201
|
Medicinal Applications of Plant Lectins. ANTITUMOR POTENTIAL AND OTHER EMERGING MEDICINAL PROPERTIES OF NATURAL COMPOUNDS 2012. [PMCID: PMC7120034 DOI: 10.1007/978-94-007-6214-5_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant lectins are a unique group of proteins and glycoproteins with potent biological activity and have received widespread attention for many years. They can be found in wheat, corn, tomatoes, peanuts, kidney beans, bananas, peas, lentils, soybeans, mushrooms, tubers, seeds, mistletoe and potatoes among many others. Due to their ability to bind reversibly with specific carbohydrate structures and their abundant availability, plant lectins have commonly been used as a molecular tool in various disciplines of biology and medicine. Whilst once thought of being a dietary toxin, the focus on plant lectins has since shifted to understanding the useful properties of these lectins and utilizing them in medicinal applications to advance human health. This chapter reviews the current and potential applications of plant lectins in various areas of medically related research.
Collapse
|
202
|
Ueda T, Nakamura Y, Smith CM, Copits BA, Inoue A, Ojima T, Matsunaga S, Swanson GT, Sakai R. Isolation of novel prototype galectins from the marine ball sponge Cinachyrella sp. guided by their modulatory activity on mammalian glutamate-gated ion channels. Glycobiology 2012; 23:412-25. [PMID: 23213112 DOI: 10.1093/glycob/cws165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Here we report the bioactivity-guided isolation of novel galectins from the marine sponge Cinachyrella sp., collected from Iriomote Island, Japan. The lectin proteins, which we refer to as the Cinachyrella galectins (CchGs), were identified as the active principles in an aqueous sponge extract that modulated the function of mammalian ionotropic glutamate receptors. Aggregation of rabbit erythrocytes by CchGs was competed most effectively by galactosides but not mannose, a profile characteristic of members of the galectin family of oligosaccharide-binding proteins. The lectin activity was remarkably stable, with only a modest loss in hemagglutination after exposure of the protein to 100°C for 1 h, and showed little sensitivity to calcium concentration. CchG-1 and -2 appeared as 16 and 18 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively, whereas matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry indicated broad ion clusters centered at 16,216 and 16,423, respectively. The amino acid sequences of the CchGs were deduced using a combination of Edman degradation and cDNA cloning and revealed that the proteins were distant orthologs of animal prototype galectins and that multiple isolectins comprised the CchGs. One of the isolectins was expressed as a recombinant protein and exhibited physico-chemical and biological properties comparable with those of the natural lectins. The biochemical properties of the CchGs as well as their unexpected activity on mammalian excitatory amino acid receptors suggest that further analysis of these new members of the galectin family will yield further glycobiological and neurophysiological insights.
Collapse
Affiliation(s)
- Takuya Ueda
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho Hakodate, Hokkaido 041-8611, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Bovi M, Cenci L, Perduca M, Capaldi S, Carrizo ME, Civiero L, Chiarelli LR, Galliano M, Monaco HL. BEL -trefoil: A novel lectin with antineoplastic properties in king bolete (Boletus edulis) mushrooms. Glycobiology 2012; 23:578-92. [DOI: 10.1093/glycob/cws164] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
204
|
How nature can exploit nonspecific catalytic and carbohydrate binding modules to create enzymatic specificity. Proc Natl Acad Sci U S A 2012; 109:20889-94. [PMID: 23213210 DOI: 10.1073/pnas.1212034109] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Noncatalytic carbohydrate binding modules (CBMs) are components of glycoside hydrolases that attack generally inaccessible substrates. CBMs mediate a two- to fivefold elevation in the activity of endo-acting enzymes, likely through increasing the concentration of the appended enzymes in the vicinity of the substrate. The function of CBMs appended to exo-acting glycoside hydrolases is unclear because their typical endo-binding mode would not fulfill a targeting role. Here we show that the Bacillus subtilis exo-acting β-fructosidase SacC, which specifically hydrolyses levan, contains the founding member of CBM family 66 (CBM66). The SacC-derived CBM66 (BsCBM66) targets the terminal fructosides of the major fructans found in nature. The crystal structure of BsCBM66 in complex with ligands reveals extensive interactions with the terminal fructose moiety (Fru-3) of levantriose but only limited hydrophobic contacts with Fru-2, explaining why the CBM displays broad specificity. Removal of BsCBM66 from SacC results in a ~100-fold reduction in activity against levan. The truncated enzyme functions as a nonspecific β-fructosidase displaying similar activity against β-2,1- and β-2,6-linked fructans and their respective fructooligosaccharides. Conversely, appending BsCBM66 to BT3082, a nonspecific β-fructosidase from Bacteroides thetaiotaomicron, confers exolevanase activity on the enzyme. We propose that BsCBM66 confers specificity for levan, a branched fructan, through an "avidity" mechanism in which the CBM and the catalytic module target the termini of different branches of the same polysaccharide molecule. This report identifies a unique mechanism by which CBMs modulate enzyme function, and shows how specificity can be tailored by integrating nonspecific catalytic and binding modules into a single enzyme.
Collapse
|
205
|
Almadaly E, El-Kon I, Heleil B, Fattouh ES, Mukoujima K, Ueda T, Hoshino Y, Takasu M, Murase T. Methodological factors affecting the results of staining frozen–thawed fertile and subfertile Japanese Black bull spermatozoa for acrosomal status. Anim Reprod Sci 2012. [DOI: 10.1016/j.anireprosci.2012.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
206
|
Tumor-associated glycans and their role in gynecological cancers: accelerating translational research by novel high-throughput approaches. Metabolites 2012; 2:913-39. [PMID: 24957768 PMCID: PMC3901231 DOI: 10.3390/metabo2040913] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/08/2012] [Accepted: 11/09/2012] [Indexed: 02/06/2023] Open
Abstract
Glycans are important partners in many biological processes, including carcinogenesis. The rapidly developing field of functional glycomics becomes one of the frontiers of biology and biomedicine. Aberrant glycosylation of proteins and lipids occurs commonly during malignant transformation and leads to the expression of specific tumor-associated glycans. The appearance of aberrant glycans on carcinoma cells is typically associated with grade, invasion, metastasis and overall poor prognosis. Cancer-associated carbohydrates are mostly located on the surface of cancer cells and are therefore potential diagnostic biomarkers. Currently, there is increasing interest in cancer-associated aberrant glycosylation, with growing numbers of characteristic cancer targets being detected every day. Breast and ovarian cancer are the most common and lethal malignancies in women, respectively, and potential glycan biomarkers hold promise for early detection and targeted therapies. However, the acceleration of research and comprehensive multi-target investigation of cancer-specific glycans could only be successfully achieved with the help of a combination of novel high-throughput glycomic approaches.
Collapse
|
207
|
Celi M, Filiciotto F, Parrinello D, Buscaino G, Damiano MA, Cuttitta A, D'Angelo S, Mazzola S, Vazzana M. Physiological and agonistic behavioural response of Procambarus clarkii to an acoustic stimulus. ACTA ACUST UNITED AC 2012; 216:709-18. [PMID: 23125346 DOI: 10.1242/jeb.078865] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study examined the effects of an acoustic stimulus on the haemolymph and agonistic behaviour of the red swamp crayfish, Procambarus clarkii. The experiment was conducted in a tank equipped with a video recording system using six groups (three control and three test groups) of five adult crayfish (30 specimens in total). After 1 h of habituation, the behaviour of the crayfish was monitored for 2 h. During the second hour, the animals in the test groups were exposed to a linear sweep (frequency range 0.1-25 kHz; peak amplitude 148 dB(rms) re. 1 μPa at 12 kHz) acoustic stimulus for 30 min. Exposure to the noise produced significant variations in haemato-immunological parameters as well as a reduction in agonistic behaviour.
