201
|
Padda R, Wamsley-Davis A, Gustin MC, Ross R, Yu C, Sheikh-Hamad D. MEKK3-mediated signaling to p38 kinase and TonE in hypertonically stressed kidney cells. Am J Physiol Renal Physiol 2006; 291:F874-81. [PMID: 16684924 DOI: 10.1152/ajprenal.00377.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades contain a trio of kinases, MAPK kinase kinase (MKKK) --> MAPK kinase (MKK) --> MAPK, that mediate a variety of cellular responses to different signals including hypertonicity. The signaling response to hypertonicity is conserved across evolution from yeast to mammals in that it involves activation of p38/SAPK. However, very little is known about which upstream protein kinases mediate activation of p38 by hypertonicity in mammals. The MKKKs, MEKK3 and MEKK4, are upstream regulators of p38 in many cells. To investigate these signaling proteins as potential activators of p38 in the hypertonicity response, we generated stably transfected MDCK cells that express activated versions of MEKK3 or MEKK4, utilized RNA interference to deplete MEKK3, and employed pharmacological inhibition of p38 kinase. MEKK3-transfected cells demonstrated increased betaine transporter (BGT1) mRNA levels and upregulated tonicity enhancer (TonE)-driven luciferase activity under isotonic (basal) and hypertonic conditions compared with empty vector-transfected controls; small-interference RNA-mediated depletion of MEKK3 downregulated the activity of p38 kinase and decreased the expression of BGT1 mRNA. p38 Kinase inhibition abolished the effects of MEKK3 activation on BGT1 induction. In contrast, the response to hypertonicity in MEKK4-kA-transfected cells was similar to that observed in empty vector-transfected controls. Our data are consistent with the existence of an input from MEKK3 -->--> p38 kinase -->--> TonE.
Collapse
Affiliation(s)
- Ranjit Padda
- Renal Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
202
|
Jeon US, Kim JA, Sheen MR, Kwon HM. How tonicity regulates genes: story of TonEBP transcriptional activator. Acta Physiol (Oxf) 2006; 187:241-7. [PMID: 16734761 DOI: 10.1111/j.1748-1716.2006.01551.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
TonEBP stimulates genes whose products drive cellular accumulation of organic osmolytes and HSP70, which protect cells from the deleterious effects of hypertonicity and urea, respectively. Mice deficient in the TonEBP gene display severe atrophy of the renal medulla because cells failed to adapt to the hyperosmolality. Emerging data suggest that TonEBP plays a key role in the urinary concentrating mechanism by stimulating the UT-A urea transporters and possibly AQP2 water channel. Thus, TonEBP is an essential regulator in the urinary concentrating mechanism. Studies on structural basis of TonEBP function have revealed the structure of the DNA binding domain, and defined the transactivation domains. Molecular mechanisms underlying the nucleocytoplasmic trafficking, transactivation, and phosphorylation in response to changes in tonicity need to be understood in molecular detail. Such knowledge is needed for the identification of the sensor that detects changes in ambient tonicity and signals to TonEBP.
Collapse
Affiliation(s)
- U S Jeon
- Department of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
203
|
Yang B, Hodgkinson AD, Oates PJ, Kwon HM, Millward BA, Demaine AG. Elevated activity of transcription factor nuclear factor of activated T-cells 5 (NFAT5) and diabetic nephropathy. Diabetes 2006; 55:1450-5. [PMID: 16644704 DOI: 10.2337/db05-1260] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The expression of aldose reductase is tightly regulated by the transcription factor tonicity response element binding protein (TonEBP/NFAT5) binding to three osmotic response elements (OREs; OREA, OREB, and OREC) in the gene. The aim was to investigate the contribution of NFAT5 to the pathogenesis of diabetic nephropathy. Peripheral blood mononuclear cells (PBMCs) were isolated from the following subjects: 44 Caucasoid patients with type 1 diabetes, of whom 26 had nephropathy and 18 had no nephropathy after a diabetes duration of 20 years, and 13 normal healthy control subjects. In addition, human mesangial cells (HMCs) were isolated from the normal lobe of 10 kidneys following radical nephrectomy for renal cell carcinoma. Nuclear and cytoplasmic proteins were extracted from PBMCs and HMCs and cultured in either normal or high-glucose (31 mmol/l D-glucose) conditions for 5 days. NFAT5 binding activity was quantitated using electrophoretic mobility shift assays for each of the OREs. Western blotting was used to measure aldose reductase and sorbitol dehydrogenase protein levels. There were significant fold increases in DNA binding activities of NFAT5 to OREB (2.06 +/- 0.03 vs. 1.33 +/- 0.18, P = 0.033) and OREC (1.94 +/- 0.21 vs. 1.39 +/- 0.11, P = 0.024) in PBMCs from patients with diabetic nephropathy compared with diabetic control subjects cultured under high glucose. Aldose reductase and sorbitol dehydrogenase protein levels in the patients with diabetic nephropathy were significantly increased in PBMCs cultured in high-glucose conditions. In HMCs cultured under high glucose, there were significant increases in NFAT5 binding activities to OREA, OREB, and OREC by 1.38 +/- 0.22-, 1.84 +/- 0.44-, and 2.38 +/- 1.15-fold, respectively. Similar results were found in HMCs exposed to high glucose (aldose reductase 1.30 +/- 0.06-fold and sorbitol dehydrogenease 1.54 +/- 0.24-fold increases). Finally, the silencing of the NFAT5 gene in vitro reduced the expression of the aldose reductase gene. In conclusion, these results show that aldose reductase is upregulated by the transcriptional factor NFAT5 under high-glucose conditions in both PBMCs and HMCs.
Collapse
Affiliation(s)
- Bingmei Yang
- Molecular Medicine Research Group, The John Bull Building, Research Way, Peninsula Medical School, Universities of Exeter and Plymouth, Plymouth PL6 8BU, U.K
| | | | | | | | | | | |
Collapse
|
204
|
Colla E, Lee S, Sheen M, Woo S, Kwon H. TonEBP is inhibited by RNA helicase A via interaction involving the E'F loop. Biochem J 2006; 393:411-9. [PMID: 16173919 PMCID: PMC1383700 DOI: 10.1042/bj20051082] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
TonEBP [TonE (tonicity-responsive enhancer)-binding protein] is a transcriptional activator of the Rel family like NF-kappaB (nuclear factor kappaB) and NFAT (nuclear factor of activated T-cells). TonEBP plays a key role in the protection of cells in the kidney medulla from the deleterious effects of hyperosmolality. This is achieved by enhancing expression of HSP70 (heat-shock protein 70) and other genes whose products drive cellular accumulation of organic osmolytes. TonEBP is stimulated by ambient hypertonicity via multiple pathways that regulate nuclear translocation and transactivation. In the present paper, we report that TonEBP is associated in vivo with RHA (RNA helicase A). The N- and C-termini of RHA bound the E'F loop of the DNA-binding domain of TonEBP. The interaction was not affected by DNA binding or dimerization of TonEBP. Overexpression of RHA inhibited the activity of TonEBP; however, catalytic activity of RHA was dispensable for the inhibition. When the ambient tonicity was raised, the TonEBP-RHA interaction decreased, suggesting that dissociation of RHA is a pathway to stimulate TonEBP. We conclude that the E'F loop of TonEBP interacts with RHA like NFAT and NF-kappaB interact with AP1 (activator protein 1) and the high-mobility group protein HMG-I(Y) respectively. While RHA interacts with and stimulates other transcription factors such as CREB (cAMP-response-element-binding protein), NF-kappaB and mineralocorticoid receptor, it inhibits TonEBP.
Collapse
Affiliation(s)
- Emanuela Colla
- Department of Medicine, University of Maryland, 22 South Greene Street, Suite N3W143, Baltimore, MD 21201, U.S.A
| | - Sang D. Lee
- Department of Medicine, University of Maryland, 22 South Greene Street, Suite N3W143, Baltimore, MD 21201, U.S.A
| | - Mee R. Sheen
- Department of Medicine, University of Maryland, 22 South Greene Street, Suite N3W143, Baltimore, MD 21201, U.S.A
| | - Seung K. Woo
- Department of Medicine, University of Maryland, 22 South Greene Street, Suite N3W143, Baltimore, MD 21201, U.S.A
| | - H. Moo Kwon
- Department of Medicine, University of Maryland, 22 South Greene Street, Suite N3W143, Baltimore, MD 21201, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
205
|
Maallem S, Mutin M, Kwon HM, Tappaz ML. Differential cellular distribution of tonicity-induced expression of transcription factor TonEBP in the rat brain following prolonged systemic hypertonicity. Neuroscience 2006; 137:51-71. [PMID: 16352399 DOI: 10.1016/j.neuroscience.2005.07.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 06/27/2005] [Accepted: 07/01/2005] [Indexed: 12/11/2022]
Abstract
In a previous work performed on cerebral cortex and hippocampus we reported that tonicity-responsive enhancer binding protein (TonEBP), originally identified as a transactivator of osmoprotective genes involved in osmoadaptation of renal cells, was induced in neurons only, but to varying levels, following acute systemic hypertonicity. Whether or not this cellular specificity reflected a unique ability of neurons or a differential time course among brain cells for tonicity-induction of TonEBP was investigated throughout the brain in this study by subjecting the animals to prolonged systemic hypertonicity. In normal rats, TonEBP immunolabeling and TonEBP-mRNA in situ hybridization labeling showed a widespread, uneven and parallel distribution. TonEBP was expressed primarily in the cell nuclei of neurons, where it was heterogeneously distributed in a nucleoplasmic and a granular pool. In rats subjected to prolonged systemic hypertonicity, TonEBP labeling increased in the cell nuclei of neurons only. The tonicity-induced expression of TonEBP for a given cell group of neurons was rather uniform but varied greatly among neuronal cell groups and was positively correlated with the average size of the cell nuclei, as determined by quantitative analysis of digitized images. The detailed distribution of tonicity-induced expression of TonEBP is reported throughout the brain. In normal rats, a very minor proportion of non-neuronal cells, identified as a subset of astrocytes and possibly oligodendrocytes, showed faint nuclear immunolabeling, which however did not increase in hypertonic animals. Ependymocytes, capillary endothelial cells, and microglial cells showed no TonEBP labeling, even in hypertonic animals. Altogether our data indicate that neurons, albeit possibly to a varying extent, are the only brain cells able to use TonEBP-mediated processes for adaptation to a systemic hyperosmotic unbalance.
