201
|
Ovarian Masses in Patients With Breast Cancer. J Comput Assist Tomogr 2022; 46:716-721. [PMID: 35617667 DOI: 10.1097/rct.0000000000001334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of the study was to investigate the characteristic findings of computed tomography (CT) or magnetic resonance imaging (MRI) to discriminate metastasis from primary ovarian tumors in patients with a history of breast cancer. METHODS This retrospective study enrolled consecutive 72 patients with a history of breast cancer who underwent surgical confirmation of an ovarian mass detected on CT or MRI (primary ovarian tumors, n = 66; metastases, n = 6). Two independent readers analyzed the grade of solid portions of the ovarian mass using a 5-point scale on CT or MRI. A predominantly cystic mass was defined as a solid grade of 1 to 2. Cancer antigen 125 (CA 125) and the initial stage of breast cancer were also investigated. RESULTS The proportions of predominantly cystic masses were significantly different between metastases (0% for both readers) and primary ovarian tumors (59% for reader 1 and 53% for reader 2, P < 0.05). For masses of solid portion grades 3 to 5, CA 125 was significantly higher for malignant epithelial tumors than for the other tumors (P < 0.001), and the initial stage of breast cancer was significantly higher for metastases than for the other tumors (P < 0.001), respectively. CONCLUSIONS In patients with a history of breast cancer, predominantly cystic masses detected on CT or MRI seem to be primary ovarian tumors. For the other masses, knowledge of CA 125 and initial breast cancer stage may help in the differential diagnosis.
Collapse
|
202
|
Russo A, Incorvaia L, Capoluongo E, Tagliaferri P, Gori S, Cortesi L, Genuardi M, Turchetti D, De Giorgi U, Di Maio M, Barberis M, Dessena M, Del Re M, Lapini A, Luchini C, Jereczek-Fossa BA, Sapino A, Cinieri S. Implementation of preventive and predictive BRCA testing in patients with breast, ovarian, pancreatic, and prostate cancer: a position paper of Italian Scientific Societies. ESMO Open 2022; 7:100459. [PMID: 35597177 PMCID: PMC9126927 DOI: 10.1016/j.esmoop.2022.100459] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022] Open
Abstract
Constitutional BRCA1/BRCA2 pathogenic or likely pathogenic variants (PVs) are associated with an increased risk for developing breast and ovarian cancers. Current evidence indicates that BRCA1/2 PVs are also associated with pancreatic cancer, and that BRCA2 PVs are associated with prostate cancer risk. The identification of carriers of constitutional PVs in the BRCA1/2 genes allows the implementation of individual and family prevention pathways, through validated screening programs and risk-reducing strategies. According to the relevant and increasing therapeutic predictive implications, the inclusion of BRCA testing in the routine management of patients with breast, ovarian, pancreatic and prostate cancers represent a key requirement to optimize medical or surgical therapeutic and prevention decision-making, and access to specific anticancer therapies. Therefore, accurate patient selection, the use of standardized and harmonized procedures, and adherence to homogeneous testing criteria, are essential elements to implement BRCA testing in clinical practice. This consensus position paper has been developed and approved by a multidisciplinary Expert Panel of 64 professionals on behalf of the AIOM–AIRO–AISP–ANISC–AURO–Fondazione AIOM–SIAPEC/IAP–SIBioC–SICO–SIF–SIGE–SIGU–SIU–SIURO–UROP Italian Scientific Societies, and a patient association (aBRCAdaBRA Onlus). The working group included medical, surgical and radiation oncologists, medical and molecular geneticists, clinical molecular biologists, surgical and molecular pathologists, organ specialists such as gynecologists, gastroenterologists and urologists, and pharmacologists. The manuscript is based on the expert consensus and reports the best available evidence, according to the current eligibility criteria for BRCA testing and counseling, it also harmonizes with current Italian National Guidelines and Clinical Recommendations. The rapid technologic and medical progress on BRCA-related cancers produced a clinical need for BRCA testing optimization. To incorporate BRCA testing in the routine management is a key requirement to help medical or surgical decision-making Standardized procedures and harmonized testing criteria are needed to implement BRCA testing in clinical practice. Adequate training and qualification for multidisciplinary team members are crucial for the success of the patient care path.
