201
|
Pavlova ER, Bagrov DV, Khramova YV, Klinov DV, Shaitan KV. Nuclei deformation in HaCaT keratinocytes cultivated on aligned fibrous substrates. ACTA ACUST UNITED AC 2017. [DOI: 10.3103/s0096392517020043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
202
|
Mechanochemical feedback underlies coexistence of qualitatively distinct cell polarity patterns within diverse cell populations. Proc Natl Acad Sci U S A 2017; 114:E5750-E5759. [PMID: 28655842 DOI: 10.1073/pnas.1700054114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cell polarization and directional cell migration can display random, persistent, and oscillatory dynamic patterns. However, it is not clear whether these polarity patterns can be explained by the same underlying regulatory mechanism. Here, we show that random, persistent, and oscillatory migration accompanied by polarization can simultaneously occur in populations of melanoma cells derived from tumors with different degrees of aggressiveness. We demonstrate that all of these patterns and the probabilities of their occurrence are quantitatively accounted for by a simple mechanism involving a spatially distributed, mechanochemical feedback coupling the dynamically changing extracellular matrix (ECM)-cell contacts to the activation of signaling downstream of the Rho-family small GTPases. This mechanism is supported by a predictive mathematical model and extensive experimental validation, and can explain previously reported results for diverse cell types. In melanoma, this mechanism also accounts for the effects of genetic and environmental perturbations, including mutations linked to invasive cell spread. The resulting mechanistic understanding of cell polarity quantitatively captures the relationship between population variability and phenotypic plasticity, with the potential to account for a wide variety of cell migration states in diverse pathological and physiological conditions.
Collapse
|
203
|
Milano DF, Ngai NA, Muthuswamy SK, Asthagiri AR. Regulators of Metastasis Modulate the Migratory Response to Cell Contact under Spatial Confinement. Biophys J 2017; 110:1886-1895. [PMID: 27119647 DOI: 10.1016/j.bpj.2016.02.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 11/16/2022] Open
Abstract
The breast tumor microenvironment (TMEN) is a unique niche where protein fibers help to promote invasion and metastasis. Cells migrating along these fibers are constantly interacting with each other. How cells respond to these interactions has important implications. Cancer cells that circumnavigate or slide around other cells on protein fibers take a less tortuous path out of the primary tumor; conversely, cells that turn back upon encountering other cells invade less efficiently. The contact response of migrating cancer cells in a fibrillar TMEN is poorly understood. Here, using high-aspect ratio micropatterns as a model fibrillar platform, we show that metastatic cells overcome spatial constraints to slide effectively on narrow fiber-like dimensions, whereas nontransformed MCF-10A mammary epithelial cells require much wider micropatterns to achieve moderate levels of sliding. Downregulating the cell-cell adhesion protein, E-cadherin, enables MCF-10A cells to slide on narrower micropatterns; meanwhile, introducing exogenous E-cadherin in metastatic MDA-MB-231 cells increases the micropattern dimension at which they slide. We propose the characteristic fibrillar dimension (CFD) at which effective sliding is achieved as a metric of sliding ability under spatial confinement. Using this metric, we show that metastasis-promoting genetic perturbations enhance cell sliding and reduce CFD. Activation of ErbB2 combined with downregulation of the tumor suppressor and cell polarity regulator, PARD3, reduced the CFD, in agreement with their cooperative role in inducing metastasis in vivo. The CFD was further reduced by a combination of ErbB2 activation and transforming growth factor β stimulation, which is known to enhance invasive behavior. These findings demonstrate that sliding is a quantitative property and a decrease in CFD is an effective metric to understand how multiple genetic hits interact to change cell behavior in fibrillar environments. This quantitative framework sheds insights into how genetic perturbations conspire with fibrillar maturation in the TMEN to drive the invasive behavior of cancer cells.
Collapse
Affiliation(s)
- Daniel F Milano
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts
| | - Nicholas A Ngai
- Princess Margaret Cancer Center, University of Toronto, Toronto, Ontario, Canada
| | - Senthil K Muthuswamy
- Princess Margaret Cancer Center, University of Toronto, Toronto, Ontario, Canada; Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, Massachusetts.
| | - Anand R Asthagiri
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts; Department of Bioengineering, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
204
|
Chen J, Liu G, Ma C, Zhao G, Du W, Zhu W, Chu J. Stress stiffened silicon nitride micro bridges array as substrate with tunable stiffness for cell culture. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:1489-1495. [PMID: 28415441 DOI: 10.1016/j.msec.2017.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/13/2017] [Accepted: 03/06/2017] [Indexed: 10/20/2022]
Abstract
Recently, interactions between one-dimensional structural stiffness of physical micro environments and cell biological process have been widely studied. However in previous studies, the influence of structural stiffness on biological process was coupled with the influence of micro fiber curvature. Therefore decoupling the influences of fiber curvature and structural stiffness on cell biological process is of prime importance. In this study, we proposed a novel cell culture substrate comprised of silicon nitride bridges whose structure stiffness can be regulated by altering the axial residual stress without changing material and geometry properties. Both theoretical calculations and finite element simulations were performed to study the influence of residual stress on structure stiffness of bridges. Then multi-positions AFM bending tests were implemented to measure local stiffness of a single micro bridge so as to verify our predictions. NIH/3T3 mouse fibroblast cells were cultured on our substrates to examine the feasibility of the substrate application for investigating cellular response to microenvironment with variable stiffness. The results showed that cells on the edge region near bridge ends were more spread, elongated and better aligned along the bridge axial direction than those on the bridge center region. The results suggest that cells can sense and respond to the differences of stiffness and stiffness gradient between the edge and the center region of the bridges, which makes this kind of substrates can be applied in some biomedical fields, such as cell migration and wound healing.
Collapse
Affiliation(s)
- Jianfeng Chen
- Dept. of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Guangli Liu
- Dept. of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Chengfu Ma
- Dept. of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Gang Zhao
- Dept. of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui Province, China.
| | - Wenqiang Du
- Dept. of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui Province, China.
| | - Wulin Zhu
- Dept. of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Jiaru Chu
- Dept. of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui Province, China
| |
Collapse
|
205
|
Leal-Egaña A, Letort G, Martiel JL, Christ A, Vignaud T, Roelants C, Filhol O, Théry M. The size-speed-force relationship governs migratory cell response to tumorigenic factors. Mol Biol Cell 2017; 28:1612-1621. [PMID: 28428257 PMCID: PMC5469605 DOI: 10.1091/mbc.e16-10-0694] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 12/18/2022] Open
Abstract
Normal and transformed motile cells follow a common trend in which size and contractile forces are negatively correlated with cell speed. However, tumorigenic factors amplify the preexisting population heterogeneity and lead some cells to exhibit biomechanical properties that are more extreme than those observed with normal cells. Tumor development progresses through a complex path of biomechanical changes leading first to cell growth and contraction and then cell deadhesion, scattering, and invasion. Tumorigenic factors may act specifically on one of these steps or have a wider spectrum of actions, leading to a variety of effects and thus sometimes to apparent contradictory outcomes. Here we used micropatterned lines of collagen type I/fibronectin on deformable surfaces to standardize cell behavior and measure simultaneously cell size, speed of motion and magnitude of the associated traction forces at the level of a single cell. We analyzed and compared the normal human breast cell line MCF10A in control conditions and in response to various tumorigenic factors. In all conditions, a wide range of biomechanical properties was identified. Despite this heterogeneity, normal and transformed motile cells followed a common trend whereby size and contractile forces were negatively correlated with cell speed. Some tumorigenic factors, such as activation of ErbB2 or loss of the βsubunit of casein kinase 2, shifted the whole population toward a faster speed and lower contractility state. Treatment with transforming growth factor β induced some cells to adopt opposing behaviors such as extremely high versus extremely low contractility. Thus tumor transformation amplified preexisting population heterogeneity and led some cells to exhibit biomechanical properties that were more extreme than those observed with normal cells.
Collapse
Affiliation(s)
- Aldo Leal-Egaña
- CytoMorpho Lab, LPCV, Biosciences and Biotechnology Institute of Grenoble, UMR5168, CEA, CNRS, INRA, Université Grenoble-Alpes, 38054 Grenoble, France
| | - Gaelle Letort
- CytoMorpho Lab, LPCV, Biosciences and Biotechnology Institute of Grenoble, UMR5168, CEA, CNRS, INRA, Université Grenoble-Alpes, 38054 Grenoble, France
| | - Jean-Louis Martiel
- CytoMorpho Lab, LPCV, Biosciences and Biotechnology Institute of Grenoble, UMR5168, CEA, CNRS, INRA, Université Grenoble-Alpes, 38054 Grenoble, France
| | - Andreas Christ
- CytoMorpho Lab, LPCV, Biosciences and Biotechnology Institute of Grenoble, UMR5168, CEA, CNRS, INRA, Université Grenoble-Alpes, 38054 Grenoble, France
| | - Timothée Vignaud
- CytoMorpho Lab, LPCV, Biosciences and Biotechnology Institute of Grenoble, UMR5168, CEA, CNRS, INRA, Université Grenoble-Alpes, 38054 Grenoble, France
| | - Caroline Roelants
- Biologie du Cancer et de l'Infection, Biosciences and Biotechnology Institute of Grenoble, UMRS1036, CEA, INSERM, CNRS, Université Grenoble-Alpes, 38054 Grenoble, France
| | - Odile Filhol
- Biologie du Cancer et de l'Infection, Biosciences and Biotechnology Institute of Grenoble, UMRS1036, CEA, INSERM, CNRS, Université Grenoble-Alpes, 38054 Grenoble, France
| | - Manuel Théry
- CytoMorpho Lab, LPCV, Biosciences and Biotechnology Institute of Grenoble, UMR5168, CEA, CNRS, INRA, Université Grenoble-Alpes, 38054 Grenoble, France .,CytoMorpho Lab, A2T, Hopital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, CEA, INSERM, AP-HP, Université Paris Diderot, 75010 Paris, France
| |
Collapse
|
206
|
Ray A, Lee O, Win Z, Edwards RM, Alford PW, Kim DH, Provenzano PP. Anisotropic forces from spatially constrained focal adhesions mediate contact guidance directed cell migration. Nat Commun 2017; 8:14923. [PMID: 28401884 PMCID: PMC5394287 DOI: 10.1038/ncomms14923] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/11/2017] [Indexed: 12/18/2022] Open
Abstract
Directed migration by contact guidance is a poorly understood yet vital phenomenon, particularly for carcinoma cell invasion on aligned collagen fibres. We demonstrate that for single cells, aligned architectures providing contact guidance cues induce constrained focal adhesion maturation and associated F-actin alignment, consequently orchestrating anisotropic traction stresses that drive cell orientation and directional migration. Consistent with this understanding, relaxing spatial constraints to adhesion maturation either through reduction in substrate alignment density or reduction in adhesion size diminishes the contact guidance response. While such interactions allow single mesenchymal-like cells to spontaneously 'sense' and follow topographic alignment, intercellular interactions within epithelial clusters temper anisotropic cell-substratum forces, resulting in substantially lower directional response. Overall, these results point to the control of contact guidance by a balance of cell-substratum and cell-cell interactions, modulated by cell phenotype-specific cytoskeletal arrangements. Thus, our findings elucidate how phenotypically diverse cells perceive ECM alignment at the molecular level.