Collapse
Affiliation(s)
- S Maallem
- Unité INSERM 433, Neurobiologie Experimentale et Physiopathologie, Faculté de Médecine RTH Laennec, Rue Guillaume Paradin, F 69372, Lyon, Cedex 08, France
| | | | | | | |
Collapse
|
206
|
Abdullah HI, Pedraza PL, Hao S, Rodland KD, McGiff JC, Ferreri NR. NFAT regulates calcium-sensing receptor-mediated TNF production. Am J Physiol Renal Physiol 2005; 290:F1110-7. [PMID: 16380462 DOI: 10.1152/ajprenal.00223.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Because nuclear factor of activated T cells (NFAT) has been implicated in TNF production as well as osmoregulation and salt and water homeostasis, we addressed whether calcium-sensing receptor (CaR)-mediated TNF production in medullary thick ascending limb (mTAL) cells was NFAT dependent. TNF production in response to addition of extracellular Ca(2+) (1.2 mM) was abolished in mTAL cells transiently transfected with a dominant-negative CaR construct (R796W) or pretreated with the phosphatidylinositol phospholipase C (PI-PLC) inhibitor U-73122. Cyclosporine A (CsA), an inhibitor of the serine/threonine phosphatase calcineurin, and a peptide ligand, VIVIT, that selectively inhibits calcineurin-NFAT signaling, also prevented CaR-mediated TNF production. Increases in calcineurin activity in cells challenged with Ca(2+) were inhibited after pretreatment with U-73122 and CsA, suggesting that CaR activation increases calcineurin activity in a PI-PLC-dependent manner. Moreover, U-73122, CsA, and VIVIT inhibited CaR-dependent activity of an NFAT construct that drives expression of firefly luciferase in transiently transfected mTAL cells. Collectively, these data verify the role of calcineurin and NFAT in CaR-mediated TNF production by mTAL cells. Activation of the CaR also increased the binding of NFAT to a consensus oligonucleotide, an effect that was blocked by U-73122 and CsA, suggesting that a calcineurin- and NFAT-dependent pathway increases TNF production in mTAL cells. This mechanism likely regulates TNF gene transcription as U-73122, CsA, and VIVIT blocked CaR-dependent activity of a TNF promoter construct. Elucidating CaR-mediated signaling pathways that regulate TNF production in the mTAL will be crucial to understanding mechanisms that regulate extracellular fluid volume and salt balance.
Collapse
|
207
|
Lee H, Chouinard L, Bonin M, Michel RN. NFATc3 deficiency may contribute to the development of mammary gland adenocarcinoma in aging female mice. Mol Carcinog 2005; 44:219-22. [PMID: 16167349 DOI: 10.1002/mc.20136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The nuclear transcription factor of activated T cells (NFAT) suggested to be a tumor suppressor. Here we report that two out of three NFATc3-/- and two in four NFATc3 +/- female mice developed aggressive mammary adenocarcinoma by 12.5 and 16 mo of age, respectively, with no occurrences in age-matched wild-type littermates (N-14). Thus, our data suggest that NFATc3 can suppress the development of mammary gland tumors in female mice.
Collapse
Affiliation(s)
- Hoyun Lee
- Northeastern Ontario Regional Cancer Centre, Sudbury, Ontario, Canada
| | | | | | | |
Collapse
|
208
|
Zhang H, Xie X, Zhu X, Zhu J, Hao C, Lu Q, Ding L, Liu Y, Zhou L, Liu Y, Huang C, Wen C, Ye Q. Stimulatory Cross-talk between NFAT3 and Estrogen Receptor in Breast Cancer Cells. J Biol Chem 2005; 280:43188-97. [PMID: 16219765 DOI: 10.1074/jbc.m506598200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Estrogen receptors (ERalpha and ERbeta) are ligand-regulated transcription factors that play critical roles in the development and progression of breast cancer by regulating target genes involved in cellular proliferation. The transcriptional activity of ERalpha and ERbeta is known to be modulated by cofactor proteins. We used a yeast two-hybrid system and identified NFAT3 as a novel ERbeta-binding protein. NFAT3 interacted with ERalpha and ERbeta both in vitro and in mammalian cells in a ligand-independent fashion. NFAT3 bound specifically to the ERbeta region containing the activation function-1 domain, a ligand-independent transactivation domain. Overexpression of NFAT3 enhanced both ERalpha and ERbeta transcriptional activities in a ligand-independent manner and up-regulated downstream estrogen-responsive genes including pS2 and cathepsin D. Reduction of endogenous NFAT3 with NFAT3 small interfering RNA or overexpression of NFAT3 deletion mutants that lack the ER-binding sites reduced the NFAT3 coactivation of ERalpha and ERbeta. NFAT3 increased binding of ERalpha to the estrogen-responsive element and was recruited to endogenous estrogen-responsive promoters. NFAT3 was expressed differentially in many breast cancer cell lines and overexpressed in a subset of breast cancer patients. Knockdown of endogenous NFAT3 reduced the growth of human breast cancer ZR75-1 cells in a ligand-independent manner. Taken together, these results suggest that NFAT3 may play important roles in ER signaling and represent a novel target for breast cancer therapy.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Molecular Oncology, Beijing Institute of Biotechnology, Beijing 100850, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Nakashima E, Pop-Busui R, Towns R, Thomas TP, Hosaka Y, Nakamura J, Greene DA, Killen PD, Schroeder J, Larkin DD, Ho YL, Stevens MJ. Regulation of the human taurine transporter by oxidative stress in retinal pigment epithelial cells stably transformed to overexpress aldose reductase. Antioxid Redox Signal 2005; 7:1530-42. [PMID: 16356117 DOI: 10.1089/ars.2005.7.1530] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In diabetes, overexpression of aldose reductase (AR) and consequent glucose-induced impairment of antioxidant defense systems may predispose to oxidative stress and the development of diabetic complications, but the mechanisms are poorly understood. Taurine (2-aminoethanesulfonic acid) functions as an antioxidant, osmolyte, and calcium modulator such that its intracellular depletion could promote cytotoxicity in diabetes. The relationships of oxidative stress and basal AR gene expression to Na+-taurine cotransporter (TT) gene expression, protein abundance, and TT activity were therefore explored in low AR-expressing human retinal pigment epithelial (RPE) 47 cells and RPE 47 cells stably transformed to overexpress AR (RPE 75). Changes in TT gene expression were determined using a 4.6-kb TT promoter-luciferase fusion gene. Compared with RPE 47 cells, in high AR-expressing RPE 75 cells, TT promoter activity was decreased by 46%, which was prevented by an AR inhibitor. TT promoter activity increased up to 900% by prooxidant exposure, which was associated with increased TT peptide abundance and taurine transport. However, induction of TT promoter activity by oxidative stress was attenuated in high AR-expressing cells and partially corrected by AR inhibitor. Finally, exposure of RPE 75 cells to high glucose increased oxidative stress, but down-regulated TT expression. These studies demonstrate for the first time that the TT is regulated by oxidative stress and that overexpression of AR and high glucose impair this response. Abnormal expression of AR may therefore impair antioxidant defense, which may determine tissue susceptibility to chronic diabetic complications.
Collapse
Affiliation(s)
- Eitaro Nakashima
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Esensten JH, Tsytsykova AV, Lopez-Rodriguez C, Ligeiro FA, Rao A, Goldfeld AE. NFAT5 binds to the TNF promoter distinctly from NFATp, c, 3 and 4, and activates TNF transcription during hypertonic stress alone. Nucleic Acids Res 2005; 33:3845-54. [PMID: 16027109 PMCID: PMC1175021 DOI: 10.1093/nar/gki701] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Tumor necrosis factor (TNF) is a pro-inflammatory cytokine that plays an important role in a variety of infectious and autoimmune disorders. Its transcription is regulated in a stimulus- and cell-type-specific manner via the recruitment of distinct DNA/activator complexes forming secondary structures or enhanceosomes. NFATp, a member of the nuclear factor of activated T cells (NFAT) family of transcription factors, plays a critical role in TNF gene regulation under a variety of conditions. In this study, we show that NFAT5, the most recently described NFAT family member, binds to the TNF promoter in a manner distinct from other NFAT proteins and is a key mediator in the activation of TNF gene transcription during hypertonic stress alone.
Collapse
Affiliation(s)
| | | | | | | | | | - Anne E. Goldfeld
- To whom correspondence should be addressed. Tel: +1 617 278 3351; Fax: +1 617 278 3454;
| |
Collapse
|
211
|
Ho SN. Intracellular water homeostasis and the mammalian cellular osmotic stress response. J Cell Physiol 2005; 206:9-15. [PMID: 15965902 DOI: 10.1002/jcp.20445] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The cellular response to osmotic stress ensures that the concentration of water inside the cell is maintained within a range that is compatible with biologic function. Single cell organisms are particularly dependent on mechanisms that permit adaptation to osmotic stress because each individual cell is directly exposed to the external environment. Mammals, however, limit osmotic stress by establishing an internal aqueous environment in which intravascular water and electrolytes are subject to sensitive and dynamic, organism-based homeostatic regulation. Recent studies of NFAT5/TonEBP, an essential mammalian osmoregulatory transcription factor, demonstrate the unexpected yet critical significance of cell-based osmotic regulation in vivo. These results highlight the fundamental importance of maintaining intracellular water homeostasis in the face of varying cellular metabolic activity and distinct tissue microenvironments.
Collapse
Affiliation(s)
- Steffan N Ho
- Department of Pathology, University of California-San Diego, La Jolla, California 92093-0644, USA.
| |
Collapse
|
212
|
Abstract
Since the discovery of the first nuclear factor of activated T cells (NFAT) protein more than a decade ago, the NFAT family of transcription factors has grown to include five members. It has also become clear that NFAT proteins have crucial roles in the development and function of the immune system. In T cells, NFAT proteins not only regulate activation but also are involved in the control of thymocyte development, T-cell differentiation and self-tolerance. The functional versatility of NFAT proteins can be explained by their complex mechanism of regulation and their ability to integrate calcium signalling with other signalling pathways. This Review focuses on the recent advances in our understanding of the regulation, mechanism of action and functions of NFAT proteins in T cells.
Collapse
Affiliation(s)
- Fernando Macian
- Albert Einstein College of Medicine, Department of Pathology, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
| |
Collapse
|
213
|
Liu Z, Zhang C, Dronadula N, Li Q, Rao GN. Blockade of Nuclear Factor of Activated T Cells Activation Signaling Suppresses Balloon Injury-induced Neointima Formation in a Rat Carotid Artery Model. J Biol Chem 2005; 280:14700-8. [PMID: 15681847 DOI: 10.1074/jbc.m500322200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously reported that nuclear factor of activated T cells (NFATs) play an important role in the regulation of vascular smooth muscle cell migration and proliferation by receptor tyrosine kinase and G protein-coupled receptor agonists, platelet-derived growth factor-BB and thrombin, respectively. To understand the role of NFATs in vascular disease, we have now studied the involvement of these transcription factors in neointima formation in a rat carotid artery balloon injury model. The levels of NFATc1 in injured right common carotid arteries were increased at 72 h, 1 week, and 2 weeks after balloon injury compared with its levels in uninjured left common carotid arteries. Intraperitoneal injection of cyclosporine A (CsA), a pharmacological inhibitor of the calcineurin-NFAT activation pathway, suppressed balloon injury-induced neointima formation by 40%. Similarly, adenoviral-mediated expression of GFPVIVIT, a competent peptide inhibitor of the calcineurin-NFAT activation pathway, in injured arteries also reduced neointima formation by about 40%. Furthermore, CsA and GFPVIVIT attenuated balloon injury-induced neointimal smooth muscle cell proliferation as determined by bromodeoxyuridine staining. Platelet-derived growth factor-BB induced the expression of COX-2 in cultured VSMC in a time- and NFAT-dependent manner. COX-2 expression was also increased in the right common carotid artery in a time-dependent manner after balloon injury as compared with its levels in uninjured left common carotid artery and both CsA and GFPVIVIT negated this response. Together these results for the first time demonstrate that NFATs play a critical role in neointima formation via induction of expression of COX-2.
