201
|
Zhou Z, Lu J, Liu WW, Manaenko A, Hou X, Mei Q, Huang JL, Tang J, Zhang JH, Yao H, Hu Q. Advances in stroke pharmacology. Pharmacol Ther 2018; 191:23-42. [PMID: 29807056 DOI: 10.1016/j.pharmthera.2018.05.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Stroke occurs when a cerebral blood vessel is blocked or ruptured, and it is the major cause of death and adult disability worldwide. Various pharmacological agents have been developed for the treatment of stroke either through interrupting the molecular pathways leading to neuronal death or enhancing neuronal survival and regeneration. Except for rtPA, few of these agents have succeeded in clinical trials. Recently, with the understanding of the pathophysiological process of stroke, there is a resurrection of research on developing neuroprotective agents for stroke treatment, and novel molecular targets for neuroprotection and neurorestoration have been discovered to predict or offer clinical benefits. Here we review the latest major progress of pharmacological studies in stroke, especially in ischemic stroke; summarize emerging potential therapeutic mechanisms; and highlight recent clinical trials. The aim of this review is to provide a panorama of pharmacological interventions for stroke and bridge basic and translational research to guide the clinical management of stroke therapy.
Collapse
Affiliation(s)
- Zhenhua Zhou
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurology, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Jianfei Lu
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen-Wu Liu
- Department of Diving and Hyperbaric Medicine, the Second Military Medical University, Shanghai 200433, China
| | - Anatol Manaenko
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Xianhua Hou
- Department of Neurology, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Qiyong Mei
- Department of Neurosurgery, Changzheng Hospital, the Second Military Medical University, Shanghai 200003, China
| | - Jun-Long Huang
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China.
| | - Qin Hu
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
202
|
Ouyang H, Chen X, Li W, Li Z, Nie Q, Zhang X. Circular RNA circSVIL Promotes Myoblast Proliferation and Differentiation by Sponging miR-203 in Chicken. Front Genet 2018; 9:172. [PMID: 29868120 PMCID: PMC5964199 DOI: 10.3389/fgene.2018.00172] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/27/2018] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs), expressed abundantly and universally in various eukaryotes, are involved in growth and development of animals. Our previous study on circRNA sequencing revealed that circSVIL, an exonic circular, expressed differentially among skeletal muscle at 11 embryo age (E11), 16 embryo age (E16), and 1 day post-hatch (P1). In this study, we aim to investigate the effect of circSVIL on the development of skeletal muscle. We detected the expression level of circSVIL in embryonic leg muscle during E10 to P1. As a result, we found that circSVIL had a high expression level during late embryonic development of skeletal muscle. Through dual-luciferase assay, RNA immunoprecipitation and biotin-coupled miRNA pull down, we found chicken circSVIL could functions as miR-203 sponges and upregulated the mRNA level of c-JUN and MEF2C. In chicken, circSVIL could promote the proliferation and differentiation of myoblast, and antagonize the functions of miR-203. Altogether our data suggest that circSVIL promotes the embryonic skeletal muscle development by sequestering miR-203 in chicken.
Collapse
Affiliation(s)
- Hongjia Ouyang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiaolan Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and the Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Weimin Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and the Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Zhenhui Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and the Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and the Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and the Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
203
|
Abstract
Excessive proliferation and migration of fibroblasts contribute to pulmonary fibrosis in silicosis, and both epithelial cells and endothelial cells participate in the accumulation of fibroblasts via the epithelial–mesenchymal transition (EMT) and the endothelial–mesenchymal transition (EndMT), respectively. A mouse endothelial cell line (MML1) was exposed to silicon dioxide (SiO2, 50 μg/cm2), and immunofluorescence and western blot analyses were performed to evaluate levels of specific endothelial and mesenchymal markers and to elucidate the mechanisms by which SiO2 induces the EndMT. Functional changes were evaluated by analyzing cell migration and proliferation. The mRNA and circular RNA (circRNA) levels were measured using qPCR and fluorescent in situ hybridization (FISH). Lung tissue samples from both Tie2-GFP mice exposed to SiO2 and silicosis patients were applied to confirm the observations from in vitro experiments. Based on the results from the current study, SiO2 increased the expression of mesenchymal markers (type I collagen (COL1A1), type III collagen (COL3A1) and alpha smooth muscle actin (α-SMA/Acta2)) and decreased the expression of endothelial markers (vascular endothelial cadherin (VE-Cad/Cdh 5) and platelet endothelial cell adhesion molecule-1 (PECAM1)), indicating the occurrence of the EndMT in response to SiO2 exposure both in vivo and in vitro. SiO2 concomitantly increased circHECTD1 expression, which, in turn, inhibited HECTD1 protein expression. SiO2-induced increases in cell proliferation, migration, and changes in marker levels were restored by either a small interfering RNA (siRNA) targeting circHECTD1 or overexpression of HECTD1 via the CRISPR/Cas9 system, confirming the involvement of the circHECTD1/HECTD1 pathway in the EndMT. Moreover, tissue samples from SiO2-exposed mice and silicosis patients confirmed the EndMT and change in HECTD1 expression. Our findings reveal a potentially new function for the circHECTD1/HECTD1 pathway and suggest a possible mechanism of fibrosis in patients with pulmonary silicosis.