Collapse
Affiliation(s)
- Arja Ray
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA.,University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota 55455, USA
| | - Oscar Lee
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
| | - Zaw Win
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Rachel M Edwards
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA.,University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota 55455, USA
| | - Patrick W Alford
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA.,University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota 55455, USA.,Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
| | - Paolo P Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA.,University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota 55455, USA.,Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
207
|
Abstract
Cell polarization is a key step in the migration, development, and organization of eukaryotic cells, both at the single cell and multicellular level. Research on the mechanisms that give rise to polarization of a given cell, and organization of polarity within a tissue has led to new understanding across cellular and developmental biology. In this review, we describe some of the history of theoretical and experimental aspects of the field, as well as some interesting questions and challenges for the future.
Collapse
Affiliation(s)
- Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, USA
| | | |
Collapse
|
208
|
Gullo MR, Takeuchi S, Paul O. Multicellular Biohybrid Materials: Probing the Interplay of Cells of Different Types Precisely Positioned and Constrained on 3D Wireframe-Like Microstructures. Adv Healthc Mater 2017; 6. [PMID: 28306220 DOI: 10.1002/adhm.201601053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/08/2017] [Indexed: 11/09/2022]
Abstract
Driven by the unbroken miniaturization trend in microtechnology, the development of smaller, yet reliable and efficient, highly integrated microsystems can benefit from inherent capabilities of biological cells. In particular, by featuring multiple types of cells, biohybrid systems exhibiting self-contained sensing and actuation capabilities can be conceived. To ensure the proper functioning of such multicellular biohybrid systems, the intended cell arrangement needs to be maintained over time. Microscaffolds designed for this purpose should therefore selectively guide or hinder cell migration. However, the basic cell-structure interactions governing the cell migration and extension processes are not yet fully understood. This paper explores these interactions and proposes a method for the fabrication of advanced multicellular biohybrid materials. The method is based on wireframe-like 3D microstructures onto which several types of cells are successfully positioned and arranged by optical manipulation. Experiments exploring cell dynamics reveal geometry-dependent maximal migration and extension distances. Microscaffolds designed on the basis of these characteristics can guide cell migration, trigger structure-contained cell growth, and maintain a predetermined cell arrangement. The methods reported herein therefore provide insight into cell assembly and migration on 3D microscaffolds, which is an essential early step towards advanced multicellular biohybrid materials.
Collapse
Affiliation(s)
- Maurizio R. Gullo
- Department of Microsystems Engineering (IMTEK); University of Freiburg; Georges-Koehler-Allee 103 79110 Freiburg Germany
| | - Shoji Takeuchi
- Institute of Industrial Science; The University of Tokyo; Room Fw-205, 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Oliver Paul
- Department of Microsystems Engineering (IMTEK); University of Freiburg; Georges-Koehler-Allee 103 79110 Freiburg Germany
| |
Collapse
|
209
|
Thakar D, Dalonneau F, Migliorini E, Lortat-Jacob H, Boturyn D, Albiges-Rizo C, Coche-Guerente L, Picart C, Richter RP. Binding of the chemokine CXCL12α to its natural extracellular matrix ligand heparan sulfate enables myoblast adhesion and facilitates cell motility. Biomaterials 2017; 123:24-38. [PMID: 28152381 PMCID: PMC5405871 DOI: 10.1016/j.biomaterials.2017.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/04/2017] [Accepted: 01/17/2017] [Indexed: 01/24/2023]
Abstract
The chemokine CXCL12α is a potent chemoattractant that guides the migration of muscle precursor cells (myoblasts) during myogenesis and muscle regeneration. To study how the molecular presentation of chemokines influences myoblast adhesion and motility, we designed multifunctional biomimetic surfaces as a tuneable signalling platform that enabled the response of myoblasts to selected extracellular cues to be studied in a well-defined environment. Using this platform, we demonstrate that CXCL12α, when presented by its natural extracellular matrix ligand heparan sulfate (HS), enables the adhesion and spreading of myoblasts and facilitates their active migration. In contrast, myoblasts also adhered and spread on CXCL12α that was quasi-irreversibly surface-bound in the absence of HS, but were essentially immotile. Moreover, co-presentation of the cyclic RGD peptide as integrin ligand along with HS-bound CXCL12α led to enhanced spreading and motility, in a way that indicates cooperation between CXCR4 (the CXCL12α receptor) and integrins (the RGD receptors). Our findings reveal the critical role of HS in CXCL12α induced myoblast adhesion and migration. The biomimetic surfaces developed here hold promise for mechanistic studies of cellular responses to different presentations of biomolecules. They may be broadly applicable for dissecting the signalling pathways underlying receptor cross-talks, and thus may guide the development of novel biomaterials that promote highly specific cellular responses.
Collapse
Affiliation(s)
- Dhruv Thakar
- Université Grenoble Alpes, Département de Chimie Moléculaire (DCM), Grenoble, France; CNRS, DCM, Grenoble, France
| | - Fabien Dalonneau
- CNRS UMR 5628 (LMGP), Grenoble, France; Grenoble Institute of Technology, Université Grenoble Alpes, LMGP, Grenoble, France
| | - Elisa Migliorini
- Université Grenoble Alpes, Département de Chimie Moléculaire (DCM), Grenoble, France; CNRS, DCM, Grenoble, France
| | - Hugues Lortat-Jacob
- Institut de Biologie Structurale, UMR 5075, Université Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - Didier Boturyn
- Université Grenoble Alpes, Département de Chimie Moléculaire (DCM), Grenoble, France; CNRS, DCM, Grenoble, France
| | - Corinne Albiges-Rizo
- Institut Albert Bonniot, Université Grenoble Alpes, INSERM, CNRS, Grenoble, France
| | - Liliane Coche-Guerente
- Université Grenoble Alpes, Département de Chimie Moléculaire (DCM), Grenoble, France; CNRS, DCM, Grenoble, France
| | - Catherine Picart
- CNRS UMR 5628 (LMGP), Grenoble, France; Grenoble Institute of Technology, Université Grenoble Alpes, LMGP, Grenoble, France.
| | - Ralf P Richter
- Université Grenoble Alpes, Département de Chimie Moléculaire (DCM), Grenoble, France; CNRS, DCM, Grenoble, France; University of Leeds, School of Biomedical Sciences and School of Physics and Astronomy, Leeds, United Kingdom; CIC biomaGUNE, San Sebastian, Spain.
| |
Collapse
|
210
|
Campanari L, You MJ, Langfield P, Glass L, Shrier A. Varieties of reentrant dynamics. CHAOS (WOODBURY, N.Y.) 2017; 27:041101. [PMID: 28456163 DOI: 10.1063/1.4979602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Experiments were carried out in monolayer tissue cultures of embryonic chick heart cells imaged using a calcium sensitive fluorescent dye. The cells were grown in annular geometries and in annular geometries with an isthmus connecting antipodal region of the annulus. We observed a large number of spatially different patterns of propagation consisting of one or more circulating waves. As well, we also observed rhythms in which rotors embedded in the annuli generated propagating pulses. These results demonstrate that many different patterns of excitation can be present in cardiac tissue with simple geometries.
Collapse
Affiliation(s)
- Lucas Campanari
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montréal, Quebec H3G 1Y6, Canada
| | - Min Ju You
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montréal, Quebec H3G 1Y6, Canada
| | - Peter Langfield
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montréal, Quebec H3G 1Y6, Canada
| | - Leon Glass
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montréal, Quebec H3G 1Y6, Canada
| | - Alvin Shrier
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montréal, Quebec H3G 1Y6, Canada
| |
Collapse
|
211
|
Intermediate filament reorganization dynamically influences cancer cell alignment and migration. Sci Rep 2017; 7:45152. [PMID: 28338091 PMCID: PMC5364536 DOI: 10.1038/srep45152] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/20/2017] [Indexed: 01/24/2023] Open
Abstract
The interactions between a cancer cell and its extracellular matrix (ECM) have been the focus of an increasing amount of investigation. The role of the intermediate filament keratin in cancer has also been coming into focus of late, but more research is needed to understand how this piece fits in the puzzle of cytoskeleton-mediated invasion and metastasis. In Panc-1 invasive pancreatic cancer cells, keratin phosphorylation in conjunction with actin inhibition was found to be sufficient to reduce cell area below either treatment alone. We then analyzed intersecting keratin and actin fibers in the cytoskeleton of cyclically stretched cells and found no directional correlation. The role of keratin organization in Panc-1 cellular morphological adaptation and directed migration was then analyzed by culturing cells on cyclically stretched polydimethylsiloxane (PDMS) substrates, nanoscale grates, and rigid pillars. In general, the reorganization of the keratin cytoskeleton allows the cell to become more ‘mobile’- exhibiting faster and more directed migration and orientation in response to external stimuli. By combining keratin network perturbation with a variety of physical ECM signals, we demonstrate the interconnected nature of the architecture inside the cell and the scaffolding outside of it, and highlight the key elements facilitating cancer cell-ECM interactions.