Collapse
Affiliation(s)
- Zhimin Liu
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | |
Collapse
|
214
|
Kaplan BLF, Ouyang Y, Rockwell CE, Rao GK, Kaminski NE. 2-Arachidonoyl-glycerol suppresses interferon-γ production in phorbol ester/ionomycin-activated mouse splenocytes independent of CB1 or CB2. J Leukoc Biol 2005; 77:966-74. [PMID: 15774549 DOI: 10.1189/jlb.1104652] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
2-Arachidonoyl-glycerol (2-AG), an endogenous ligand for cannabinoid receptor types 1 and 2 (CB1 and CB2), has previously been demonstrated to modulate immune functions including suppression of interleukin-2 expression and nuclear factor of activated T cells (NFAT) activity. The objective of the present studies was to investigate the effect of 2-AG on interferon-gamma (IFN-gamma) expression and associated upstream signaling events. Pretreatment of splenocytes with 2-AG markedly suppressed phorbol 12-myristate 13-acetate plus calcium ionophore (PMA/Io)-induced IFN-gamma secretion. In addition, 2-AG suppressed IFN-gamma steady-state mRNA expression in a concentration-dependent manner. To unequivocally determine the putative involvement of CB1 and CB2, splenocytes derived from CB1(-/-)/CB2(-/-) knockout mice were used. No difference in the magnitude of IFN-gamma suppression by 2-AG in wild-type versus CB1/CB2 null mice was observed. Time-of-addition studies revealed that 2-AG treatment up to 12 h post-cellular activation resulted in suppression of IFN-gamma, which was consistent with a time course conducted with cyclosporin A, an inhibitor of NFAT activity. Coincidentally, 2-AG perturbed the nuclear translocation of NFAT protein and blocked thapsigargin-induced elevation in intracellular calcium, suggesting that altered calcium regulation might partly explain the suppression of NFAT nuclear translocation and subsequent IFN-gamma production. Indeed, Io partially attenuated the 2-AG-induced suppression of PMA/Io-stimulated IFN-gamma production. Taken together, these data demonstrate that 2-AG suppresses IFN-gamma expression in murine splenocytes in a CB receptor-independent manner and that the mechanism partially involves suppression of intracellular calcium signaling and perturbation of NFAT nuclear translocation.
Collapse
Affiliation(s)
- Barbara L F Kaplan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, 48824, USA.
| | | | | | | | | |
Collapse
|
215
|
Wang Y, Ko BCB, Yang JY, Lam TTL, Jiang Z, Zhang J, Chung SK, Chung SSM. Transgenic mice expressing dominant-negative osmotic-response element-binding protein (OREBP) in lens exhibit fiber cell elongation defect associated with increased DNA breaks. J Biol Chem 2005; 280:19986-91. [PMID: 15774462 DOI: 10.1074/jbc.m501689200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Osmotic-response element-binding protein (OREBP), also known as TonEBP or NFAT5, is thought to be responsible for the induction of osmolyte-accumulating genes when cells are under hypertonic stress. Recent studies suggest that OREBP also plays a role in water reabsorption in the kidney, T-cell proliferation, and embryonic development. We developed transgenic mice that express the dominant-negative OREBP (OREBPdn) specifically in the lens because our earlier studies showed that it is particularly sensitive to osmotic stress. The transgenic mice developed nuclear cataract soon after birth, suggesting defects in lens development. The developing transgenic lenses showed incomplete elongation of fiber cells and formation of vacuoles. This is accompanied by evidence of DNA strand breaks, activation of p53, and induction of checkpoint kinase, suggesting that the developing fiber cells lacking OREBP are in a similar physiological state as cells experiencing hypertonic stress. These results indicate that OREBP-mediated accumulation of osmolytes is essential during elongation of the lens fiber cells.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, The University of Hong Kong, China.
| | | | | | | | | | | | | | | |
Collapse
|
216
|
Duque J, Fresno M, Iñiguez MA. Expression and Function of the Nuclear Factor of Activated T Cells in Colon Carcinoma Cells. J Biol Chem 2005; 280:8686-93. [PMID: 15632146 DOI: 10.1074/jbc.m413076200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence shows a crucial role of the Ca2+/ calcineurin-mediated activation of the nuclear factor of activated T cells (NFAT) in the regulation of a variety of processes in nonimmune cells. Here we provide evidence that NFATc1 and NFATc2 are expressed in human colon carcinoma cell lines. These proteins are translocated from the cytoplasm to the nucleus upon treatment with a combination of phorbol 12-myristate 13-acetate plus the calcium ionophore A23187. Subsequent to translocation to the nucleus, NFATc1 and NFATc2 were able to bind to a NFAT response element in the DNA, regulating transcriptional activation of genes containing a NFAT-responsive element such as cyclooxygenase-2 (COX-2). COX-2 expression and prostaglandin E2 (PGE2) production were induced upon pharmacological stimuli leading to NFAT activation and blunted by inhibition of calcineurin phosphatase with cyclosporin A or tacrolimus (FK506). Expression of NFAT wild type protein or the active catalytic subunit of calcineurin transactivates COX-2 promoter activity, whereas a dominant negative mutant of NFAT inhibited COX-2 induction in colon carcinoma cell lines. Furthermore, mutation or deletion of NFAT binding sites in the human COX-2 promoter greatly diminished its induction by phorbol 12-myristate 13-acetate/calcium ionophore A23187. These findings demonstrate the presence and activation of NFAT in human colon carcinoma cells, with important implications in the regulation of genes involved in the transformed phenotype as COX-2.
Collapse
Affiliation(s)
- Javier Duque
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | |
Collapse
|
217
|
Nishinaka T, Yabe-Nishimura C. Transcription factor Nrf2 regulates promoter activity of mouse aldose reductase (AKR1B3) gene. J Pharmacol Sci 2005; 97:43-51. [PMID: 15655294 DOI: 10.1254/jphs.fp0040404] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Transcription factor Nrf2 regulates gene expression of drug metabolizing enzymes such as glutathione S-transferase via the antioxidant response element, ARE. Aldose reductase (AR), a member of the aldo-keto reductase (AKR) superfamily, metabolizes various endogenous and exogenous aldehydes. The AR gene 5'-flanking region contains a multiple stress response region (MSRR) composed of two putative AREs (ARE1 and ARE2), an AP1 site, and a tonicity response element (TonE). As this region is highly conserved among species, we examined the involvement of Nrf2 in transcriptional regulation of the AR gene. beta-Naphthoflavone, an Nrf2 activator, elevated the level of AR mRNA in HepG2 cells and increased the promoter activity of the mouse AR (AKR1B3) gene. The promoter activity of the AKR1B3 gene, containing MSRR, was also augmented by overexpression of Nrf2. Deletion and mutation analyses indicated that both ARE1 and the AP1 site were essential for the responsiveness to Nrf2, while ARE2 was nonfunctional. The presence of an ARE1 binding protein complex was revealed by electrophoretic mobility shift assay. These findings indicate that Nrf2 regulates the AKR1B3 promoter activity via ARE1 and the AP1 site.
Collapse
Affiliation(s)
- Toru Nishinaka
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | |
Collapse
|
218
|
Sheikh-Hamad D, Gustin MC. MAP kinases and the adaptive response to hypertonicity: functional preservation from yeast to mammals. Am J Physiol Renal Physiol 2004; 287:F1102-10. [PMID: 15522988 DOI: 10.1152/ajprenal.00225.2004] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The adaptation to hypertonicity in mammalian cells is driven by multiple signaling pathways that include p38 kinase, Fyn, the catalytic subunit of PKA, ATM, and JNK2. In addition to the well-characterized tonicity enhancer (TonE)-TonE binding protein interaction, other transcription factors (and their respective cis elements) can potentially respond to hypertonicity. This review summarizes the current knowledge about the signaling pathways that regulate the adaptive response to osmotic stress and discusses new insights from yeast that could be relevant to the osmostress response in mammals.
Collapse
Affiliation(s)
- David Sheikh-Hamad
- Renal Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
219
|
Lam AKM, Ko BCB, Tam S, Morris R, Yang JY, Chung SK, Chung SSM. Osmotic response element-binding protein (OREBP) is an essential regulator of the urine concentrating mechanism. J Biol Chem 2004; 279:48048-54. [PMID: 15347663 DOI: 10.1074/jbc.m407224200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
OREBP (osmotic response element-binding protein), also called TonEBP or NFAT5, is thought to induce the expression of genes that increase the accumulation of organic osmolytes to protect cells against a hypertonic environment. To investigate the consequences of lacking OREBP activity, transgenic (Tg) mice that overexpress OREBPdn (dominant negative form of OREBP) specifically in the epithelial cells of the renal collecting tubules were generated. These mice showed impairment in their urine concentrating mechanism, most likely due to reduced expression of the aquaporin AQP2 and the urea transporter UT-A1 and UT-A2 mRNAs. When deprived of water or after the administration of a vasopressin analogue, urine osmolality of the Tg mice was significantly increased but not to the same extent as that of the wild type mice. The expression of AQP2 and UT-A1, but not UT-A2 mRNAs, was increased to the same level as that of the wild type mice in the water deprivation state, indicating that the vasopressin regulatory mechanism was not affected by OREBPdn. These data indicate that in addition to vasopressin, OREBP is another essential regulator of the urine concentrating mechanism. Furthermore, the OREBPdn Tg mice developed progressive hydronephrosis soon after weaning, confirming the osmoprotective function of OREBP implicated by the in vitro experiments.
