201
|
Bresnick EH, Katsumura KR, Lee HY, Johnson KD, Perkins AS. Master regulatory GATA transcription factors: mechanistic principles and emerging links to hematologic malignancies. Nucleic Acids Res 2012; 40:5819-31. [PMID: 22492510 PMCID: PMC3401466 DOI: 10.1093/nar/gks281] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Numerous examples exist of how disrupting the actions of physiological regulators of blood cell development yields hematologic malignancies. The master regulator of hematopoietic stem/progenitor cells GATA-2 was cloned almost 20 years ago, and elegant genetic analyses demonstrated its essential function to promote hematopoiesis. While certain GATA-2 target genes are implicated in leukemogenesis, only recently have definitive insights emerged linking GATA-2 to human hematologic pathophysiologies. These pathophysiologies include myelodysplastic syndrome, acute myeloid leukemia and an immunodeficiency syndrome with complex phenotypes including leukemia. As GATA-2 has a pivotal role in the etiology of human cancer, it is instructive to consider mechanisms underlying normal GATA factor function/regulation and how dissecting such mechanisms may reveal unique opportunities for thwarting GATA-2-dependent processes in a therapeutic context. This article highlights GATA factor mechanistic principles, with a heavy emphasis on GATA-1 and GATA-2 functions in the hematopoietic system, and new links between GATA-2 dysregulation and human pathophysiologies.
Collapse
Affiliation(s)
- Emery H Bresnick
- Wisconsin Institutes for Medical Research, Paul Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| | | | | | | | | |
Collapse
|
202
|
Chromatin occupancy analysis reveals genome-wide GATA factor switching during hematopoiesis. Blood 2012; 119:3724-33. [PMID: 22383799 DOI: 10.1182/blood-2011-09-380634] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
There are many examples of transcription factor families whose members control gene expression profiles of diverse cell types. However, the mechanism by which closely related factors occupy distinct regulatory elements and impart lineage specificity is largely undefined. Here we demonstrate on a genome wide scale that the hematopoietic GATA factors GATA-1 and GATA-2 bind overlapping sets of genes, often at distinct sites, as a means to differentially regulate target gene expression and to regulate the balance between proliferation and differentiation. We also reveal that the GATA switch, which entails a chromatin occupancy exchange between GATA2 and GATA1 in the course of differentiation, operates on more than one-third of GATA1 bound genes. The switch is equally likely to lead to transcriptional activation or repression; and in general, GATA1 and GATA2 act oppositely on switch target genes. In addition, we show that genomic regions co-occupied by GATA2 and the ETS factor ETS1 are strongly enriched for regions marked by H3K4me3 and occupied by Pol II. Finally, by comparing GATA1 occupancy in erythroid cells and megakaryocytes, we find that the presence of ETS factor motifs is a major discriminator of megakaryocyte versus red cell specification.
Collapse
|
203
|
Nishikawa S. Hemangioblast: an in vitro phantom. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:603-8. [PMID: 23801536 DOI: 10.1002/wdev.38] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The hemangioblast, a bipotent progenitor that generates both endothelial cells (EC) and blood cells (BC) in the blood islands (BI) of the yolk sac (YS) has been a core notion of developmental hematology since the early 20th century. However, its actual presence has not been directly addressed for long. At the very end of the 20th century, the hemangioblast was revisited as a result of the development of new technologies that enable detection of such bipotent precursors in vitro. Such studies provided evidence for the presence of bipotent precursors for EC and BC. On the other hand, subsequent studies analyzing the processes occurring within BI strongly argued against the notion of hemanigioblasts and suggest that the hemangioblast is an in vitro artefact. In this article, I overview the history of the study of the hemangioblast and try to explain why hemangioblast that can be defined in vitro cannot be detected in BI.