Collapse
|
212
|
Wu RX, Yin Y, He XT, Li X, Chen FM. Engineering a Cell Home for Stem Cell Homing and Accommodation. ACTA ACUST UNITED AC 2017; 1:e1700004. [PMID: 32646164 DOI: 10.1002/adbi.201700004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/27/2017] [Indexed: 12/14/2022]
Abstract
Distilling complexity to advance regenerative medicine from laboratory animals to humans, in situ regeneration will continue to evolve using biomaterial strategies to drive endogenous cells within the human body for therapeutic purposes; this approach avoids the need for delivering ex vivo-expanded cellular materials. Ensuring the recruitment of a significant number of reparative cells from an endogenous source to the site of interest is the first step toward achieving success. Subsequently, making the "cell home" cell-friendly by recapitulating the natural extracellular matrix (ECM) in terms of its chemistry, structure, dynamics, and function, and targeting specific aspects of the native stem cell niche (e.g., cell-ECM and cell-cell interactions) to program and steer the fates of those recruited stem cells play equally crucial roles in yielding a therapeutically regenerative solution. This review addresses the key aspects of material-guided cell homing and the engineering of novel biomaterials with desirable ECM composition, surface topography, biochemistry, and mechanical properties that can present both biochemical and physical cues required for in situ tissue regeneration. This growing body of knowledge will likely become a design basis for the development of regenerative biomaterials for, but not limited to, future in situ tissue engineering and regeneration.
Collapse
Affiliation(s)
- Rui-Xin Wu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Xuan Li
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| |
Collapse
|
213
|
Stutchbury B, Atherton P, Tsang R, Wang DY, Ballestrem C. Distinct focal adhesion protein modules control different aspects of mechanotransduction. J Cell Sci 2017; 130:1612-1624. [PMID: 28302906 DOI: 10.1242/jcs.195362] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 03/08/2017] [Indexed: 12/28/2022] Open
Abstract
Focal adhesions (FAs) are macromolecular complexes that regulate cell adhesion and mechanotransduction. By performing fluorescence recovery after photobleaching (FRAP) and fluorescence loss after photoactivation (FLAP) experiments, we found that the mobility of core FA proteins correlates with their function. Structural proteins such as tensin, talin and vinculin are significantly less mobile in FAs than signaling proteins such as FAK (also known as PTK2) and paxillin. The mobilities of the structural proteins are directly influenced by substrate stiffness, suggesting that they are involved in sensing the rigidity of the extracellular environment. The turnover rates of FAK and paxillin, as well as kindlin2 (also known as FERMT2), are not influenced by substrate stiffness. By using specific Src and FAK inhibitors, we reveal that force-sensing by vinculin occurs independently of FAK and paxillin phosphorylation. However, their phosphorylation is required for downstream Rac1-driven cellular processes, such as protrusion and cell migration. Overall, we show that the FA is composed of different functional modules that separately control mechanosensing and the cellular mechano-response.
Collapse
Affiliation(s)
- Ben Stutchbury
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, England, UK
| | - Paul Atherton
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, England, UK
| | - Ricky Tsang
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, England, UK
| | - De-Yao Wang
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, England, UK
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, England, UK
| |
Collapse
|
214
|
D'Angelo L, Myer NM, Myers KA. MCAK-mediated regulation of endothelial cell microtubule dynamics is mechanosensitive to myosin-II contractility. Mol Biol Cell 2017; 28:1223-1237. [PMID: 28298485 PMCID: PMC5415018 DOI: 10.1091/mbc.e16-05-0306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 01/16/2023] Open
Abstract
This study indicates that MCAK contributes to the mechanosensing-mediated regulation of MT dynamics through a myosin-II–dependent mechanism that becomes uncoupled in response to 3D ECM engagement specifically within EC branches. Compliance and dimensionality mechanosensing, the processes by which cells sense the physical attributes of the extracellular matrix (ECM), are known to drive cell branching and shape change largely through a myosin-II–mediated reorganization of the actin and microtubule (MT) cytoskeletons. Subcellular regulation of MT dynamics is spatially controlled through a Rac1–Aurora-A kinase pathway that locally inhibits the MT depolymerizing activity of mitotic centromere–associated kinesin (MCAK), thereby promoting leading-edge MT growth and cell polarization. These results suggest that the regulation of MT growth dynamics is intimately linked to physical engagement of the cell with the ECM. Here, we tested the hypothesis that MCAK contributes to compliance and dimensionality mechanosensing-mediated regulation of MT growth dynamics through a myosin-II–dependent signaling pathway. We cultured endothelial cells (ECs) on collagen-coupled stiff or compliant polyacrylamide ECMs to examine the effects of MCAK expression on MT growth dynamics and EC branching morphology. Our results identify that MCAK promotes fast MT growth speeds in ECs cultured on compliant 2D ECMs but promotes slow MT growth speeds in ECs cultured on compliant 3D ECMs, and these effects are myosin-II dependent. Furthermore, we find that 3D ECM engagement uncouples MCAK-mediated regulation of MT growth persistence from myosin-II–mediated regulation of growth persistence specifically within EC branched protrusions.
Collapse
Affiliation(s)
- Lauren D'Angelo
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104
| | - Nicole M Myer
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104
| | - Kenneth A Myers
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
215
|
Wang J, Schneider IC. Myosin phosphorylation on stress fibers predicts contact guidance behavior across diverse breast cancer cells. Biomaterials 2017; 120:81-93. [PMID: 28039755 PMCID: PMC5291342 DOI: 10.1016/j.biomaterials.2016.11.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 11/24/2022]
Abstract
During cancer progression the extracellular matrix is remodeled, forming aligned collagen fibers that proceed radially from the tumor, resulting in invasion. We have recently shown that different invasive breast cancer cells respond to epitaxially grown, aligned collagen fibrils differently. This article develops insight into why these cells differ in their contact guidance fidelity. Small changes in contractility or adhesion dramatically alter directional persistence on aligned collagen fibrils, while migration speed remains constant. The directionality of highly contractile and adhesive MDA-MB-231 cells can be diminished by inhibiting Rho kinase or β1 integrin binding. Inversely, the directionality of less contractile and adhesive MTLn3 cells can be enhanced by activating contractility or integrins. Subtle, but quantifiable alterations in myosin II regulatory light chain phosphorylation on stress fibers explain the tuning of contact guidance fidelity, separate from migration per se indicating that the contractile and adhesive state of the cell in combination with collagen organization in the tumor microenvironment determine the efficiency of migration. Understanding how distinct cells respond to contact guidance cues will not only illuminate mechanisms for cancer invasion, but will also allow for the design of environments to separate specific subpopulations of cells from patient-derived tissues by leveraging differences in responses to directional migration cues.
Collapse
Affiliation(s)
- Juan Wang
- Department of Chemical and Biological Engineering, Iowa State University, USA
| | - Ian C Schneider
- Department of Chemical and Biological Engineering, Iowa State University, USA; Department of Genetics, Development and Cell Biology, Iowa State University, USA.
| |
Collapse
|
216
|
Ahmadzadeh H, Webster MR, Behera R, Jimenez Valencia AM, Wirtz D, Weeraratna AT, Shenoy VB. Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion. Proc Natl Acad Sci U S A 2017; 114:E1617-E1626. [PMID: 28196892 PMCID: PMC5338523 DOI: 10.1073/pnas.1617037114] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cancer cell invasion from primary tumors is mediated by a complex interplay between cellular adhesions, actomyosin-driven contractility, and the physical characteristics of the extracellular matrix (ECM). Here, we incorporate a mechanochemical free-energy-based approach to elucidate how the two-way feedback loop between cell contractility (induced by the activity of chemomechanical interactions such as Ca2+ and Rho signaling pathways) and matrix fiber realignment and strain stiffening enables the cells to polarize and develop contractile forces to break free from the tumor spheroids and invade into the ECM. Interestingly, through this computational model, we are able to identify a critical stiffness that is required by the matrix to break intercellular adhesions and initiate cell invasion. Also, by considering the kinetics of the cell movement, our model predicts a biphasic invasiveness with respect to the stiffness of the matrix. These predictions are validated by analyzing the invasion of melanoma cells in collagen matrices of varying concentration. Our model also predicts a positive correlation between the elongated morphology of the invading cells and the alignment of fibers in the matrix, suggesting that cell polarization is directly proportional to the stiffness and alignment of the matrix. In contrast, cells in nonfibrous matrices are found to be rounded and not polarized, underscoring the key role played by the nonlinear mechanics of fibrous matrices. Importantly, our model shows that mechanical principles mediated by the contractility of the cells and the nonlinearity of the ECM behavior play a crucial role in determining the phenotype of the cell invasion.
