s)
- J Kim
- Laboratory of Biochemical Physiology, Frederick Cancer Research and Development Center, National Cancer Institute, Maryland 21702-1201, USA
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Affiliation(s)
- M Whitman
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 USA.
| |
Collapse
|
239
|
Iemura S, Yamamoto TS, Takagi C, Uchiyama H, Natsume T, Shimasaki S, Sugino H, Ueno N. Direct binding of follistatin to a complex of bone-morphogenetic protein and its receptor inhibits ventral and epidermal cell fates in early Xenopus embryo. Proc Natl Acad Sci U S A 1998; 95:9337-42. [PMID: 9689081 PMCID: PMC21339 DOI: 10.1073/pnas.95.16.9337] [Citation(s) in RCA: 344] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In early development of Xenopus laevis, it is known that activities of polypeptide growth factors are negatively regulated by their binding proteins. In this study, follistatin, originally known as an activin-binding protein, was shown to inhibit all aspects of bone morphogenetic protein (BMP) activity in early Xenopus embryos. Furthermore, using a surface plasmon resonance biosensor, we demonstrated that follistatin can directly interact with multiple BMPs at significantly high affinities. Interestingly, follistatin was found to be noncompetitive with the BMP receptor for ligand binding and to form a trimeric complex with BMP and its receptor. The results suggest that follistatin acts as an organizer factor in early amphibian embryogenesis by inhibiting BMP activities by a different mechanism from that used by chordin and noggin.
Collapse
Affiliation(s)
- S Iemura
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585 Japan
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Abstract
Neural differentiation of the ectoderm is inhibited by bone morphogenetic protein 4 (BMP-4) in amphibia as well as mammalia. This inhibition is released by neural inducing factor(s), which are secreted from the dorsal mesoderm. Masked neuralizing factor(s) are already present in the ectoderm before induction. In homogenates from Xenopus oocytes and embryos neural inducing factors were found in the supernatant (centrifuged at 105000 g), in small vesicles and a ribonucleoprotein fraction. A neuralizing factor, which is a protein of small size, has been partially purified from Xenopus gastrulae. Genes that are expressed in the dorsal mesoderm and involved in the de novo synthesis of neuralizing factor(s) have been cloned. The differentiation of cells with a neuronal fate starts in the neural plate immediately after neural induction. Genes homologous to the Notch and Delta genes of lateral inhibition in insects are involved in this process.
Collapse
Affiliation(s)
- H Tiedemann
- Institut für Molekularbiologie und Biochemie der Freien Universität Berlin, Germany
| | | | | | | | | |
Collapse
|
241
|
Mead PE, Kelley CM, Hahn PS, Piedad O, Zon LI. SCL specifies hematopoietic mesoderm in Xenopus embryos. Development 1998; 125:2611-20. [PMID: 9636076 DOI: 10.1242/dev.125.14.2611] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Targeted gene disruption experiments in the mouse have demonstrated an absolute requirement for several transcription factors for the development of hematopoietic progenitors during embryogenesis. Disruption of the basic helix-loop-helix gene SCL (stem cell leukemia) causes a block early in the hematopoietic program with defects in all hematopoietic lineages. To understand how SCL participates in the organogenesis of blood, we have isolated cDNAs encoding Xenopus SCL and characterized the function of SCL during embryogenesis. We demonstrate that SCL is expressed in ventral mesoderm early in embryogenesis. SCL expression is induced by BMP-4, and a dominant negative BMP-4 receptor inhibits SCL expression in the ventral region of the embryo. Expression of SCL in either bFGF-treated animal pole explants or dorsal marginal zone explants leads to the expression of globin protein. Furthermore, over-expression of SCL does not alter normal dorsal-ventral patterning in the embryo, indicating that SCL acts to specify mesoderm to a hematopoietic fate after inductive and patterning events have occurred. We propose that SCL is both necessary and sufficient to specify hematopoietic mesoderm, and that it has a similar role in specifying hematopoietic cell fate as MyoD has in specifying muscle cell fate.