Collapse
Affiliation(s)
- A Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy.
| | - L Incorvaia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - E Capoluongo
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy; Department of Clinical Pathology- Cannizzaro Hospital, Catania, Italy
| | - P Tagliaferri
- Medical and Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - S Gori
- Department of Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella, Italy
| | - L Cortesi
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - M Genuardi
- University Hospital Foundation "A. Gemelli", IRCCS - Medical Genetics Unit, Rome, Italy; Section of Genomic Medicine, Department of Life Sciences and Public Health, Catholic University Sacro Cuore, Rome, Italy
| | - D Turchetti
- Department of Medical and Surgical Sciences, Center for Studies on Hereditary Cancer, University of Bologna, Bologna, Italy; Unit of Medical Genetics, IRCCS Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
| | - U De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - M Di Maio
- Department of Oncology, University of Turin, Division of Medical Oncology, Ordine Mauriziano Hospital, Turin, Italy
| | - M Barberis
- Unit of Histopathology and Molecular Diagnostics, Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - M Dessena
- S.C. Experimental Surgery, Oncology Hospital, Brotzu Hospital, Cagliari, Italy
| | - M Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - A Lapini
- Department of Urology, University of Florence, University Hospital of Florence, Florence, Italy
| | - C Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy; ARC-Net Research Center, University and Hospital Trust of Verona, Verona, Italy
| | - B A Jereczek-Fossa
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - A Sapino
- Candiolo Cancer Institute, FPO-IRCCS Candiolo, Candiolo, Italy; Department of Medical Sciences, University of Torino, Torino, Italy
| | - S Cinieri
- Medical Oncology Division and Breast Unit, Senatore Antonio Perrino Hospital, ASL Brindisi, Brindisi, Italy
| | | |
Collapse
|
203
|
Shubeck S, Sevilimedu V, Berger E, Robson M, Heerdt AS, Pilewskie ML. Comparison of Outcomes Between BRCA Pathogenic Variant Carriers Undergoing Breast-Conserving Surgery Versus Mastectomy. Ann Surg Oncol 2022; 29:4706-4713. [PMID: 35585432 PMCID: PMC10161354 DOI: 10.1245/s10434-022-11756-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/26/2022] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Although outcomes are similar following breast-conserving surgery (BCS) or mastectomy among sporadic breast cancer patients, data are mixed for women with a germline BRCA mutation. We sought to compare outcomes among a modern cohort of BRCA mutation carriers undergoing BCS versus mastectomy. METHODS Women with a BRCA mutation and an index breast cancer from 2006-2015 were retrospectively identified from institutional databases. Factors, including date of genetic testing, clinicopathologic details, and treatment characteristics, were identified. Subsequent locoregional recurrence (LRR), distant recurrence, contralateral breast cancer (CBC), breast cancer-specific survival (BCSS), and overall survival (OS) events were compared between groups. RESULTS A total of 395 BRCA mutation carriers with 424 cancers were identified. Surgical treatment included BCS for 99 cancers and mastectomy for 325 cancers. Patients choosing mastectomy were more likely to have bilateral breast cancer, be younger/premenopausal, and be aware of their genetic status before surgery, and were less likely to receive radiation therapy (p < 0.001). At 7.9 years median follow-up, LRR, distant recurrence, BCSS, and OS rates did not differ between groups. CBC occurred in 5 versus 0 women treated with unilateral versus bilateral surgery, respectively, resulting is a 10-year estimated CBC risk of 14% among unilateral breast surgery patients (p < 0.001). CONCLUSIONS With nearly 8 years follow-up, we report no difference in LRR, BCSS, and OS among BRCA mutation carriers who underwent BCS or mastectomy; however, we report a higher incidence of CBC among those undergoing unilateral breast surgery. These data support BCS as an option for BRCA mutation carriers willing to continue high-risk screening.
Collapse
Affiliation(s)
- Sarah Shubeck
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Varadan Sevilimedu
- Biostatistics Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth Berger
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA.,Yale Comprehensive Cancer Center, New Haven, CT, USA
| | - Mark Robson
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexandra S Heerdt
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melissa L Pilewskie
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
204
|
Zhu Q, Wang J, Yu H, Hu Q, Bateman NW, Long M, Rosario S, Schultz E, Dalgard CL, Wilkerson MD, Sukumar G, Huang RY, Kaur J, Lele SB, Zsiros E, Villella J, Lugade A, Moysich K, Conrads TP, Maxwell GL, Odunsi K. Whole-Genome Sequencing Identifies PPARGC1A as a Putative Modifier of Cancer Risk in BRCA1/2 Mutation Carriers. Cancers (Basel) 2022; 14:2350. [PMID: 35625955 PMCID: PMC9139302 DOI: 10.3390/cancers14102350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
While BRCA1 and BRCA2 mutations are known to confer the largest risk of breast cancer and ovarian cancer, the incomplete penetrance of the mutations and the substantial variability in age at cancer onset among carriers suggest additional factors modifying the risk of cancer in BRCA1/2 mutation carriers. To identify genetic modifiers of BRCA1/2, we carried out a whole-genome sequencing study of 66 ovarian cancer patients that were enriched with BRCA carriers, followed by validation using data from the Pan-Cancer Analysis of Whole Genomes Consortium. We found PPARGC1A, a master regulator of mitochondrial biogenesis and function, to be highly mutated in BRCA carriers, and patients with both PPARGC1A and BRCA1/2 mutations were diagnosed with breast or ovarian cancer at significantly younger ages, while the mutation status of each gene alone did not significantly associate with age of onset. Our study suggests PPARGC1A as a possible BRCA modifier gene. Upon further validation, this finding can help improve cancer risk prediction and provide personalized preventive care for BRCA carriers.