Collapse
Affiliation(s)
- Shinichi Nishikawa
- Stem Cell Research Group, Riken Center for Developmental Biology, Kobe, Japan.
| |
Collapse
|
204
|
Vulcano F, Milazzo L, Ciccarelli C, Barca A, Agostini F, Altieri I, Macioce G, Di Virgilio A, Screnci M, De Felice L, Giampaolo A, Hassan HJ. Valproic acid affects the engraftment of TPO-expanded cord blood cells in NOD/SCID mice. Exp Cell Res 2012; 318:400-7. [DOI: 10.1016/j.yexcr.2011.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/07/2011] [Accepted: 11/24/2011] [Indexed: 10/14/2022]
|
205
|
Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing. Blood 2012; 119:2500-9. [PMID: 22289892 DOI: 10.1182/blood-2011-11-391730] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
HSCs undergo dramatic changes with aging. An increase in absolute numbers of HSCs along with a functional deficit in reconstitution potential and a shift toward production of myeloid cells are the hallmarks of murine hematopoietic aging. Here, we show that high levels of the inflammatory cytokine Rantes are found in the aging stem cell milieu. Forced overproduction of Rantes by retroviral expression in BM progenitors resulted in a deficit of T-cell output, and brief ex vivo exposure of HSCs to Rantes resulted in a decrease in T-cell progeny concomitant with an increase in myeloid progenitors. In contrast, Rantes knockout (KO) animals exhibit a decrease in myeloid-biased HSCs and myeloid progenitors and an increase in T cells and lymphoid-biased HSCs. KO HSCs retained their HSC subtype distribution and they produced more lymphoid-biased HSCs in transplantations. Rantes deficiency also resulted in a decreased mammalian target of rapamycin (mTOR) activity in KLS cells. In a heterochronic transplantation setting, we further show that aged HSCs placed in a young environment generate less myeloid cells. These data establish a critical role for environmental factors in the establishment of the aged-associated myeloid skewing phenotype, which may contribute to age-associated immune deficiency.
Collapse
|
206
|
Abstract
Transcription factors regulate formation and function of the heart, and perturbation of transcription factor expression and regulation disrupts normal heart structure and function. Multiple mechanisms regulate the level and locus-specific activity of transcription factors, including transcription, translation, subcellular localization, posttranslational modifications, and context-dependent interactions with other transcription factors, chromatin remodeling enzymes, and epigenetic regulators. The zinc finger transcription factor GATA4 is among the best-studied cardiac transcriptional factors. This review focuses on molecular mechanisms that regulate GATA4 transcriptional activity in the cardiovascular system, providing a framework to investigate and understand the molecular regulation of cardiac gene transcription by other transcription factors.
Collapse
|
207
|
Fiedler K, Brunner C. The role of transcription factors in the guidance of granulopoiesis. AMERICAN JOURNAL OF BLOOD RESEARCH 2012; 2:57-65. [PMID: 22432088 PMCID: PMC3301437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/17/2011] [Indexed: 05/31/2023]
Abstract
In recent years, the prospective isolation of hematopoietic stem and progenitor cells has identified the hierarchical structure of hematopoietic development and lineage-commitment. Moreover, these isolated cell populations allowed the elucitation of the molecular mechansims associated with lineage choice and revealed the indispensable functions of transcription factors as lineage determinants. This review summarizes current concepts regarding adult murine granulopoiesis and illustrates the importance of the transcription factors C/EBPα, PU.1 and GATA-2 for the development of neutrophil, eosinophil and basophil granulocytes.
Collapse
Affiliation(s)
- Katja Fiedler
- Institute of Physiological Chemistry, University Ulm Germany
| | | |
Collapse
|
208
|
Kang K, Jung H, Nam S, Lim JS. NDRG2 Promotes GATA-1 Expression through Regulation of the JAK2/STAT Pathway in PMA-stimulated U937 Cells. Immune Netw 2011; 11:348-57. [PMID: 22346774 PMCID: PMC3275703 DOI: 10.4110/in.2011.11.6.348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 10/18/2011] [Accepted: 10/29/2011] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND N-myc downstream-regulated gene 2 (NDRG2), a member of a newly described family of differentiation-related genes, has been characterized as a regulator of dendritic cells. However, the role of NDRG2 on the expression and activation of transcription factors in blood cells remains poorly understood. In this study, we investigated the effects of NDRG2 overexpression on GATA-1 expression in PMA-stimulated U937 cells. METHODS We generated NDRG2-overexpressing U937 cell line (U937-NDRG2) and treated the cells with PMA to investigate the role of NDRG2 on GATA-1 expression. RESULTS NDRG2 overexpression in U937 cells significantly induced GATA-1 expression in response to PMA stimulation. Interestingly, JAK2/STAT and BMP-4/Smad pathways associated with the induction of GATA-1 were activated in PMA-stimulated U937-NDRG2 cells. We found that the inhibition of JAK2 activation, but not of BMP-4/Smad signaling, can elicit a decrease of PMA-induced GATA-1 expression in U937-NDRG2 cells. CONCLUSION The results reveal that NDRG2 promotes the expression of GATA-1 through activation of the JAK2/STAT pathway, but not through the regulation of the BMP-4/Smad pathway in U937 cells. Our findings further suggest that NDRG2 may play a role as a regulator of erythrocyte and megakaryocyte differentiation during hematopoiesis.