Collapse
Affiliation(s)
- Amy K M Lam
- Institute of Molecular Biology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | | | | | | | | | | |
Collapse
|
220
|
Puri S, Magenheimer BS, Maser RL, Ryan EM, Zien CA, Walker DD, Wallace DP, Hempson SJ, Calvet JP. Polycystin-1 activates the calcineurin/NFAT (nuclear factor of activated T-cells) signaling pathway. J Biol Chem 2004; 279:55455-64. [PMID: 15466861 DOI: 10.1074/jbc.m402905200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Regulation of intracellular Ca(2+) mobilization has been associated with the functions of polycystin-1 (PC1) and polycystin-2 (PC2), the protein products of the PKD1 and PKD2 genes. We have now demonstrated that PC1 can activate the calcineurin/NFAT (nuclear factor of activated T-cells) signaling pathway through Galpha(q) -mediated activation of phospholipase C (PLC). Transient transfection of HEK293T cells with an NFAT promoter-luciferase reporter demonstrated that membrane-targeted PC1 constructs containing the membrane proximal region of the C-terminal tail, which includes the heterotrimeric G protein binding and activation domain, can stimulate NFAT luciferase activity. Inhibition of glycogen synthase kinase-3beta by LiCl treatment further increased PC1-mediated NFAT activity. PC1-mediated activation of NFAT was completely inhibited by the calcineurin inhibitor, cyclosporin A. Cotransfection of a construct expressing the Galpha(q) subunit augmented PC1-mediated NFAT activity, whereas the inhibitors of PLC (U73122) and the inositol trisphosphate and ryanodine receptors (xestospongin and 2-aminophenylborate) and a nonspecific Ca(2+) channel blocker (gadolinium) diminished PC1-mediated NFAT activity. PC2 was not able to activate NFAT. An NFAT-green fluorescent protein nuclear localization assay demonstrated that PC1 constructs containing the C-tail only or the entire 11-transmembrane spanning region plus C-tail induced NFAT-green fluorescent protein nuclear translocation. NFAT expression was demonstrated in the M-1 mouse cortical collecting duct cell line and in embryonic and adult mouse kidneys by reverse transcriptase-PCR and immunolocalization. These data suggest a model in which PC1 signaling leads to a sustained elevation of intracellular Ca(2+) mediated by PC1 activation of Galpha(q) followed by PLC activation, release of Ca(2+) from intracellular stores, and activation of store-operated Ca(2+) entry, thus activating calcineurin and NFAT.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Blotting, Western
- Boronic Acids/pharmacology
- Calcineurin/metabolism
- Calcium/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channels
- Cell Line
- Cell Nucleus/metabolism
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Estrenes/pharmacology
- Gadolinium/pharmacology
- Genes, Reporter
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3 beta
- Green Fluorescent Proteins/metabolism
- Humans
- Immunohistochemistry
- Inositol 1,4,5-Trisphosphate Receptors
- Kidney/embryology
- Kidney/metabolism
- Lithium Chloride/pharmacology
- Luciferases/metabolism
- Macrocyclic Compounds
- Mice
- Mice, Inbred BALB C
- Microscopy, Confocal
- Microscopy, Fluorescence
- NFATC Transcription Factors
- Oxazoles/pharmacology
- Phosphorylation
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Proteins/physiology
- Pyrrolidinones/pharmacology
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Ryanodine Receptor Calcium Release Channel/metabolism
- Signal Transduction
- TRPP Cation Channels
- Time Factors
- Tissue Distribution
- Transfection
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Sanjeev Puri
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Dixon LK, Abrams CC, Bowick G, Goatley LC, Kay-Jackson PC, Chapman D, Liverani E, Nix R, Silk R, Zhang F. African swine fever virus proteins involved in evading host defence systems. Vet Immunol Immunopathol 2004; 100:117-34. [PMID: 15207450 DOI: 10.1016/j.vetimm.2004.04.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
African swine fever virus (ASFV) can cause an acutely fatal haemorrhagic fever in domestic pigs although in its natural hosts, warthogs, bushpigs and the soft tick vector, Ornithodoros moubata, ASFV causes inapparent persistent infections. The virus is a large, cytoplasmic, double-stranded DNA virus which has a tropism for macrophages. As it is the only member of the Asfarviridae family, ASFV encodes many novel genes not encoded by other virus families. The ability of the virus to persist in its natural hosts and in domestic pigs, which recover from infection with less virulent isolates, shows that the virus has effective mechanisms to evade host defence systems. This review focuses on recent progress made in understanding the function of ASFV-encoded proteins, which are involved in modulating the host response to infection. Growing evidence suggests that a major strategy used by the virus is to modulate signalling pathways in infected macrophages, thus interfering with the expression of a large number of immunomodulatory genes. One potent immunomodulatory protein, A238L, inhibits both activation of the host NFkappaB transcription factor and inhibits calcineurin phosphatase activity. Calcineurin-dependent pathways, including activation of the NFAT transcription factor, are therefore inhibited. Another ASFV-encoded protein, CD2v, resembles the host CD2 protein, which is expressed on T cells and NK cells. This virus protein causes the adsorption of red blood cells around virus-infected cells and extracellular virus particles. Expression of the CD2v protein aids virus dissemination in pigs and the protein also has a role in impairing bystander lymphocyte function. This may be mediated either by a direct interaction of CD2v extracellular domain with ligands on lymphocytes or by an indirect mechanism involving interaction of the CD2v cytoplasmic tail with host proteins involved in signalling or trafficking pathways. Two ASFV proteins, an IAP and a Bcl2 homologue, inhibit apoptosis in infected cells and thus facilitate production of progeny virions. The prediction is that half to two-thirds of the approximately 150 genes encoded by ASFV are not essential for replication in cells but have an important role for virus survival and transmission in its hosts. These genes provide an untapped repository, and will be valuable tools for deciphering not only how the virus manipulates the host response to infection to avoid elimination, but also useful for understanding important host anti-viral mechanisms. In addition, they may provide leads for discovery of novel immunomodulatory drugs.
Collapse
Affiliation(s)
- Linda K Dixon
- Institute for Animal Health Pirbright Lab., Ash Road, Pirbright, Woking, Surrey GU24 ONF, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Liu Z, Dronadula N, Rao GN. A Novel Role for Nuclear Factor of Activated T Cells in Receptor Tyrosine Kinase and G Protein-coupled Receptor Agonist-induced Vascular Smooth Muscle Cell Motility. J Biol Chem 2004; 279:41218-26. [PMID: 15272006 DOI: 10.1074/jbc.m406917200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to their role in cytokine gene regulation in T cells, nuclear factors of activated T cells (NFATs) have been shown to be involved in cardiac development and hypertrophy. We have reported previously that NFATs play an important role in the regulation of vascular smooth muscle cell (VSMC) proliferation by receptor tyrosine kinase (RTK) and G protein-coupled receptor (GPCR) agonists, platelet-derived growth factor-BB (PDGF-BB) and thrombin, respectively. To understand the role of NFATs in vascular disease and development, we have now studied the role of these transcriptional factors in VSMC motility. PDGF-BB and thrombin induced VSMC motility in a dose-dependent manner. Blockade of NFAT activation resulted in substantial reduction in PDGF-BB- and thrombin-induced VSMC motility. PDGF-BB and thrombin also induced interleukin-6 (IL-6) expression in NFAT-dependent manner. Furthermore, IL-6 dose-dependently caused VSMC motility. A neutralizing anti-rat IL-6 antibody inhibited VSMC motility induced by IL-6, PDGF-BB, and thrombin. In addition, exogenous addition of IL-6 rescued both PDGF-BB- and thrombin-induced VSMC motility from inhibition by the blockade of NFAT activation. Together, these results for the first time demonstrate that NFATs mediate both RTK and GPCR agonist-induced VSMC motility via induction of expression of IL-6.
Collapse
Affiliation(s)
- Zhimin Liu
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
223
|
Im SH, Rao A. Activation and deactivation of gene expression by Ca2+/calcineurin-NFAT-mediated signaling. Mol Cells 2004; 18:1-9. [PMID: 15359117 DOI: 10.1016/s1016-8478(23)13074-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Ca2+/calcineurin-NFAT-mediated signaling pathways are involved in diverse cellular reactions by regulating gene expression either positively or negatively. The transcriptional activity of NFAT proteins can be either activating or deactivating depending on which binding partners are involved. Interaction of NFAT with AP-1 turns on the genes involved in active immune responses, while NFAT without cooperative binding of AP-1 turns on a T cell anergy program and blocks T cell activation and proliferation. In addition, interaction of NFAT with histone deacetylase (HDAC) proteins induces gene silencing. In this review we focus on the dual function, activator or deactivator, of NFAT and the binding partners that determine the role of NFAT in gene expression.
Collapse
Affiliation(s)
- Sin-Hyeog Im
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea.
| | | |
Collapse
|
224
|
Zaichuk TA, Shroff EH, Emmanuel R, Filleur S, Nelius T, Volpert OV. Nuclear factor of activated T cells balances angiogenesis activation and inhibition. ACTA ACUST UNITED AC 2004; 199:1513-22. [PMID: 15184502 PMCID: PMC2211785 DOI: 10.1084/jem.20040474] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It has been demonstrated that vascular endothelial cell growth factor (VEGF) induction of angiogenesis requires activation of the nuclear factor of activated T cells (NFAT). We show that NFATc2 is also activated by basic fibroblast growth factor and blocked by the inhibitor of angiogenesis pigment epithelial–derived factor (PEDF). This suggests a pivotal role for this transcription factor as a convergence point between stimulatory and inhibitory signals in the regulation of angiogenesis. We identified c-Jun NH2-terminal kinases (JNKs) as essential upstream regulators of NFAT activity in angiogenesis. We distinguished JNK-2 as responsible for NFATc2 cytoplasmic retention by PEDF and JNK-1 and JNK-2 as mediators of PEDF-driven NFAT nuclear export. We identified a novel NFAT target, caspase-8 inhibitor cellular Fas-associated death domain–like interleukin 1β–converting enzyme inhibitory protein (c-FLIP), whose expression was coregulated by VEGF and PEDF. Chromatin immunoprecipitation showed VEGF-dependent increase of NFATc2 binding to the c-FLIP promoter in vivo, which was attenuated by PEDF. We propose that one possible mechanism of concerted angiogenesis regulation by activators and inhibitors may be modulation of the endothelial cell apoptosis via c-FLIP controlled by NFAT and its upstream regulator JNK.