Collapse
Affiliation(s)
- Hossein Ahmadzadeh
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
| | - Marie R Webster
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104
| | - Reeti Behera
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104
| | - Angela M Jimenez Valencia
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218
- Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218
- Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218
- Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD 21218
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD 21218
| | - Ashani T Weeraratna
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104;
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
217
|
Ramirez-San Juan GR, Oakes PW, Gardel ML. Contact guidance requires spatial control of leading-edge protrusion. Mol Biol Cell 2017; 28:1043-1053. [PMID: 28228548 PMCID: PMC5391181 DOI: 10.1091/mbc.e16-11-0769] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/26/2017] [Accepted: 02/17/2017] [Indexed: 12/13/2022] Open
Abstract
Subcellular mechanisms underlying contact guidance are incompletely understood. Use of micoropatterned substrates and quantitative analysis of protrusion dynamics shows that contact guidance is mediated predominately though spatial regulation of protrusions and mediated through myosin II– and Rac1-mediated feedbacks. In vivo, geometric cues from the extracellular matrix (ECM) are critical for the regulation of cell shape, adhesion, and migration. During contact guidance, the fibrillar architecture of the ECM promotes an elongated cell shape and migration along the fibrils. The subcellular mechanisms by which cells sense ECM geometry and translate it into changes in shape and migration direction are not understood. Here we pattern linear fibronectin features to mimic fibrillar ECM and elucidate the mechanisms of contact guidance. By systematically varying patterned line spacing, we show that a 2-μm spacing is sufficient to promote cell shape elongation and migration parallel to the ECM, or contact guidance. As line spacing is increased, contact guidance increases without affecting migration speed. To elucidate the subcellular mechanisms of contact guidance, we analyze quantitatively protrusion dynamics and find that the structured ECM orients cellular protrusions parallel to the ECM. This spatial organization of protrusion relies on myosin II contractility, and feedback between adhesion and Rac-mediated protrusive activity, such that we find Arp2/3 inhibition can promote contact guidance. Together our data support a model for contact guidance in which the ECM enforces spatial constraints on the lamellipodia that result in cell shape elongation and enforce migration direction.
Collapse
Affiliation(s)
- G R Ramirez-San Juan
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637.,Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637.,James Franck Institute, University of Chicago, Chicago, IL 60637.,Department of Physics, University of Chicago, Chicago, IL 60637
| | - P W Oakes
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637.,James Franck Institute, University of Chicago, Chicago, IL 60637.,Department of Physics, University of Chicago, Chicago, IL 60637.,Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627.,Department of Biology, University of Rochester, Rochester, NY 14627
| | - M L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637 .,James Franck Institute, University of Chicago, Chicago, IL 60637.,Department of Physics, University of Chicago, Chicago, IL 60637
| |
Collapse
|
218
|
Camley BA, Rappel WJ. Physical models of collective cell motility: from cell to tissue. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2017; 50:113002. [PMID: 28989187 PMCID: PMC5625300 DOI: 10.1088/1361-6463/aa56fe] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this article, we review physics-based models of collective cell motility. We discuss a range of techniques at different scales, ranging from models that represent cells as simple self-propelled particles to phase field models that can represent a cell's shape and dynamics in great detail. We also extensively review the ways in which cells within a tissue choose their direction, the statistics of cell motion, and some simple examples of how cell-cell signaling can interact with collective cell motility. This review also covers in more detail selected recent works on collective cell motion of small numbers of cells on micropatterns, in wound healing, and the chemotaxis of clusters of cells.
Collapse
|
219
|
Abstract
Time-lapse, deep-tissue imaging made possible by advances in intravital microscopy has demonstrated the importance of tumour cell migration through confining tracks in vivo. These tracks may either be endogenous features of tissues or be created by tumour or tumour-associated cells. Importantly, migration mechanisms through confining microenvironments are not predicted by 2D migration assays. Engineered in vitro models have been used to delineate the mechanisms of cell motility through confining spaces encountered in vivo. Understanding cancer cell locomotion through physiologically relevant confining tracks could be useful in developing therapeutic strategies to combat metastasis.
Collapse
Affiliation(s)
- Colin D Paul
- Department of Chemical and Biomolecular Engineering and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | - Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| |
Collapse
|
220
|
Caballero D, Samitier J. Topological Control of Extracellular Matrix Growth: A Native-Like Model for Cell Morphodynamics Studies. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4159-4170. [PMID: 28068057 DOI: 10.1021/acsami.6b13063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The interaction of cells with their natural environment influences a large variety of cellular phenomena, including cell adhesion, proliferation, and migration. The complex extracellular matrix network has challenged the attempts to replicate in vitro the heterogeneity of the cell environment and has threatened, in general, the relevance of in vitro studies. In this work, we describe a new and extremely versatile approach to generate native-like extracellular matrices with controlled morphologies for the in vitro study of cellular processes. This general approach combines the confluent culture of fibroblasts with microfabricated guiding templates to direct the three-dimensional growth of well-defined extracellular networks which recapitulate the structural and biomolecular complexity of features typically found in vivo. To evaluate its performance, we studied fundamental cellular processes, including cell cytoskeleton organization, cell-matrix adhesion, proliferation, and protrusions morphodynamics. In all cases, we found striking differences depending on matrix architecture and, in particular, when compared to standard two-dimensional environments. We also assessed whether the engineered matrix networks influenced cell migration dynamics and locomotion strategy, finding enhanced migration efficiency for cells seeded on aligned matrices. Altogether, our methodology paves the way to the development of high-performance models of the extracellular matrix for potential applications in tissue engineering, diagnosis, or stem-cell biology.
Collapse
Affiliation(s)
- David Caballero
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC) , Baldiri Reixac 15-21, 08028 Barcelona, Spain
- Department of Engineering: Electronics, University of Barcelona , 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC) , Baldiri Reixac 15-21, 08028 Barcelona, Spain
- Department of Engineering: Electronics, University of Barcelona , 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
221
|
Raab M, Discher DE. Matrix rigidity regulates microtubule network polarization in migration. Cytoskeleton (Hoboken) 2017; 74:114-124. [PMID: 27935261 DOI: 10.1002/cm.21349] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 11/10/2022]
Abstract
The microtubule organizing center (MTOC) frequently polarizes to a position in front of the nucleus during cell migration, but recent work has shown conflicting evidence for MTOC location in migratory polarized cells. Here, we show that subcellular localization of the MTOC is modulated by extracellular matrix stiffness. In scratch wound assays as well as single cell migration of mesenchymal stem cells (MSCs) the MTOC appears randomly positioned when cells are migrating on soft matrix, whereas on stiff matrix the MTOC is in front of the nucleus. The bulk of the microtubule density is also equally likely to be in front of or behind the nucleus on soft matrix, but it is polarized in front of the nucleus on stiff matrix. This occurred during cell migration with cells in interphase. During cytokinesis, the centrosomes polarize on either side of the chromosomes even on soft matrix, with MIIB localized strongly in the cleavage furrow which depolarizes only on soft matrix as cells exit cytokinesis. When cells are immobilized on micro-patterns printed on the top of substrates of different stiffness, MIIB polarized if the matrix was sufficiently stiff similar to results with migrating cells. However, the MTOC was randomly positioned with respect to the nucleus independent of matrix stiffness. We deduce that cell migration is necessary to orient the MTOC in front of the nucleus and that matrix stiffness helps to drive cell polarization during migration. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Matthew Raab
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA
| | - Dennis E Discher
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA.,Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA.,Physical Sciences in Oncology Center @ Penn, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
222
|
Optimization of Polymer-ECM Composite Scaffolds for Tissue Engineering: Effect of Cells and Culture Conditions on Polymeric Nanofiber Mats. J Funct Biomater 2017; 8:jfb8010001. [PMID: 28085047 PMCID: PMC5371874 DOI: 10.3390/jfb8010001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 12/20/2016] [Accepted: 01/06/2017] [Indexed: 12/31/2022] Open
Abstract
The design of composite tissue scaffolds containing an extracellular matrix (ECM) and synthetic polymer fibers is a new approach to create bioactive scaffolds that can enhance cell function. Currently, studies investigating the effects of ECM-deposition and decellularization on polymer degradation are still lacking, as are data on optimizing the stability of the ECM-containing composite scaffolds during prolonged cell culture. In this study, we develop fibrous scaffolds using three polymer compositions, representing slow (E0000), medium (E0500), and fast (E1000) degrading materials, to investigate the stability, degradation, and mechanics of the scaffolds during ECM deposition and decellularization, and during the complete cellularization-decell-recell cycle. We report data on percent molecular weight (% Mw) retention of polymeric fiber mats, changes in scaffold stiffness, ECM deposition, and the presence of fibronectin after decellularization. We concluded that the fast degrading E1000 (Mw retention ≤ 50% after 28 days) was not sufficiently stable to allow scaffold handling after 28 days in culture, while the slow degradation of E0000 (Mw retention ≥ 80% in 28 days) did not allow deposited ECM to replace the polymer support. The scaffolds made from medium degrading E0500 (Mw retention about 60% at 28 days) allowed the gradual replacement of the polymer network with cell-derived ECM while maintaining the polymer network support. Thus, polymers with an intermediate rate of degradation, maintaining good scaffold handling properties after 28 days in culture, seem best suited for creating ECM-polymer composite scaffolds.
Collapse
|
223
|
Accelerated Wound Closure - Differently Organized Nanofibers Affect Cell Migration and Hence the Closure of Artificial Wounds in a Cell Based In Vitro Model. PLoS One 2017; 12:e0169419. [PMID: 28060880 PMCID: PMC5218412 DOI: 10.1371/journal.pone.0169419] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/17/2016] [Indexed: 02/07/2023] Open
Abstract
Nanofiber meshes holds great promise in wound healing applications by mimicking the topography of extracellular matrix, hence providing guidance for crucial cells involved in the regenerative processes. Here we explored the influence of nanofiber alignment on fibroblast behavior in a novel in vitro wound model. The model included electrospun poly-ε-caprolactone scaffolds with different nanofiber orientation. Fibroblasts were cultured to confluency for 24h before custom-made inserts were removed, creating cell-free zones serving as artificial wounds. Cell migration into these wounds was evaluated at 0-, 48- and 96h. Cell morphological analysis was performed using nuclei- and cytoskeleton stainings. Cell viability was assessed using a biochemical assay. This study demonstrates a novel in vitro wound assay, for exploring of the impact of nanofibers on wound healing. Additionally we show that it’s possible to affect the process of wound closure in a spatial manner using nanotopographies, resulting in faster closure on aligned fiber substrates.