Collapse
Affiliation(s)
- Kyeongah Kang
- Department of Biological Science and the Research Center for Women's Disease, Sookmyung Women's University, Seoul 140-742, Korea
| | | | | | | |
Collapse
|
209
|
Lineage regulators direct BMP and Wnt pathways to cell-specific programs during differentiation and regeneration. Cell 2011; 147:577-89. [PMID: 22036566 DOI: 10.1016/j.cell.2011.09.044] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 08/01/2011] [Accepted: 09/23/2011] [Indexed: 01/08/2023]
Abstract
BMP and Wnt signaling pathways control essential cellular responses through activation of the transcription factors SMAD (BMP) and TCF (Wnt). Here, we show that regeneration of hematopoietic lineages following acute injury depends on the activation of each of these signaling pathways to induce expression of key blood genes. Both SMAD1 and TCF7L2 co-occupy sites with master regulators adjacent to hematopoietic genes. In addition, both SMAD1 and TCF7L2 follow the binding of the predominant lineage regulator during differentiation from multipotent hematopoietic progenitor cells to erythroid cells. Furthermore, induction of the myeloid lineage regulator C/EBPα in erythroid cells shifts binding of SMAD1 to sites newly occupied by C/EBPα, whereas expression of the erythroid regulator GATA1 directs SMAD1 loss on nonerythroid targets. We conclude that the regenerative response mediated by BMP and Wnt signaling pathways is coupled with the lineage master regulators to control the gene programs defining cellular identity.
Collapse
|
210
|
Lomelí H, Vázquez M. Emerging roles of the SUMO pathway in development. Cell Mol Life Sci 2011; 68:4045-64. [PMID: 21892772 PMCID: PMC11115048 DOI: 10.1007/s00018-011-0792-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 08/02/2011] [Accepted: 08/04/2011] [Indexed: 01/01/2023]
Abstract
Sumoylation is a reversible post-translational modification that targets a variety of proteins mainly within the nucleus, but also in the plasma membrane and cytoplasm of the cell. It controls diverse cellular mechanisms such as subcellular localization, protein-protein interactions, or transcription factor activity. In recent years, the use of several developmental model systems has unraveled many critical functions for the sumoylation system in the early life of diverse species. In particular, detailed analyses of mutant organisms in both the components of the SUMO pathway and their targets have established the importance of the SUMO system in early developmental processes, such as cell division, cell lineage commitment, specification, and/or differentiation. In addition, an increasing number of developmental proteins, including transcription factors and epigenetic regulators, have been identified as sumoylation substrates. Sumoylation acts on these targets through various mechanisms. For example, this modification has been involved in converting a transcription factor from an activator to a repressor or in regulating the localization and/or stability of numerous transcription factors. This review will summarize current information on the function of sumoylation in embryonic development in different species from yeast to mammals.
Collapse
Affiliation(s)
- Hilda Lomelí
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | |
Collapse
|
211
|
Abstract
Developmental and homeostatic remodeling of cellular organelles is mediated by a complex process termed autophagy. The cohort of proteins that constitute the autophagy machinery functions in a multistep biochemical pathway. Though components of the autophagy machinery are broadly expressed, autophagy can occur in specialized cellular contexts, and mechanisms underlying cell-type-specific autophagy are poorly understood. We demonstrate that the master regulator of hematopoiesis, GATA-1, directly activates transcription of genes encoding the essential autophagy component microtubule-associated protein 1 light chain 3B (LC3B) and its homologs (MAP1LC3A, GABARAP, GABARAPL1, and GATE-16). In addition, GATA-1 directly activates genes involved in the biogenesis/function of lysosomes, which mediate autophagic protein turnover. We demonstrate that GATA-1 utilizes the forkhead protein FoxO3 to activate select autophagy genes. GATA-1-dependent LC3B induction is tightly coupled to accumulation of the active form of LC3B and autophagosomes, which mediate mitochondrial clearance as a critical step in erythropoiesis. These results illustrate a novel mechanism by which a master regulator of development establishes a genetic network to instigate cell-type-specific autophagy.
