201
|
Wang Y, Maharana S, Wang MD, Shivashankar GV. Super-resolution microscopy reveals decondensed chromatin structure at transcription sites. Sci Rep 2014; 4:4477. [PMID: 24667378 PMCID: PMC3966049 DOI: 10.1038/srep04477] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 03/11/2014] [Indexed: 11/09/2022] Open
Abstract
Remodeling of the local chromatin structure is essential for the regulation of gene expression. While a number of biochemical and bioimaging experiments suggest decondensed chromatin structures are associated with transcription, a direct visualization of DNA and transcriptionally active RNA polymerase II (RNA pol II) at super-resolution is still lacking. Here we investigate the structure of chromatin isolated from HeLa cells using binding activatable localization microscopy (BALM). The sample preparation method preserved the structural integrity of chromatin. Interestingly, BALM imaging of the chromatin spreads revealed the presence of decondensed chromatin as gap structures along the spreads. These gaps were enriched with phosphorylated S5 RNA pol II, and were sensitive to the cellular transcriptional state. Taken together, we could visualize the decondensed chromatin regions together with active RNA pol II for the first time using super-resolution microscopy.
Collapse
Affiliation(s)
| | | | - Michelle D Wang
- 1] Laboratory of Atomic and Solid State Physics, Department of Physics [2] Howard Hughes Medical Institute Cornell University, Ithaca, New York 14853, USA
| | - G V Shivashankar
- 1] Mechanobiology Institute, Singapore [2] Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
202
|
Becker A, Durante M, Taucher-Scholz G, Jakob B. ATM alters the otherwise robust chromatin mobility at sites of DNA double-strand breaks (DSBs) in human cells. PLoS One 2014; 9:e92640. [PMID: 24651490 PMCID: PMC3961414 DOI: 10.1371/journal.pone.0092640] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/23/2014] [Indexed: 11/18/2022] Open
Abstract
Ionizing radiation induces DNA double strand breaks (DSBs) which can lead to the formation of chromosome rearrangements through error prone repair. In mammalian cells the positional stability of chromatin contributes to the maintenance of genome integrity. DSBs exhibit only a small, submicron scale diffusive mobility, but a slight increase in the mobility of chromatin domains by the induction of DSBs might influence repair fidelity and the formation of translocations. The radiation-induced local DNA decondensation in the vicinity of DSBs is one factor potentially enhancing the mobility of DSB-containing chromatin domains. Therefore in this study we focus on the influence of different chromatin modifying proteins, known to be activated by the DNA damage response, on the mobility of DSBs. IRIF (ionizing radiation induced foci) in U2OS cells stably expressing 53BP1-GFP were used as a surrogate marker of DSBs. Low angle charged particle irradiation, known to trigger a pronounced DNA decondensation, was used for the defined induction of linear tracks of IRIF. Our results show that movement of IRIF is independent of the investigated chromatin modifying proteins like ACF1 or PARP1 and PARG. Also depletion of proteins that tether DNA strands like MRE11 and cohesin did not alter IRIF dynamics significantly. Inhibition of ATM, a key component of DNA damage response signaling, resulted in a pronounced confinement of DSB mobility, which might be attributed to a diminished radiation induced decondensation. This confinement following ATM inhibition was confirmed using X-rays, proving that this effect is not restricted to densely ionizing radiation. In conclusion, repair sites of DSBs exhibit a limited mobility on a small spatial scale that is mainly unaffected by depletion of single remodeling or DNA tethering proteins. However, it relies on functional ATM kinase which is considered to influence the chromatin structure after irradiation.
Collapse
Affiliation(s)
- Annabelle Becker
- GSI, Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Marco Durante
- GSI, Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Technical University of Darmstadt, Darmstadt, Germany
| | - Gisela Taucher-Scholz
- GSI, Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Technical University of Darmstadt, Darmstadt, Germany
| | - Burkhard Jakob
- GSI, Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| |
Collapse
|
203
|
Singh P, Raman MJ. Dynamics of radiation induced γH2AX foci in chromatin subcompartments of mouse pachytene spermatocytes and round spermatids. Mol Reprod Dev 2014; 81:484-96. [DOI: 10.1002/mrd.22314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 02/18/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Priti Singh
- Cytogenetics Laboratory; Department of Zoology; Centre of Advanced Study; Banaras Hindu University; Varanasi India
| | - Mercy J. Raman
- Cytogenetics Laboratory; Department of Zoology; Centre of Advanced Study; Banaras Hindu University; Varanasi India
| |
Collapse
|
204
|
Schwartz M, Hakim O. 3D view of chromosomes, DNA damage, and translocations. Curr Opin Genet Dev 2014; 25:118-25. [PMID: 24632298 DOI: 10.1016/j.gde.2013.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/26/2013] [Indexed: 02/02/2023]
Abstract
The cell nucleus is a busy and organized organelle. In this megalopolis made of billions of nucleotides, protein factors find their target loci to exert nuclear functions such as transcription and replication. Remarkably, despite the lack of internal membrane barrier, the interlinked and tightly regulated nuclear processes occur in spatially organized fashion. These processes can lead to double-strand breaks (DSBs) that compromise the integrity of the genome. Moreover, in some cells like lymphocytes, DNA damage is also targeted within the context of immunoglobulin gene recombination. If not repaired correctly, DSBs can cause chromosomal rearrangements, including translocations which are etiological in numerous tumors. Therefore, the chromosomal locations of DSBs, as well as their spatial positioning, are important contributors to formation of chromosomal translocations at specific genomic loci. To obtain a mechanistic understanding of chromosomal translocations these parameters should be accounted for in a global and integrative fashion. In this review we will discuss recent findings addressing how genome architecture, DNA damage, and repair contribute to the genesis of chromosomal translocations.
Collapse
Affiliation(s)
- Michal Schwartz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | - Ofir Hakim
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel.
| |
Collapse
|
205
|
Girst S, Hable V, Drexler GA, Greubel C, Siebenwirth C, Haum M, Friedl AA, Dollinger G. Subdiffusion supports joining of correct ends during repair of DNA double-strand breaks. Sci Rep 2014; 3:2511. [PMID: 23979012 PMCID: PMC3753591 DOI: 10.1038/srep02511] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/18/2013] [Indexed: 12/03/2022] Open
Abstract
The mobility of damaged chromatin regions in the nucleus may affect the probability of mis-repair. In this work, live-cell observation and distance tracking of GFP-tagged DNA damage response protein MDC1 was used to study the random-walk behaviour of chromatin domains containing radiation-induced DNA double-strand breaks (DSB). Our measurements indicate a subdiffusion-type random walk process with similar time dependence for isolated and clustered DSBs that were induced by 20 MeV proton or 43 MeV carbon ion micro-irradiation. As compared to normal diffusion, subdiffusion enhances the probability that both ends of a DSB meet, thus promoting high efficiency DNA repair. It also limits their probability of long-range movements and thus lowers the probability of mis-rejoining and chromosome aberrations.
Collapse
Affiliation(s)
- S Girst
- Angewandte Physik und Messtechnik LRT2, Universität der Bundeswehr München, 85577 Neubiberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
206
|
Lavelle C, Foray N. Chromatin structure and radiation-induced DNA damage: from structural biology to radiobiology. Int J Biochem Cell Biol 2014; 49:84-97. [PMID: 24486235 DOI: 10.1016/j.biocel.2014.01.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/13/2014] [Accepted: 01/18/2014] [Indexed: 10/25/2022]
Abstract
Genomic DNA in eukaryotic cells is basically divided into chromosomes, each consisting of a single huge nucleosomal fiber. It is now clear that chromatin structure and dynamics play a critical role in all processes involved in DNA metabolism, e.g. replication, transcription, repair and recombination. Radiation is a useful tool to study the biological effects of chromatin alterations. Conversely, radiotherapy and radiodiagnosis raise questions about the influence of chromatin integrity on clinical features and secondary effects. This review focuses on the link between DNA damage and chromatin structure at different scales, showing how a comprehensive multiscale vision is required to understand better the effect of radiations on DNA. Clinical aspects related to high- and low-dose of radiation and chromosomal instability will be discussed. At the same time, we will show that the analysis of the radiation-induced DNA damage distribution provides good insight on chromatin structure. Hence, we argue that chromatin "structuralists" and radiobiological "clinicians" would each benefit from more collaboration with the other. We hope that this focused review will help in this regard.