Collapse
Affiliation(s)
- P E Mead
- Division of Hematology/Oncology, Howard Hughes Medical Institute, Children's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | | |
Collapse
|
242
|
Chen D, Ji X, Harris MA, Feng JQ, Karsenty G, Celeste AJ, Rosen V, Mundy GR, Harris SE. Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J Cell Biol 1998; 142:295-305. [PMID: 9660882 PMCID: PMC2133031 DOI: 10.1083/jcb.142.1.295] [Citation(s) in RCA: 301] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cumulative evidence indicates that osteoblasts and adipocytes share a common mesenchymal precursor and that bone morphogenetic proteins (BMPs) can induce both osteoblast and adipocyte differentiation of this precursor. In the present study, we investigated the roles of BMP receptors in differentiation along these separate lineages using a well-characterized clonal cell line, 2T3, derived from the mouse calvariae. BMP-2 induced 2T3 cells to differentiate into mature osteoblasts or adipocytes depending upon culture conditions. To test the specific roles of the type IA and IB BMP receptor components, truncated and constitutively active type IA and IB BMP receptor cDNAs were stably expressed in these cells. Overexpression of truncated type IB BMP receptor (trBMPR-IB) in 2T3 cells completely blocked BMP-2-induced osteoblast differentiation and mineralized bone matrix formation. Expression of trBMPR-IB also blocked mRNA expression of the osteoblast specific transcription factor, Osf2/ Cbfa1, and the osteoblast differentiation-related genes, alkaline phosphatase (ALP) and osteocalcin (OC). BMP-2-induced ALP activity could be rescued by transfection of wild-type (wt) BMPR-IB into 2T3 clones containing trBMPR-IB. Expression of a constitutively active BMPR-IB (caBMPR-IB) induced formation of mineralized bone matrix by 2T3 cells without addition of BMP-2. In contrast, overexpression of trBMPR-IA blocked adipocyte differentiation and expression of caBMPR-IA induced adipocyte formation in 2T3 cells. Expression of the adipocyte differentiation-related genes, adipsin and PPARgamma, correlated with the distinct phenotypic changes found after overexpression of the appropriate mutant receptors. These results demonstrate that type IB and IA BMP receptors transmit different signals to bone-derived mesenchymal progenitors and play critical roles in both the specification and differentiation of osteoblasts and adipocytes.
Collapse
Affiliation(s)
- D Chen
- Department of Medicine, Division of Endocrinology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78284, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Mizuseki K, Kishi M, Shiota K, Nakanishi S, Sasai Y. SoxD: an essential mediator of induction of anterior neural tissues in Xenopus embryos. Neuron 1998; 21:77-85. [PMID: 9697853 DOI: 10.1016/s0896-6273(00)80516-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vertebrate neurogenesis is initiated by the organizer factors that inhibit antineuralizing activities of bone morphogenetic proteins (BMPs) in the ectoderm. Here, we report a candidate mediator of neuralization, SoxD. Expression of SoxD starts at late blastula stages widely in the prospective ectoderm and becomes restricted to the dorsal ectoderm by mid-gastrula stages. SoxD expression is enhanced by the neural inducer Chordin and is suppressed by BMP4 and its downstream genes. Microinjection of SoxD mRNA causes ectopic formation of neural tissues in vivo and induces neural and neuronal markers in the isolated animal cap. Injection of a dominant-negative form of SoxD mRNA can block neuralization of ectoderm caused by attenuation of BMP signals and can strongly suppress formation of anterior neural tissues in vivo. These data show that SoxD functions as an essential mediator of downstream signaling of neural induction.