Collapse
Affiliation(s)
- Monica Celi
- Laboratory of Marine Immunobiology, Department of Environmental Biology and Biodiversity, Division of Animal Biology and Anthropology, University of Palermo, Via Archirafi 18, Palermo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Lu Q, Li N, Luo J, Yu M, Huang Y, Wu X, Wu H, Liu XY, Li G. Pinellia pedatisecta agglutinin interacts with the methylosome and induces cancer cell death. Oncogenesis 2012; 1:e29. [PMID: 23552401 PMCID: PMC3503292 DOI: 10.1038/oncsis.2012.30] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pinellia pedatisecta agglutinin (PPA) is a specific mannose-binding plant lectin accumulated in the tuber of P. pedatisecta. In the work presented, the cytotoxicity of PPA to cancer cells was investigated through exogenous expression. A PPA gene was transduced into normal and cancer cell lines through plasmid vectors, and the effect of PPA expression was examined. Results showed that PPA translocated into the nucleus, colocalized with DNA and induced cell death. A mannose-binding motif and a V103-W130 region directed the nuclear translocation of PPA. Coprecipitation, mass spectrometry and western blotting analysis further indentified that PPA was associated with the methylosome, which contains methylosome protein 50 and protein arginine methyltransferase 5 (PRMT5). Knockdown of PRMT5 significantly inhibited the PPA-induced cell death, suggesting that PPA used the methylosome as a target. Furthermore, Ad.surp-PPA, an adenovirus vector in which the PPA gene was controlled by a survivin promoter (surp), selectively inhibited the proliferation of cancer cell lines. Taken together, the expression of PPA gene elicited significant cytotoxicity to cancer cells through targeting the methylosome and might be developed into a novel agent in cancer gene therapy.
Collapse
Affiliation(s)
- Q Lu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Ojala JRM, Pikkarainen T, Domogatskaya A, Tryggvason K, Rodin S. A novel scavenger receptor 5-based antibiotic-independent selection method for generation of stable recombinant protein-producing mammalian cell lines especially suitable for proteins affecting cell adhesion. Biotechniques 2012; 53:221-30. [DOI: 10.2144/0000113936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/24/2012] [Indexed: 11/23/2022] Open
Abstract
The establishment of stable recombinant protein-producing mammalian cell lines is an expensive, time-consuming, tedious procedure. In some cases, expressed recombinant proteins have adverse effects on host cell function, including cell adhesion. Based on the adhesive properties of SCARA5, a scavenger receptor (SR) of the class A SR family, we developed a method for selection of stable recombinant protein-producing cell clones that relies on an internal ribosome entry site (IRES) vector where the protein of interest is expressed in the same messenger RNA as SCARA5, resulting in improved adhesion and increased cell viability of recombinant protein-producing cells in serum-free media. This method does not depend on antibiotics, complicated selective cell culture media or equipment, and thus offers the advantages of being inexpensive, environmentally friendly, and simple.
Collapse
Affiliation(s)
- Juha Risto Matias Ojala
- Divisions of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Timo Pikkarainen
- Divisions of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Anna Domogatskaya
- Divisions of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Karl Tryggvason
- Divisions of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Sergey Rodin
- Divisions of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
210
|
Mirelman D, Bayer EA, Reisner Y. Nathan Sharon: 1925-2011. Adv Carbohydr Chem Biochem 2012; 67:2-18. [PMID: 22973609 DOI: 10.1016/b978-0-12-396527-1.00001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
211
|
Abstract
Imaging technologies developed in the early 20th century achieved contrast solely by relying on macroscopic and morphological differences between the tissues of interest and the surrounding tissues. Since then, there has been a movement toward imaging at the cellular and molecular level in order to visualize biological processes. This rapidly growing field is known as molecular imaging. In the last decade, many methodologies for imaging proteins have emerged. However, most of these approaches cannot be extended to imaging beyond the proteome. Here, we highlight some of the recently developed technologies that enable imaging of non-proteinaceous molecules in the cell: lipids, signalling molecules, inorganic ions, glycans, nucleic acids, small-molecule metabolites, and protein post-translational modifications such as phosphorylation and methylation.
Collapse
Affiliation(s)
- Pamela V. Chang
- Department of Chemistry, University of California, Berkeley, 94720, USA
| | - Carolyn R. Bertozzi
- Department of Chemistry, University of California, Berkeley, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, U.S.A
- Howard Hughes Medical Institute, University of California, Berkeley, U.S.A
| |
Collapse
|
212
|
Dresch RR, Zanetti GD, Irazoqui FJ, Sendra VG, Zlocowski N, Bernardi A, Rosa RM, Battastini AMO, Henriques AT, Vozári-Hampe MM. Staining tumor cells with biotinylated ACL-I, a lectin isolated from the marine sponge, Axinella corrugata. Biotech Histochem 2012; 88:1-9. [PMID: 22954064 DOI: 10.3109/10520295.2012.717304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Axinella corrugata lectin 1 (ACL-1) was purified from aqueous extracts of the marine sponge, Axinella corrugata. ACL-1 strongly agglutinates native rabbit erythrocytes. The hemagglutination is inhibited by N-acetyl derivatives, particularly N, N', N"-triacetylchitotriose, N-acetyl-D-glucosamine, N-acetyl-D-mannosamine and N-acetyl-D-galactosamine. We investigated the capacity of biotinylated ACL-1 to stain several transformed cell lines including breast (T-47D, MCF7), colon (HT-29), lung (H460), ovary (OVCAR-3) and bladder (T24). ACL-I may bind to both monosaccharides and oligosaccharides of tumor cells, N-acetyl-D-galactosamine, and N-acetyl-D- glucosamine glycan types. The lectins are useful, not only as markers and diagnostic parameters, but also for tissue mapping in suspicious neoplasms. In addition, they provide a better understanding of neoplasms at the cytological and molecular levels. Furthermore, the use of potential metastatic markers such as lectins is crucial for developing successful tools for therapy against cancer. We observed that biotinylated ACL-I stains tumor cells and may hold potential as a probe for identifying transformed cells and for studying glycan structures synthesized by such cells.
Collapse
Affiliation(s)
- R R Dresch
- Postgraduation Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Sul, 90610-000, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Domenech M, García E, Prieto A, Moscoso M. Insight into the composition of the intercellular matrix of Streptococcus pneumoniae biofilms. Environ Microbiol 2012; 15:502-16. [PMID: 22913814 DOI: 10.1111/j.1462-2920.2012.02853.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/21/2012] [Indexed: 12/01/2022]
Abstract
Biofilm matrices consist of a mixture of extracellular polymeric substances synthesized in large part by the biofilm-producing microorganisms themselves. These matrices are responsible for the cohesion and three-dimensional architecture of biofilms. The present study demonstrates the existence of a matrix composed of extracellular DNA, proteins and polysaccharides in the biofilm formed by the human pathogen Streptococcus pneumoniae. Extracellular DNA, visualized by fluorescent labelling, was an important component of this matrix. The existence of DNA-protein complexes associated with bacterial aggregates and other polymers was hypothesized based on the unexpected DNA binding activity of lysozyme LytC, a novel moonlighting protein. Actually, a 25-amino-acid-long peptide derived from LytC (positions 408 and 432 of the mature LytC) was also capable of efficiently binding to DNA. Moreover, the presence of intercellular DNA-LytC protein complexes in pneumococcal biofilms was demonstrated by confocal laser scanning microscopy. Evidence of extracellular polysaccharide different from the capsule was obtained by staining with Calcofluor dye and four types of lectin conjugated to Alexa fluorophores, and by incubation with glycoside hydrolases. The presence of residues of Glcp(1→4) and GlcNAc(1→4) (in its deacetylated form) in the pneumococcal biofilm was confirmed by GC-MS techniques.