Collapse
Affiliation(s)
- Christophe Lavelle
- Genome Structure and Instability, National Museum of Natural History, Paris, France; CNRS UMR7196, Paris, France; INSERM U1154, Paris, France; Nuclear Architecture and Dynamics, CNRS GDR 3536, Paris, France.
| | - Nicolas Foray
- Nuclear Architecture and Dynamics, CNRS GDR 3536, Paris, France; INSERM, UMR1052, Radiobiology Group, Cancer Research Centre of Lyon, Lyon, France
| |
Collapse
|
207
|
The ATM-mediated DNA-damage response. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
208
|
Mehta IS, Kulashreshtha M, Chakraborty S, Kolthur-Seetharam U, Rao BJ. Chromosome territories reposition during DNA damage-repair response. Genome Biol 2013; 14:R135. [PMID: 24330859 PMCID: PMC4062845 DOI: 10.1186/gb-2013-14-12-r135] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/13/2013] [Indexed: 01/02/2023] Open
Abstract
Background Local higher-order chromatin structure, dynamics and composition of the DNA are known to determine double-strand break frequencies and the efficiency of repair. However, how DNA damage response affects the spatial organization of chromosome territories is still unexplored. Results Our report investigates the effect of DNA damage on the spatial organization of chromosome territories within interphase nuclei of human cells. We show that DNA damage induces a large-scale spatial repositioning of chromosome territories that are relatively gene dense. This response is dose dependent, and involves territories moving from the nuclear interior to the periphery and vice versa. Furthermore, we have found that chromosome territory repositioning is contingent upon double-strand break recognition and damage sensing. Importantly, our results suggest that this is a reversible process where, following repair, chromosome territories re-occupy positions similar to those in undamaged control cells. Conclusions Thus, our report for the first time highlights DNA damage-dependent spatial reorganization of whole chromosomes, which might be an integral aspect of cellular damage response.
Collapse
|
209
|
Preferential localization of γH2AX foci in euchromatin of retina rod cells after DNA damage induction. Chromosome Res 2013; 21:789-803. [PMID: 24323064 DOI: 10.1007/s10577-013-9395-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/23/2013] [Accepted: 10/29/2013] [Indexed: 12/11/2022]
Abstract
DNA damage may lead to cell transformation, senescence, or death. Histone H2AX phosphorylation, immunodetected as γH2AX foci, is an early response to DNA damage persisting even after DNA repair. In cycling mammalian cells with canonical nuclear architecture, i.e., central euchromatin and peripheral heterochromatin, γH2AX foci map preferentially to euchromatin. Mice retina rods are G0 cells displaying an inverted nuclear architecture 28 days after birth (P28). Rod nuclei exhibit one or two central constitutive heterochromatin chromocenters encircled by facultative heterochromatin. Euchromatin resides at the nuclear periphery, extending to the equator in cells with two chromocenters. To assess the impact of chromatin relocation in the localization of DNA damage, γH2AX and TUNEL foci induced ex vivo by radiomimetic bleomycin were mapped in H3K4me3 immunolabeled P28 rod nuclei. A preferential localization of γH2AX foci in euchromatin was detected together with foci clustering. Besides, a decay of H3K4me3 signal at γH2AX foci sites was observed. TUNEL and γH2AX foci exhibited similar localization patterns in BLM-treated rod cells thus excluding curtailed access of anti-γH2AX antibodies to heterochromatin. Lack of γH2AX foci in rod chromocenters appears to be unrelated to the occurrence of mid-range foci movements. Foci clusters may arise through DNA double-strand break proximity, local non-directional chromatin movements or chromatin relaxation. H3K4me3 signal reduction at γH2AX foci could stem from local chromatin decondensation or downregulation of histone H4 methylation. The observed topology of DNA damage in retina-differentiated rods indicates that euchromatin is damage-prone, regardless of the canonical or inverted nuclear architecture of mammalian cells.
Collapse
|
210
|
Peripheral subnuclear positioning suppresses Tcrb recombination and segregates Tcrb alleles from RAG2. Proc Natl Acad Sci U S A 2013; 110:E4628-37. [PMID: 24218622 DOI: 10.1073/pnas.1310846110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Allelic exclusion requires that the two alleles at antigen-receptor loci attempt to recombine variable (V), diversity (D), and joining (J) gene segments [V(D)J recombination] asynchronously in nuclei of developing lymphocytes. It previously was shown that T-cell receptor β (Tcrb) alleles frequently and stochastically associate with the nuclear lamina and pericentromeric heterochromatin in CD4(-)CD8(-) thymocytes. Moreover, rearranged alleles were underrepresented at these locations. Here we used 3D immunofluorescence in situ hybridization to identify recently rearranged Tcrb alleles based on the accumulation of the DNA-repair protein 53BP1. We found that Tcrb alleles recombine asynchronously in double-negative thymocytes and that V(D)J recombination is suppressed on peripheral as compared with central Tcrb alleles. Moreover, the recombination events that did take place at the nuclear periphery preferentially occurred on Tcrb alleles that were partially dissociated from the nuclear lamina. To understand better the mechanism by which V(D)J recombination is suppressed at the nuclear periphery, we evaluated the subnuclear distribution of recombination-activating gene 2 (RAG2) protein. We found that RAG2 abundance was reduced at the nuclear periphery. Moreover, RAG2 was distributed differently from RNA polymerase II and histone H3K4 trimethylation. Our data suggest that the nuclear periphery suppresses V(D)J recombination, at least in part, by segregating Tcrb alleles from RAG proteins.
Collapse
|
211
|
Abstract
In this review, we discuss the repair of DNA double-strand breaks (DSBs) using a homologous DNA sequence (i.e., homologous recombination [HR]), focusing mainly on yeast and mammals. We provide a historical context for the current view of HR and describe how DSBs are processed during HR as well as interactions with other DSB repair pathways. We discuss the enzymology of the process, followed by studies on DSB repair in living cells. Whenever possible, we cite both original articles and reviews to aid the reader for further studies.
Collapse
Affiliation(s)
- Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center New York, New York 10065
| | | |
Collapse
|
212
|
Filipponi D, Muller J, Emelyanov A, Bulavin DV. Wip1 controls global heterochromatin silencing via ATM/BRCA1-dependent DNA methylation. Cancer Cell 2013; 24:528-41. [PMID: 24135283 DOI: 10.1016/j.ccr.2013.08.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/05/2013] [Accepted: 08/23/2013] [Indexed: 12/25/2022]
Abstract
Wip1 phosphatase is emerging as an important regulator of tumorigenesis, but no unifying mechanistic network has been proposed. We found that Wip1 plays a key role in the transcriptional regulation of heterochromatin-associated DNA sequences. Wip1 was required for epigenetic remodeling of repetitive DNA elements through regulation of BRCA1 interaction with HP1, the recruitment of DNA methyltransferases, and subsequent DNA methylation. Attenuation of ATM, in turn, reversed heterochromatin methylation. This mechanism was critical for the recruitment of the AID cytidine deaminase, and Wip1 levels strongly correlated with C-to-T substitutions and a total mutation load in primary breast cancers. We propose that Wip1 plays an important role in the regulation of global heterochromatin silencing and thus is critical in maintaining genome integrity.