Collapse
Affiliation(s)
- Tetiana A Zaichuk
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
225
|
Go WY, Liu X, Roti MA, Liu F, Ho SN. NFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment. Proc Natl Acad Sci U S A 2004; 101:10673-8. [PMID: 15247420 PMCID: PMC489993 DOI: 10.1073/pnas.0403139101] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Osmotic stress responses are critical not only to the survival of unicellular organisms but also to the normal function of the mammalian kidney. However, the extent to which cells outside the kidney rely on osmotic stress responses in vivo remains unknown. Nuclear factor of activated T cells 5 (NFAT5)/tonicity enhancer binding protein (TonEBP), the only known osmosensitive mammalian transcription factor, is expressed most abundantly in the thymus and is induced upon lymphocyte activation. Here we report that NFAT5/TonEBP is not only essential for normal cell proliferation under hyperosmotic conditions but also necessary for optimal adaptive immunity. Targeted deletion of exons 6 and 7 of the Nfat5 gene, which encode a critical region of the DNA-binding domain, gave rise to a complete loss of function in the homozygous state and a partial loss of function in the heterozygous state. Complete loss of function resulted in late gestational lethality. Furthermore, hypertonicity-induced NFAT5/TonEBP transcriptional activity and hsp70.1 promoter function were completely eliminated, and cell proliferation under hyperosmotic culture conditions was markedly impaired. Partial loss of NFAT5/TonEBP function resulted in lymphoid hypocellularity and impaired antigen-specific antibody responses in viable heterozygous animals. In addition, lymphocyte proliferation ex vivo was reduced under hypertonic, but not isotonic, culture conditions. Direct measurement of tissue osmolality further revealed lymphoid tissues to be hyperosmolar. These results indicate that lymphocyte-mediated immunity is contingent on adaptation to physiologic osmotic stress, thus providing insight into the lymphoid microenvironment and the importance of the NFAT5/TonEBP osmotic stress response pathway in vivo.
Collapse
Affiliation(s)
- William Y Go
- Department of Pathology, School of Medicine, University of California at San Diego, La Jolla, CA 92093-0644, USA
| | | | | | | | | |
Collapse
|
226
|
Han KH, Woo SK, Kim WY, Park SH, Cha JH, Kim J, Kwon HM. Maturation of TonEBP expression in developing rat kidney. Am J Physiol Renal Physiol 2004; 287:F878-85. [PMID: 15226152 DOI: 10.1152/ajprenal.00047.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tonicity-responsive enhancer binding protein (TonEBP) is a transcriptional activator of the Rel family. In the renal medulla, TonEBP stimulates genes encoding proteins involved in cellular accumulation of organic osmolytes, the vasopressin-regulated urea transporters (UT-A), and heat shock protein 70. To understand the role of TonEBP in the development of urinary concentrating ability, TonEBP expression during rat kidney development was investigated. In embryonic kidneys, TonEBP immunoreactivity was detected 16 days postcoitus in the cytoplasm of the endothelial cells surrounding the medullary collecting ducts (MCD). By 20 days, TonEBP was detected in most tubular profiles in the medulla, including the loop of Henle and MCD, and interstitial cells. The intensity of TonEBP immunoreactivity was much higher in the vasa recta than the tubules. In addition, immunoreactivity was localized predominantly to the cytoplasm. On postnatal day 1, two major changes were observed. TonEBP immunoreactivity shifted to the nucleus, and the intensity of TonEBP immunoreactivity of the tubules increased dramatically. These changes were associated with an increase in TonEBP and sodium-myo-inositol cotransporter mRNA abundance. Thereafter, TonEBP expression in tubular profiles increased moderately. The adult pattern of TonEBP expression was established at postnatal day 21 coincident with full maturation of the renal medulla. Thus expression of TonEBP in developing kidneys occurred predominantly in the medulla and preceded expression of its target genes, including UT-A. These data suggest that TonEBP contributes to the development of urine-concentrating ability.
Collapse
Affiliation(s)
- Ki-Hwan Han
- Departmrnt of Anatomy and Cell Death Disease Research Center, Catholic University Medical College, Seoul 137-701, South Korea
| | | | | | | | | | | | | |
Collapse
|
227
|
López-Rodríguez C, Antos CL, Shelton JM, Richardson JA, Lin F, Novobrantseva TI, Bronson RT, Igarashi P, Rao A, Olson EN. Loss of NFAT5 results in renal atrophy and lack of tonicity-responsive gene expression. Proc Natl Acad Sci U S A 2004; 101:2392-7. [PMID: 14983020 PMCID: PMC356961 DOI: 10.1073/pnas.0308703100] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The transcription factor NFAT5/TonEBP, a member of the NFAT/Rel family of transcription factors, has been implicated in diverse cellular responses, including the response to osmotic stress, integrin-dependent cell migration, T cell activation, and the Ras pathway in Drosophila. To clarify the in vivo role of NFAT5, we generated NFAT5-null mice. Homozygous mutants were genetically underrepresented after embryonic day 14.5. Surviving mice manifested a progressive and profound atrophy of the kidney medulla with impaired activation of several osmoprotective genes, including those encoding aldose reductase, Na+/Cl--coupled betaine/gamma-aminobutyric acid transporter, and the Na+/myo-inositol cotransporter. The aldose reductase gene is controlled by a tonicity-responsive enhancer, which was refractory to hypertonic stress in fibroblasts lacking NFAT5, establishing this enhancer as a direct transcriptional target of NFAT5. Our findings demonstrate a central role for NFAT5 as a tonicity-responsive transcription factor required for kidney homeostasis and function.
Collapse
Affiliation(s)
- Cristina López-Rodríguez
- Department of Pathology, Harvard Medical School and Center for Blood Research, Institute for Biomedical Research, 200 Longwood Avenue, Boston MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Abstract
AbstractThe nuclear factor of activated T cells (NFAT) proteins are a family of transcription factors whose activation is controlled by calcineurin, a Ca2+-dependent phosphatase. Once dephosphorylated, these proteins move to the nucleus where they interact with cofactors to form transcription factor complexes. Inhibition of NFAT proteins by immunosuppressants, such as cyclosporin A (CsA) and FK506, is used clinically to prevent transplant rejection. Although these drugs have revolutionized organ transplantation, their use is associated with severe side effects in other organs in which NFAT proteins are important. One of the signal transducers that controls NFAT activity is Vav1, which is exclusively expressed in the hematopoietic system. Vav1 contains numerous modular domains that enable its function as a guanine exchange factor (GEF) toward RhoGTPases as well as participate in protein-protein interactions. This review focuses on the mechanisms by which Vav1 regulates NFAT through GEF-dependent and -independent cascades, emphasizing the newly assigned role of Vav1 in the regulation of Ca2+ release. Because of its restriction to hematopoietic cell lineages and its importance in the regulation of NFAT, targeting Vav1 and, in particular, its association with other proteins may offer a highly selective means of modifying T-cell behavior, thus allowing the development of more specific immunosuppressive therapies.
Collapse
Affiliation(s)
- Shulamit Katzav
- Hubert H Humphrey Center for Experimental Medicine & Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
229
|
Yamaguchi K, Itoh K, Ohnishi N, Itoh Y, Baum C, Tsuji T, Nagao T, Higashitsuji H, Okanoue T, Fujita J. Engineered long terminal repeats of retroviral vectors enhance transgene expression in hepatocytes in vitro and in vivo. Mol Ther 2004; 8:796-803. [PMID: 14599813 DOI: 10.1016/j.ymthe.2003.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
To analyze the important elements for retroviral expression in hepatocytes, cis-acting elements in the U3 region of the long terminal repeat (LTR) of the polycythemic strain of spleen focus-forming virus (SFFVp) were analyzed in a hepatocellular carcinoma cell line. Two cis-acting elements located within the upstream region of the direct repeat, which positively regulated retroviral expression, were identified. Transcription factors NFAT5 and Sp1, which are ubiquitously expressed in a variety of tissues, bound to these elements. To increase specificity without lowering the potency of retroviral expression in hepatocytes, these elements were replaced by a sequence derived from the hepatitis B virus enhancer II region. Novel vectors, SF-Hep3 and SF-Hep5 (SFFVp-based vector for hepatocytes 3 and 5), were developed with these engineered LTRs. The engineered LTRs of these vectors enhanced the retroviral expression only in hepatocellular carcinoma cell lines in vitro. These vectors also increased transgene expression 4- to 9-fold or 3.5- to 5-fold in comparison with a Moloney murine leukemia virus-based vector or a vector containing the wild-type LTR of SFFVp, respectively, in murine hepatocytes in vivo.
Collapse
Affiliation(s)
- Kanji Yamaguchi
- Department of Clinical Molecular Biology, Faculty of Medicine, Kyoto University, 606-8507, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Lee SD, Colla E, Sheen MR, Na KY, Kwon HM. Multiple domains of TonEBP cooperate to stimulate transcription in response to hypertonicity. J Biol Chem 2003; 278:47571-7. [PMID: 12970349 DOI: 10.1074/jbc.m308795200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tonicity-responsive enhancer binding protein (TonEBP), also known as NFAT5, belongs to the Rel family of transcriptional activators. In the kidney medulla and thymus, TonEBP plays a major role in protecting renal cells and T cells from the deleterious effects of ambient hypertonicity. TonEBP is stimulated by hypertonicity via several pathways: increased expression of protein, nuclear translocation, and increased transactivation. In this study, we identified five domains of TonEBP involved in transactivation. The two conserved glutamine repeats were not involved in transactivation. There were three activation domains that could stimulate transcription independently. In addition, there were two modulation domains that potentiated the activity of the activation domains. One of the activation domains is unique to a splice isoform that is more active than others, indicating that alternative splicing can affect the activity of TonEBP. Another activation domain and one of the modulation domains were stimulated by hypertonicity. All the five domains acted in synergy in every combination. Although overall phosphorylation of TonEBP increased in response to hypertonicity, phosphorylation of the activation and modulation domains did not increase in isolation. In sum, TonEBP possesses far more elaborate domains involved in transactivation compared with other Rel proteins.
Collapse
Affiliation(s)
- Sang Do Lee
- Department of Medicine, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
231
|
Zhu C, Rao K, Xiong H, Gagnidze K, Li F, Horvath C, Plevy S. Activation of the murine interleukin-12 p40 promoter by functional interactions between NFAT and ICSBP. J Biol Chem 2003; 278:39372-82. [PMID: 12876285 DOI: 10.1074/jbc.m306441200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin (IL)-12 is a heterodimeric cytokine that is critical for the development of a T-helper-1 immune response and immunity against intracellular pathogens. The IL-12 p40 gene product, expressed specifically in macrophages and dendritic cells, heterodimerizes with p35 to form bioactive IL-12, and heterodimerizes with p19 to comprise the cytokine IL-23. Regulation of the murine IL-12 p40 promoter is complex. Multiple cis-acting elements have been characterized that are involved in activation by bacterial products. However, molecular mechanisms through which interferon (IFN)-gamma and bacterial products synergistically activate IL-12 p40 gene expression are less clear. In this study, a composite NFAT/ICSBP binding site at -68 to -54 is identified that is functionally important for p40 promoter activation by lipopolysaccharide (LPS) and LPS plus IFN-gamma. DNA binding of NFAT and ICSBP is demonstrated on the endogenous promoter by chromatin immunoprecipitation. NFAT is required for ICSBP binding to this region. Overexpression of NFAT and ICSBP synergistically activates the p40 promoter. A dominant negative NFAT molecule attenuates LPS- and IFN-gamma-activated endogenous IL-12 p40 mRNA expression. A physical association between NFAT and ICSBP in the absence of DNA is detected by co-immunoprecipitation of endogenous proteins. Three NFAT domains are required for ICSBP interaction. Finally, in LPS- and IFN-gamma-activated RAW-264.7 cells, the association between NFAT and ICSBP is abrogated by IL-10 priming.