Collapse
Affiliation(s)
- Mirian Domenech
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
214
|
Cell surface lectin array: parameters affecting cell glycan signature. Glycoconj J 2012; 30:195-203. [PMID: 22899543 DOI: 10.1007/s10719-012-9433-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/10/2012] [Accepted: 07/17/2012] [Indexed: 12/23/2022]
Abstract
Among the "omics", glycomics is one of the most complex fields and needs complementary strategies of analysis to decipher the "glycan dictionary". As an alternative method, which has developed since the beginning of the 21st century, lectin array technology could generate relevant information related to glycan motifs, accessibility and a number of other valuable insights from molecules (purified and non-purified) or cells. Based on a cell line model, this study deals with the key parameters that influence the whole cell surface glycan interaction with lectin arrays and the consequences on the interpretation and reliability of the results. The comparison between the adherent and suspension forms of Chinese Hamster Ovary (CHO) cells, showed respective glycan signatures, which could be inhibited specifically by neoglycoproteins. The modifications of the respective glycan signatures were also revealed according to the detachment modes and cell growth conditions. Finally the power of lectin array technology was highlighted by the possibility of selecting and characterizing a specific clone from the mother cell line, based on the slight difference determination in the respective glycan signatures.
Collapse
|
215
|
Isolation and characterization of a sex-specific lectin in a marine red alga, Aglaothamnion oosumiense Itono. Appl Environ Microbiol 2012; 78:7283-9. [PMID: 22865077 DOI: 10.1128/aem.00415-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In red algae, spermatial binding to female trichogynes is mediated by a lectin-carbohydrate complementary system. Aglaothamnion oosumiense is a microscopic filamentous red alga. The gamete recognition and binding occur at the surface of the hairlike trichogyne on the female carpogonium. Male spermatia are nonmotile. Previous studies suggested the presence of a lectin responsible for gamete recognition on the surface of female trychogynes. A novel N-acetyl-D-galactosamine-specific protein was isolated from female plants of A. oosumiense by affinity chromatography and named AOL1. The lectin was monomeric and did not agglutinate horse blood or human erythrocytes. The N-terminal amino acid sequence of the protein was analyzed, and degenerate primers were designed. A full-length cDNA encoding the lectin was obtained using rapid amplification of cDNA ends-PCR (RACE-PCR). The cDNA was 1,095 bp in length and coded for a protein of 259 amino acids with a deduced molecular mass of 21.4 kDa, which agreed well with the protein data. PCR analysis using genomic DNA showed that both male and female plants have this gene. However, Northern blotting and two-dimensional electrophoresis showed that this protein was expressed 12 to 15 times more in female plants. The lectin inhibited spermatial binding to the trichogynes when preincubated with spermatia, suggesting its involvement in gamete binding.
Collapse
|
216
|
Shim E, Shim J, Klochkova TA, Han JW, Kim GH. PURIFICATION OF A SEX-SPECIFIC LECTIN INVOLVED IN GAMETE BINDING OF AGLAOTHAMNION CALLOPHYLLIDICOLA (RHODOPHYTA)(1). JOURNAL OF PHYCOLOGY 2012; 48:916-24. [PMID: 27009002 DOI: 10.1111/j.1529-8817.2012.01155.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Egg and sperm binding and correct recognition is the first stage for successful fertilization. In red algae, spermatial attachment to female trichogynes is mediated by a specific binding between the lectin(s) distributed on the surface of trichogyne and the complementary carbohydrates on the spermatial surface. A female-specific lectin was isolated from Aglaothamnion callophyllidicola by agarose-bound fetuin affinity chromatography. Two proteins, 50 and 14 kDa, eluted from the fetuin column were separated using a native-polyacrylamide gel electrophoresis method and subjected to a gamete binding assay. The 50 kDa protein, which blocked spermatial binding to female trichogynes, was used for further analysis. Internal amino acid sequence of the 50 kDa protein was analyzed using matrix-assisted laser desorption/ionization-mass spectrometry and degenerated primers were designed based on the information. A full-length cDNA encoding the lectin was obtained using rapid amplification of cDNA ends polymerase chain reaction (PCR). The cDNA was 1552 bp in length and coded for a protein of 450 amino acids with a deduced molecular mass of 50.7 kDa, which agreed well with the protein data. Real-time PCR analysis showed that this protein was up-regulated about 10-fold in female thalli. As the protein was novel and showed no significant homology to any known proteins, it was designated Rhodobindin.
Collapse
Affiliation(s)
- Eunyoung Shim
- Department of Biology, Kongju National University, Kongju, Chungnam 314-701, Korea
| | - Junbo Shim
- Department of Biology, Kongju National University, Kongju, Chungnam 314-701, Korea
| | - Tatyana A Klochkova
- Department of Biology, Kongju National University, Kongju, Chungnam 314-701, Korea
| | - Jong Won Han
- Department of Biology, Kongju National University, Kongju, Chungnam 314-701, Korea
| | - Gwang Hoon Kim
- Department of Biology, Kongju National University, Kongju, Chungnam 314-701, Korea
| |
Collapse
|
217
|
Expression of lec-1, a mycobiont gene encoding a galectin-like protein in the lichen Peltigera membranacea. Symbiosis 2012. [DOI: 10.1007/s13199-012-0175-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
218
|
Manikandan B, Ramar M. Detection and characterization of natural and inducible lectins in human serum. RESULTS IN IMMUNOLOGY 2012; 2:132-41. [PMID: 24371577 DOI: 10.1016/j.rinim.2012.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/15/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
Abstract
This study was performed to detect and characterise the possible occurrence of natural and inducible lectins in human serum by hemagglutination method, wherein, the serum was treated using exogenous elicitors, namely, proteases and detergents. Natural and inducible lectins were detected and characterised in human serum. Untreated serum agglutinated buffalo and rabbit RBC, while serum treated with pronase, trypsin, α-chymotrypsin or SDS for the very first time, agglutinated hen/hen and sheep RBC within 15 min in a dosimetric manner. Cross adsorption test revealed that both trypsin and α-chymotrypsin-treated serum showed similar RBC adsorption pattern. The lectin activity in untreated, pronase-treated serum was cation independent and moderately sensitive/insensitive to calcium chelator EDTA, whereas, trypsin-treated serum was cation dependent as well as EDTA sensitive (sheep RBC), cation independent and EDTA insensitive (hen RBC). Hemagglutination of untreated serum was inhibited by certain glycosides and di-, oligo-saccharides, whereas, activity in pronase-treated serum was inhibited by hexosamines. By contrast, hemagglutination of trypsin-treated serum showed specificity for acetylated mannosamine as well as sialic acid for sheep RBC and certain glycoproteins for hen RBC. Thus, we have detected inducible lectins with distinct ligand binding specificity, upon treatment of human serum with proteases, namely, pronase and trypsin. Nevertheless, lectin activity was found in untreated human serum too with different ligand specificity.