Collapse
Affiliation(s)
- Doria Filipponi
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673
| | | | | | | |
Collapse
|
213
|
Takata H, Hanafusa T, Mori T, Shimura M, Iida Y, Ishikawa K, Yoshikawa K, Yoshikawa Y, Maeshima K. Chromatin compaction protects genomic DNA from radiation damage. PLoS One 2013; 8:e75622. [PMID: 24130727 PMCID: PMC3794047 DOI: 10.1371/journal.pone.0075622] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 08/20/2013] [Indexed: 12/02/2022] Open
Abstract
Genomic DNA is organized three-dimensionally in the nucleus, and is thought to form compact chromatin domains. Although chromatin compaction is known to be essential for mitosis, whether it confers other advantages, particularly in interphase cells, remains unknown. Here, we report that chromatin compaction protects genomic DNA from radiation damage. Using a newly developed solid-phase system, we found that the frequency of double-strand breaks (DSBs) in compact chromatin after ionizing irradiation was 5–50-fold lower than in decondensed chromatin. Since radical scavengers inhibited DSB induction in decondensed chromatin, condensed chromatin had a lower level of reactive radical generation after ionizing irradiation. We also found that chromatin compaction protects DNA from attack by chemical agents. Our findings suggest that genomic DNA compaction plays an important role in maintaining genomic integrity.
Collapse
Affiliation(s)
- Hideaki Takata
- Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Frontier Research Base for Global Young Researchers, Graduate School of Engineering Osaka University, Suita, Osaka, Japan
- * E-mail: (HT); (KM)
| | - Tomo Hanafusa
- Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Toshiaki Mori
- Radiation Research Center, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Mari Shimura
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Yutaka Iida
- Inorganic Analysis Laboratories, Toray Research Center, Inc., Otsu, Shiga, Japan
| | - Kenichi Ishikawa
- Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage, Chiba, Japan
| | - Kenichi Yoshikawa
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yuko Yoshikawa
- Research Organization of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kazuhiro Maeshima
- Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka, Japan
- * E-mail: (HT); (KM)
| |
Collapse
|
214
|
Glukhov SI, Rubtsov MA, Alexeyevsky DA, Alexeevski AV, Razin SV, Iarovaia OV. The broken MLL gene is frequently located outside the inherent chromosome territory in human lymphoid cells treated with DNA topoisomerase II poison etoposide. PLoS One 2013; 8:e75871. [PMID: 24086652 PMCID: PMC3783379 DOI: 10.1371/journal.pone.0075871] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 08/19/2013] [Indexed: 12/31/2022] Open
Abstract
The mixed lineage leukaemia (MLL) gene is frequently rearranged in secondary leukaemias, in which it could fuse to a variety of different partners. Breakage in the MLL gene preferentially occurs within a ~8 kb region that possesses a strong DNA topoisomerase II cleavage site. It has been proposed that DNA topoisomerase II-mediated DNA cleavage within this and other regions triggers translocations that occur due to incorrect joining of broken DNA ends. To further clarify a possible mechanism for MLL rearrangements, we analysed the frequency of MLL cleavage in cells exposed to etoposide, a DNA topoisomerase II poison commonly used as an anticancer drug, and positioning of the broken 3'-end of the MLL gene in respect to inherent chromosomal territories. It was demonstrated that exposure of human Jurkat cells to etoposide resulted in frequent cleavage of MLL genes. Using MLL-specific break-apart probes we visualised cleaved MLL genes in ~17% of nuclei. Using confocal microscopy and 3D modelling, we demonstrated that in cells treated with etoposide and cultivated for 1 h under normal conditions, ~9% of the broken MLL alleles were present outside the chromosome 11 territory, whereas in both control cells and cells inspected immediately after etoposide treatment, virtually all MLL alleles were present within the chromosomal territory. The data are discussed in the framework of the "breakage first" model of juxtaposing translocation partners. We propose that in the course of repairing DNA topoisomerase II-mediated DNA lesions (removal of stalled DNA topoisomerase II complexes and non-homologous end joining), DNA ends acquire additional mobility, which allows the meeting and incorrect joining of translocation partners.
Collapse
Affiliation(s)
- Sergey I. Glukhov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail A. Rubtsov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Daniil A. Alexeyevsky
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Andrei V. Alexeevski
- A.N. Belozersky Institute for Physical and Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Scientific Research Institute for System Studies (NIISI RAN), Moscow, Russia
| | - Sergey V. Razin
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Institute of Gene Biology RAS, Moscow, Russia
- LIA 1066 French-Russian Joint Cancer Research Laboratory, Villejuif, France–Moscow, Russia
- * E-mail:
| | | |
Collapse
|
215
|
Abstract
Chromatin structure and dynamics control all aspects of DNA biology yet are poorly understood, especially at large length scales. We developed an approach, displacement correlation spectroscopy based on time-resolved image correlation analysis, to map chromatin dynamics simultaneously across the whole nucleus in cultured human cells. This method revealed that chromatin movement was coherent across large regions (4-5 µm) for several seconds. Regions of coherent motion extended beyond the boundaries of single-chromosome territories, suggesting elastic coupling of motion over length scales much larger than those of genes. These large-scale, coupled motions were ATP dependent and unidirectional for several seconds, perhaps accounting for ATP-dependent directed movement of single genes. Perturbation of major nuclear ATPases such as DNA polymerase, RNA polymerase II, and topoisomerase II eliminated micron-scale coherence, while causing rapid, local movement to increase; i.e., local motions accelerated but became uncoupled from their neighbors. We observe similar trends in chromatin dynamics upon inducing a direct DNA damage; thus we hypothesize that this may be due to DNA damage responses that physically relax chromatin and block long-distance communication of forces.
Collapse
|
216
|
Müller I, Merk B, Voss KO, Averbeck N, Jakob B, Durante M, Taucher-Scholz G. Species conserved DNA damage response at the inactive human X chromosome. Mutat Res 2013; 756:30-36. [PMID: 23628434 DOI: 10.1016/j.mrgentox.2013.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 04/21/2013] [Indexed: 06/02/2023]
Abstract
Chromatin modifications are long known as an essential part of the orchestrated response resulting in the repair of radiation-induced DNA double-strand breaks (DSBs). Only recently, however, the influence of the chromatin architecture itself on the DNA damage response has been recognised. Thus for heterochromatic DSBs the sensing and early recruitment of repair factors to the lesion occurs within the heterochromatic compartments, but the damage sites are subsequently relocated from the inside to the outside of the heterochromatin. While previous studies were accomplished at the constitutive heterochromatin of centromeric regions in mouse and flies, here we examine the DSB repair at the facultative heterochromatin of the inactive X chromosome (Xi) in humans. Using heavy ion irradiation we show that at later times after irradiation the DSB damage streaks bend around the Xi verifying that the relocation process is conserved between species and not specialised to repetitive sequences only. In addition, to measure chromatin relaxation at rare positions within the genome, we established live cell microscopy at the GSI microbeam thus allowing the aimed irradiation of small nuclear structures like the Xi. Chromatin decondensation at DSBs within the Xi is clearly visible within minutes as a continuous decrease of the DNA staining over time, comparable to the DNA relaxation revealed at DSBs in mouse chromocenters. Furthermore, despite being conserved between species, slight differences in the underlying regulation of these processes in heterochromatic DSBs are apparent.
Collapse
Affiliation(s)
- Iris Müller
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany.
| | | | | | | | | | | | | |
Collapse
|
217
|
DNA double-strand breaks: linking gene expression to chromosome morphology and mobility. Chromosoma 2013; 123:103-15. [DOI: 10.1007/s00412-013-0432-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 11/27/2022]
|
218
|
Nuclear dynamics of radiation-induced foci in euchromatin and heterochromatin. Mutat Res 2013; 750:56-66. [PMID: 23958412 DOI: 10.1016/j.mrfmmm.2013.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/29/2013] [Accepted: 08/01/2013] [Indexed: 02/05/2023]
Abstract
Repair of double strand breaks (DSBs) is essential for cell survival and genome integrity. While much is known about the molecular mechanisms involved in DSB repair and checkpoint activation, the roles of nuclear dynamics of radiation-induced foci (RIF) in DNA repair are just beginning to emerge. Here, we summarize results from recent studies that point to distinct features of these dynamics in two different chromatin environments: heterochromatin and euchromatin. We also discuss how nuclear architecture and chromatin components might control these dynamics, and the need of novel quantification methods for a better description and interpretation of these phenomena. These studies are expected to provide new biomarkers for radiation risk and new strategies for cancer detection and treatment.