Collapse
Affiliation(s)
- Chen Zhu
- Immunobiology Center, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
232
|
Zhang Z, Ferraris JD, Brooks HL, Brisc I, Burg MB. Expression of osmotic stress-related genes in tissues of normal and hyposmotic rats. Am J Physiol Renal Physiol 2003; 285:F688-93. [PMID: 12824075 DOI: 10.1152/ajprenal.00028.2003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
TonEBP is a transcription factor that, when activated by hypertonicity, increases transcription of genes, including those involved in organic osmolyte accumulation. Surprisingly, it is expressed in virtually all tissues, including many never normally exposed to hypertonicity. We measured TonEBP mRNA (real-time PCR) and protein (Western blot analysis) in tissues of control (plasma osmolality 294 +/- 1 mosmol/kgH2O) and hyposmotic (dDAVP infusion plus water loading for 3 days, 241 +/- 2 mosmol/kgH2O) rats to test whether the ubiquitous expression of TonEBP mRNA is osmotically regulated around the normal plasma osmolality. TonEBP protein is reduced by hyposmolality in thymus and liver, but not in brain, and is not detected in heart and skeletal muscle. TonEBP mRNA decreases in brain and liver but is unchanged in other tissues. There are no general changes in mRNA of TonEBP-mediated genes: aldose reductase (AR) does not change in any tissue, betaine transporter (BGT1) decreases only in liver, taurine transporter (TauT) only in brain and thymus, and inositol transporter (SMIT) only in skeletal muscle and liver. Heat shock protein (Hsp)70-1 and Hsp70-2 mRNA increase greatly in most tissues, which cannot be attributed to decreased TonEBP activity. The conclusions are as follows: 1) TonEBP protein or mRNA expression is reduced by hyposmolality in thymus, liver, and brain. 2) TonEBP protein and mRNA expression are differentially regulated in some tissues. 3) Although AR, SMIT, BGT1, and TauT are regulated by TonEBP in renal medullary cells, other sources of regulation may predominate in other tissues. 4) TonEBP abundance and activity are regulated by factors other than tonicity in some tissues.
Collapse
Affiliation(s)
- Zheng Zhang
- Laboratory of Kidney and Electrolyte Metabolism, National Heart Lung and Blood Institute, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
233
|
Hogan PG, Chen L, Nardone J, Rao A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 2003; 17:2205-32. [PMID: 12975316 DOI: 10.1101/gad.1102703] [Citation(s) in RCA: 1545] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Patrick G Hogan
- The Center for Blood Research, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
234
|
Parsons SA, Wilkins BJ, Bueno OF, Molkentin JD. Altered skeletal muscle phenotypes in calcineurin Aalpha and Abeta gene-targeted mice. Mol Cell Biol 2003; 23:4331-43. [PMID: 12773574 PMCID: PMC156151 DOI: 10.1128/mcb.23.12.4331-4343.2003] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2002] [Revised: 03/03/2003] [Accepted: 03/26/2003] [Indexed: 11/20/2022] Open
Abstract
Calcineurin is a calcium-regulated serine-threonine protein phosphatase that controls developmental and inducible biological responses in diverse cell types, in part through activation of the transcription factor nuclear factor of activated T cells (NFAT). In skeletal muscle, calcineurin has been implicated in the regulation of myoblast differentiation, hypertrophy of mature myofibers, and fiber type switching in response to alterations in intracellular calcium concentration. However, considerable disagreement persists about the functional role of calcineurin signaling in each of these processes. Here we evaluated the molecular phenotypes of skeletal muscle from both calcineurin Aalpha and calcineurin Abeta gene-targeted mice. Calcineurin Aalpha was observed to be the predominant catalytic isoform expressed in nearly all skeletal muscles examined. Neither calcineurin Aalpha or Abeta null mice showed any gross growth-related alterations in skeletal muscle, nor was fiber size or number altered in glycolytic/fast muscle types. In contrast, both calcineurin Aalpha and Abeta gene-targeted mice demonstrated an alteration in myofiber number in the soleus, an oxidative/slow-type muscle. More significantly, calcineurin Aalpha and Abeta gene-targeted mice showed a dramatic down-regulation in the oxidative/slow fiber type program in multiple muscles (both slow and fast). Associated with this observation, NFAT-luciferase reporter transgenic mice showed significantly greater activity in slow fiber-containing muscles than in fast. However, only calcineurin Aalpha null mice showed a defect in NFAT nuclear occupancy or NFAT-luciferase transgene activity in vivo. Collectively, our results suggest that calcineurin signaling plays a critical role in regulating skeletal muscle fiber type switching but not hypertrophy. Our results also suggest that fiber type switching occurs through an NFAT-independent mechanism.
Collapse
Affiliation(s)
- Stephanie A Parsons
- Department of Pediatrics, Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039, USA
| | | | | | | |
Collapse
|
235
|
Abstract
NFAT5/TonEBP, the most recently described member of the rel/NFkappaB/NFAT family of signal-dependent transcription factors, is activated by extracellular hypertonicity-a cellular stress of particular and perhaps unique physiologic relevance to cells of the renal medulla. Accumulating evidence suggests that NFAT5/TonEBP also functions in vivo under isotonic conditions as part of a ubiquitous regulatory mechanism that senses and adjusts available intracellular volume during cell growth to establish an intracellular environment appropriate for optimal cell proliferation.
Collapse
Affiliation(s)
- Steffan N Ho
- Department of Pathology, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0644, USA.
| |
Collapse
|
236
|
Kojima H, Tamura T, Okuda T, Kato C, Kinoshita Y, Honjo H. Expression of nuclear factor of activated T cells mRNA in maternal peripheral blood cells. Am J Reprod Immunol 2003; 49:139-48. [PMID: 12797520 DOI: 10.1034/j.1600-0897.2003.01165.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PROBLEM In T lymphocytes, nuclear factor of activated T cells (NF-AT) regulates the induction of cytokine genes upon antigenic stimulation. This study was designed to analyse the relationship between NF-AT and pregnancy. METHOD OF STUDY With informed consent, peripheral blood cells (PBCs) were obtained from non-pregnant (n = 114), pregnant (n = 604), and puerperal women (n = 52). The expression of NF-AT2 and NF-AT3 mRNAs in PBCs was measured by a quantitative reverse transcriptase-polymerase chain reaction method. RESULTS In the early pregnancy period, in successful pregnancy, both NF-AT2 and NF-AT3 mRNAs increased significantly, whereas in cases of spontaneous abortion they did not change significantly. After peaking, they decreased gradually and were re-elevated in the ninth and tenth gestational month. In the puerperal period, NF-AT3 mRNAs decreased, but NF-AT2 mRNA showed a comparatively high expression level. CONCLUSION These findings suggested that in humans NF-AT signal transduction might be involved in alloantigenic recognition and tolerance and play important roles, especially in the early and late period of pregnancy.
Collapse
Affiliation(s)
- H Kojima
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Kawaramachi Hirokouji, Kamigyo-Ku, Japan
| | | | | | | | | | | |
Collapse
|
237
|
Decker EL, Nehmann N, Kampen E, Eibel H, Zipfel PF, Skerka C. Early growth response proteins (EGR) and nuclear factors of activated T cells (NFAT) form heterodimers and regulate proinflammatory cytokine gene expression. Nucleic Acids Res 2003; 31:911-21. [PMID: 12560487 PMCID: PMC149206 DOI: 10.1093/nar/gkg186] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Revised: 12/10/2002] [Accepted: 12/10/2002] [Indexed: 02/02/2023] Open
Abstract
Activation of transcription factors by receptor mediated signaling is an essential step for T lymphocyte effector function. Following antigenic stimulation of T cells the two central cytokines IL-2 and TNFalpha are co-expressed and co-regulated. Two important transcription factors, i.e., early growth response (EGR) protein EGR-1 and nuclear factors of activated T cells (NFAT) protein NFATc, regulate transcription of the human IL-2 cytokine and the same combination of EGR and NFAT proteins seems relevant for coordinated cytokine expression. Here we demonstrate that the zinc finger protein EGR-1 and two members of the NFAT protein family bind simultaneously to adjacent elements position -168 to -150 within the TNFalpha promoter. Both promoter sites are important for TNFalpha gene transcription as shown by transfection assays having the IL-2 and TNFalpha promoters linked to a luciferase reporter. The use of promoter deletion constructs with the zinc finger protein (ZIP), the NFAT binding element or a combination of both deleted show a functional cooperation of these elements and of their binding factors. These experiments demonstrate that EGR-1 as well as EGR-4 functionally cooperate with NFAT proteins and induce expression of both cytokine genes. Using tagged NFATc and NFATp in glutathione S-transferase pull down assays showed interaction and physical complex formation of each NFAT protein with recombinant, as well as native, EGR-1 and EGR-4 proteins. Thus EGR-NFAT interaction and complex formation seems essential for human cytokine expression as adjacent ZIP and NFAT elements are conserved in the IL-2 and TNFalpha gene promoters. Binding of regulatory EGR and NFAT factors to these sites and the functional interaction and formation of stable heterodimeric complexes indicate an important role of these factors for gene transcription.
Collapse
Affiliation(s)
- Eva L Decker
- Research Group of Biomolecular Medicine, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Bernhard-Nocht Strasse 74, Germany
| | | | | | | | | | | |
Collapse
|
238
|
Caetano MS, Vieira-de-Abreu A, Teixeira LK, Werneck MBF, Barcinski MA, Viola JPB. NFATC2 transcription factor regulates cell cycle progression during lymphocyte activation: evidence of its involvement in the control of cyclin gene expression. FASEB J 2002; 16:1940-2. [PMID: 12368232 DOI: 10.1096/fj.02-0282fje] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Upon antigen stimulation, lymphocytes enter in cell cycle and proliferate, and most of the activated T cells die by apoptosis. Many of the proteins that regulate lymphocyte activation are Under the control of transcription factors belonging to the NFAT family. As previously demonstrated, NFATC2-/- mice consistently showed a marked increase in lymphocyte proliferation. Here, we evaluate the role of NFATC2 in regulating lymphocyte proliferation and its involvement in the control of cell cycle progression during lymphocyte activation. NFATC2-/- lymphocytes, including CD4+ T cells and B cells, hyperproliferated upon stimulation when compared with NFATC2+/+ cells. Analysis of cell death demonstrated that NFATC2-/- lymphocytes displayed an increased rate of apoptosis after antigen stimulation in addition to the hyperproliferation. Cell cycle analysis after antigen stimulation showed that NFATC2-/- cultures contained more cycling cells when compared with NFATC2+/+ cultures, which is related to a shortening in time of cell division upon activation. Furthermore, hyperproliferation of NFATC2-/- lymphocytes is correlated to an overexpression of cyclins A2, B1, E, and F. Taken together, our results suggest that the NFATC2 transcription factor plays an important role in the control of cell cycle during lymphocyte activation and may act as an inhibitor of cell proliferation in normal cells.