Collapse
Affiliation(s)
- Beulaja Manikandan
- Department of Zoology, University of Madras, Guindy campus, Chennai 600 025, India
| | - Manikandan Ramar
- Department of Animal Health and Management, Alagappa University, Alagappapuram, Karaikudi 630003, India
| |
Collapse
|
219
|
Zhang Y, Yamamoto S, Yamaguchi T, Kato K. Application of paramagnetic NMR-validated molecular dynamics simulation to the analysis of a conformational ensemble of a branched oligosaccharide. Molecules 2012; 17:6658-71. [PMID: 22728360 PMCID: PMC6268797 DOI: 10.3390/molecules17066658] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 02/05/2023] Open
Abstract
Oligosaccharides of biological importance often exhibit branched covalent structures and dynamic conformational multiplicities. Here we report the application of a method that we developed, which combined molecular dynamics (MD) simulations and lanthanide-assisted paramagnetic NMR spectroscopy, to evaluate the dynamic conformational ensemble of a branched oligosaccharide. A lanthanide-chelating tag was attached to the reducing end of the branched tetrasaccharide of GM2 ganglioside to observe pseudocontact shifts as the source of long distance information for validating the conformational ensemble derived from MD simulations. By inspecting the results, the conformational space of the GM2 tetrasaccharide was compared with that of its nonbranched derivative, the GM3 trisaccharide.
Collapse
Affiliation(s)
- Ying Zhang
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; (Y.Z.); (S.Y.); (T.Y.)
- Department of Functional Molecular Science, the Graduate University for Advanced Studies, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Sayoko Yamamoto
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; (Y.Z.); (S.Y.); (T.Y.)
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Takumi Yamaguchi
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; (Y.Z.); (S.Y.); (T.Y.)
- Department of Functional Molecular Science, the Graduate University for Advanced Studies, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Koichi Kato
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; (Y.Z.); (S.Y.); (T.Y.)
- Department of Functional Molecular Science, the Graduate University for Advanced Studies, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
- The Glycoscience Institute, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
- GLYENCE Co., Ltd., 2-22-8 Chikusa, Chikusa-ku, Nagoya 464-0858, Japan
- Author to whom correspondence should be addressed; ; Tel.: +81-564-59-5225; Fax: +81-564-59-5224
| |
Collapse
|
220
|
Maity S, Jannasch A, Adamec J, Nalepa T, Höök TO, Sepúlveda MS. Starvation causes disturbance in amino acid and fatty acid metabolism in Diporeia. Comp Biochem Physiol B Biochem Mol Biol 2012; 161:348-55. [DOI: 10.1016/j.cbpb.2011.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/22/2011] [Accepted: 12/29/2011] [Indexed: 11/26/2022]
|
221
|
Kakani S, Yardeni T, Poling J, Ciccone C, Niethamer T, Klootwijk ED, Manoli I, Darvish D, Hoogstraten-Miller S, Zerfas P, Tian E, Ten Hagen KG, Kopp JB, Gahl WA, Huizing M. The Gne M712T mouse as a model for human glomerulopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1431-40. [PMID: 22322304 DOI: 10.1016/j.ajpath.2011.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 10/13/2011] [Accepted: 12/09/2011] [Indexed: 12/17/2022]
Abstract
Pathological glomerular hyposialylation has been implicated in certain unexplained glomerulopathies, including minimal change nephrosis, membranous glomerulonephritis, and IgA nephropathy. We studied our previously established mouse model carrying a homozygous mutation in the key enzyme of sialic acid biosynthesis, N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. Mutant mice died before postnatal day 3 (P3) from severe glomerulopathy with podocyte effacement and segmental glomerular basement membrane splitting due to hyposialylation. Administration of the sialic acid precursor N-acetylmannosamine (ManNAc) led to improved sialylation and survival of mutant pups beyond P3. We determined the onset of the glomerulopathy in the embryonic stage. A lectin panel, distinguishing normally sialylated from hyposialylated glycans, used WGA, SNA, PNA, Jacalin, HPA, and VVA, indicating glomerular hyposialylation of predominantly O-linked glycoproteins in mutant mice. The glomerular glycoproteins nephrin and podocalyxin were hyposialylated in this unique murine model. ManNAc treatment appeared to ameliorate the hyposialylation status of mutant mice, indicated by a lectin histochemistry pattern similar to that of wild-type mice, with improved sialylation of both nephrin and podocalyxin, as well as reduced albuminuria compared with untreated mutant mice. These findings suggest application of our lectin panel for categorizing human kidney specimens based on glomerular sialylation status. Moreover, the partial restoration of glomerular architecture in ManNAc-treated mice highlights ManNAc as a potential treatment for humans affected with disorders of glomerular hyposialylation.
Collapse
Affiliation(s)
- Sravan Kakani
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-1851, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Pandey B, Tan YH, Fujikawa K, Demchenko AV, Stine KJ. Comparative Study of the Binding of Concanavalin A to Self-Assembled Monolayers Containing a Thiolated α-Mannoside on Flat Gold and on Nanoporous Gold. J Carbohydr Chem 2012; 31:466-503. [PMID: 23519474 PMCID: PMC3601678 DOI: 10.1080/07328303.2012.683909] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We have prepared SAMs containing 8-mercaptooctyl α-D-mannopyranoside, either as a single component or in mixed SAMs with n-octanethiol on flat gold surfaces and on nanoporous gold. Electrochemical impedance spectroscopy showed that the mixed SAMs on flat gold surfaces showed the highest Con A binding near 1:9 solution molar ratio of thiolatedα-mannoside to n-octanethiol whereas those on NPG showed the highest response at 1:19 solution molar ratio of thiolated α-mannoside to n-octanethiol. Atomic force microscopy was employed to image the monolayers, and also to image the bound Con A protein.
Collapse
Affiliation(s)
- Binod Pandey
- Department of Chemistry and Biochemistry, University of Missouri - Saint Louis, Saint Louis, MO 63121, USA ; Center for Nanoscience, University of Missouri - Saint Louis, Saint Louis, MO 63121, USA
| | | | | | | | | |
Collapse
|
223
|
Yamamoto S, Suzuki S, Suzuki S. Microchip electrophoresis of oligosaccharides using lectin-immobilized preconcentrator gels fabricated by in situ photopolymerization. Analyst 2012; 137:2211-7. [DOI: 10.1039/c2an16015c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
224
|
Yagi H, Ohno E, Kondo S, Yoshida A, Kato K. Development and Application of Multidimensional HPLC Mapping Method for O-linked Oligosaccharides. Biomolecules 2011; 1:48-62. [PMID: 24970123 PMCID: PMC4030830 DOI: 10.3390/biom1010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/30/2011] [Accepted: 12/05/2011] [Indexed: 11/16/2022] Open
Abstract
Glycosylation improves the solubility and stability of proteins, contributes to the structural integrity of protein functional sites, and mediates biomolecular recognition events involved in cell-cell communications and viral infections. The first step toward understanding the molecular mechanisms underlying these carbohydrate functionalities is a detailed characterization of glycan structures. Recently developed glycomic approaches have enabled comprehensive analyses of N-glycosylation profiles in a quantitative manner. However, there are only a few reports describing detailed O-glycosylation profiles primarily because of the lack of a widespread standard method to identify O-glycan structures. Here, we developed an HPLC mapping method for detailed identification of O-glycans including neutral, sialylated, and sulfated oligosaccharides. Furthermore, using this method, we were able to quantitatively identify isomeric products from an in vitro reaction catalyzed by N-acetylglucosamine-6O-sulfotransferases and obtain O-glycosylation profiles of serum IgA as a model glycoprotein.