Collapse
|
212
|
Hsu AP, Sampaio EP, Khan J, Calvo KR, Lemieux JE, Patel SY, Frucht DM, Vinh DC, Auth RD, Freeman AF, Olivier KN, Uzel G, Zerbe CS, Spalding C, Pittaluga S, Raffeld M, Kuhns DB, Ding L, Paulson ML, Marciano BE, Gea-Banacloche JC, Orange JS, Cuellar-Rodriguez J, Hickstein DD, Holland SM. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood 2011; 118:2653-5. [PMID: 21670465 PMCID: PMC3172785 DOI: 10.1182/blood-2011-05-356352] [Citation(s) in RCA: 468] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 05/31/2011] [Indexed: 11/20/2022] Open
Abstract
The syndrome of monocytopenia, B-cell and NK-cell lymphopenia, and mycobacterial, fungal, and viral infections is associated with myelodysplasia, cytogenetic abnormalities, pulmonary alveolar proteinosis, and myeloid leukemias. Both autosomal dominant and sporadic cases occur. We identified 12 distinct mutations in GATA2 affecting 20 patients and relatives with this syndrome, including recurrent missense mutations affecting the zinc finger-2 domain (R398W and T354M), suggesting dominant interference of gene function. Four discrete insertion/deletion mutations leading to frame shifts and premature termination implicate haploinsufficiency as a possible mechanism of action as well. These mutations were found in hematopoietic and somatic tissues, and several were identified in families, indicating germline transmission. Thus, GATA2 joins RUNX1 and CEBPA not only as a familial leukemia gene but also as a cause of a complex congenital immunodeficiency that evolves over decades and combines predisposition to infection and myeloid malignancy.
Collapse
Affiliation(s)
- Amy P Hsu
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892-1684, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Goertz MJ, Wu Z, Gallardo TD, Hamra FK, Castrillon DH. Foxo1 is required in mouse spermatogonial stem cells for their maintenance and the initiation of spermatogenesis. J Clin Invest 2011; 121:3456-66. [PMID: 21865646 DOI: 10.1172/jci57984] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 07/06/2011] [Indexed: 12/16/2022] Open
Abstract
Spermatogonial stem cells (SSCs) capable of self-renewal and differentiation are the foundation for spermatogenesis. Although several factors important for these processes have been identified, the fundamental mechanisms regulating SSC self-renewal and differentiation remain unknown. Here, we investigated a role for the Foxo transcription factors in mouse spermatogenesis and found that Foxo1 specifically marks mouse gonocytes and a subset of spermatogonia with stem cell potential. Genetic analyses showed that Foxo1 was required for both SSC homeostasis and the initiation of spermatogenesis. Combined deficiency of Foxo1, Foxo3, and Foxo4 resulted in a severe impairment of SSC self-renewal and a complete block of differentiation, indicating that Foxo3 and Foxo4, although dispensable for male fertility, contribute to SSC function. By conditional inactivation of 3-phosphoinositide-dependent protein kinase 1 (Pdk1) and phosphatase and tensin homolog (Pten) in the male germ line, we found that PI3K signaling regulates Foxo1 stability and subcellular localization, revealing that the Foxos are pivotal effectors of PI3K-Akt signaling in SSCs. We also identified a network of Foxo gene targets--most notably Ret--that rationalized the maintenance of SSCs by the Foxos. These studies demonstrate that Foxo1 expression in the spermatogenic lineage is intimately associated with the stem cell state and revealed what we believe to be novel Foxo-dependent mechanisms underlying SSC self-renewal and differentiation, with implications for common diseases, including male infertility and testicular cancer, due to abnormalities in SSC function.