Collapse
|
224
|
Abstract
The radius of curvature affects cell body characteristics on microfabricated concave microgrooves.
Collapse
Affiliation(s)
- Baoce Sun
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
- China
- Centre for Biosystems, Neuroscience and Nanotechnology
- City University of Hong Kong
| | - Kai Xie
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
- China
| | - Ting-Hsuan Chen
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
- China
- City University of Hong Kong Shenzhen Research Institute
- Shenzhen
| | - Raymond H. W. Lam
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
- China
- Centre for Biosystems, Neuroscience and Nanotechnology
- City University of Hong Kong
| |
Collapse
|
225
|
Bioactive 3D-Shaped Wound Dressings Synthesized from Bacterial Cellulose: Effect on Cell Adhesion of Polyvinyl Alcohol Integrated In Situ. INT J POLYM SCI 2017. [DOI: 10.1155/2017/3728485] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We investigated wound dressing composites comprising fibrils of bacterial cellulose (BC) grown by fermentation in the presence of polyvinyl alcohol (PVA) followed by physical crosslinking. The reference biointerface, neat BC, favoured adhesion of fibroblasts owing to size exclusion effects. Furthermore, it resisted migration across the biomaterial. Such effects were minimized in the case of PVA/BC membranes. Therefore, the latter are suggested in cases where cell adhesion is to be avoided, for instance, in the design of interactive wound dressings with facile exudate control. The bioactivity and other properties of the membranes were related to their morphology and structure and considered those of collagen fibres. Bioactive materials were produced by simple 3D templating of BC during growth and proposed for burn and skin ulcer treatment.
Collapse
|
226
|
Englund-Johansson U, Netanyah E, Johansson F. Tailor-Made Electrospun Culture Scaffolds Control Human Neural Progenitor Cell Behavior—Studies on Cellular Migration and Phenotypic Differentiation. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/jbnb.2017.81001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
227
|
Tanja Mierke C. Physical role of nuclear and cytoskeletal confinements in cell migration mode selection and switching. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.4.615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
228
|
Czöndör K, Thoumine O. Synaptogenic Assays Using Neurons Cultured on Micropatterned Substrates. Methods Mol Biol 2017; 1538:29-44. [PMID: 27943181 DOI: 10.1007/978-1-4939-6688-2_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
One of the difficulties for studying the mechanisms of synaptogenesis stems from the spatial unpredictability of contact formation between neurons, and the involvement of many parallel adhesive pathways mediating axon/dendrite recognition. To circumvent these limitations, we describe here a method allowing the investigation of synaptic contacts at controlled locations with high precision and statistics. Specifically, primary neurons are cultured on micropatterned substrates comprising arrays of micron-scale dots coated with purified synaptogenic adhesion molecules. Coating the substrates with the homophilic adhesion molecule SynCAM triggers the formation of functional presynaptic structures in axons, while neurexin elicits postsynapses in dendrites from neurons expressing the counter receptor neuroligin. This assay can be combined with various imaging techniques including immunocytochemistry to screen the accumulation of synaptic components, long-term live cell recordings to probe the kinetics of neurite growth and synapse differentiation, as well as high resolution single molecule tracking.
Collapse
Affiliation(s)
- Katalin Czöndör
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, UMR 5297, 146 rue Leo Saignat, F-33000, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, F-33000, Bordeaux, France
| | - Olivier Thoumine
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, UMR 5297, 146 rue Leo Saignat, F-33000, Bordeaux, France. .,Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, F-33000, Bordeaux, France.
| |
Collapse
|
229
|
Udhayakumar S, Shankar KG, Sowndarya S, Venkatesh S, Muralidharan C, Rose C. l-Arginine intercedes bio-crosslinking of a collagen–chitosan 3D-hybrid scaffold for tissue engineering and regeneration: in silico, in vitro, and in vivo studies. RSC Adv 2017. [DOI: 10.1039/c7ra02842c] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Development ofl-arginine crosslinked three-dimensional collagen/chitosan hybrid scaffold for tissue engineering/regeneration.
Collapse
Affiliation(s)
- Sivalingam Udhayakumar
- Department of Biochemistry and Biotechnology
- CSIR-Central Leather Research Institute
- Chennai 600020
- India
| | | | - Sampath Sowndarya
- Department of Biochemistry and Biotechnology
- CSIR-Central Leather Research Institute
- Chennai 600020
- India
| | - Sankar Venkatesh
- Department of Biochemistry and Biotechnology
- CSIR-Central Leather Research Institute
- Chennai 600020
- India
| | - Chellappa Muralidharan
- Department of Biochemistry and Biotechnology
- CSIR-Central Leather Research Institute
- Chennai 600020
- India
| | - Chellan Rose
- Department of Biochemistry and Biotechnology
- CSIR-Central Leather Research Institute
- Chennai 600020
- India
| |
Collapse
|
230
|
Abstract
ABSTRACT
Three-dimensional (3D) cell motility underlies essential processes, such as embryonic development, tissue repair and immune surveillance, and is involved in cancer progression. Although the cytoskeleton is a well-studied regulator of cell migration, most of what we know about its functions originates from studies conducted in two-dimensional (2D) cultures. This research established that the microtubule network mediates polarized trafficking and signaling that are crucial for cell shape and movement in 2D. In parallel, developments in light microscopy and 3D cell culture systems progressively allowed to investigate cytoskeletal functions in more physiologically relevant settings. Interestingly, several studies have demonstrated that microtubule involvement in cell morphogenesis and motility can differ in 2D and 3D environments. In this Commentary, we discuss these differences and their relevance for the understanding the role of microtubules in cell migration in vivo. We also provide an overview of microtubule functions that were shown to control cell shape and motility in 3D matrices and discuss how they can be investigated further by using physiologically relevant models.
Collapse
Affiliation(s)
- Benjamin P. Bouchet
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
231
|
Kulawiak DA, Camley BA, Rappel WJ. Modeling Contact Inhibition of Locomotion of Colliding Cells Migrating on Micropatterned Substrates. PLoS Comput Biol 2016; 12:e1005239. [PMID: 27984579 PMCID: PMC5161303 DOI: 10.1371/journal.pcbi.1005239] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/04/2016] [Indexed: 01/14/2023] Open
Abstract
In cancer metastasis, embryonic development, and wound healing, cells can coordinate their motion, leading to collective motility. To characterize these cell-cell interactions, which include contact inhibition of locomotion (CIL), micropatterned substrates are often used to restrict cell migration to linear, quasi-one-dimensional paths. In these assays, collisions between polarized cells occur frequently with only a few possible outcomes, such as cells reversing direction, sticking to one another, or walking past one another. Using a computational phase field model of collective cell motility that includes the mechanics of cell shape and a minimal chemical model for CIL, we are able to reproduce all cases seen in two-cell collisions. A subtle balance between the internal cell polarization, CIL and cell-cell adhesion governs the collision outcome. We identify the parameters that control transitions between the different cases, including cell-cell adhesion, propulsion strength, and the rates of CIL. These parameters suggest hypotheses for why different cell types have different collision behavior and the effect of interventions that modulate collision outcomes. To reproduce the heterogeneity in cell-cell collision outcomes observed experimentally in neural crest cells, we must either carefully tune our parameters or assume that there is significant cell-to-cell variation in key parameters like cell-cell adhesion. Many cells cooperate with their neighbors to move as a group. However, the mechanisms of these cell-cell interactions are not well understood. One experimental tool to analyze interactions is to allow cells to collide with one another, and see what happens. In order to better understand what features these experiments measure, we develop a computational model of cell-cell collisions, and identify the biochemical and mechanical parameters that lead to different outcomes of collisions. We can recreate all known types of collisions seen in experiments, including cells reversing on contact, sticking, or walking past each other. Our model suggests that what happens in a collision may depend strongly on the mechanical forces between the two cells.
Collapse
Affiliation(s)
| | - Brian A. Camley
- Department of Physics, University of California, San Diego, San Diego, California, United States of America
| | - Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
232
|
Chien FC, Dai YH, Kuo CW, Chen P. Flexible nanopillars to regulate cell adhesion and movement. NANOTECHNOLOGY 2016; 27:475101. [PMID: 27775920 DOI: 10.1088/0957-4484/27/47/475101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Flexible polymer nanopillar substrates were used to systematically demonstrate cell alignment and migration guided by the directional formation of focal adhesions. The polymer nanopillar substrates were constructed to various height specifications to provide an extensive variation of flexibility; a rectangular arrangement created spatial confinement between adjacent nanopillars, providing less spacing in the horizontal and vertical directions. Three polymer nanopillar substrates with the diameter of 400 nm and the heights of 400, 800, and 1200 nm were fabricated. Super-resolution localization imaging and protein pair-distance analysis of vinculin proteins revealed that Chinese hamster ovary (CHO) cells formed mature focal adhesions on 1200 nm high nanopillar substrates by bending adjacent nanopillars to link dot-like adhesions. The spacing confinement of the adjacent nanopillars enhanced the orthogonal directionality of the formation tendency of the mature focal adhesions. The directional formation of the mature focal adhesions also facilitated the organization of actin filaments in the horizontal and vertical directions. Moreover, 78% of the CHO cells were aligned in these two directions, in conformity with the flexibility and nanotopographical cues of the nanopillars. Biased cell migration was observed on the 1200 nm high nanopillar substrates.