Collapse
Affiliation(s)
- Qianqian Zhu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.W.); (H.Y.); (Q.H.); (M.L.); (S.R.); (E.S.)
| | - Jie Wang
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.W.); (H.Y.); (Q.H.); (M.L.); (S.R.); (E.S.)
| | - Han Yu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.W.); (H.Y.); (Q.H.); (M.L.); (S.R.); (E.S.)
| | - Qiang Hu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.W.); (H.Y.); (Q.H.); (M.L.); (S.R.); (E.S.)
| | - Nicholas W. Bateman
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA; (N.W.B.); (T.P.C.); (G.L.M.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD 20817, USA;
| | - Mark Long
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.W.); (H.Y.); (Q.H.); (M.L.); (S.R.); (E.S.)
| | - Spencer Rosario
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.W.); (H.Y.); (Q.H.); (M.L.); (S.R.); (E.S.)
| | - Emily Schultz
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.W.); (H.Y.); (Q.H.); (M.L.); (S.R.); (E.S.)
| | - Clifton L. Dalgard
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (C.L.D.); (M.D.W.)
- Department of Anatomy Physiology and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Matthew D. Wilkerson
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (C.L.D.); (M.D.W.)
- Department of Anatomy Physiology and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Gauthaman Sukumar
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD 20817, USA;
- Department of Anatomy Physiology and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Ruea-Yea Huang
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (R.-Y.H.); (A.L.)
| | - Jasmine Kaur
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.K.); (S.B.L.); (E.Z.)
| | - Shashikant B. Lele
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.K.); (S.B.L.); (E.Z.)
| | - Emese Zsiros
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.K.); (S.B.L.); (E.Z.)
| | - Jeannine Villella
- Division of Gynecologic Oncology, Lenox Hill Hospital/Northwell Health Cancer Institute, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY 11549, USA;
| | - Amit Lugade
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (R.-Y.H.); (A.L.)
| | - Kirsten Moysich
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Thomas P. Conrads
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA; (N.W.B.); (T.P.C.); (G.L.M.)
- Women’s Health Integrated Research Center, Women’s Service Line, Inova Health System, 3289 Woodburn Rd, Annandale, VA 22003, USA
| | - George L. Maxwell
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA; (N.W.B.); (T.P.C.); (G.L.M.)
- Women’s Health Integrated Research Center, Women’s Service Line, Inova Health System, 3289 Woodburn Rd, Annandale, VA 22003, USA
| | - Kunle Odunsi
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (R.-Y.H.); (A.L.)
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.K.); (S.B.L.); (E.Z.)