Collapse
|
204
|
Gokul S, Rajanikant GK. Circular RNAs in Brain Physiology and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1087:231-237. [DOI: 10.1007/978-981-13-1426-1_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
205
|
Huang M, Shen Y, Mao H, Chen L, Chen J, Guo X, Xu N. Circular RNA expression profiles in the porcine liver of two distinct phenotype pig breeds. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:812-819. [PMID: 29268579 PMCID: PMC5933978 DOI: 10.5713/ajas.17.0651] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/06/2017] [Accepted: 11/30/2017] [Indexed: 12/02/2022]
Abstract
Objective An experiment was conducted to identify and characterize the circular RNA expression and metabolic characteristics in the liver of Jinhua pigs and Landrace pigs. Methods Three Jinhua pigs and three Landrace pigs respectively at 70-day were slaughtered to collect the liver tissue samples. Immediately after slaughter, blood samples were taken to detect serum biochemical indicators. Total RNA extracted from liver tissue samples were used to prepare the library and then sequence on HiSeq 2500. Bioinformatic methods were employed to analyze sequence data to identify the circRNAs and predict the potential roles of differentially expressed circRNAs between the two breeds. Results Significant differences in physiological and biochemical traits were observed between growing Jinhua and Landrace pigs. We identified 84,864 circRNA candidates in two breeds and 366 circRNAs were detected as significantly differentially expressed. Their host genes are involved in lipid biosynthetic and metabolic processes according to the gene ontology analysis and associated with metabolic pathways. Conclusion Our research represents the first description of circRNA profiles in the porcine liver from two divergent phenotype pigs. The predicted miRNA-circRNA interaction provides important basis for miRNA-circRNA relationships in the porcine liver. These data expand the repertories of porcine circRNA and are conducive to understanding the possible molecular mechanisms involved in miRNA and circRNA. Our study provides basic data for further research of the biological functions of circRNAs in the porcine liver.
Collapse
Affiliation(s)
- Minjie Huang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Yifei Shen
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Haiguang Mao
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Lixing Chen
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Jiucheng Chen
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoling Guo
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Ningying Xu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
206
|
Cao Z, Xiao Q, Dai X, Zhou Z, Jiang R, Cheng Y, Yang X, Guo H, Wang J, Xi Z, Yao H, Chao J. circHIPK2-mediated σ-1R promotes endoplasmic reticulum stress in human pulmonary fibroblasts exposed to silica. Cell Death Dis 2017; 8:3212. [PMID: 29238093 PMCID: PMC5870587 DOI: 10.1038/s41419-017-0017-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/16/2017] [Accepted: 10/02/2017] [Indexed: 12/16/2022]
Abstract
Silicosis is characterized by fibroblast accumulation and excessive deposition of extracellular matrix. Although the roles of SiO2-induced chemokines and cytokines released from alveolar macrophages have received significant attention, the direct effects of SiO2 on protein production and functional changes in pulmonary fibroblasts have been less extensively studied. Sigma-1 receptor, which has been associated with cell proliferation and migration in the central nervous system, is expressed in the lung, but its role in silicosis remains unknown. To elucidate the role of sigma-1 receptor in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Both molecular biological assays and pharmacological techniques, combined with functional experiments, such as migration and proliferation, were applied in human pulmonary fibroblasts from adults to analyze the molecular and functional changes induced by SiO2. SiO2 induced endoplasmic reticulum stress in association with enhanced expression of sigma-1 receptor. Endoplasmic reticulum stress promoted migration and proliferation of human pulmonary fibroblasts-adult exposed to SiO2, inducing the development of silicosis. Inhibition of sigma-1 receptor ameliorated endoplasmic reticulum stress and fibroblast functional changes induced by SiO2. circHIPK2 is involved in the regulation of sigma-1 receptor in human pulmonary fibroblasts-adult exposed to SiO2. Our study elucidated a link between SiO2-induced fibrosis and sigma-1 receptor signaling, thereby providing novel insight into the potential use of sigma-1 receptor/endoplasmic reticulum stress in the development of novel therapeutic strategies for silicosis treatment.
Collapse
Affiliation(s)
- Zhouli Cao
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
- Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Qingling Xiao
- Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Xiaoniu Dai
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Zewei Zhou
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Rong Jiang
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yusi Cheng
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Xiyue Yang
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Huifang Guo
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Jing Wang
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Zhaoqing Xi
- Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Jie Chao
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
- Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China.
- Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|