Collapse
|
219
|
Roukos V, Voss TC, Schmidt CK, Lee S, Wangsa D, Misteli T. Spatial dynamics of chromosome translocations in living cells. Science 2013; 341:660-4. [PMID: 23929981 DOI: 10.1126/science.1237150] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chromosome translocations are a hallmark of cancer cells. We have developed an experimental system to visualize the formation of translocations in living cells and apply it to characterize the spatial and dynamic properties of translocation formation. We demonstrate that translocations form within hours of the occurrence of double-strand breaks (DSBs) and that their formation is cell cycle-independent. Translocations form preferentially between prepositioned genome elements, and perturbation of key factors of the DNA repair machinery uncouples DSB pairing from translocation formation. These observations generate a spatiotemporal framework for the formation of translocations in living cells.
Collapse
|
220
|
Gospodinov A, Herceg Z. Chromatin structure in double strand break repair. DNA Repair (Amst) 2013; 12:800-10. [PMID: 23919923 DOI: 10.1016/j.dnarep.2013.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 12/16/2022]
Abstract
Cells are under constant assault by endogenous and environmental DNA damaging agents. DNA double strand breaks (DSBs) sever entire chromosomes and pose a major threat to genome integrity as a result of chromosomal fragment loss or chromosomal rearrangements. Exogenous factors such as ionizing radiation, crosslinking agents, and topoisomerase poisons, contribute to break formation. DSBs are associated with oxidative metabolism, form during the normal S phase, when replication forks collapse and are generated during physiological processes such as V(D)J recombination, yeast mating type switching and meiosis. It is estimated that in mammalian cells ∼10 DSBs per cell are formed daily. If left unrepaired DSBs can lead to cell death or deregulated growth, and cancer development. Cellular response to DSB damage includes mechanisms to halt the progression of the cell cycle and to restore the structure of the broken chromosome. Changes in chromatin adjacent to DNA break sites are instrumental to the DNA damage response (DDR) with two apparent ends: to control compaction and to bind repair and signaling molecules to the lesion. Here, we review the key findings related to each of these functions and examine their cross-talk.
Collapse
Affiliation(s)
- Anastas Gospodinov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 21, 1113 Sofia, Bulgaria.
| | | |
Collapse
|
221
|
Friedland W, Kundrát P. Track structure based modelling of chromosome aberrations after photon and alpha-particle irradiation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 756:213-23. [DOI: 10.1016/j.mrgentox.2013.06.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 02/01/2023]
|
222
|
Sirbu BM, Cortez D. DNA damage response: three levels of DNA repair regulation. Cold Spring Harb Perspect Biol 2013; 5:a012724. [PMID: 23813586 DOI: 10.1101/cshperspect.a012724] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genome integrity is challenged by DNA damage from both endogenous and environmental sources. This damage must be repaired to allow both RNA and DNA polymerases to accurately read and duplicate the information in the genome. Multiple repair enzymes scan the DNA for problems, remove the offending damage, and restore the DNA duplex. These repair mechanisms are regulated by DNA damage response kinases including DNA-PKcs, ATM, and ATR that are activated at DNA lesions. These kinases improve the efficiency of DNA repair by phosphorylating repair proteins to modify their activities, by initiating a complex series of changes in the local chromatin structure near the damage site, and by altering the overall cellular environment to make it more conducive to repair. In this review, we focus on these three levels of regulation to illustrate how the DNA damage kinases promote efficient repair to maintain genome integrity and prevent disease.
Collapse
Affiliation(s)
- Bianca M Sirbu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37027, USA
| | | |
Collapse
|
223
|
Savic V. Do chromatin changes around a nascent double strand DNA break spread spherically into linearly non-adjacent chromatin? Front Genet 2013; 4:139. [PMID: 23882282 PMCID: PMC3715691 DOI: 10.3389/fgene.2013.00139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/02/2013] [Indexed: 01/30/2023] Open
Abstract
In the last decade, a lot has been done in elucidating the sequence of events that occur at the nascent double strand DNA break. Nevertheless, the overall structure formed by the DNA damage response (DDR) factors around the break site, the repair focus, remains poorly understood. Although most of the data presented so far only address events that occur in chromatin in cis around the break, there are strong indications that in mammalian systems it may also occur in trans, analogous to the recent findings showing this if budding yeast. There have been attempts to address the issue but the final proof is still missing due to lack of a proper experimental system. If found to be true, the spatial distribution of DDR factors would have a major impact on the neighboring chromatin both in cis and in trans, significantly affecting local chromatin function; gene transcription and potentially other functions.
Collapse
Affiliation(s)
- Velibor Savic
- Department of Clinical Medicine, Brighton-Sussex Medical School, University of Sussex Brighton, UK ; Genome Damage and Stability Centre, University of Sussex Brighton, UK
| |
Collapse
|
224
|
Ferrando-May E, Tomas M, Blumhardt P, Stöckl M, Fuchs M, Leitenstorfer A. Highlighting the DNA damage response with ultrashort laser pulses in the near infrared and kinetic modeling. Front Genet 2013; 4:135. [PMID: 23882280 PMCID: PMC3712194 DOI: 10.3389/fgene.2013.00135] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/25/2013] [Indexed: 12/13/2022] Open
Abstract
Our understanding of the mechanisms governing the response to DNA damage in higher eucaryotes crucially depends on our ability to dissect the temporal and spatial organization of the cellular machinery responsible for maintaining genomic integrity. To achieve this goal, we need experimental tools to inflict DNA lesions with high spatial precision at pre-defined locations, and to visualize the ensuing reactions with adequate temporal resolution. Near-infrared femtosecond laser pulses focused through high-aperture objective lenses of advanced scanning microscopes offer the advantage of inducing DNA damage in a 3D-confined volume of subnuclear dimensions. This high spatial resolution results from the highly non-linear nature of the excitation process. Here we review recent progress based on the increasing availability of widely tunable and user-friendly technology of ultrafast lasers in the near infrared. We present a critical evaluation of this approach for DNA microdamage as compared to the currently prevalent use of UV or VIS laser irradiation, the latter in combination with photosensitizers. Current and future applications in the field of DNA repair and DNA-damage dependent chromatin dynamics are outlined. Finally, we discuss the requirement for proper simulation and quantitative modeling. We focus in particular on approaches to measure the effect of DNA damage on the mobility of nuclear proteins and consider the pros and cons of frequently used analysis models for FRAP and photoactivation and their applicability to non-linear photoperturbation experiments.
Collapse
Affiliation(s)
- Elisa Ferrando-May
- Department of Biology, Bioimaging Center and Center for Applied Photonics, University of Konstanz Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
225
|
DNA in motion during double-strand break repair. Trends Cell Biol 2013; 23:529-36. [PMID: 23867212 DOI: 10.1016/j.tcb.2013.05.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/28/2013] [Accepted: 05/22/2013] [Indexed: 01/04/2023]
Abstract
DNA organization and dynamics profoundly affect many biological processes such as gene regulation and DNA repair. In this review, we present the latest studies on DNA mobility in the context of DNA damage. Recent studies demonstrate that DNA mobility is dramatically increased in the presence of double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae. As a consequence, chromosomes explore a larger nuclear volume, facilitating homologous pairing but also increasing the rate of ectopic recombination. Increased DNA dynamics is dependent on several homologous recombination (HR) proteins and we are just beginning to understand how chromosome dynamics is regulated after DNA damage.