Collapse
Affiliation(s)
- Mauricio S Caetano
- Division of Experimental Medicine, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
239
|
Ko BCB, Lam AKM, Kapus A, Fan L, Chung SK, Chung SSM. Fyn and p38 signaling are both required for maximal hypertonic activation of the osmotic response element-binding protein/tonicity-responsive enhancer-binding protein (OREBP/TonEBP). J Biol Chem 2002; 277:46085-92. [PMID: 12359721 DOI: 10.1074/jbc.m208138200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
When cells are challenged by hyperosmotic stress, one of the crucial adaptive responses is the expression of osmoprotective genes that are responsible for raising the intracellular level of compatible osmolytes such as sorbitol, betaine, and myo-inositol. This is achieved by the activation of the transcription factor called OREBP (also known as TonEBP or NFAT5) that specifically binds to the osmotic response element (ORE) or tonicity-responsive enhancer that enhances the transcription of these genes. Here we show that p38, a subgroup of the mitogen-activated kinases activated by hypertonic stress, and Fyn, a shrinkage-activated tyrosine kinase, are both involved in the hypertonic activation of OREBP/TonEBP. Inhibition of p38 by SB203580 or by the dominant negative p38 mutant partially blocked the hypertonic induction of ORE reporter (reporter gene regulated by ORE). Similarly, hypertonic activation of ORE reporter was partially blocked by pharmacological inhibition of Fyn or by a dominant negative Fyn and was attenuated in Fyn-deficient cells. Importantly, inhibiting p38 in Fyn-deficient cells almost completely abolished the hypertonic induction of ORE reporter activity, indicating that p38 and Fyn are the major signaling pathways for the hypertonic activation of OREBP/TonEBP. Further we show that the transactivation domain of OREBP/TonEBP is the target of p38- and Fyn-mediated hypertonic activation. These results indicate a dual control in regulating the expression of the osmoprotective genes in mammalian cells.
Collapse
Affiliation(s)
- Ben C B Ko
- Department of Chemistry, The University of Hong Kong, Hong Kong
| | | | | | | | | | | |
Collapse
|
240
|
Trama J, Go WY, Ho SN. The osmoprotective function of the NFAT5 transcription factor in T cell development and activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5477-88. [PMID: 12421923 DOI: 10.4049/jimmunol.169.10.5477] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The NFAT5/TonEBP transcription factor, a recently identified rel/NF-kappaB family member, activates transcription of osmocompensatory genes in response to extracellular hyperosmotic stress. However, the function of NFAT5 under isosmotic conditions present in vivo remains unknown. Here we demonstrate that NFAT5 is necessary for optimal T cell development in vivo and allows for optimal cell growth ex vivo under conditions associated with osmotic stress. Transgenic mice expressing an inhibitory form of NFAT5 in developing and mature T cells exhibited a 30% reduction in thymic cellularity evenly distributed among thymic subsets, consistent with the uniform expression and nuclear localization of NFAT5 in each subset. This was associated with a 25% reduction in peripheral CD4(+) T cells and a 50% reduction in CD8(+) T cells. While transgenic T cells exhibited no impairment in cell growth or cytokine production under normal culture conditions, impaired cell growth was observed under both hyperosmotic conditions and isosmotic conditions associated with osmotic stress. Transgenic thymocytes also demonstrated increased sensitivity to osmotic stress. Consistent with this, the system A amino acid transporter gene ATA2 exhibited NFAT5 dependence under hypertonic conditions but not in response to amino acid deprivation. Expression of the TNF-alpha gene, a putative NFAT5 target, was not altered in transgenic T cells. These results not only demonstrate an osmoprotective function for NFAT5 in primary cells but also show that NFAT5 is necessary for optimal thymic development in vivo, suggesting that developing thymocytes within the thymic microenvironment are subject to an osmotic stress that is effectively countered by NFAT5-dependent responses.
Collapse
Affiliation(s)
- Jason Trama
- Department of Pathology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
241
|
Yellaturu CR, Ghosh SK, Rao RK, Jennings LK, Hassid A, Rao GN. A potential role for nuclear factor of activated T-cells in receptor tyrosine kinase and G-protein-coupled receptor agonist-induced cell proliferation. Biochem J 2002; 368:183-90. [PMID: 12188924 PMCID: PMC1222985 DOI: 10.1042/bj20020347] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2002] [Revised: 07/18/2002] [Accepted: 08/21/2002] [Indexed: 11/17/2022]
Abstract
We have studied the role of nuclear factor of activated T-cells (NFAT) transcription factors in the induction of vascular smooth muscle cell (VSMC) growth by platelet-derived growth factor-BB (PDGF-BB) and thrombin, the receptor tyrosine kinase (RTK) and G-protein-coupled receptor (GPCR) agonists, respectively. NFATc1 but not NFATc2 or NFATc3 was translocated from the cytoplasm to the nucleus upon treatment of VSMCs with PDGF-BB or thrombin. Translocation of NFATc1 was followed by an increase in NFAT-DNA binding activity and NFAT-dependent reporter gene expression. Cyclosporin A (CsA), a potent and specific inhibitor of calcineurin, a calcium/calmodulin-dependent serine phosphatase involved in the dephosphorylation and activation of NFATs, blocked NFAT-DNA binding activity and NFAT-dependent reporter gene expression induced by PDGF-BB and thrombin. CsA also completely inhibited PDGF-BB- and thrombin-induced VSMC growth, as measured by DNA synthesis and cell number. In addition, forced expression of the NFAT-competing peptide VIVIT for calcineurin binding significantly attenuated the DNA synthesis induced by PDGF-BB and thrombin in VSMCs. Together, these findings for the first time demonstrate a role for NFATs in RTK and GPCR agonist-induced growth in VSMCs.
Collapse
Affiliation(s)
- Chandrahasa R Yellaturu
- Department of Physiology, The University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
242
|
Wilkins BJ, De Windt LJ, Bueno OF, Braz JC, Glascock BJ, Kimball TF, Molkentin JD. Targeted disruption of NFATc3, but not NFATc4, reveals an intrinsic defect in calcineurin-mediated cardiac hypertrophic growth. Mol Cell Biol 2002; 22:7603-13. [PMID: 12370307 PMCID: PMC135666 DOI: 10.1128/mcb.22.21.7603-7613.2002] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A calcineurin-nuclear factor of activated T cells (NFAT) regulatory pathway has been implicated in the control of cardiac hypertrophy, suggesting one mechanism whereby alterations in intracellular calcium handling are linked to the expression of hypertrophy-associated genes. Although recent studies have demonstrated a necessary role for calcineurin as a mediator of cardiac hypertrophy, the potential involvement of NFAT transcription factors as downstream effectors of calcineurin signaling has not been evaluated. Accordingly, mice with targeted disruptions in NFATc3 and NFATc4 genes were characterized. Whereas the loss of NFATc4 did not compromise the ability of the myocardium to undergo hypertrophic growth, NFATc3-null mice demonstrated a significant reduction in calcineurin transgene-induced cardiac hypertrophy at 19 days, 26 days, 6 weeks, 8 weeks, and 10 weeks of age. NFATc3-null mice also demonstrated attenuated pressure overload- and angiotensin II-induced cardiac hypertrophy. These results provide genetic evidence that calcineurin-regulated responses require NFAT effectors in vivo.
Collapse
Affiliation(s)
- Benjamin J Wilkins
- Division of Molecular Cardiovascular Biology, Department of Pediatrics, Children's Hospital Medical Center, Cincinnati Ohio 45229-3039, USA
| | | | | | | | | | | | | |
Collapse
|
243
|
Baksh S, Widlund HR, Frazer-Abel AA, Du J, Fosmire S, Fisher DE, DeCaprio JA, Modiano JF, Burakoff SJ. NFATc2-mediated repression of cyclin-dependent kinase 4 expression. Mol Cell 2002; 10:1071-81. [PMID: 12453415 DOI: 10.1016/s1097-2765(02)00701-3] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The calcineurin-regulated transcription factor, nuclear factor of activated T cells (NFAT), controls many aspects of T cell function. Here, we demonstrate that the calcineurin/NFAT pathway negatively regulates the expression of cyclin-dependent kinase 4 (CDK4). A canonical NFAT binding site was identified and found to be sensitive to calcium signals, FK506/CsA, and histone deacetylase activity and to not require AP-1. Ectopic expression of NFATc2 inhibited the basal activity of the human CDK4 promoter. Additionally, both calcineurin Aalpha(-/-) and NFATc2(-/-) mice had elevated protein levels of CDK4, confirming a negative regulatory role for the calcineurin/NFAT pathway. This pathway may thus regulate the expression of CDK4 at the transcriptional level and control how cells re-enter a resting, nonproliferative state.
Collapse
Affiliation(s)
- Shairaz Baksh
- Department of Pediatric Oncology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Gomez MF, Stevenson AS, Bonev AD, Hill-Eubanks DC, Nelson MT. Opposing actions of inositol 1,4,5-trisphosphate and ryanodine receptors on nuclear factor of activated T-cells regulation in smooth muscle. J Biol Chem 2002; 277:37756-64. [PMID: 12145283 DOI: 10.1074/jbc.m203596200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear factor of activated T-cells (NFAT), originally identified in T-cells, has since been shown to play a role in mediating Ca(2+)-dependent gene transcription in diverse cell types outside of the immune system. We have previously shown that nuclear accumulation of NFATc3 is induced in ileal smooth muscle by platelet-derived growth factor in a manner that depends on Ca(2+) influx through L-type, voltage-dependent Ca(2+) channels. Here we show that NFATc3 is also the predominant NFAT isoform expressed in cerebral artery smooth muscle and is induced to accumulate in the nucleus by UTP and other G(q/11)-coupled receptor agonists. This induction is mediated by calcineurin and is dependent on sarcoplasmic reticulum Ca(2+) release through inositol 1,4,5-trisphosphate receptors and extracellular Ca(2+) influx through L-type, voltage-dependent Ca(2+) channels. Consistent with results obtained in ileal smooth muscle, depolarization-induced Ca(2+) influx fails to induce NFAT nuclear accumulation in cerebral arteries. We also provide evidence that Ca(2+) release by ryanodine receptors in the form of Ca(2+) sparks may exert an inhibitory influence on UTP-induced NFATc3 nuclear accumulation and further suggest that UTP may act, in part, by inhibiting Ca(2+) sparks. These results are consistent with a multifactorial regulation of NFAT nuclear accumulation in smooth muscle that is likely to involve several intracellular signaling pathways, including local effects of sarcoplasmic reticulum Ca(2+) release and effects attributable to global elevations in intracellular Ca(2+).