Collapse
Affiliation(s)
- Fan-Ching Chien
- Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan
| | | | | | | |
Collapse
|
233
|
Hogrebe NJ, Reinhardt JW, Gooch KJ. Biomaterial microarchitecture: a potent regulator of individual cell behavior and multicellular organization. J Biomed Mater Res A 2016; 105:640-661. [DOI: 10.1002/jbm.a.35914] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/17/2016] [Accepted: 09/02/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Nathaniel J. Hogrebe
- Department of Biomedical EngineeringThe Ohio State University270 Bevis Hall 1080 Carmack RdColumbus Ohio43210
| | - James W. Reinhardt
- Department of Biomedical EngineeringThe Ohio State University270 Bevis Hall 1080 Carmack RdColumbus Ohio43210
| | - Keith J. Gooch
- Department of Biomedical EngineeringThe Ohio State University270 Bevis Hall 1080 Carmack RdColumbus Ohio43210
- The Ohio State University, Davis Heart Lung Research Institute473 W 12th AveColumbus Ohio43210
| |
Collapse
|
234
|
Eslahi N, Abdorahim M, Simchi A. Smart Polymeric Hydrogels for Cartilage Tissue Engineering: A Review on the Chemistry and Biological Functions. Biomacromolecules 2016; 17:3441-3463. [PMID: 27775329 DOI: 10.1021/acs.biomac.6b01235] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stimuli responsive hydrogels (SRHs) are attractive bioscaffolds for tissue engineering. The structural similarity of SRHs to the extracellular matrix (ECM) of many tissues offers great advantages for a minimally invasive tissue repair. Among various potential applications of SRHs, cartilage regeneration has attracted significant attention. The repair of cartilage damage is challenging in orthopedics owing to its low repair capacity. Recent advances include development of injectable hydrogels to minimize invasive surgery with nanostructured features and rapid stimuli-responsive characteristics. Nanostructured SRHs with more structural similarity to natural ECM up-regulate cell-material interactions for faster tissue repair and more controlled stimuli-response to environmental changes. This review highlights most recent advances in the development of nanostructured or smart hydrogels for cartilage tissue engineering. Different types of stimuli-responsive hydrogels are introduced and their fabrication processes through physicochemical procedures are reported. The applications and characteristics of natural and synthetic polymers used in SRHs are also reviewed with an outline on clinical considerations and challenges.
Collapse
Affiliation(s)
- Niloofar Eslahi
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University , P.O. Box 14515/775, Tehran, Iran
| | | | | |
Collapse
|
235
|
Mak M, Spill F, Kamm RD, Zaman MH. Single-Cell Migration in Complex Microenvironments: Mechanics and Signaling Dynamics. J Biomech Eng 2016; 138:021004. [PMID: 26639083 DOI: 10.1115/1.4032188] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 12/21/2022]
Abstract
Cells are highly dynamic and mechanical automata powered by molecular motors that respond to external cues. Intracellular signaling pathways, either chemical or mechanical, can be activated and spatially coordinated to induce polarized cell states and directional migration. Physiologically, cells navigate through complex microenvironments, typically in three-dimensional (3D) fibrillar networks. In diseases, such as metastatic cancer, they invade across physiological barriers and remodel their local environments through force, matrix degradation, synthesis, and reorganization. Important external factors such as dimensionality, confinement, topographical cues, stiffness, and flow impact the behavior of migrating cells and can each regulate motility. Here, we review recent progress in our understanding of single-cell migration in complex microenvironments.
Collapse
|
236
|
Wagner AP, Chinnathambi S, Titze IR, Sander EA. Vibratory stimulation enhances thyroid epithelial cell function. Biochem Biophys Rep 2016; 8:376-381. [PMID: 28955979 PMCID: PMC5614476 DOI: 10.1016/j.bbrep.2016.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 02/06/2023] Open
Abstract
The tissues of the body are routinely subjected to various forms of mechanical vibration, the frequency, amplitude, and duration of which can contribute both positively and negatively to human health. The vocal cords, which are in close proximity to the thyroid, may also supply the thyroid with important mechanical signals that modulate hormone production via mechanical vibrations from phonation. In order to explore the possibility that vibrational stimulation from vocalization can enhance thyroid epithelial cell function, FRTL-5 rat thyroid cells were subjected to either chemical stimulation with thyroid stimulating hormone (TSH), mechanical stimulation with physiological vibrations, or a combination of the two, all in a well-characterized, torsional rheometer-bioreactor. The FRTL-5 cells responded to mechanical stimulation with significantly (p<0.05) increased metabolic activity, significantly (p<0.05) increased ROS production, and increased gene expression of thyroglobulin and sodium-iodide symporter compared to un-stimulated controls, and showed an equivalent or greater response than TSH only stimulated cells. Furthermore, the combination of TSH and oscillatory motion produced a greater response than mechanical or chemical stimulation alone. Taken together, these results suggest that mechanical vibrations could provide stimulatory cues that help maintain thyroid function. Thyroid epithelial cells responded to mechanical vibrations similar to those from vocalization. This response was equivalent or greater compared to chemical stimulation. The combination of mechanical and chemical stimulation was synergistic. It may be possible to influence thyroid function with mechanical vibrations.
Collapse
Affiliation(s)
- A P Wagner
- Department of Biomedical Engineering, University of Iowa, IA, USA
| | - S Chinnathambi
- Department of Biomedical Engineering, University of Iowa, IA, USA
| | - I R Titze
- Department of Communication Sciences and Disorders, University of Iowa, IA, USA.,National Center for Voice and Speech, University of Utah, Salt Lake City, UT, USA
| | - E A Sander
- Department of Biomedical Engineering, University of Iowa, IA, USA
| |
Collapse
|
237
|
Kilic O, Pamies D, Lavell E, Schiapparelli P, Feng Y, Hartung T, Bal-Price A, Hogberg HT, Quinones-Hinojosa A, Guerrero-Cazares H, Levchenko A. Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. LAB ON A CHIP 2016; 16:4152-4162. [PMID: 27722368 DOI: 10.1039/c6lc00946h] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Migration of neural progenitors in the complex tissue environment of the central nervous system is not well understood. Progress in this area has the potential to drive breakthroughs in neuroregenerative therapies, brain cancer treatments, and neurodevelopmental studies. To a large extent, advances have been limited due to a lack of controlled environments recapitulating characteristics of the central nervous system milieu. Reductionist cell culture models are frequently too simplistic, and physiologically more relevant approaches such as ex vivo brain slices or in situ experiments provide little control and make information extraction difficult. Here, we present a brain-on-chip model that bridges the gap between cell culture and ex vivo/in vivo conditions through recapitulation of self-organized neural differentiation. We use a new multi-layer silicone elastomer device, over the course of four weeks to differentiate pluripotent human (NTERA2) cells into neuronal clusters interconnected with thick axonal bundles and interspersed with astrocytes, resembling the brain parenchyma. Neurons within the device express the neurofilament heavy (NF200) mature axonal marker and the microtubule-associated protein (MAP2ab) mature dendritic marker, demonstrating that the devices are sufficiently biocompatible to allow neuronal maturation. This neuronal-glial environment is interfaced with a layer of human brain microvascular endothelial cells showing characteristics of the blood-brain barrier including the expression of zonula occludens (ZO1) tight junctions and increased trans-endothelial electrical resistance. We used this device to model migration of human neural progenitors in response to chemotactic cues within a brain-tissue setting. We show that in the presence of an environment mimicking brain conditions, neural progenitor cells show a significantly enhanced chemotactic response towards shallow gradients of CXCL12, a key chemokine expressed during embryonic brain development and in pathological tissue regions of the central nervous system. Our brain-on-chip model thus provides a convenient and scalable model of neural differentiation and maturation extensible to analysis of complex cell and tissue behaviors.
Collapse
Affiliation(s)
- Onur Kilic
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - David Pamies
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Emily Lavell
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Paula Schiapparelli
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Yun Feng
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. and Department of Pharmacology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA and CAAT-Europe, University of Konstanz, Germany
| | - Anna Bal-Price
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Alfredo Quinones-Hinojosa
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Hugo Guerrero-Cazares
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Andre Levchenko
- Department of Biomedical Engineering and Yale Systems Biology Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
238
|
Zhu J, Mogilner A. Comparison of cell migration mechanical strategies in three-dimensional matrices: a computational study. Interface Focus 2016; 6:20160040. [PMID: 27708764 DOI: 10.1098/rsfs.2016.0040] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cell migration on a two-dimensional flat surface has been extensively studied and is generally characterized by a front-protrusion-rear-contraction process. In a three-dimensional (3D) environment, on the other hand, cells adopt multiple migration strategies depending on the cell type and the properties of the extracellular matrix (ECM). By using computer simulations, we find that these migration strategies can be classified by various spatial-temporal dynamics of actin protrusion, actin-myosin contraction and actin-ECM adhesion. We demonstrate that if we include or exclude proteolysis of ECM, and vary adhesion dynamics and spatial distributions of protrusion, contraction and adhesion, our model can reproduce six experimentally observed motility modes: mesenchymal, chimneying, amoeboid, blebbing, finger-like protrusion and rear-squeezing cell locomotory behaviours. We further find that the mode of the cell motility evolves in response to the ECM density and adhesion detachment rate. The model makes non-trivial predictions about cell speed as a function of the adhesion strength, and ECM elasticity and mesh size.