Collapse
Affiliation(s)
- K Mizuseki
- Department of Biological Sciences, Kyoto University Faculty of Medicine, Sakyo, Japan
| | | | | | | | | |
Collapse
|
244
|
Nishimatsu S, Thomsen GH. Ventral mesoderm induction and patterning by bone morphogenetic protein heterodimers in Xenopus embryos. Mech Dev 1998; 74:75-88. [PMID: 9651485 DOI: 10.1016/s0925-4773(98)00070-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bone morphogenetic proteins (BMPs) perform diverse functions in vertebrate development. Here we demonstrate that the heterodimeric BMP-4/7 protein directly induces ventral mesoderm and blood in Xenopus animal caps, and BMP-2/7 heterodimers may function similarly. We also provide indirect evidence that BMP heterodimers function in embryos, using assays with dominant-negative BMP ligands. Homodimeric BMP-2 and BMP-4 proteins do not induce mesoderm, but they ventralize mesoderm induction by activin. In contrast, BMP-7 protein interferes with mesoderm induction by activin, but BMP-7 stimulates ventral mesoderm induction by the heterodimer, BMP-4/7. This novel property of BMP-7 distinguishes it from other BMPs. BMP-7 may therefore function in early embryogenesis to antagonize activin signals and potentiate BMP signals. We propose that BMP heterodimers convey signals for ventral mesoderm induction and patterning in Xenopus development.
Collapse
Affiliation(s)
- S Nishimatsu
- Department of Biochemistry and Cell Biology, Institute of Cell and Developmental Biology, State University of New York, Stony Brook 11794-5215, USA
| | | |
Collapse
|
245
|
Pillemer G, Yelin R, Epstein M, Gont L, Frumkin Y, Yisraeli JK, Steinbeisser H, Fainsod A. The Xcad-2 gene can provide a ventral signal independent of BMP-4. Mech Dev 1998; 74:133-43. [PMID: 9651504 DOI: 10.1016/s0925-4773(98)00075-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Patterning of the marginal zone in the Xenopus embryo has been attributed to interactions between dorsal genes expressed in the organizer and ventral-specific genes. In this antagonistic interplay of activities, BMP-4, a gene that is not expressed in the organizer, provides a strong ventralizing signal. The Xenopus caudal type homeobox gene, Xcad-2, which is expressed around the blastopore with a gap over the dorsal lip, was analyzed as part of the ventral signal. Xcad-2 was shown to efficiently repress during early gastrula stages the dorsal genes gsc, Xnot-2, Otx-2, XFKH1 and Xlim-1, while it positively regulates the ventral genes, Xvent-1 and Xvent-2, with Xpo exhibiting a strong positive response to Xcad-2 overexpression. Xcad-2 was also capable of inducing BMP-4 expression in the organizer region. Support for a ventralizing role for Xcad-2 was obtained from co-injection experiments with the dominant negative BMP receptor which was used to block BMP-4 signaling. Under lack-of-BMP-signaling conditions Xcad-2 could still regulate dorsal and ventral gene expression and restore normal development, suggesting that it can act downstream of BMP-4 signaling or independently of it. Xcad-2 could also inhibit secondary axis formation and dorsalization induced by the dominant negative BMP receptor. Xcad-2 was also shown to efficiently reverse the dorsalizing effects of LiCl. These results place Xcad-2 as part of the ventralizing gene program which acts during early gastrula stages and can execute its ventralizing function in the absence of BMP signaling.
Collapse
Affiliation(s)
- G Pillemer
- Department of Cellular Biochemistry, Hebrew University Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Metz A, Knöchel S, Büchler P, Köster M, Knöchel W. Structural and functional analysis of the BMP-4 promoter in early embryos of Xenopus laevis. Mech Dev 1998; 74:29-39. [PMID: 9651472 DOI: 10.1016/s0925-4773(98)00059-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Xenopus laevis BMP-4 gene shows an evolutionary conserved structure containing two coding exons and a leader exon. The transcripts which are detected after zygotic activation of the gene in ventral mesoderm of late blastula stage embryos do either contain the leader exon or begin within the first intron. Luciferase reporter/promoter studies revealed multiple elements being required for the activation and for the spatial control of transcription. These elements are located within the upstream region and within the second intron and they interact with a most proximal located basal promoter being indispensable for transcriptional activation. The auto-activatory capacity of BMP-4 is mediated by several enhancer elements being responsive not only to BMP-4 but also to BMP-2 signaling. BMP-2 might thus function as a natural activator of the BMP-4 gene in the early embryo. Since reporter activity obtained with distinct BMP-2/4 responsive promoter deletion mutants is simultaneously inhibited by the dominant negative BMP receptor as well as by chordin, we suggest that down-regulation of the BMP-4 gene by chordin results from an interference with the auto-regulatory loop at the level of protein-protein interactions.