Collapse
Affiliation(s)
- Maria F Gomez
- Department of Pharmacology, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|
245
|
Dorado B, Jerez MJ, Flores N, Martín-Saavedra FM, Durán C, Ballester S. Autocrine IL-4 gene regulation at late phases of TCR activation in differentiated Th2 cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:3030-7. [PMID: 12218118 DOI: 10.4049/jimmunol.169.6.3030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-4 is a multifunctional cytokine whose secretion displays important immunomodulatory functions. Its expression is regulated at the level of transcription, and one of the main factors involved is NFAT. The IL-4-induced transcription factor Stat6 is required for the development of naive T cells into Th2 phenotype, capable of secreting IL-4. However, IL-4 production by differentiated Th2 cells is IL-4 independent; thus, it remains unclear whether Stat6 plays any role in the IL-4 expression by mature Th2 cells. We have analyzed in the Th2 clone D10.G4.1 the nuclear proteins able to bind the regulatory element P1 of the IL-4 promoter. Gel-shift assays show NFAT1 as the most abundant nuclear protein that binds to P1 after ionomycin plus PMA activation, whereas Stat6 accounts for the bulk of the P1 binding in the presence of exogenous IL-4. Reporter experiments agree with an inhibitory effect of Stat6 on the NFAT1-induced transcriptional activity directed by the P1 element. CD3 signaling leads to an early induction of NFAT1-P1 complexes correlating with a strong induction of the IL-4 gene. In later phases of CD3 activation, P1 is also bound by Stat6 and a fall in the IL-4 mRNA levels takes place. These two late events during CD3 activation were found to be sensible in experiments conducted with an anti-IL-4 Ab. These results suggest that IL-4 endogenously produced by Th2 cells under TCR triggering modulates its own expression through Stat6.
Collapse
Affiliation(s)
- Beatriz Dorado
- Centro Nacional de Biología Fundamental, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
246
|
Tian W, Cohen DM. Urea stress is more akin to EGF exposure than to hypertonic stress in renal medullary cells. Am J Physiol Renal Physiol 2002; 283:F388-98. [PMID: 12167588 DOI: 10.1152/ajprenal.00031.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although urea is considered to be a cell stressor even in renal medullary cells perpetually exposed to this solute in vivo by virtue of the renal concentrating mechanism, aspects of urea signaling resemble that of a peptide mitogen. Urea was compared with epidermal growth factor and hypertonic NaCl or hypertonic mannitol using a large-scale expression array-based approach. The expression profile in response to urea stress more closely resembled that of EGF treatment than hypertonic stress, as determined by hierarchical cluster analysis; the effect of urea+NaCl was equidistant from that of either solute applied individually. Among the most highly urea- and hypertonicity-responsive transcripts were genes that had previously been shown to be responsive to these solutes, validating this approach. Increased expression of the activating transcription factor 3 by urea was newly detected via expression array and confirmed via immunoblot analysis. Earlier, we noted an abrogation of tonicity-dependent gene regulation by urea, primarily in a transient transfection-based model (Tian W and Cohen DM. Am J Physiol Renal Physiol 280: F904-F912, 2001). Here we applied K-means cluster analysis to demonstrate that the genes most profoundly up- or downregulated by hypertonic stress were partially restored toward basal levels in the presence of urea pretreatment. These global expression data are consistent with our earlier biochemical studies suggesting that urea affords cytoprotection in this context. In the aggregate, these data strongly support the hypothesis that the urea effect in renal medullary cells resembles that of a peptide mitogen in terms of the adaptive program of gene expression and in terms of cytoprotection from hypertonicity.
Collapse
Affiliation(s)
- Wei Tian
- Division of Nephrology, Department of Medicine, Oregon Health and Science University and the Portland Veterans Affairs Medical Center, Portland, Oregon 97201, USA
| | | |
Collapse
|
247
|
Wahlers A, Kustikova O, Zipfel PF, Itoh K, Koester M, Heberlein C, Li Z, Schiedlmeier B, Skerka C, Fehse B, Baum C. Upstream conserved sequences of mouse leukemia viruses are important for high transgene expression in lymphoid and hematopoietic cells. Mol Ther 2002; 6:313-20. [PMID: 12231166 DOI: 10.1006/mthe.2002.0671] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Highly conserved enhancer sequences located in the upstream part of the long terminal repeat (LTR) of murine leukemia retroviruses (MLV) were reported to compromise viral gene expression in multipotent embryonic cells in vitro and to reduce the likelihood for maintenance of retroviral gene expression in hematopoietic cells in vivo. We show that deletion of these sequences (nucleotides +37 to +95) attenuates rather than increases the transcriptional activity of retroviral vectors in hematopoietic cells almost independently of the developmental lineage (erythroid, myeloid, or lymphoid). Expression rates of modified vectors were reduced by as much as 34-65%, although the strong enhancer array located in the direct repeat of the LTR was preserved. Sequence analysis and electrophoretic mobility shift assays revealed the presence of a highly conserved binding site for NFAT (nuclear factor of activated T cells) proteins that immediately neighbors a known binding site for the transcription factor Yin-Yang1 (YY1) [corrected]. Specific inactivation of the NFAT site reduced transgene expression in all cell types investigated and had a similar effect as the destruction of a neighboring SP1 motif. Combined destruction of individual motifs for NFAT, SP1, and E twenty-six transcription factors (ETS) resulted in a severe attenuation (by 40-60%) of the retroviral enhancer. These results provide novel clues for the manipulation of retrovirus replication and vector tropism.
Collapse
Affiliation(s)
- Anke Wahlers
- Heinrich-Pette-Institute, Department of Cell and Virus Genetics, 20251 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Bueno OF, Brandt EB, Rothenberg ME, Molkentin JD. Defective T cell development and function in calcineurin A beta -deficient mice. Proc Natl Acad Sci U S A 2002; 99:9398-403. [PMID: 12091710 PMCID: PMC123152 DOI: 10.1073/pnas.152665399] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The calcium-dependent phosphatase calcineurin and its downstream transcriptional effector nuclear factor of activated T cells (NFAT) are important regulators of inducible gene expression in multiple cell types. In T cells, calcineurin-NFAT signaling represents a critical event for mediating cellular activation and the immune response. The widely used immunosuppressant agents cyclosporin and FK506 are thought to antagonize the immune response by directly inhibiting calcineurin-NFAT signal transduction in lymphocytes. To unequivocally establish the importance of calcineurin signaling as a mediator of the immune response, we deleted the gene encoding the predominant calcineurin isoform expressed in lymphocytes, calcineurin A beta (CnA beta). CnA beta(-/-) mice were viable as adults, but displayed defective T cell development characterized by fewer total CD3 cells and reduced CD4 and CD8 single positive cells. Total peripheral T cell numbers were significantly reduced in CnA beta(-/-) mice and were defective in proliferative capacity and IL-2 production in response to PMA/ionomycin and T cell receptor cross-linking. CnA beta(-/-) mice also were permissive to allogeneic tumor-cell transplantation in vivo, similar to cyclosporin-treated wild-type mice. A mechanism for the compromised immune response is suggested by the observation that CnA beta(-/-) T cells are defective in stimulation-induced NFATc1, NFATc2, and NFATc3 activation. These results establish a critical role for CnA beta signaling in regulating T cell development and activation in vivo.
Collapse
Affiliation(s)
- Orlando F Bueno
- Division of Molecular Cardiovascular Biology, Department of Pediatrics, Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|
249
|
Jauliac S, López-Rodriguez C, Shaw LM, Brown LF, Rao A, Toker A. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nat Cell Biol 2002; 4:540-544. [PMID: 12080349 DOI: 10.1038/ncb816] [Citation(s) in RCA: 339] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Integrins, receptors for extracellular matrix ligands, are critical regulators of the invasive phenotype. Specifically, the alpha(6)beta(4) integrin has been linked with epithelial cell motility, cellular survival and carcinoma invasion, hallmarks of metastatic tumours. Previous studies have also shown that antagonists of the NFAT (nuclear factor of activated T-cells) family of transcription factors exhibit strong anti-tumour-promoting activity. This suggests that NFAT may function in tumour metastasis. Here, we investigate the involvement of NFAT in promoting carcinoma invasion downstream of the alpha(6)beta(4) integrin. We provide evidence that both NFAT1, and the recently identified NFAT5 isoform, are expressed in invasive human ductal breast carcinomas and participate in promoting carcinoma invasion using cell lines derived from human breast and colon carcinomas. NFAT1 and NFAT5 activity correlates with the expression of the alpha(6)beta(4) integrin. In addition, the transcriptional activity of NFAT5 is induced by alpha(6)beta(4) clustering in the presence of chemo-attractants, resulting in enhanced cell migration. These observations show that NFATs are targets of alpha(6)beta(4) integrin signalling and are involved in promoting carcinoma invasion, highlighting a novel function for this family of transcription factors in human cancer.
Collapse
Affiliation(s)
- Sebastien Jauliac
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, 200 Longwood Avenue, Boston MA 02115, USA
| | | | | | | | | | | |
Collapse
|
250
|
Chuvpilo S, Jankevics E, Tyrsin D, Akimzhanov A, Moroz D, Jha MK, Schulze-Luehrmann J, Santner-Nanan B, Feoktistova E, König T, Avots A, Schmitt E, Berberich-Siebelt F, Schimpl A, Serfling E. Autoregulation of NFATc1/A expression facilitates effector T cells to escape from rapid apoptosis. Immunity 2002; 16:881-95. [PMID: 12121669 DOI: 10.1016/s1074-7613(02)00329-1] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Threshold levels of individual NFAT factors appear to be critical for apoptosis induction in effector T cells. In these cells, the short isoform A of NFATc1 is induced to high levels due to the autoregulation of the NFATc1 promoter P1 by NFATs. P1 is located within a CpG island in front of exon 1, represents a DNase I hypersensitive chromatin site, and harbors several sites for binding of inducible transcription factors, including a tandemly arranged NFAT site. A second promoter, P2, before exon 2, is not controlled by NFATs and directs synthesis of the longer NFATc1/B+C isoforms. Contrary to other NFATs, NFATc1/A is unable to promote apoptosis, suggesting that NFATc1/A enhances effector functions without promoting apoptosis of effector T cells.
Collapse
Affiliation(s)
- Sergei Chuvpilo
- Department of Molecular Pathology, Institute of Pathology, University of Wuerzburg, D97080 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|