Collapse
Affiliation(s)
- Hirokazu Yagi
- Graduate School of Pharmaceutical Science, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | - Erina Ohno
- Graduate School of Pharmaceutical Science, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | - Sachiko Kondo
- Graduate School of Pharmaceutical Science, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | - Atsuhiro Yoshida
- Graduate School of Medical Sciences and Medical School, Nagoya City University, Kawasumi-1, Mizuho-cho Mizuho-ku, Nagoya 467-8601, Japan.
| | - Koichi Kato
- Graduate School of Pharmaceutical Science, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| |
Collapse
|
225
|
Leal AFG, Lopes NEP, Clark ATR, de Pontes Filho NT, Beltrão EIC, Neves RP. Carbohydrate profiling of fungal cell wall surface glycoconjugates of Aspergillus species in brain and lung tissues using lectin histochemistry. Med Mycol 2011; 50:756-9. [PMID: 22103341 DOI: 10.3109/13693786.2011.631946] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to evaluate, through lectin histochemistry, the expression of N-acetyl-D-glucosamine, L-fucose, D-galactose and glucose/mannose on the cell wall surfaces of Aspergillus species in histopathological specimens of brain (n = 1) and lung (n = 6) tissues obtained during autopsy of patients diagnosed postmortem as having had invasive aspergillosis. Concanavalin A (Con A), wheat germ agglutinin (WGA), Ulex europeus agglutinin I (UEA-I) and peanut agglutinin (PNA), all conjugated with horseradish peroxidase, were employed. Lectin-binding was visualized using 3,3-diaminobendizine (DAB) and hydrogen peroxide in phosphate buffer solution (PBS). We observed expression of N-acetyl-D-glucosamine and methyl-α-D-mannoside on the cell wall surfaces of all evaluated Aspergillus species, while the expression of L-fucose and D-galactose demonstrated inter and intra-specific variations. The results obtained from this study indicate that the use of WGA and Con A lectins permits visualization of Aspergillus structures such as hyphae, conidial heads and conidia in histopathological specimens of brain and lung tissues.
Collapse
Affiliation(s)
- André F G Leal
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | | | | | | |
Collapse
|
226
|
Sharma A, Vijayan M. Quaternary association in β-prism I fold plant lectins: Insights from X-ray crystallography, modelling and molecular dynamics. J Biosci 2011; 36:793-808. [DOI: 10.1007/s12038-011-9166-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
227
|
Chong T, Stary JM, Wang Y, Newmark PA. Molecular markers to characterize the hermaphroditic reproductive system of the planarian Schmidtea mediterranea. BMC DEVELOPMENTAL BIOLOGY 2011; 11:69. [PMID: 22074376 PMCID: PMC3224759 DOI: 10.1186/1471-213x-11-69] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 11/10/2011] [Indexed: 12/05/2022]
Abstract
Background The freshwater planarian Schmidtea mediterranea exhibits two distinct reproductive modes. Individuals of the sexual strain are cross-fertilizing hermaphrodites with reproductive organs that develop post-embryonically. By contrast, individuals of the asexual strain reproduce exclusively by transverse fission and fail to develop reproductive organs. These different reproductive strains are associated with distinct karyotypes, making S. mediterranea a useful model for studying germline development and sexual differentiation. Results To identify genes expressed differentially between these strains, we performed microarray analyses and identified >800 genes that were upregulated in the sexual planarian. From these, we characterized 24 genes by fluorescent in situ hybridization (FISH), revealing their expression in male germ cells or accessory reproductive organs. To identify additional markers of the planarian reproductive system, we also used immuno- and fluorescent lectin staining, identifying several antibodies and lectins that labeled structures associated with reproductive organs. Conclusions Collectively, these cell-type specific markers will enable future efforts to characterize genes that are important for reproductive development in the planarian.
Collapse
Affiliation(s)
- Tracy Chong
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
228
|
Artner LM, Merkel L, Bohlke N, Beceren-Braun F, Weise C, Dernedde J, Budisa N, Hackenberger CPR. Site-selective modification of proteins for the synthesis of structurally defined multivalent scaffolds. Chem Commun (Camb) 2011; 48:522-4. [PMID: 22068135 DOI: 10.1039/c1cc16039g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combination of classical site-directed mutagenesis, genetic code engineering and bioorthogonal reactions delivered a chemically modified barstar protein with one or four carbohydrates installed at specific residues. These protein conjugates were employed in multivalent binding studies, which support the use of proteins as structurally defined scaffolds for the presentation of multivalent ligands.
Collapse
Affiliation(s)
- Lukas M Artner
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustr. 3, 14195 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Correia JLA, do Nascimento ASF, Cajazeiras JB, Gondim ACS, Pereira RI, de Sousa BL, da Silva ALC, Garcia W, Teixeira EH, do Nascimento KS, da Rocha BAM, Nagano CS, Sampaio AH, Cavada BS. Molecular characterization and tandem mass spectrometry of the lectin extracted from the seeds of Dioclea sclerocarpa Ducke. Molecules 2011; 16:9077-89. [PMID: 22037666 PMCID: PMC6264274 DOI: 10.3390/molecules16119077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 12/04/2022] Open
Abstract
Lectin from the seeds of Dioclea sclerocarpa (DSL) was purified in a single step by affinity chromatography on a Sephadex G-50 column. The primary sequence, as determined by tandem mass spectrometry, revealed a protein with 237 amino acids and 81% of identity with ConA. DSL has a molecular mass of 25,606 Da. The β and γ chains weigh 12,873 Da and 12,752 Da, respectively. DSL hemagglutinated rabbit erythrocytes (both native and treated with proteolytic enzymes), showing stability even after one hour of exposure to a specific pH range. The hemagglutinating activity of DSL was optimal between pH 6.0 and 8.0, but was inhibited after incubation with D-galactose and D-glucose. The pure protein possesses a molecular mass of 25 kDa by SDS-PAGE and 25,606 Da by mass spectrometry. The secondary structure content was estimated using the software SELCON3. The results indicate that b-sheet secondary structures are predominant in DSL (approximately 42.3% antiparallel b-sheet and 6.7% parallel b-sheet). In addition to the b-sheet, the predicted secondary structure of DSL features 4.1% a-helices, 15.8% turns and 31.3% other contributions. Upon thermal denaturation, evaluated by measuring changes in ellipticity at 218 nm induced by a temperature increase from 20 °C to 98 °C, DSL displayed cooperative sigmoidal behavior with transition midpoint at 84 °C and permitted the observation of two-state model (native and denatured).