Collapse
Affiliation(s)
- Jie Zhu
- Nanobiology Institute and Department of Cell Biology , Yale University , New Haven, CT, USA
| | - Alex Mogilner
- Courant Institute and Department of Biology , New York University , New York, NY, USA
| |
Collapse
|
239
|
Stramer B, Mayor R. Mechanisms and in vivo functions of contact inhibition of locomotion. Nat Rev Mol Cell Biol 2016; 18:43-55. [PMID: 27677859 DOI: 10.1038/nrm.2016.118] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Contact inhibition of locomotion (CIL) is a process whereby a cell ceases motility or changes its trajectory upon collision with another cell. CIL was initially characterized more than half a century ago and became a widely studied model system to understand how cells migrate and dynamically interact. Although CIL fell from interest for several decades, the scientific community has recently rediscovered this process. We are now beginning to understand the precise steps of this complex behaviour and to elucidate its regulatory components, including receptors, polarity proteins and cytoskeletal elements. Furthermore, this process is no longer just in vitro phenomenology; we now know from several different in vivo models that CIL is essential for embryogenesis and in governing behaviours such as cell dispersion, boundary formation and collective cell migration. In addition, changes in CIL responses have been associated with other physiological processes, such as cancer cell dissemination during metastasis.
Collapse
Affiliation(s)
- Brian Stramer
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Roberto Mayor
- Cell and Developmental Biology Department, University College London, London WC1E 6BT, UK
| |
Collapse
|
240
|
Abstract
Directed cell migration is a crucial orchestrated process in embryonic development, wound healing, and immune response. The underlying substrate can provide physical and/or chemical cues that promote directed cell migration. Here, using electrospinning we developed substrates of aligned poly(lactic-co-glycolic acid) nanofibres to study the influence of glial cells on endothelial cells (ECs) in a 3-dimensional (3D) co-culture model. ECs build blood vessels and regulate their plasticity in coordination with neurons. Likewise, neurons construct nerves and regulate their circuits in coordination with ECs. In our model, the neuro-vascular cross-talk was assessed using a direct co-culture model of human umbilical vein endothelial cells (HUVECs) and rat Schwann cells (rSCs). The effect of rSCs on ECs behavior was demonstrated by earlier and higher velocity values and genetic expression profiles different of those of HUVECs when seeded alone. We observed 2 different gene expression trends in the co-culture models: (i) a later gene expression of angiogenic factors, such as interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF), and (ii) an higher gene expression of genes involved in actin filaments rearrangement, such as focal adhesion kinase (FAK), Mitogen-activated protein kinase-activated protein kinase 13 (MAPKAPK13), Vinculin (VCL), and Profilin (PROF). These results suggested that the higher ECs migration is mainly due to proteins involved in the actin filaments rearrangement and in the directed cell migration rather than the effect of angiogenic factors. This co-culture model provides an approach to enlighten the neurovascular interactions, with particular focus on endothelial cell migration.
Collapse
Affiliation(s)
- Tiago Ramos
- a Faculty of Engineering; University of Oporto ; Porto , Portugal.,b University of Twente ; Department of Tissue Regeneration ; Enschede , The Netherlands
| | - Maqsood Ahmed
- b University of Twente ; Department of Tissue Regeneration ; Enschede , The Netherlands
| | - Paul Wieringa
- b University of Twente ; Department of Tissue Regeneration ; Enschede , The Netherlands.,c Maastricht University ; Department of Complex Tissue Regeneration ; Maastricht , The Netherlands
| | - Lorenzo Moroni
- b University of Twente ; Department of Tissue Regeneration ; Enschede , The Netherlands.,c Maastricht University ; Department of Complex Tissue Regeneration ; Maastricht , The Netherlands
| |
Collapse
|
241
|
Fruleux A, Hawkins RJ. Physical role for the nucleus in cell migration. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:363002. [PMID: 27406341 DOI: 10.1088/0953-8984/28/36/363002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cell migration is important for the function of many eukaryotic cells. Recently the nucleus has been shown to play an important role in cell motility. After giving an overview of cell motility mechanisms we review what is currently known about the mechanical properties of the nucleus and the connections between it and the cytoskeleton. We also discuss connections to the extracellular matrix and mechanotransduction. We identify key physical roles of the nucleus in cell migration.
Collapse
Affiliation(s)
- Antoine Fruleux
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | | |
Collapse
|
242
|
Gallego-Perez D, Chang L, Shi J, Ma J, Kim SH, Zhao X, Malkoc V, Wang X, Minata M, Kwak KJ, Wu Y, Lafyatis GP, Lu W, Hansford DJ, Nakano I, Lee LJ. On-Chip Clonal Analysis of Glioma-Stem-Cell Motility and Therapy Resistance. NANO LETTERS 2016; 16:5326-32. [PMID: 27420544 PMCID: PMC5040341 DOI: 10.1021/acs.nanolett.6b00902] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Enhanced glioma-stem-cell (GSC) motility and therapy resistance are considered to play key roles in tumor cell dissemination and recurrence. As such, a better understanding of the mechanisms by which these cells disseminate and withstand therapy could lead to more efficacious treatments. Here, we introduce a novel micro-/nanotechnology-enabled chip platform for performing live-cell interrogation of patient-derived GSCs with single-clone resolution. On-chip analysis revealed marked intertumoral differences (>10-fold) in single-clone motility profiles between two populations of GSCs, which correlated well with results from tumor-xenograft experiments and gene-expression analyses. Further chip-based examination of the more-aggressive GSC population revealed pronounced interclonal variations in motility capabilities (up to ∼4-fold) as well as gene-expression profiles at the single-cell level. Chip-supported therapy resistance studies with a chemotherapeutic agent (i.e., temozolomide) and an oligo RNA (anti-miR363) revealed a subpopulation of CD44-high GSCs with strong antiapoptotic behavior as well as enhanced motility capabilities. The living-cell-interrogation chip platform described herein enables thorough and large-scale live monitoring of heterogeneous cancer-cell populations with single-cell resolution, which is not achievable by any other existing technology and thus has the potential to provide new insights into the cellular and molecular mechanisms modulating glioma-stem-cell dissemination and therapy resistance.
Collapse
Affiliation(s)
- Daniel Gallego-Perez
- Department of Surgery, The Ohio State University, 395 West 12th Avenue, Columbus, Ohio 43210
- Department of Biomedical Engineering, The Ohio State University, 1080 Carmack Road, Columbus, Ohio 43210
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, 460 West 12th Avenue, Columbus, Ohio 43210, United States
- Corresponding Authors:.;
| | - Lingqian Chang
- Department of Biomedical Engineering, The Ohio State University, 1080 Carmack Road, Columbus, Ohio 43210
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210
| | - Junfeng Shi
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210
- Department of Mechanical Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210
| | - Junyu Ma
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210
| | - Sung-Hak Kim
- Department of Neurosurgery, University of Alabama, 1824 6th Avenuce South, Birmingham, Alabama 35294
| | - Xi Zhao
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210
| | - Veysi Malkoc
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210
| | - Xinmei Wang
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210
| | - Mutsuko Minata
- Department of Neurosurgery, University of Alabama, 1824 6th Avenuce South, Birmingham, Alabama 35294
| | - Kwang J. Kwak
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210
| | - Yun Wu
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210
| | - Gregory P. Lafyatis
- Department of Physics, The Ohio State University, 191 West Woodruff Avenue, Columbus, Ohio 43210
| | - Wu Lu
- Department of Electrical and Computer Engineering, The Ohio State University, 2015 Neil Avenue, Columbus, Ohio 43210
| | - Derek J. Hansford
- Department of Biomedical Engineering, The Ohio State University, 1080 Carmack Road, Columbus, Ohio 43210
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama, 1824 6th Avenuce South, Birmingham, Alabama 35294
| | - L. James Lee
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, 460 West 12th Avenue, Columbus, Ohio 43210, United States
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210
- Corresponding Authors:.;
| |
Collapse
|
243
|
Abstract
Mechanotransduction is the process through which cells survey the mechanical properties of their environment, convert these mechanical inputs into biochemical signals, and modulate their phenotype in response. These mechanical inputs, which may be encoded in the form of extracellular matrix stiffness, dimensionality, and adhesion, all strongly influence cell morphology, migration, and fate decisions. One mechanism through which cells on planar or pseudo-planar matrices exert tensile forces and interrogate microenvironmental mechanics is through stress fibers, which are bundles composed of actin filaments and, in most cases, non-muscle myosin II filaments. Stress fibers form a continuous structural network that is mechanically coupled to the extracellular matrix through focal adhesions. Furthermore, myosin-driven contractility plays a central role in the ability of stress fibers to sense matrix mechanics and generate tension. Here, we review the distinct roles that non-muscle myosin II plays in driving mechanosensing and focus specifically on motility. In a closely related discussion, we also describe stress fiber classification schemes and the differing roles of various myosin isoforms in each category. Finally, we briefly highlight recent studies exploring mechanosensing in three-dimensional environments, in which matrix content, structure, and mechanics are often tightly interrelated. Stress fibers and the myosin motors therein represent an intriguing and functionally important biological system in which mechanics, biochemistry, and architecture all converge.