Collapse
Affiliation(s)
- Meredith J Goertz
- Department of Pathology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9072, USA
| | | | | | | | | |
Collapse
|
214
|
Genetic framework for GATA factor function in vascular biology. Proc Natl Acad Sci U S A 2011; 108:13641-6. [PMID: 21808000 DOI: 10.1073/pnas.1108440108] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vascular endothelial dysfunction underlies the genesis and progression of numerous diseases. Although the GATA transcription factor GATA-2 is expressed in endothelial cells and is implicated in coronary heart disease, it has been studied predominantly as a master regulator of hematopoiesis. Because many questions regarding GATA-2 function in the vascular biology realm remain unanswered, we used ChIP sequencing and loss-of-function strategies to define the GATA-2-instigated genetic network in human endothelial cells. In contrast to erythroid cells, GATA-2 occupied a unique target gene ensemble consisting of genes encoding key determinants of endothelial cell identity and inflammation. GATA-2-occupied sites characteristically contained motifs that bind activator protein-1 (AP-1), a pivotal regulator of inflammatory genes. GATA-2 frequently occupied the same chromatin sites as c-JUN and c-FOS, heterodimeric components of AP-1. Although all three components were required for maximal AP-1 target gene expression, GATA-2 was not required for AP-1 chromatin occupancy. GATA-2 conferred maximal phosphorylation of chromatin-bound c-JUN at Ser-73, which stimulates AP-1-dependent transactivation, in a chromosomal context-dependent manner. This work establishes a link between a GATA factor and inflammatory genes, mechanistic insights underlying GATA-2-AP-1 cooperativity and a rigorous genetic framework for understanding GATA-2 function in normal and pathophysiological vascular states.
Collapse
|
215
|
Chang TY, Wu YH, Cheng CC, Wang HW. Differentially regulated splice variants and systems biology analysis of Kaposi's sarcoma-associated herpesvirus-infected lymphatic endothelial cells. Nucleic Acids Res 2011; 39:6970-85. [PMID: 21646333 PMCID: PMC3167639 DOI: 10.1093/nar/gkr405] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alternative RNA splicing greatly increases proteome diversity, and the possibility of studying genome-wide alternative splicing (AS) events becomes available with the advent of high-throughput genomics tools devoted to this issue. Kaposi's sarcoma associated herpesvirus (KSHV) is the etiological agent of KS, a tumor of lymphatic endothelial cell (LEC) lineage, but little is known about the AS variations induced by KSHV. We analyzed KSHV-controlled AS using high-density microarrays capable of detecting all exons in the human genome. Splicing variants and altered exon–intron usage in infected LEC were found, and these correlated with protein domain modification. The different 3′-UTR used in new transcripts also help isoforms to escape microRNA-mediated surveillance. Exome-level analysis further revealed information that cannot be disclosed using classical gene-level profiling: a significant exon usage difference existed between LEC and CD34+ precursor cells, and KSHV infection resulted in LEC-to-precursor, dedifferentiation-like exon level reprogramming. Our results demonstrate the application of exon arrays in systems biology research, and suggest the regulatory effects of AS in endothelial cells are far more complex than previously observed. This extra layer of molecular diversity helps to account for various aspects of endothelial biology, KSHV life cycle and disease pathogenesis that until now have been unexplored.
Collapse
Affiliation(s)
- Ting-Yu Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, 11221, Taipei, Taiwan
| | | | | | | |
Collapse
|
216
|
Abstract
Master transcriptional regulators of development often function through dispersed cis elements at endogenous target genes. While cis-elements are routinely studied in transfection and transgenic reporter assays, it is challenging to ascertain how they function in vivo. To address this problem in the context of the locus encoding the critical hematopoietic transcription factor Gata2, we engineered mice lacking a cluster of GATA motifs 2.8 kb upstream of the Gata2 transcriptional start site. We demonstrate that the -2.8 kb site confers maximal Gata2 expression in hematopoietic stem cells and specific hematopoietic progenitors. By contrast to our previous demonstration that a palindromic GATA motif at the neighboring -1.8 kb site maintains Gata2 repression in terminally differentiating erythroid cells, the -2.8 kb site was not required to initiate or maintain repression. These analyses reveal qualitatively distinct functions of 2 GATA motif-containing regions in vivo.