Collapse
|
226
|
Bologna S, Ferrari S. It takes two to tango: Ubiquitin and SUMO in the DNA damage response. Front Genet 2013; 4:106. [PMID: 23781231 PMCID: PMC3678106 DOI: 10.3389/fgene.2013.00106] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/24/2013] [Indexed: 11/14/2022] Open
Abstract
The complexity of living cells is primarily determined by the genetic information encoded in DNA and gets fully disclosed upon translation. A major determinant of complexity is the reversible post-translational modification (PTM) of proteins, which generates variants displaying distinct biological properties such as subcellular localization, enzymatic activity and the ability to assemble in complexes. Decades of work on phosphorylation have unambiguously proven this concept. In recent years, the covalent attachment of Ubiquitin or Small Ubiquitin-like Modifiers (SUMO) to amino acid residues of target proteins has been recognized as another crucial PTM, re-directing protein fate and protein-protein interactions. This review focuses on the role of ubiquitylation and sumoylation in the control of DNA damage response proteins. To lay the ground, we begin with a description of ubiquitylation and sumoylation, providing established examples of DNA damage response elements that are controlled through these PTMs. We then examine in detail the role of PTMs in the cellular response to DNA double-strand breaks illustrating hierarchy, cross-talk, synergism or antagonism between phosphorylation, ubiquitylation and sumoylation. We conclude offering a perspective on Ubiquitin and SUMO pathways as targets in cancer therapy.
Collapse
Affiliation(s)
- Serena Bologna
- Institute of Molecular Cancer Research, University of ZurichZurich, Switzerland
| | - Stefano Ferrari
- Institute of Molecular Cancer Research, University of ZurichZurich, Switzerland
| |
Collapse
|
227
|
Kaidi A, Jackson SP. KAT5 tyrosine phosphorylation couples chromatin sensing to ATM signalling. Nature 2013; 498:70-4. [PMID: 23708966 PMCID: PMC3859897 DOI: 10.1038/nature12201] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/18/2013] [Indexed: 12/14/2022]
Abstract
The detection of DNA lesions within chromatin represents a critical step in cellular responses to DNA damage. However, the regulatory mechanisms that couple chromatin sensing to DNA-damage signalling in mammalian cells are not well understood. Here we show that tyrosine phosphorylation of the protein acetyltransferase KAT5 (also known as TIP60) increases after DNA damage in a manner that promotes KAT5 binding to the histone mark H3K9me3. This triggers KAT5-mediated acetylation of the ATM kinase, promoting DNA-damage-checkpoint activation and cell survival. We also establish that chromatin alterations can themselves enhance KAT5 tyrosine phosphorylation and ATM-dependent signalling, and identify the proto-oncogene c-Abl as a mediator of this modification. These findings define KAT5 tyrosine phosphorylation as a key event in the sensing of genomic and chromatin perturbations, and highlight a key role for c-Abl in such processes.
Collapse
Affiliation(s)
- Abderrahmane Kaidi
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | |
Collapse
|
228
|
Dorier J, Stasiak A. Modelling of crowded polymers elucidate effects of double-strand breaks in topological domains of bacterial chromosomes. Nucleic Acids Res 2013; 41:6808-15. [PMID: 23742906 PMCID: PMC3737558 DOI: 10.1093/nar/gkt480] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Using numerical simulations of pairs of long polymeric chains confined in microscopic cylinders, we investigate consequences of double-strand DNA breaks occurring in independent topological domains, such as these constituting bacterial chromosomes. Our simulations show a transition between segregated and mixed state upon linearization of one of the modelled topological domains. Our results explain how chromosomal organization into topological domains can fulfil two opposite conditions: (i) effectively repulse various loops from each other thus promoting chromosome separation and (ii) permit local DNA intermingling when one or more loops are broken and need to be repaired in a process that requires homology search between broken ends and their homologous sequences in closely positioned sister chromatid.
Collapse
Affiliation(s)
- Julien Dorier
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015-Lausanne, Switzerland
| | | |
Collapse
|
229
|
Sharma V, Misteli T. Non-coding RNAs in DNA damage and repair. FEBS Lett 2013; 587:1832-9. [PMID: 23684639 DOI: 10.1016/j.febslet.2013.05.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 02/07/2023]
Abstract
Non-coding RNAs (ncRNAs) are increasingly recognized as central players in diverse biological processes. Upon DNA damage, the DNA damage response (DDR) elicits a complex signaling cascade, which includes the induction of multiple ncRNA species. Recent studies indicate that DNA-damage induced ncRNAs contribute to regulation of cell cycle, apoptosis and DNA repair, and thus play a key role in maintaining genome stability. This review summarizes the emerging role of ncRNAs in DNA damage and repair.
Collapse
Affiliation(s)
- Vivek Sharma
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
230
|
Dion V, Gasser SM. Chromatin movement in the maintenance of genome stability. Cell 2013; 152:1355-64. [PMID: 23498942 DOI: 10.1016/j.cell.2013.02.010] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Indexed: 11/24/2022]
Abstract
Mechanistic analyses based on improved imaging techniques have begun to explore the biological implications of chromatin movement within the nucleus. Studies in both prokaryotes and eukaryotes have shed light on what regulates the mobility of DNA over long distances. Interestingly, in eukaryotes, genomic loci increase their movement in response to double-strand break induction. Break mobility, in turn, correlates with the efficiency of repair by homologous recombination. We review here the source and regulation of DNA mobility and discuss how it can both contribute to and jeopardize genome stability.
Collapse
Affiliation(s)
- Vincent Dion
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | |
Collapse
|
231
|
Price BD, D'Andrea AD. Chromatin remodeling at DNA double-strand breaks. Cell 2013; 152:1344-54. [PMID: 23498941 DOI: 10.1016/j.cell.2013.02.011] [Citation(s) in RCA: 449] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Indexed: 11/27/2022]
Abstract
DNA double-strand breaks (DSBs) can arise from multiple sources, including exposure to ionizing radiation. The repair of DSBs involves both posttranslational modification of nucleosomes and concentration of DNA-repair proteins at the site of damage. Consequently, nucleosome packing and chromatin architecture surrounding the DSB may limit the ability of the DNA-damage response to access and repair the break. Here, we review early chromatin-based events that promote the formation of open, relaxed chromatin structures at DSBs and that allow the DNA-repair machinery to access the spatially confined region surrounding the DSB, thereby facilitating mammalian DSB repair.
Collapse
Affiliation(s)
- Brendan D Price
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
232
|
Foltánková V, Legartová S, Kozubek S, Hofer M, Bártová E. DNA-damage response in chromatin of ribosomal genes and the surrounding genome. Gene 2013; 522:156-67. [PMID: 23566839 DOI: 10.1016/j.gene.2013.03.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/20/2013] [Accepted: 03/09/2013] [Indexed: 11/24/2022]
Abstract
DNA repair events have functional significance especially for genome stability. Although the DNA damage response within the whole genome has been extensively studied, the region-specific characteristics of nuclear sub-compartments such as the nucleolus or fragile sites have not been fully elucidated. Here, we show that the heterochromatin protein HP1 and PML protein recognize spontaneously occurring 53BP1- or γ-H2AX-positive DNA lesions throughout the genome. Moreover, 53BP1 nuclear bodies, which co-localize with PML bodies, also occur within the nucleoli compartments. Irradiation of the human osteosarcoma cell line U2OS with γ-rays increases the degree of co-localization between 53BP1 and PML bodies throughout the genome; however, the 53BP1 protein is less abundant in chromatin of ribosomal genes and fragile sites (FRA3B and FRA16D) in γ-irradiated cells. Most epigenomic marks on ribosomal genes and fragile sites are relatively stable in both non-irradiated and γ-irradiated cells. However, H3K4me2, H3K9me3, H3K27me3 and H3K79me1 were significantly changed in promoter and coding regions of ribosomal genes after exposure of cells to γ-rays. In fragile sites, γ-irradiation induces a decrease in H3K4me3, changes the levels of HP1β, and modifies the levels of H3K9 acetylation, while the level of H3K9me3 was relatively stable. In these studies, we confirm a specific DNA-damage response that differs between the ribosomal genes and fragile sites, which indicates the region-specificity of DNA repair.