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL 60637, USA
| |
Collapse
|
205
|
Liu X, Ge Z, Yang F, Contreras A, Lee S, White JB, Lu Y, Labrie M, Arun BK, Moulder SL, Mills GB, Piwnica-Worms H, Litton JK, Chang JT. Identification of biomarkers of response to preoperative talazoparib monotherapy in treatment naïve gBRCA+ breast cancers. NPJ Breast Cancer 2022; 8:64. [PMID: 35538088 PMCID: PMC9090765 DOI: 10.1038/s41523-022-00427-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
Germline mutations in BRCA1 or BRCA2 exist in ~2–7% of breast cancer patients, which has led to the approval of PARP inhibitors in the advanced setting. We have previously reported a phase II neoadjuvant trial of single agent talazoparib for patients with germline BRCA pathogenic variants with a pathologic complete response (pCR) rate of 53%. As nearly half of the patients treated did not have pCR, better strategies are needed to overcome treatment resistance. To this end, we conducted multi-omic analysis of 13 treatment naïve breast cancer tumors from patients that went on to receive single-agent neoadjuvant talazoparib. We looked for biomarkers that were predictive of response (assessed by residual cancer burden) after 6 months of therapy. We found that all resistant tumors exhibited either the loss of SHLD2, expression of a hypoxia signature, or expression of a stem cell signature. These results indicate that the deep analysis of pre-treatment tumors can identify biomarkers that are predictive of response to talazoparib and potentially other PARP inhibitors, and provides a framework that will allow for better selection of patients for treatment, as well as a roadmap for the development of novel combination therapies to prevent emergence of resistance.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongqi Ge
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fei Yang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alejandro Contreras
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanghoon Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason B White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yiling Lu
- Department of Genome Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marilyne Labrie
- Department of Cell, Developmental, and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Banu K Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stacy L Moulder
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B Mills
- Department of Cell, Developmental, and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA. .,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
206
|
Mazumder S, Swank V, Dvorina N, Johnson JM, Tuohy VK. Formulation of an ovarian cancer vaccine with the squalene-based AddaVax adjuvant inhibits the growth of murine epithelial ovarian carcinomas. Clin Exp Vaccine Res 2022; 11:163-172. [PMID: 35799868 PMCID: PMC9200654 DOI: 10.7774/cevr.2022.11.2.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose Epithelial ovarian carcinoma (EOC) is the most lethal of all human gynecologic malignancies. We previously reported that vaccination of female mice with the extracellular domain of anti-Müllerian hormone receptor II (AMHR2-ED) in complete Freund’s adjuvant (CFA) generates AMHR2-ED specific immunoglobulin G (IgG) that provides prevention and therapy against murine EOCs. Although CFA is the “gold standard” adjuvant in animal studies, it is not approved for human use because it often induces painful granulomas and abscesses. Thus, the objective of this study is to identify an alternative adjuvant to CFA for use in our ovarian cancer vaccine clinical trials. Materials and Methods Because it has been used successfully without serious adverse effects in numerous human clinical trials, we selected the IgG-inducing squalene-based adjuvant, AddaVax™, for evaluation of its ability to facilitate vaccine-induced prevention and treatment of EOC in mice. To this end, we immunized female C57BL/6 mice with recombinant mouse AMHR2-ED emulsified with either AddaVax or CFA as adjuvant and compared the results. Results We found that formulation of the AMHR2-ED vaccine with AddaVax adjuvant induced high serum titers of IgG and significant inhibition of EOC growth with significantly enhanced overall survival of mice using both prevention and therapeutic protocols. These results were compared favorably with results obtained using CFA as an adjuvant in the AMHR2-ED vaccine. Conclusion Our data indicate that the AMHR2-ED vaccine formulated with AddaVax may be used in human clinical trials and thereby serve as a novel and effective way to control human EOC.
Collapse
Affiliation(s)
- Suparna Mazumder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Valerie Swank
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nina Dvorina
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Justin M Johnson
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vincent K Tuohy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
207
|
Henn D, Barrera JA, Sivaraj D, Lin JQ, Rizk NM, Ma I, Gurtner GC, Lee GK, Nazerali RS. Combining Breast and Ovarian Operations Increases Complications. Plast Reconstr Surg 2022; 149:1050-1059. [PMID: 35245249 DOI: 10.1097/prs.0000000000008984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Breast cancer resulting from a genetic mutations, such as BRCA1 or BRCA2, is seen in 5 to 10 percent of patients. More widespread genetic testing has increased the number of affected women undergoing prophylactic mastectomy and oophorectomy. Recent studies have yielded mixed results regarding complication rates after combined breast and ovarian operations. The authors compared surgical outcomes of breast operations performed in combination with salpingo-oophorectomies or as separate procedures. METHODS The authors retrospectively analyzed surgical complications and length of hospital stay in 145 female patients, from which 87 had undergone combined breast surgery and salpingo-oophorectomy, and 58 had undergone these procedures separately. Multivariate logistic regression models were used to calculate odds ratios and 95 percent confidence intervals. RESULTS Patients undergoing combined breast and ovarian operations experienced higher rates of overall complications (46.5 percent versus 19 percent; p < 0.001), infections (22.2 percent versus 8.6 percent; p < 0.05), and delayed wound healing (13.2 percent versus 0 percent; p < 0.05) related to the breast surgery, when compared with patients undergoing separate procedures. Multivariate logistic regression analysis confirmed a significant association between combined surgery and overall postoperative complications (OR, 5.87; 95 percent CI, 2.03 to 16.91; p = 0.02). Patients undergoing tissue expander-based breast reconstruction combined with ovarian surgery had significantly longer hospital stays compared to patients undergoing separate procedures (3.5 days versus 1.8 days; p < 0.001). CONCLUSIONS The authors' data indicate that combining breast and ovarian operations is associated with a higher risk of postoperative complications related to the breast procedure and increases the duration of hospital stay in patients with tissue expander-based reconstructions. The authors' study provides valuable information for preoperative counseling of patients considering both breast and ovarian surgery. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, III.