Collapse
Affiliation(s)
- Jorge Luis Almeida Correia
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Humberto Monte s/n, Bloco 907, Lab. 1075, Campus do Pici, Fortaleza-CE, 60440-970, Brazil
| | - Antônia Sâmia Fernandes do Nascimento
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Humberto Monte s/n, Bloco 907, Lab. 1075, Campus do Pici, Fortaleza-CE, 60440-970, Brazil
| | - João Batista Cajazeiras
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Humberto Monte s/n, Bloco 907, Lab. 1075, Campus do Pici, Fortaleza-CE, 60440-970, Brazil
| | - Ana Cláudia Silva Gondim
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Humberto Monte s/n, Bloco 907, Lab. 1075, Campus do Pici, Fortaleza-CE, 60440-970, Brazil
| | - Ronniery Ilario Pereira
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Humberto Monte s/n, Bloco 907, Lab. 1075, Campus do Pici, Fortaleza-CE, 60440-970, Brazil
| | - Bruno Lopes de Sousa
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Humberto Monte s/n, Bloco 907, Lab. 1075, Campus do Pici, Fortaleza-CE, 60440-970, Brazil
| | - André Luiz Coelho da Silva
- Laboratório de Biotecnologia Molecular (LabBMol), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Humberto Monte s/n, Bloco 907, Lab. 1090, Campus do Pici, Fortaleza-CE, 60440-970, Brazil
| | - Wanius Garcia
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo Andre-SP, 09210-170, Brazil
| | - Edson Holanda Teixeira
- Laboratório de Imunologia e Bioquímica de Sobral (LIBS), Faculdade de Medicina, Universidade Federal do Ceará, Sobral-CE, 62042-280, Brazil
| | - Kyria Santiago do Nascimento
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Humberto Monte s/n, Bloco 907, Lab. 1075, Campus do Pici, Fortaleza-CE, 60440-970, Brazil
| | - Bruno Anderson Matias da Rocha
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Humberto Monte s/n, Bloco 907, Lab. 1075, Campus do Pici, Fortaleza-CE, 60440-970, Brazil
| | - Celso Shiniti Nagano
- Laboratório de Espectrometria de Massa Aplicado a Proteínas (LEMAP/Biomol-Lab), Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Av. Humberto Monte s/n, Bloco 825, Campus do Pici, Fortaleza-CE, 60440-970, Brazil
| | - Alexandre Holanda Sampaio
- Laboratório de Espectrometria de Massa Aplicado a Proteínas (LEMAP/Biomol-Lab), Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Av. Humberto Monte s/n, Bloco 825, Campus do Pici, Fortaleza-CE, 60440-970, Brazil
| | - Benildo Sousa Cavada
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Humberto Monte s/n, Bloco 907, Lab. 1075, Campus do Pici, Fortaleza-CE, 60440-970, Brazil
- Author to whom correspondence should be addressed; ; Tel./Fax: +55-85-3366-9818
| |
Collapse
|
230
|
Visualizing the endocytic and exocytic processes of wheat germ agglutinin by quantum dot-based single-particle tracking. Biomaterials 2011; 32:7616-24. [DOI: 10.1016/j.biomaterials.2011.06.046] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 06/20/2011] [Indexed: 11/18/2022]
|
231
|
Towards in vivo imaging of cancer sialylation. INTERNATIONAL JOURNAL OF MOLECULAR IMAGING 2011; 2011:283497. [PMID: 21941647 PMCID: PMC3175693 DOI: 10.1155/2011/283497] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 06/14/2011] [Indexed: 11/17/2022]
Abstract
In vivo assessment of tumor glucose catabolism by positron emission tomography (PET) has become a highly valued study in the medical management of cancer. Emerging technologies offer the potential to evaluate in vivo another aspect of cancer carbohydrate metabolism related to the increased anabolic use of monosaccharides like sialic acid (Sia). Sia is used for the synthesis of sialylated oligosaccharides in the cell surface that in cancer cells are overexpressed and positively associated to malignancy and worse prognosis because of their role in invasion and metastasis. This paper addresses the key points of the different strategies that have been developed to image Sia expression in vivo and the perspectives to translate it from the bench to the bedside where it would offer the clinician highly valued complementary information on cancer carbohydrate metabolism that is currently unavailable in vivo.
Collapse
|
232
|
Nedic O, Filimonovic D, Mikovic Z, Masnikosa R. Influence of placental mannose/n-acetyl glucosamine-binding proteins on the interaction of insulin and insulin-like growth factors with their receptors. BIOCHEMISTRY. BIOKHIMIIA 2011; 76:1003-1008. [PMID: 22082268 DOI: 10.1134/s0006297911090033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Placenta is a source of carbohydrate-binding proteins that function as molecular scavengers, but they could also be involved in interactions that assist in metabolic control. Mannose/N-acetyl-glucosamine (Man/GlcNAc)-binding proteins from placenta were isolated and their reactivity towards placental insulin and insulin-like growth factor receptors (IR and IGF-Rs) was analyzed. The lectins reduced the binding of insulin and IGF-I in a dose-dependent manner, while almost no effect was observed on the binding of IGF-II. The shape of the inhibition curves changed, suggesting altered binding specificity. The presence of sugar could not reverse completely the effect of the lectins, implicating both lectin-sugar and protein-protein conformational recognition. Since biological molecules in our experimental system were those that are in close relation in vivo, placental Man/GlcNAc-specific lectins may be regarded as potential allosteric modulators of ligand-receptor interactions in a system of homologous ligands, selectively affecting only binding to tyrosine kinase type receptors (IR and IGF-1R).
Collapse
Affiliation(s)
- O Nedic
- Institute for the Application of Nuclear Energy, University of Belgrade, Serbia.
| | | | | | | |
Collapse
|
233
|
Maupin KA, Liden D, Haab BB. The fine specificity of mannose-binding and galactose-binding lectins revealed using outlier motif analysis of glycan array data. Glycobiology 2011; 22:160-9. [PMID: 21875884 DOI: 10.1093/glycob/cwr128] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Glycan-binding proteins are commonly used as analytical reagents to detect the levels of specific glycan structures in biological samples. A detailed knowledge of the specificities of glycan-binding proteins is required for properly interpreting their binding data. A powerful technology for characterizing glycan-binding specificity is the glycan array. However, the interpretation of glycan-array data can be difficult due to the complex fine specificities of certain glycan-binding proteins. We developed a systematic approach, called outlier-motif analysis, for extracting fine-specificity information from glycan-array data, and we applied the method to the study of four commonly used lectins: two mannose binders (concanavalin A and Lens culinaris) and two galactose binders (Bauhinia purpurea and peanut agglutinin). The study confirmed the known, primary specificity of each lectin and also revealed new insights into their binding preferences. Lens culinaris's main specificity may be non-terminal, α-linked mannose with a single linkage at its 2' carbon, which is more restricted than previous definitions. We found broader specificity for bauhinea purpurea (BPL) than previously reported, showing that BPL can bind terminal N-acetylgalactosamine (GalNAc) and penultimate β-linked galactose under certain limitations. Peanut agglutinin may bind terminal Galβ1,3Gal, a glycolipid motif, in addition to terminal Galβ1,3GalNAc, a common O-linked glycoprotein motif. These results could be used to more accurately interpret data obtained using these well-studied lectins. Furthermore, this study demonstrates a systematic and general approach for extracting fine-specificity information from glycan-array data.
Collapse
Affiliation(s)
- Kevin A Maupin
- Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | | | | |
Collapse
|
234
|
Kamiya Y, Yamamoto S, Chiba Y, Jigami Y, Kato K. Overexpression of a homogeneous oligosaccharide with 13C labeling by genetically engineered yeast strain. JOURNAL OF BIOMOLECULAR NMR 2011; 50:397-401. [PMID: 21698488 DOI: 10.1007/s10858-011-9525-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 05/25/2011] [Indexed: 05/31/2023]
Abstract
This report describes a novel method for overexpression of (13)C-labeled oligosaccharides using genetically engineered Saccharomyces cerevisiae cells, in which a homogeneous high-mannose-type oligosaccharide accumulates because of deletions of genes encoding three enzymes involved in the processing pathway of asparagine-linked oligosaccharides in the Golgi complex. Using uniformly (13)C-labeled glucose as the sole carbon source in the culture medium of these engineered yeast cells, high yields of the isotopically labeled Man(8)GlcNAc(2) oligosaccharide could be successfully harvested from glycoprotein extracts of the cells. Furthermore, (13)C labeling at selected positions of the sugar residues in the oligosaccharide could be achieved using a site-specific (13)C-enriched glucose as the metabolic precursor, facilitating NMR spectral assignments. The (13)C-labeling method presented provides the technical basis for NMR analyses of structures, dynamics, and interactions of larger, branched oligosaccharides.
Collapse
Affiliation(s)
- Yukiko Kamiya
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | | | | | | | | |
Collapse
|
235
|
Abstract
Lectins have been proven to be invaluable reagents for the histochemical detection of glycans in cells and tissues by light and electron microscopy. This technical review deals with the conditions of tissue fixation and embedding for lectin labeling, as well as various markers and related labeling techniques. Furthermore, protocols for lectin labeling of sections from paraffin and resin-embedded tissues are detailed together with various controls to demonstrate the specificity of the labeling by lectins.