Collapse
Affiliation(s)
- Veronika Foltánková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-612 65, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
233
|
Foltánková V, Matula P, Sorokin D, Kozubek S, Bártová E. Hybrid detectors improved time-lapse confocal microscopy of PML and 53BP1 nuclear body colocalization in DNA lesions. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:360-369. [PMID: 23410959 DOI: 10.1017/s1431927612014353] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We used hybrid detectors (HyDs) to monitor the trajectories and interactions of promyelocytic leukemia (GFP-PML) nuclear bodies (NBs) and mCherry-53BP1-positive DNA lesions. 53BP1 protein accumulates in NBs that occur spontaneously in the genome or in γ-irradiation-induced foci. When we induced local DNA damage by ultraviolet irradiation, we also observed accumulation of 53BP1 proteins into discrete bodies, instead of the expected dispersed pattern. In comparison with photomultiplier tubes, which are used for standard analysis by confocal laser scanning microscopy, HyDs significantly eliminated photobleaching of GFP and mCherry fluorochromes during image acquisition. The low laser intensities used for HyD-based confocal analysis enabled us to observe NBs for the longer time periods, necessary for studies of the trajectories and interactions of PML and 53BP1 NBs. To further characterize protein interactions, we used resonance scanning and a novel bioinformatics approach to register and analyze the movements of individual PML and 53BP1 NBs. The combination of improved HyD-based confocal microscopy with a tailored bioinformatics approach enabled us to reveal damage-specific properties of PML and 53BP1 NBs.
Collapse
Affiliation(s)
- Veronika Foltánková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-612 65, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
234
|
Roukos V, Burman B, Misteli T. The cellular etiology of chromosome translocations. Curr Opin Cell Biol 2013; 25:357-64. [PMID: 23498663 DOI: 10.1016/j.ceb.2013.02.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 01/26/2023]
Abstract
Chromosome translocations are the most severe form of genome defect. Translocations represent the end product of a series of cellular mistakes and they form after cells suffer multiple DNA double strand breaks (DSBs), which evade the surveillance mechanisms that usually eliminate them. Rather than being accurately repaired, translocating DSBs are misjoined to form aberrant fusion chromosomes. Although translocations have been extensively characterized using cytological methods and their pathological relevance in cancer and numerous other diseases is well established, how translocations form in the context of the intact cell nucleus is poorly understood. A combination of imaging approaches and biochemical methods to probe genome architecture and chromatin structure suggest that the spatial organization of the genome and features of chromatin, including sequence properties, higher order chromatin structure and histone modifications, are key determinants of translocation formation.
Collapse
|
235
|
Karanam K, Loewer A, Lahav G. Dynamics of the DNA damage response: insights from live-cell imaging. Brief Funct Genomics 2013; 12:109-17. [PMID: 23292635 PMCID: PMC3609438 DOI: 10.1093/bfgp/els059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
All organisms have to safeguard the integrity of their genome to prevent malfunctioning and oncogenic transformation. Sophisticated DNA damage response mechanisms have evolved to detect and repair genomic lesions. With the emergence of live-cell microscopy of individual cells, we now begin to appreciate the complex spatiotemporal kinetics of the DNA damage response and can address the causes and consequences of the heterogeneity in the responses of genetically identical cells. Here, we highlight key discoveries where live-cell imaging has provided unprecedented insights into how cells respond to DNA double-strand breaks and discuss the main challenges and promises in using this technique.
Collapse
|
236
|
Cavalli G, Misteli T. Functional implications of genome topology. Nat Struct Mol Biol 2013; 20:290-9. [PMID: 23463314 PMCID: PMC6320674 DOI: 10.1038/nsmb.2474] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/20/2012] [Indexed: 01/21/2023]
Abstract
Although genomes are defined by their sequence, the linear arrangement of nucleotides is only their most basic feature. A fundamental property of genomes is their topological organization in three-dimensional space in the intact cell nucleus. The application of imaging methods and genome-wide biochemical approaches, combined with functional data, is revealing the precise nature of genome topology and its regulatory functions in gene expression and genome maintenance. The emerging picture is one of extensive self-enforcing feedback between activity and spatial organization of the genome, suggestive of a self-organizing and self-perpetuating system that uses epigenetic dynamics to regulate genome function in response to regulatory cues and to propagate cell-fate memory.
Collapse
Affiliation(s)
- Giacomo Cavalli
- Institut de Génétique Humaine, UPR 1142, Centre National de la Recherche Scientifique, Montpellier, France.
| | | |
Collapse
|
237
|
Courilleau C, Chailleux C, Jauneau A, Grimal F, Briois S, Boutet-Robinet E, Boudsocq F, Trouche D, Canitrot Y. The chromatin remodeler p400 ATPase facilitates Rad51-mediated repair of DNA double-strand breaks. ACTA ACUST UNITED AC 2013; 199:1067-81. [PMID: 23266955 PMCID: PMC3529529 DOI: 10.1083/jcb.201205059] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The chromatin remodeling enzyme p400 forms a complex with Rad51 and is required for its recruitment to double-strand breaks during DNA repair by homologous recombination. DNA damage signaling and repair take place in a chromatin context. Consequently, chromatin-modifying enzymes, including adenosine triphosphate–dependent chromatin remodeling enzymes, play an important role in the management of DNA double-strand breaks (DSBs). Here, we show that the p400 ATPase is required for DNA repair by homologous recombination (HR). Indeed, although p400 is not required for DNA damage signaling, DNA DSB repair is defective in the absence of p400. We demonstrate that p400 is important for HR-dependent processes, such as recruitment of Rad51 to DSB (a key component of HR), homology-directed repair, and survival after DNA damage. Strikingly, p400 and Rad51 are present in the same complex and both favor chromatin remodeling around DSBs. Altogether, our data provide a direct molecular link between Rad51 and a chromatin remodeling enzyme involved in chromatin decompaction around DNA DSBs.
Collapse
Affiliation(s)
- Céline Courilleau
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, UMR 5088, Université de Toulouse and 2 Centre National de la Recherche Scientifique, Université Paul Sabatier, 31062 Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Wan G, Mathur R, Hu X, Liu Y, Zhang X, Peng G, Lu X. Long non-coding RNA ANRIL (CDKN2B-AS) is induced by the ATM-E2F1 signaling pathway. Cell Signal 2013; 25:1086-95. [PMID: 23416462 DOI: 10.1016/j.cellsig.2013.02.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/08/2013] [Indexed: 12/27/2022]
Abstract
The maintenance of genome integrity is essential for the proper function and survival of all organisms. Human cells have evolved prompt and efficient DNA damage response to eliminate the detrimental effects of DNA lesions. The DNA damage response involves a complex network of processes that detect and repair DNA damage, in which long non-coding RNAs (lncRNAs), a new class of regulatory RNAs, may play important roles. Recent studies have identified a large number of lncRNAs in mammalian transcriptomes. However, little is known about the regulation and function of lncRNAs in the DNA damage response. In the present study, we demonstrate that one specific lncRNA, ANRIL, is transcriptionally up-regulated by the transcription factor E2F1 in an ATM-dependent manner following DNA damage, and elevated levels of ANRIL suppress the expression of INK4a, INK4b and ARF at the late-stage of DNA damage response, allowing the cell to return to normal at the completion of the DNA repair.
Collapse
Affiliation(s)
- Guohui Wan
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
239
|
Smeenk G, van Attikum H. The chromatin response to DNA breaks: leaving a mark on genome integrity. Annu Rev Biochem 2013; 82:55-80. [PMID: 23414304 DOI: 10.1146/annurev-biochem-061809-174504] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic, biochemical, and cellular studies have uncovered many of the molecular mechanisms underlying the signaling and repair of chromosomal DNA breaks. However, efficient repair of DNA damage is complicated in that genomic DNA is packaged, through histone and nonhistone proteins, into chromatin. The DNA repair machinery has to overcome this physical barrier to gain access to damaged DNA and repair DNA lesions. Posttranslational modifications of chromatin as well as ATP-dependent chromatin remodeling factors help to overcome this barrier and facilitate access to damaged DNA by altering chromatin structure at sites of DNA damage. Here we review and discuss our current knowledge of and recent advances in chromatin changes induced by chromosome breakage in mammalian cells and their implications for genome stability and human disease.