Collapse
|
217
|
Lee HY, Johnson KD, Boyer ME, Bresnick EH. Relocalizing genetic loci into specific subnuclear neighborhoods. J Biol Chem 2011; 286:18834-44. [PMID: 21398517 DOI: 10.1074/jbc.m111.221481] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A poorly understood problem in genetics is how the three-dimensional organization of the nucleus contributes to establishment and maintenance of transcriptional networks. Genetic loci can reside in chromosome "territories" and undergo dynamic changes in subnuclear positioning. Such changes appear to be important for regulating transcription, although many questions remain regarding how loci reversibly transit in and out of their territories and the functional significance of subnuclear transitions. We addressed this issue using GATA-1, a master regulator of hematopoiesis implicated in human leukemogenesis, which often functions with the coregulator Friend of GATA-1 (FOG-1). In a genetic complementation assay in GATA-1-null cells, GATA-1 expels FOG-1-dependent target genes from the nuclear periphery during erythroid maturation, but the underlying mechanisms are unknown. We demonstrate that GATA-1 induces extrusion of the β-globin locus away from its chromosome territory at the nuclear periphery, and extrusion precedes the maturation-associated transcriptional surge and morphological transition. FOG-1 and its interactor Mi-2β, a chromatin remodeling factor commonly linked to repression, were required for locus extrusion. Erythroid Krüppel-like factor, a pivotal regulator of erythropoiesis that often co-occupies chromatin with GATA-1, also promoted locus extrusion. Disruption of transcriptional maintenance did not restore the locus subnuclear position that preceded activation. These results lead to a model for how a master developmental regulator relocalizes a locus into a new subnuclear neighborhood that is permissive for high level transcription as an early step in establishing a cell type-specific genetic network. Alterations in the regulatory milieu can abrogate maintenance without reversion of locus residency back to its original neighborhood.
Collapse
Affiliation(s)
- Hsiang-Ying Lee
- Wisconsin Institutes for Medical Research, Paul Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | | | | | | |
Collapse
|
218
|
Kelleher SL, McCormick NH, Velasquez V, Lopez V. Zinc in specialized secretory tissues: roles in the pancreas, prostate, and mammary gland. Adv Nutr 2011; 2:101-11. [PMID: 22332039 PMCID: PMC3065755 DOI: 10.3945/an.110.000232] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zinc (Zn) is an essential micronutrient required for over 300 different cellular processes, including DNA and protein synthesis, enzyme activity, and intracellular signaling. Cellular Zn homeostasis necessitates the compartmentalization of Zn into intracellular organelles, which is tightly regulated through the integration of Zn transporting mechanisms. The pancreas, prostate, and mammary gland are secretory tissues that have unusual Zn requirements and thus must tightly regulate Zn metabolism through integrating Zn import, sequestration, and export mechanisms. Recent findings indicate that these tissues utilize Zn for basic cellular processes but also require Zn for unique cellular needs. In addition, abundant Zn is transported into the secretory pathway and a large amount is subsequently secreted in a tightly regulated manner for unique biological processes. Expression of numerous members of the SLC30A (ZnT) and SLC39A (Zip) gene families has been documented in these tissues, yet there is limited understanding of their precise functional role in Zn metabolism or their regulation. Impairments in Zn secretion from the pancreas, prostate, and mammary gland are associated with disorders such as diabetes, infertility, and cancer, respectively. In this review, we will provide a brief summary of the specific role of Zn in each tissue and describe our current knowledge regarding how Zn metabolism is regulated. Finally, in each instance, we will reflect upon how this information shapes our current understanding of the role of Zn in these secretory tissues with respect to human health and disease.