Collapse
|
236
|
Shetty KN, Bhat GG, Inamdar SR, Swamy BM, Suguna K. Crystal structure of a β-prism II lectin from Remusatia vivipara. Glycobiology 2011; 22:56-69. [PMID: 21788359 DOI: 10.1093/glycob/cwr100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The crystal structure of a β-prism II (BP2) fold lectin from Remusatia vivipara, a plant of traditional medicinal value, has been determined at a resolution of 2.4 Å. This lectin (RVL, Remusatia vivipara lectin) is a dimer with each protomer having two distinct BP2 domains without a linker between them. It belongs to the "monocot mannose-binding" lectin family, which consists of proteins of high sequence and structural similarity. Though the overall tertiary structure is similar to that of lectins from snowdrop bulbs and garlic, crucial differences in the mannose-binding regions and oligomerization were observed. Unlike most of the other structurally known proteins in this family, only one of the three carbohydrate recognition sites (CRSs) per BP2 domain is found to be conserved. RVL does not recognize simple mannose moieties. RVL binds to only N-linked complex glycans like those present on the gp120 envelope glycoprotein of HIV and mannosylated blood proteins like fetuin, but not to simple mannose moieties. The molecular basis for these features and their possible functional implications to understand the different levels of carbohydrate affinities in this structural family have been investigated through structure analysis, modeling and binding studies. Apart from being the first structure of a lectin to be reported from the Araceae/Arum family, this protein also displays a novel mode of oligomerization among BP2 lectins.
Collapse
Affiliation(s)
- Kartika N Shetty
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | |
Collapse
|
237
|
Yang Y, Xu HL, Zhang ZT, Liu JJ, Li WW, Ming H, Bao JK. Characterization, molecular cloning, and in silico analysis of a novel mannose-binding lectin from Polygonatum odoratum (Mill.) with anti-HSV-II and apoptosis-inducing activities. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:748-755. [PMID: 21146383 DOI: 10.1016/j.phymed.2010.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 09/21/2010] [Accepted: 11/07/2010] [Indexed: 05/30/2023]
Abstract
Polygonatum odoratum lectin (POL), a novel mannose-binding lectin with anti-viral and apoptosis-inducing activities, was isolated from rhizomes of Polygonatum odoratum (Mill.) Druce. POL was a homo-tetramer with molecular weight of 11953.623Da per subunits as determined by gel filtration, SDS-PAGE and mass spectrometry. Based on its N-terminal 29-amino acid sequence the full-length cDNA sequence of POL was cloned. Subsequent phylogenetic analysis and molecular modeling revealed that POL belonged to the Galanthus nivalis agglutinin (GNA)-related lectin family, which acquired unique mannose-binding specificity. The hemagglutinating activities of POL were metal ion-independent, and were stable within certain range of pH and temperature alterations. Moreover, POL showed remarkable anti-HSV-II activity towards Vero cells, cytotoxicity towards human melanoma A375 cells and induced apoptosis in a caspase-dependent manner.
Collapse
Affiliation(s)
- Yun Yang
- School of Life Sciences & State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
238
|
Leal AFG, de Lima Neto RG, Macêdo DPC, Beltrão EIC, Neves RP. Carbohydrate profiling of fungal cell wall surface glycoconjugates of Trichophyton tonsurans and other keratinophilic filamentous fungi using lectins. Mycoses 2011; 54:e789-94. [DOI: 10.1111/j.1439-0507.2011.02026.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
239
|
Davicino RC, Eliçabe RJ, Di Genaro MS, Rabinovich GA. Coupling pathogen recognition to innate immunity through glycan-dependent mechanisms. Int Immunopharmacol 2011; 11:1457-63. [PMID: 21600310 DOI: 10.1016/j.intimp.2011.05.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 05/02/2011] [Indexed: 12/21/2022]
Abstract
Innate immune cells have evolved to sense microbial pathogens through pattern recognition receptors (PRRs), which interact with conserved pathogen-associated molecular patterns (PAMPs) to convey microbial information into immune cell signaling and activation events. PRRs also recognize endogenous damage-associated molecular patterns (DAMPs), including alarmins released during microbial invasion, initiation of autoimmune inflammation or tumor growth. In spite of the well-established role of Toll-like receptors (TLRs) in mediating these recognition events, compelling evidence supports a central function for lectin-glycan interactions in promoting microbial sensing and evoking immune responses. Here we discuss the role of glycans and lectins (particularly galectins) in mediating microbial recognition and initiation of innate immune responses. Both microbes and host cells are sources of glycan-containing information which is, at least in part, decoded by endogenous glycan-binding proteins or lectins, including C-type lectins, siglecs and galectins. Although C-type lectins and siglecs can recognize microbial glycans when expressed on the cell surface of innate immune cells, galectins mainly function as soluble mediators that bridge microbial or host glycans to amplify or attenuate immune responses. Galectins are widely expressed in host cells and play important roles during different steps of infection such as pathogen recognition, invasion and resolution. In addition, recent studies report the presence of conserved 'galectin-like' domains in certain pathogens including helminths and protistan parasites, suggesting that they could also serve as potential virulence factors that influence the outcome and course of infection. Understanding the role of lectin-glycan interactions and the relevance of PRR or PAMP glycosylation in microbial recognition might contribute to the design of novel prophylactic and therapeutic strategies.
Collapse
Affiliation(s)
- Roberto C Davicino
- Division of Immunology, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, Laboratory of Immunopathology, Multidisciplinary Institute of Biological Investigations - San Luis, CONICET, San Luis, Argentina
| | | | | | | |
Collapse
|
240
|
Effect of lectins from Diocleinae subtribe against oral Streptococci. Molecules 2011; 16:3530-43. [PMID: 21525793 PMCID: PMC6263318 DOI: 10.3390/molecules16053530] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 04/20/2011] [Accepted: 04/25/2011] [Indexed: 01/21/2023] Open
Abstract
Surface colonization is an essential step in biofilm development. The ability of oral pathogens to adhere to tooth surfaces is directly linked with the presence of specific molecules at the bacterial surface that can interact with enamel acquired pellicle ligands. In light of this, the aim of this study was to verify inhibitory and antibiofilm action of lectins from the Diocleinaesubtribe against Streptococcus mutans and Streptococcus oralis. The inhibitory action against planctonic cells was assessed using lectins from Canavaliaensi formis (ConA), Canavalia brasiliensis (ConBr), Canavalia maritima (ConM), Canavalia gladiata (CGL) and Canavalia boliviana (ConBol). ConBol, ConBr and ConM showed inhibitory activity on S. mutans growth. All lectins, except ConA, stimulated significantly the growth of S. oralis. To evaluate the effect on biofilm formation, clarified saliva was added to 96-well, flat-bottomed polystyrene plates, followed by the addition of solutions containing 100 or 200 µg/mL of the selected lectins. ConBol, ConM and ConA inhibited the S. mutans biofilms. No effects were found on S. oralis biofilms. Structure/function analysis were carried out using bioinformatics tools. The aperture and deepness of the CRD (Carbohydrate Recognition Domain) permit us to distinguish the two groups of Canavalia lectins in accordance to their actions against S. mutans and S. oralis. The results found provide a basis for encouraging the use of plant lectins as biotechnological tools in ecological control and prevention of caries disease.
Collapse
|
241
|
Wang TH, Kung YL, Lee MH, Su NW. N-acetyl-D-galactosamine-specific lectin isolated from the seeds of Carica papaya. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:4217-4224. [PMID: 21405109 DOI: 10.1021/jf104962g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
N-Acetyl-D-galactosamine (GalNAc)-specific lectins are of great interest because they have been reported to detect tumor-associated antigens of malignant cells. We isolated a novel lectin from Carica papaya seeds, named C. papaya lectin (CPL). Purification of the lectin involved ammonium sulfate fractionation and DEAE anion exchange and repeated gel filtration chromatography. Inhibition of CPL causing hemagglutination on human erythrocytes showed that the lectin shows specificity to GalNAc and lactose. Surface plasmon resonance further revealed that the lectin possesses high specificity toward GalNAc with a dissociation constant of 5.5 × 10(-9) M. The lectin is composed of 38- and 40-kDa subunits with a molecular mass of ∼804 kDa estimated by size-exclusion high-performance liquid chromatography. Incubation of CPL with Jurkat T cells showed significant induction of IL-2 cytokine, which suggests that CPL has potent immunomodulatory effects on immune cells.