Collapse
Affiliation(s)
- Godelieve Smeenk
- Department of Toxicogenetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | | |
Collapse
|
240
|
Abstract
The maintenance of genome integrity is essential for organism survival and for the inheritance of traits to offspring. Genomic instability is caused by DNA damage, aberrant DNA replication or uncoordinated cell division, which can lead to chromosomal aberrations and gene mutations. Recently, chromatin regulators that shape the epigenetic landscape have emerged as potential gatekeepers and signalling coordinators for the maintenance of genome integrity. Here, we review chromatin functions during the two major pathways that control genome integrity: namely, repair of DNA damage and DNA replication. We also discuss recent evidence that suggests a novel role for chromatin-remodelling factors in chromosome segregation and in the prevention of aneuploidy.
Collapse
|
241
|
Hunt CR, Ramnarain D, Horikoshi N, Iyengar P, Pandita RK, Shay JW, Pandita TK. Histone modifications and DNA double-strand break repair after exposure to ionizing radiations. Radiat Res 2013; 179:383-92. [PMID: 23373901 DOI: 10.1667/rr3308.2] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ionizing radiation exposure induces highly lethal DNA double-strand breaks (DSBs) in all phases of the cell cycle. After DSBs are detected by the cellular machinery, these breaks are repaired by either of two mechanisms: (1) nonhomologous end joining (NHEJ), which re-ligates the broken ends of the DNA and (2) homologous recombination (HR), that makes use of an undamaged identical DNA sequence as a template to maintain the fidelity of DNA repair. DNA DSB repair must occur within the context of the natural cellular DNA structure. Among the major factors influencing DNA organization are specific histone and nonhistone proteins that form chromatin. The overall chromatin structure regulates DNA damage responses since chromatin status can impede DNA damage site access by repair proteins. During the process of DNA DSB repair, several chromatin alterations are required to sense damage and facilitate accessibility of the repair machinery. The DNA DSB response is also facilitated by hierarchical signaling networks that orchestrate chromatin structural changes that may coordinate cell-cycle checkpoints involving multiple enzymatic activities to repair broken DNA ends. During DNA damage sensing and repair, histones undergo posttranslational modifications (PTMs) including phosphorylation, acetylation, methylation and ubiquitylation. Such histone modifications represent a histone code that directs the recruitment of proteins involved in DNA damage sensing and repair processes. In this review, we summarize histone modifications that occur during DNA DSB repair processes.
Collapse
Affiliation(s)
- Clayton R Hunt
- University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
242
|
Falk M, Lukášová E, Štefančíková L, Baranová E, Falková I, Ježková L, Davídková M, Bačíková A, Vachelová J, Michaelidesová A, Kozubek S. Heterochromatinization associated with cell differentiation as a model to study DNA double strand break induction and repair in the context of higher-order chromatin structure. Appl Radiat Isot 2013; 83 Pt B:177-85. [PMID: 23454236 DOI: 10.1016/j.apradiso.2013.01.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 11/18/2022]
Abstract
Cell differentiation is associated with extensive gene silencing, heterochromatinization and potentially decreasing need for repairing DNA double-strand breaks (DSBs). Differentiation stages of blood cells thus represent an excellent model to study DSB induction, repair and misrepair in the context of changing higher-order chromatin structure. We show that immature granulocytes form γH2AX and 53BP1 foci, contrary to the mature cells; however, these foci colocalize only rarely and DSB repair is inefficient. Moreover, specific chromatin structure of granulocytes probably influences DSB induction.
Collapse
Affiliation(s)
- Martin Falk
- Institute of Biophysics Brno, Czech Academy of Sciences, Brno 61265, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Campalans A, Kortulewski T, Amouroux R, Menoni H, Vermeulen W, Radicella JP. Distinct spatiotemporal patterns and PARP dependence of XRCC1 recruitment to single-strand break and base excision repair. Nucleic Acids Res 2013; 41:3115-29. [PMID: 23355608 PMCID: PMC3597691 DOI: 10.1093/nar/gkt025] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Single-strand break repair (SSBR) and base excision repair (BER) of modified bases and abasic sites share several players. Among them is XRCC1, an essential scaffold protein with no enzymatic activity, required for the coordination of both pathways. XRCC1 is recruited to SSBR by PARP-1, responsible for the initial recognition of the break. The recruitment of XRCC1 to BER is still poorly understood. Here we show by using both local and global induction of oxidative DNA base damage that XRCC1 participation in BER complexes can be distinguished from that in SSBR by several criteria. We show first that XRCC1 recruitment to BER is independent of PARP. Second, unlike SSBR complexes that are assembled within minutes after global damage induction, XRCC1 is detected later in BER patches, with kinetics consistent with the repair of oxidized bases. Third, while XRCC1-containing foci associated with SSBR are formed both in eu- and heterochromatin domains, BER complexes are assembled in patches that are essentially excluded from heterochromatin and where the oxidized bases are detected.
Collapse
Affiliation(s)
- Anna Campalans
- CEA, Institute of Cellular and Molecular Radiobiology, F-96265 Fontenay aux Roses, France.
| | | | | | | | | | | |
Collapse
|
244
|
Kumar R, Horikoshi N, Singh M, Gupta A, Misra HS, Albuquerque K, Hunt CR, Pandita TK. Chromatin modifications and the DNA damage response to ionizing radiation. Front Oncol 2013; 2:214. [PMID: 23346550 PMCID: PMC3551241 DOI: 10.3389/fonc.2012.00214] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 12/29/2012] [Indexed: 01/01/2023] Open
Abstract
In order to survive, cells have evolved highly effective repair mechanisms to deal with the potentially lethal DNA damage produced by exposure to endogenous as well as exogenous agents. Ionizing radiation exposure induces highly lethal DNA damage, especially DNA double-strand breaks (DSBs), that is sensed by the cellular machinery and then subsequently repaired by either of two different DSB repair mechanisms: (1) non-homologous end joining, which re-ligates the broken ends of the DNA and (2) homologous recombination, that employs an undamaged identical DNA sequence as a template, to maintain the fidelity of DNA repair. Repair of DSBs must occur within the natural context of the cellular DNA which, along with specific proteins, is organized to form chromatin, the overall structure of which can impede DNA damage site access by repair proteins. The chromatin complex is a dynamic structure and is known to change as required for ongoing cellular processes such as gene transcription or DNA replication. Similarly, during the process of DNA damage sensing and repair, chromatin needs to undergo several changes in order to facilitate accessibility of the repair machinery. Cells utilize several factors to modify the chromatin in order to locally open up the structure to reveal the underlying DNA sequence but post-translational modification of the histone components is one of the primary mechanisms. In this review, we will summarize chromatin modifications by the respective chromatin modifying factors that occur during the DNA damage response.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Radiation Oncology, University of Texas Southwestern Medical Center Dallas, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Ježková L, Falk M, Falková I, Davídková M, Bačíková A, Štefančíková L, Vachelová J, Michaelidesová A, Lukášová E, Boreyko A, Krasavin E, Kozubek S. Function of chromatin structure and dynamics in DNA damage, repair and misrepair: γ-rays and protons in action. Appl Radiat Isot 2013; 83 Pt B:128-36. [PMID: 23415104 DOI: 10.1016/j.apradiso.2013.01.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 11/26/2022]
Abstract
According to their physical characteristics, protons and ion beams promise a revolution in cancer radiotherapy. Curing protocols however reflect rather the empirical knowledge than experimental data on DNA repair. This especially holds for the spatio-temporal organization of repair processes in the context of higher-order chromatin structure-the problematics addressed in this work. The consequences for the mechanism of chromosomal translocations are compared for gamma rays and proton beams.