Collapse
Affiliation(s)
- A Metz
- Abteilung Biochemie, Universität Ulm, Albert-Einstein-Allee 11, Germany
| | | | | | | | | |
Collapse
|
247
|
Treier M, Gleiberman AS, O'Connell SM, Szeto DP, McMahon JA, McMahon AP, Rosenfeld MG. Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev 1998; 12:1691-704. [PMID: 9620855 PMCID: PMC316866 DOI: 10.1101/gad.12.11.1691] [Citation(s) in RCA: 326] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During development of the mammalian pituitary gland specific hormone-producing cell types, critical in maintaining homeostasis, emerge in a spatially and temporally specific fashion from an ectodermal primordium. We have investigated the molecular basis of generating diverse pituitary cell phenotypes from a common precursor, providing in vivo and in vitro evidence that their development involves three sequential phases of signaling events and the action of a gradient at an ectodermal boundary. In the first phase, the BMP4 signal from the ventral diencephalon, expressing BMP4, Wnt5a, and FGF8, represents a critical dorsal neuroepithelial signal for pituitary organ commitment in vivo. Subsequently, a BMP2 signal emanates from a ventral pituitary organizing center that forms at the boundary of a region of oral ectoderm in which Shh expression is selectively excluded. This BMP2 signal together with a dorsal FGF8 signal, appears to create opposing activity gradients that are suggested to generate overlapping patterns of specific transcription factors underlying cell lineage specification events, whereas Wnt4 is needed for the expansion of ventral pituitary cell phenotypes. In the third phase, temporally specific loss of the BMP2 signal is required to allow terminal differentiation. The consequence of these sequential organ and cellular determination events is that each of the hormone-producing pituitary cell types-gonadotropes, thyrotropes, somatotropes, lactotropes, corticotropes, and melanotropes-appear to be determined, in a ventral-to-dorsal gradient, respectively.
Collapse
Affiliation(s)
- M Treier
- Howard Hughes Medical Institute, University of California, San Diego, School and Department of Medicine, La Jolla, California 92093-0648 USA
| | | | | | | | | | | | | |
Collapse
|
248
|
Sheets MD, Amersdorfer P, Finnern R, Sargent P, Lindquist E, Schier R, Hemingsen G, Wong C, Gerhart JC, Marks JD, Lindqvist E. Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc Natl Acad Sci U S A 1998; 95:6157-62. [PMID: 9600934 PMCID: PMC27609 DOI: 10.1073/pnas.95.11.6157] [Citation(s) in RCA: 324] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/1998] [Indexed: 02/07/2023] Open
Abstract
A large library of phage-displayed human single-chain Fv antibodies (scFv), containing 6.7 x 10(9) members, was generated by improving the steps of library construction. Fourteen different protein antigens were used to affinity select antibodies from this library. A panel of specific antibodies was isolated with each antigen, and each panel contained an average of 8.7 different scFv. Measurements of antibody-antigen interactions revealed several affinities below 1 nM, comparable to affinities observed during the secondary murine immune response. In particular, four different scFv recognizing the ErbB2 protein had affinities ranging from 220 pM to 4 nM. Antibodies derived from the library proved to be useful reagents for immunoassays. For example, antibodies generated to the Chlamydia trachomatis elementary bodies stained Chlamydia-infected cells, but not uninfected cells. These results demonstrate that phage antibody libraries are ideally suited for the rapid production of panels of high-affinity mAbs to a wide variety of protein antigens. Such libraries should prove especially useful for generating reagents to study the function of gene products identified by genome projects.