Collapse
Affiliation(s)
- Stacey Lee
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
244
|
Doyle AD. Generation of 3D Collagen Gels with Controlled Diverse Architectures. ACTA ACUST UNITED AC 2016; 72:10.20.1-10.20.16. [PMID: 27580704 DOI: 10.1002/cpcb.9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rat tail collagen solutions have been used as polymerizable in vitro three dimensional (3D) extracellular matrix (ECM) gels for single and collective cell migration assays as well as spheroid formation. Factors such as ECM concentration, pH, ionic concentration, and temperature can alter collagen polymerization and ECM architecture. This unit describes how to generate 3D collagen gels that have distinct architectures ranging from a highly reticular meshwork of short thin fibrils with small pores to a loose matrix consisting of stiff, parallel-bundled long fibrils by changing collagen polymerization temperature. This permits analysis of 3D cell migration in different ECM architectures found in vivo while maintaining a similar ECM concentration. Also included are collagen labeling techniques helpful for ECM visualization during live fluorescence imaging. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Andrew D Doyle
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda Maryland
| |
Collapse
|
245
|
Staunton JR, Vieira W, Fung KL, Lake R, Devine A, Tanner K. Mechanical properties of the tumor stromal microenvironment probed in vitro and ex vivo by in situ-calibrated optical trap-based active microrheology. Cell Mol Bioeng 2016; 9:398-417. [PMID: 27752289 PMCID: PMC5065074 DOI: 10.1007/s12195-016-0460-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/18/2016] [Indexed: 12/27/2022] Open
Abstract
One of the hallmarks of the malignant transformation of epithelial tissue is the modulation of stromal components of the microenvironment. In particular, aberrant extracellular matrix (ECM) remodeling and stiffening enhances tumor growth and survival and promotes metastasis. Type I collagen is one of the major ECM components. It serves as a scaffold protein in the stroma contributing to the tissue's mechanical properties, imparting tensile strength and rigidity to tissues such as those of the skin, tendons, and lungs. Here we investigate the effects of intrinsic spatial heterogeneities due to fibrillar architecture, pore size and ligand density on the microscale and bulk mechanical properties of the ECM. Type I collagen hydrogels with topologies tuned by polymerization temperature and concentration to mimic physico-chemical properties of a normal tissue and tumor microenvironment were measured by in situ-calibrated Active Microrheology by Optical Trapping revealing significantly different microscale complex shear moduli at Hz-kHz frequencies and two orders of magnitude of strain amplitude that we compared to data from bulk rheology measurements. Access to higher frequencies enabled observation of transitions from elastic to viscous behavior that occur at ~200Hz to 2750Hz, which largely was dependent on tissue architecture well outside the dynamic range of instrument acquisition possible with SAOS bulk rheology. We determined that mouse melanoma tumors and human breast tumors displayed complex moduli ~5-1000 Pa, increasing with frequency and displaying a nonlinear stress-strain response. Thus, we show the feasibility of a mechanical biopsy in efforts to provide a diagnostic tool to aid in the design of therapeutics complementary to those based on standard histopathology.
Collapse
Affiliation(s)
- Jack R Staunton
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA
| | - Wilfred Vieira
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA
| | - King Leung Fung
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA
| | - Ross Lake
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA
| | - Alexus Devine
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
246
|
Schuster SL, Segerer FJ, Gegenfurtner FA, Kick K, Schreiber C, Albert M, Vollmar AM, Rädler JO, Zahler S. Contractility as a global regulator of cellular morphology, velocity, and directionality in low-adhesive fibrillary micro-environments. Biomaterials 2016; 102:137-47. [DOI: 10.1016/j.biomaterials.2016.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/07/2016] [Indexed: 02/06/2023]
|
247
|
Hu Y, You JO, Aizenberg J. Micropatterned Hydrogel Surface with High-Aspect-Ratio Features for Cell Guidance and Tissue Growth. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21939-45. [PMID: 27089518 DOI: 10.1021/acsami.5b12268] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Surface topography has been introduced as a new tool to coordinate cell selection, growth, morphology, and differentiation. The materials explored so far for making such structural surfaces are mostly rigid and impermeable. Hydrogel, on the other hand, was proved a better synthetic media for cell culture because of its biocompatibility, softness, and high permeability. Herein, we fabricated a poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel substrate with high-aspect-ratio surface microfeatures. Such structural surface could effectively guide the orientation and shape of human mesenchymal stem cells (HMSCs). Notably, on the flat hydrogel surface, cells rounded up, whereas on the microplate patterned hydrogel surface, cells elongated and aligned along the direction parallel to the plates. The microplates were 2 μm thick, 20 μm tall, and 10-50 μm wide. The interplate spacing was 5-15 μm, and the intercolumn spacing was 5 μm. The elongation of cell body was more pronounced on the patterns with narrower interplate spacing and wider plates. The cells behaved like soft solid. The competition between surface energy and elastic energy defined the shape of the cells on the structured surfaces. The soft permeable hydrogel scaffold with surface structures was also demonstrated as being viable for long-term cell culture, and could be used to generate interconnected tissues with finely tuned cell morphology and alignment across a few centimeter sizes.
Collapse
Affiliation(s)
- Yuhang Hu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Jin-Oh You
- John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
- Department of Engineering Chemistry, Chungbuk National University , Cheongju 362-763, Republic of Korea
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University , Cambridge, Massachusetts 02138, United States
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
- Kavli Institute for Bionano Science and Technology, Harvard University , Cambridge, Massachusetts 02138, United States
| |
Collapse
|
248
|
Abstract
Cell migration results from stepwise mechanical and chemical interactions between cells and their extracellular environment. Mechanistic principles that determine single-cell and collective migration modes and their interconversions depend upon the polarization, adhesion, deformability, contractility, and proteolytic ability of cells. Cellular determinants of cell migration respond to extracellular cues, including tissue composition, topography, alignment, and tissue-associated growth factors and cytokines. Both cellular determinants and tissue determinants are interdependent; undergo reciprocal adjustment; and jointly impact cell decision making, navigation, and migration outcome in complex environments. We here review the variability, decision making, and adaptation of cell migration approached by live-cell, in vivo, and in silico strategies, with a focus on cell movements in morphogenesis, repair, immune surveillance, and cancer metastasis.
Collapse
Affiliation(s)
- Veronika Te Boekhorst
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030;
| | - Luigi Preziosi
- Department of Mathematical Sciences, Politecnico di Torino, 10129 Torino, Italy
| | - Peter Friedl
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030; .,Department of Cell Biology, Radboud University Medical Centre, 6525GA Nijmegen, The Netherlands; .,Cancer Genomics Center, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
249
|
Mathieu E, Paul CD, Stahl R, Vanmeerbeeck G, Reumers V, Liu C, Konstantopoulos K, Lagae L. Time-lapse lens-free imaging of cell migration in diverse physical microenvironments. LAB ON A CHIP 2016; 16:3304-16. [PMID: 27436197 PMCID: PMC4987231 DOI: 10.1039/c6lc00860g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Time-lapse imaging of biological samples is important for understanding complex (patho)physiological processes. A growing number of point-of-care biomedical assays rely on real-time imaging of flowing or migrating cells. However, the cost and complexity of integrating experimental models simulating physiologically relevant microenvironments with bulky imaging systems that offer sufficient spatiotemporal resolution limit the use of time-lapse assays in research and clinical settings. This paper introduces a compact and affordable lens-free imaging (LFI) device based on the principle of coherent in-line, digital holography for time-lapse cell migration assays. The LFI device combines single-cell resolution (1.2 μm) with a large field of view (6.4 × 4.6 mm(2)), thus rendering it ideal for high-throughput applications and removing the need for expensive and bulky programmable motorized stages. The set-up is so compact that it can be housed in a standard cell culture incubator, thereby avoiding custom-built stage top incubators. LFI is thoroughly benchmarked against conventional live-cell phase contrast microscopy for random cell motility on two-dimensional (2D) surfaces and confined migration on 1D-microprinted lines and in microchannels using breast adenocarcinoma cells. The quality of the results obtained by the two imaging systems is comparable, and they reveal that cells migrate more efficiently upon increasing confinement. Interestingly, assays of confined migration more readily distinguish the migratory potential of metastatic MDA-MB-231 cells from non-metastatic MCF7 cells relative to traditional 2D migration assays. Altogether, this single-cell migration study establishes LFI as an elegant and useful tool for live-cell imaging.
Collapse
Affiliation(s)
- Evelien Mathieu
- IMEC, Kapeldreef 75, 3001 Leuven, Belgium. and Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Colin D Paul
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA. and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | | | | | | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA. and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA and Department of Biomedical Engineering, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Liesbet Lagae
- IMEC, Kapeldreef 75, 3001 Leuven, Belgium. and Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| |
Collapse
|
250
|
Han SJ, Rodriguez ML, Al-Rekabi Z, Sniadecki NJ. Spatial and temporal coordination of traction forces in one-dimensional cell migration. Cell Adh Migr 2016; 10:529-539. [PMID: 27588610 DOI: 10.1080/19336918.2016.1221563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Migration of a fibroblast along a collagen fiber can be regarded as cell locomotion in one-dimension (1D). In this process, a cell protrudes forward, forms a new adhesion, produces traction forces, and releases its rear adhesion in order to advance itself along a path. However, how a cell coordinates its adhesion formation, traction forces, and rear release in 1D migration is unclear. Here, we studied fibroblasts migrating along a line of microposts. We found that when the front of a cell protruded onto a new micropost, the traction force produced at its front increased steadily, but did so without a temporal correlation in the force at its rear. Instead, the force at the front coordinated with a decrease in force at the micropost behind the front. A similar correlation in traction forces also occurred at the rear of a cell, where a decrease in force due to adhesion detachment corresponded to an increase in force at the micropost ahead of the rear. Analysis with a bio-chemo-mechanical model for traction forces and adhesion dynamics indicated that the observed relationship between traction forces at the front and back of a cell is possible only when cellular elasticity is lower than the elasticity of the cellular environment.
Collapse
Affiliation(s)
- Sangyoon J Han
- a Department of Mechanical Engineering , University of Washington , Seattle , WA , USA
| | - Marita L Rodriguez
- a Department of Mechanical Engineering , University of Washington , Seattle , WA , USA
| | - Zeinab Al-Rekabi
- a Department of Mechanical Engineering , University of Washington , Seattle , WA , USA
| | - Nathan J Sniadecki
- a Department of Mechanical Engineering , University of Washington , Seattle , WA , USA.,b Department of Bioengineering , University of Washington , Seattle , WA , USA
| |
Collapse
|