Collapse
Affiliation(s)
- Teng-Hsu Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
242
|
Imase M, Watanabe K, Kitamura T, Tanaka H, Aoyagi H. Screening for lectin-like protein-producing microorganisms based on cell surface proteins. Can J Microbiol 2011; 57:78-83. [PMID: 21326349 DOI: 10.1139/w10-104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A method for screening lectin-producing microorganisms was developed. The presence of lectin on microbial cell surfaces was used as an index for their selective isolation. The lectin-producing microorganisms adhered to sugar-modified agarose beads and were selectively eluted with specific saccharide solutions. Spin columns were an effective tool for excluding non-lectin producers. Eighty-seven percent of the microorganisms that were eluted from the beads showed hemagglutination. The results of sequence analysis indicated that some of the eluted microorganisms have not been previously identified as lectin-producing microorganisms.
Collapse
Affiliation(s)
- Masato Imase
- Life Science and Bioengineering, Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | |
Collapse
|
243
|
Bovi M, Carrizo ME, Capaldi S, Perduca M, Chiarelli LR, Galliano M, Monaco HL. Structure of a lectin with antitumoral properties in king bolete (Boletus edulis) mushrooms. Glycobiology 2011; 21:1000-9. [DOI: 10.1093/glycob/cwr012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
244
|
Moretti M, Grunau A, Minerdi D, Gehrig P, Roschitzki B, Eberl L, Garibaldi A, Gullino ML, Riedel K. A proteomics approach to study synergistic and antagonistic interactions of the fungal-bacterial consortium Fusarium oxysporum wild-type MSA 35. Proteomics 2011; 10:3292-320. [PMID: 20707000 DOI: 10.1002/pmic.200900716] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fusarium oxysporum is an important plant pathogen that causes severe damage of many economically important crop species. Various microorganisms have been shown to inhibit this soil-borne plant pathogen, including non-pathogenic F. oxysporum strains. In this study, F. oxysporum wild-type (WT) MSA 35, a biocontrol multispecies consortium that consists of a fungus and numerous rhizobacteria mainly belonging to gamma-proteobacteria, was analyzed by two complementary metaproteomic approaches (2-DE combined with MALDI-Tof/Tof MS and 1-D PAGE combined with LC-ESI-MS/MS) to identify fungal or bacterial factors potentially involved in antagonistic or synergistic interactions between the consortium members. Moreover, the proteome profiles of F. oxysporum WT MSA 35 and its cured counter-part CU MSA 35 (WT treated with antibiotics) were compared with unravel the bacterial impact on consortium functioning. Our study presents the first proteome mapping of an antagonistic F. oxysporum strain and proposes candidate proteins that might play an important role for the biocontrol activity and the close interrelationship between the fungus and its bacterial partners.
Collapse
Affiliation(s)
- Marino Moretti
- Agroinnova-Centre of Competence for the Innovation in the Agro-Environmental Field, University of Torino, Torino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Zayas RM, Cebrià F, Guo T, Feng J, Newmark PA. The use of lectins as markers for differentiated secretory cells in planarians. Dev Dyn 2011; 239:2888-97. [PMID: 20865784 DOI: 10.1002/dvdy.22427] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Freshwater planarians have reemerged as excellent models to investigate mechanisms underlying regeneration. The introduction of molecular tools has facilitated the study of planarians, but cell- and tissue-specific markers are still needed to examine differentiation of most cell types. Here we report the utility of fluorescent lectin-conjugates to label tissues in the planarian Schmidtea mediterranea. We show that 16 lectin-conjugates stain planarian cells or tissues; 13 primarily label the secretory cells, their cytoplasmic projections, and terminal pores. Thus, we examined regeneration of the secretory system using lectin markers and functionally characterized two genes expressed in the secretory cells: marginal adhesive gland-1 (mag-1) and Smed-reticulocalbin1 (Smed-rcn1). RNAi knockdown of these genes caused a dramatic reduction of secretory cell lectin staining, suggesting a role for mag-1 and Smed-rcn1 in secretory cell differentiation. Our results provide new insights into planarian secretory system regeneration and add new markers for labeling several planarian tissues.
Collapse
Affiliation(s)
- Ricardo M Zayas
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | | | |
Collapse
|
246
|
The Structure of Physarum polycephalum hemagglutinin I suggests a minimal carbohydrate recognition domain of legume lectin fold. J Mol Biol 2011; 405:560-9. [PMID: 21094650 DOI: 10.1016/j.jmb.2010.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/10/2010] [Accepted: 11/11/2010] [Indexed: 01/28/2023]
Abstract
Physarum polycephalum hemagglutinin I (HA1) is a 104-residue protein that is secreted to extracellular space. The crystal structure of HA1 has a β-sandwich fold found among lectin structures, such as legume lectins and galectins. Interestingly, the β-sandwich of HA1 lacks a jelly roll motif and is essentially composed of two simple up-and-down β-sheets. This up-and-down β-sheet motif is well conserved in other legume lectin-like proteins derived from animals, plants, bacteria, and viruses. It is more noteworthy that the up-and-down β-sheet motif includes many residues that make contact with the target carbohydrates. Our NMR data demonstrate that HA1 lacking a jelly roll motif also binds to its target glycopeptide. Taken together, these data show that the up-and-down β-sheet motif provides a fundamental scaffold for the binding of legume lectin-like proteins to the target carbohydrates, and the structure of HA1 suggests a minimal carbohydrate recognition domain.
Collapse
|
247
|
Immobilized Cratylia mollis lectin: An affinity matrix to purify a soybean (Glycine max) seed protein with in vitro platelet antiaggregation and anticoagulant activities. Process Biochem 2011. [DOI: 10.1016/j.procbio.2010.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
248
|
Mazzei F, Guarrera S, Allione A, Simonelli V, Narciso L, Barone F, Minoprio A, Ricceri F, Funaro A, D’Errico M, Vogel U, Matullo G, Dogliotti E. 8-Oxoguanine DNA-glycosylase repair activity and expression: A comparison between cryopreserved isolated lymphocytes and EBV-derived lymphoblastoid cell lines. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 718:62-7. [DOI: 10.1016/j.mrgentox.2010.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/08/2010] [Accepted: 10/09/2010] [Indexed: 01/20/2023]
|
249
|
Gerlach JQ, Kilcoyne M, Eaton S, Bhavanandan V, Joshi L. Non-carbohydrate-mediated interaction of lectins with plant proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:257-69. [PMID: 21618112 DOI: 10.1007/978-1-4419-7877-6_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jared Q Gerlach
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland.
| | | | | | | | | |
Collapse
|
250
|
YODOSHI M, OYAMA T, MASAKI K, KAKEHI K, HAYAKAWA T, SUZUKI S. Affinity Entrapment of Oligosaccharides and Glycopeptides Using Free Lectin Solution. ANAL SCI 2011; 27:395. [DOI: 10.2116/analsci.27.395] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | | | - Ken MASAKI
- Faculty of Pharmaceutical Sciences, Kinki University
| | | | | | - Shigeo SUZUKI
- Faculty of Pharmaceutical Sciences, Kinki University
| |
Collapse
|