Collapse
Affiliation(s)
- M D Sheets
- Department of Molecular Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Wada Y, Kataoka H, Yokose S, Ishizuya T, Miyazono K, Gao YH, Shibasaki Y, Yamaguchi A. Changes in osteoblast phenotype during differentiation of enzymatically isolated rat calvaria cells. Bone 1998; 22:479-85. [PMID: 9600781 DOI: 10.1016/s8756-3282(98)00039-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteoblasts enzymatically isolated from newborn rat calvariae show various phenotypes including formation of mineralized bone nodules in culture. We investigated the temporal changes in osteoblast phenotype in these cells up to day 20 in culture. These cells formed unmineralized nodules by day 5. Mineralization was observed at the center of nodules by day 10, and nodules became larger on day 15. The nodules were surrounded by numerous alkaline phosphatase (ALP)-positive cells. ALP activity gradually increased by day 20. Parathyroid hormone (PTH) responsiveness increased with time in culture. Osteoblasts produced no osteocalcin by day 10, but its synthesis was detected from day 15. These cells expressed substantial levels of ALP and PTH/PTHrP receptor mRNAs as early as day 5 in culture, but very weak expression of osteocalcin mRNA on day 5. The levels of expression of these transcripts increased with time in culture. In situ hybridization demonstrated that PTH/PTHrP receptor and osteocalcin mRNAs were strongly expressed in nodules, but the former appeared much earlier than the latter. BMP-2 and BMP-4 mRNAs also appeared in the cells forming nodules. Immunohistochemical analysis demonstrated that cells expressing either BMP-2/4 or their receptors (BMPR-IA, BMPR-IB, and BMPR-II) preferentially appeared in nodules. These observations suggested that BMPs play an important role in the formation of mineralized bone nodules in an autocrine and/or paracrine fashion in these cells. The present study confirmed that osteoblasts enzymatically isolated from newborn rat calvariae are a useful tool for studying the differentiation process of osteoblasts.
Collapse
Affiliation(s)
- Y Wada
- Department of Orthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Friedle H, Rastegar S, Paul H, Kaufmann E, Knöchel W. Xvent-1 mediates BMP-4-induced suppression of the dorsal-lip-specific early response gene XFD-1' in Xenopus embryos. EMBO J 1998; 17:2298-307. [PMID: 9545242 PMCID: PMC1170573 DOI: 10.1093/emboj/17.8.2298] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ectopic expression of the ventralizing morphogen BMP-4 (bone morphogenetic protein-4) in the dorsal lip (Spemann organizer) of Xenopus embryos blocks transcription of dorsal-lip-specific early response genes. We investigated the molecular mechanism underlying the BMP-4-induced inhibition of the fork head gene XFD-1'. The promoter of this gene contains a BMP-triggered inhibitory element (BIE) which prevents activation of this gene at the ventral/vegetal side of the embryo in vivo. In the present study, we show that BMP-4-induced inhibition is not direct but indirect, and is mediated by Xvent homeobox proteins. Micro-injections of Xvent-1 RNA and XFD-1' promoter deletion mutants demonstrate that Xvent-1 mimics the effect of BMP-4 signalling not only by suppression of the XFD-1' gene, but also by utilizing the BIE. Suppression could be reverted using a dominant-negative Xvent-1 mutant. The repressor domain was localized to the N-terminal region of the protein. Gel-shift and footprint analyses prove that Xvent-1 binds to the BIE. Moreover, PCR-based target-site selection for the Xvent-1 homeodomain confirms distinct motifs within the BIE as preferential binding sites. Thus, biological and molecular data suggest that Xvent-1 acts as direct repressor for XFD-1' transcription and mediates BMP-4-induced inhibition.
Collapse
Affiliation(s)
- H Friedle
- Abteilung Biochemie, Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | | | | | | |
Collapse
|