Collapse
Affiliation(s)
- Shannon L Kelleher
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802-6110, USA.
| | | | | | | |
Collapse
|
219
|
Identification of distal cis-regulatory elements at mouse mitoferrin loci using zebrafish transgenesis. Mol Cell Biol 2011; 31:1344-56. [PMID: 21248200 DOI: 10.1128/mcb.01010-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitoferrin 1 (Mfrn1; Slc25a37) and mitoferrin 2 (Mfrn2; Slc25a28) function as essential mitochondrial iron importers for heme and Fe/S cluster biogenesis. A genetic deficiency of Mfrn1 results in a profound hypochromic anemia in vertebrate species. To map the cis-regulatory modules (CRMs) that control expression of the Mfrn genes, we utilized genome-wide chromatin immunoprecipitation (ChIP) datasets for the major erythroid transcription factor GATA-1. We identified the CRMs that faithfully drive the expression of Mfrn1 during blood and heart development and Mfrn2 ubiquitously. Through in vivo analyses of the Mfrn-CRMs in zebrafish and mouse, we demonstrate their functional and evolutionary conservation. Using knockdowns with morpholinos and cell sorting analysis in transgenic zebrafish embryos, we show that GATA-1 directly regulates the expression of Mfrn1. Mutagenesis of individual GATA-1 binding cis elements (GBE) demonstrated that at least two of the three GBE within this CRM are functionally required for GATA-mediated transcription of Mfrn1. Furthermore, ChIP assays demonstrate switching from GATA-2 to GATA-1 at these elements during erythroid maturation. Our results provide new insights into the genetic regulation of mitochondrial function and iron homeostasis and, more generally, illustrate the utility of genome-wide ChIP analysis combined with zebrafish transgenesis for identifying long-range transcriptional enhancers that regulate tissue development.
Collapse
|
220
|
Yaguchi T, Nakano T, Gotoh A, Nishizaki T. Adenosine Promotes GATA-2-Regulated p53 Gene Transcription to Induce HepG2 Cell Apoptosis. Cell Physiol Biochem 2011; 28:761-70. [DOI: 10.1159/000335770] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2011] [Indexed: 11/19/2022] Open
|
221
|
Zaytouni T, Efimenko EE, Tevosian SG. GATA transcription factors in the developing reproductive system. ADVANCES IN GENETICS 2011; 76:93-134. [PMID: 22099693 DOI: 10.1016/b978-0-12-386481-9.00004-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Previous work has firmly established the role for both GATA4 and FOG2 in the initial global commitment to sexual fate, but their (joint or individual) function in subsequent steps remained unknown. Hence, gonad-specific deletions of these genes in mice were required to reveal their roles in sexual development and gene regulation. The development of tissue-specific Cre lines allowed for substantial advances in the understanding of the function of GATA proteins in sex determination, gonadal differentiation and reproductive development in mice. Here we summarize the recent work that examined the requirement of GATA4 and FOG2 proteins at several critical stages in testis and ovarian differentiation. We also discuss the molecular mechanisms involved in this regulation through the control of Dmrt1 gene expression in the testis and the canonical Wnt/ß-catenin pathway in the ovary.
Collapse
Affiliation(s)
- Tamara Zaytouni
- Department of Genetics, Dartmouth Medical School, Hanover, NH, USA
| | | | | |
Collapse
|
222
|
Building multifunctionality into a complex containing master regulators of hematopoiesis. Proc Natl Acad Sci U S A 2010; 107:20429-34. [PMID: 21059912 DOI: 10.1073/pnas.1007804107] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Developmental control mechanisms often use multimeric complexes containing transcription factors, coregulators, and additional non-DNA binding components. It is challenging to ascertain how such components contribute to complex function at endogenous loci. We analyzed the function of components of a complex containing master regulators of hematopoiesis (GATA-1 and Scl/TAL1) and the non-DNA binding components ETO2, the LIM domain protein LMO2, and the chromatin looping factor LDB1. Surprisingly, we discovered that ETO2 and LMO2 regulate distinct target-gene ensembles in erythroid cells. ETO2 commonly repressed GATA-1 function via suppressing histone H3 acetylation, although it also regulated methylation of histone H3 at lysine 27 at select loci. Prior studies defined multiple modes by which GATA-1 regulates target genes with or without the coregulator Friend of GATA-1 (FOG-1). LMO2 selectively repressed genes that GATA-1 represses in a FOG-1-independent manner. As LMO2 controls hematopoiesis, its dysregulation is leukemogenic, and its influence on GATA factor function is unknown, this mechanistic link has important biological and pathophysiological implications. The demonstration that ETO2 and LMO2 exert qualitatively distinct functions at endogenous loci illustrates how components of complexes containing master developmental regulators can impart the capacity to regulate unique cohorts of target genes, thereby diversifying complex function.
Collapse
|