Collapse
Affiliation(s)
- Lucie Ježková
- Institute of Biophysics Brno, Academy of Sciences of the Czech Republic, Brno, Czech Republic; Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia; Institute of Chemical Technology Prague, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Muñoz DP, Kawahara M, Yannone SM. An autonomous chromatin/DNA-PK mechanism for localized DNA damage signaling in mammalian cells. Nucleic Acids Res 2013; 41:2894-906. [PMID: 23325849 PMCID: PMC3597672 DOI: 10.1093/nar/gks1478] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rapid phosphorylation of histone variant H2AX proximal to DNA breaks is an initiating event and a hallmark of eukaryotic DNA damage responses. Three mammalian kinases are known to phosphorylate H2AX in response to DNA damage. However, the mechanism(s) for damage-localized phosphorylation remains incompletely understood. The DNA-dependent protein kinase (DNA-PK) is the most abundant H2AX-modifying kinases and uniquely activated by binding DNA termini. Here, we have developed a novel approach to examine enzyme activity and substrate properties by executing biochemical assays on intact cellular structures. We apply this approach to examine the mechanisms of localized protein modification in chromatin within fixed cells. DNA-PK retains substrate specificity and independently generates break-localized γH2AX foci in chromatin. In situ DNA-PK activity recapitulates localization and intensity of in vivo H2AX phosphorylation and requires no active cellular processes. Nuclease treatments or addition of exogenous DNA resulted in genome-wide H2AX phosphorylation, showing that DNA termini dictated the locality of H2AX phosphorylation in situ. DNA-PK also reconstituted focal phosphorylation of structural maintenance of chromatin protein 1, but not activating transcription factor 2. Allosteric regulation of DNA-PK by DNA termini protruding from chromatin constitutes an autonomous mechanism for break-localized protein phosphorylation that generates sub-nuclear foci. We discuss generalized implications of this mechanism in localizing mammalian DNA damage responses.
Collapse
Affiliation(s)
- Denise P Muñoz
- Life Sciences Division, Lawrence Berkeley National Laboratory, Mail Stop 84-171, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
247
|
Kruhlak MJ. Correlative fluorescence and EFTEM imaging of the organized components of the mammalian nucleus. Methods Mol Biol 2013; 950:397-416. [PMID: 23086887 PMCID: PMC7581281 DOI: 10.1007/978-1-62703-137-0_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The cell nucleus contains many distinct subnuclear compartments, domains, and bodies that vary in their composition, structure, and function. While the cellular constituents that occupy the subnuclear regions may be well known, defining the structural details of the molecular assembly of the constituents has been more difficult. A correlative fluorescence and energy-filtering transmission electron microscopy (EFTEM) imaging method has the ability to provide these details. The correlative microscopy method described here allows the tracking of subnuclear structures from specific cells by fluorescence microscopy and then, using electron energy loss imaging in the transmission electron microscope, reveals the ultrastructural features of the nuclear components along with endogenous elemental information that relates directly to the biochemical composition of the structure. The ultrastructural features and composition of well-characterized PML bodies and interchromatin granule clusters are compared to those of ligand-activated glucocorticoid receptor (GR) foci, with GR foci containing fibrogranular nucleic acid-containing features and PML bodies being devoid of nucleic acid.
Collapse
Affiliation(s)
- Michael J Kruhlak
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
248
|
Lukášová E, Kořistek Z, Klabusay M, Ondřej V, Grigoryev S, Bačíková A, Řezáčová M, Falk M, Vávrová J, Kohútová V, Kozubek S. Granulocyte maturation determines ability to release chromatin NETs and loss of DNA damage response; these properties are absent in immature AML granulocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:767-79. [PMID: 23269287 DOI: 10.1016/j.bbamcr.2012.12.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 11/18/2022]
Abstract
Terminally-differentiated cells cease to proliferate and acquire specific sets of expressed genes and functions distinguishing them from less differentiated and cancer cells. Mature granulocytes show lobular structure of cell nuclei with highly condensed chromatin in which HP1 proteins are replaced by MNEI. These structural features of chromatin correspond to low level of gene expression and the loss of some important functions as DNA damage repair, shown in this work and, on the other hand, acquisition of a new specific function consisting in the release of chromatin extracellular traps in response to infection by pathogenic microbes. Granulocytic differentiation is incomplete in myeloid leukemia and is manifested by persistence of lower levels of HP1γ and HP1β isoforms. This immaturity is accompanied by acquisition of DDR capacity allowing to these incompletely differentiated multi-lobed neutrophils of AML patients to respond to induction of DSB by γ-irradiation. Immature granulocytes persist frequently in blood of treated AML patients in remission. These granulocytes contrary to mature ones do not release chromatin for NETs after activation with phorbol myristate-12 acetate-13 and do not exert the neutrophil function in immune defence. We suggest therefore the detection of HP1 expression in granulocytes of AML patients as a very sensitive indicator of their maturation and functionality after the treatment. Our results show that the changes in chromatin structure underlie a major transition in functioning of the genome in immature granulocytes. They show further that leukemia stem cells can differentiate ex vivo to mature granulocytes despite carrying the translocation BCR/ABL.
Collapse
MESH Headings
- Blotting, Western
- Cell Differentiation
- Cell Proliferation
- Cells, Cultured
- Chromatin/genetics
- Chromobox Protein Homolog 5
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- DNA Damage
- Fluorescent Antibody Technique
- Granulocytes/metabolism
- Granulocytes/pathology
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Neutrophils/pathology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Tetradecanoylphorbol Acetate
Collapse
Affiliation(s)
- Emilie Lukášová
- The Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Smeenk G, Wiegant WW, Marteijn JA, Luijsterburg MS, Sroczynski N, Costelloe T, Romeijn RJ, Pastink A, Mailand N, Vermeulen W, van Attikum H. Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling. J Cell Sci 2012; 126:889-903. [PMID: 23264744 DOI: 10.1242/jcs.109413] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) arising in native chromatin elicit an RNF8/RNF168-dependent ubiquitylation response, which triggers the recruitment of various repair factors. Precisely how this response is regulated in the context of chromatin remains largely unexplored. Here, we show that SMARCA5/SNF2H, the catalytic subunit of ISWI chromatin remodeling complexes, is recruited to DSBs in a poly(ADP-ribose) polymerase 1 (PARP1)-dependent manner. Remarkably, PARP activity, although dispensable for the efficient spreading of γH2AX into damaged chromatin, selectively promotes spreading of SMARCA5, the E3 ubiquitin ligase RNF168, ubiquitin conjugates and the ubiquitin-binding factors RAD18 and the RAP80-BRCA1 complex throughout DSB-flanking chromatin. This suggests that PARP regulates the spatial organization of the RNF168-driven ubiquitin response to DNA damage. In support of this, we show that SMARCA5 and RNF168 interact in a DNA damage- and PARP-dependent manner. RNF168 became poly(ADP-ribosyl)ated after DNA damage, while RNF168 and poly(ADP-ribose) chains were required for SMARCA5 binding in vivo, explaining how SMARCA5 is linked to the RNF168 ubiquitin cascade. Moreover, SMARCA5 was found to regulate the ubiquitin response by promoting RNF168 accumulation at DSBs, which subsequently facilitates efficient ubiquitin conjugation and BRCA1 assembly. Underlining the importance of these findings, we show that SMARCA5 depletion renders cells sensitive to IR and results in DSB repair defects. Our study unveils a functional link between DNA damage-induced poly(ADP-ribosyl)ation, SMARCA5-mediated chromatin remodeling and RNF168-dependent signaling and repair of DSBs.
Collapse
Affiliation(s)
- Godelieve Smeenk
- Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Bain NT, Madan P, Betts DH. Elevated p66Shc is associated with intracellular redox imbalance in developmentally compromised bovine embryos. Mol Reprod Dev 2012; 80:22-34. [DOI: 10.1002/mrd.22128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/19/2012] [Indexed: 11/06/2022]
|