Collapse
Affiliation(s)
- Dominic Henn
- From the Division of Plastic and Reconstructive Surgery, Stanford University Medical Center
| | - Janos A Barrera
- From the Division of Plastic and Reconstructive Surgery, Stanford University Medical Center
| | - Dharshan Sivaraj
- From the Division of Plastic and Reconstructive Surgery, Stanford University Medical Center
| | - John Q Lin
- From the Division of Plastic and Reconstructive Surgery, Stanford University Medical Center
| | - Nada M Rizk
- From the Division of Plastic and Reconstructive Surgery, Stanford University Medical Center
| | - Irene Ma
- From the Division of Plastic and Reconstructive Surgery, Stanford University Medical Center
| | - Geoffrey C Gurtner
- From the Division of Plastic and Reconstructive Surgery, Stanford University Medical Center
| | - Gordon K Lee
- From the Division of Plastic and Reconstructive Surgery, Stanford University Medical Center
| | - Rahim S Nazerali
- From the Division of Plastic and Reconstructive Surgery, Stanford University Medical Center
| |
Collapse
|
208
|
Abstract
PURPOSE Current concepts regarding estrogen and its mechanistic effects on breast cancer in women are evolving. This article reviews studies that address estrogen-mediated breast cancer development, the prevalence of occult tumors at autopsy, and the natural history of breast cancer as predicted by a newly developed tumor kinetic model. METHODS This article reviews previously published studies from the authors and articles pertinent to the data presented. RESULTS We discuss the concepts of adaptive hypersensitivity that develops in response to long-term deprivation of estrogen and results in both increased cell proliferation and apoptosis. The effects of menopausal hormonal therapy on breast cancer in postmenopausal women are interpreted based on the tumor kinetic model. Studies of the administration of a tissue selective estrogen complex in vitro, in vivo, and in patients are described. We review the various clinical studies of breast cancer prevention with selective estrogen receptor modulators and aromatase inhibitors. Finally, the effects of the underlying risk of breast cancer on the effects of menopausal hormone therapy are outlined. DISCUSSION The overall intent of this review is to present data supporting recent concepts, discuss pertinent literature, and critically examine areas of controversy.
Collapse
|
209
|
C Pillay O, Manyonda I. The surgical menopause. Best Pract Res Clin Obstet Gynaecol 2022; 81:111-118. [PMID: 35568447 DOI: 10.1016/j.bpobgyn.2022.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022]
Abstract
Surgical menopause (iatrogenic menopause) happens when both ovaries are removed before the natural "switching off" of ovarian function; it can cause premature ovarian insufficiency where the menopause occurs in women before the age of 40. Surgical menopause is associated with a sudden reduction of ovarian sex steroid production rather than a gradual one as is the case in natural menopause. In women who have undergone bilateral salpingo-oophorectomy (BSO) before the natural age of menopause, strong consideration should be given to giving hormone replacement therapy (HRT) till the natural age of menopause at least. Sexual function and sexual desire are altered post-BSO, especially in younger women hence part of HRT prescription must include consideration of androgen too.
Collapse
Affiliation(s)
- Ouma C Pillay
- Department of Obstetrics & Gynaecology, St George´s University Hospitals NHS Foundation Trust, London, United Kingdom.
| | - Isaac Manyonda
- Department of Obstetrics and Gynecology, St George's, University of London, London / St George´s University Hospitals NHS Foundation Trust, United Kingdom
| |
Collapse
|
210
|
Habitat Analysis of Breast Cancer-Enhanced MRI Reflects BRCA1 Mutation Determined by Immunohistochemistry. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9623173. [PMID: 35402620 PMCID: PMC8986384 DOI: 10.1155/2022/9623173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 11/18/2022]
Abstract
Objective To use habitat analysis (also termed habitat imaging) for classifying untreated breast cancer-enhanced magnetic resonance imaging (MRI) in women. Moreover, we intended to obtain clustering parameters to predict the BReast CAncer gene 1 (BRCA1) gene mutation and to determine the use of MRI as a noninvasive examination tool. Methods We obtained enhanced MRI data of patients with breast cancer before treatment and selected some sequences as the source of habitat imaging. We used the k-means clustering to classify these images. According to the formed subregions, we calculated several parameters to evaluate the clustering. We used immunohistochemistry to detect BRCA1 mutations. Moreover, we separately determined the ability of these parameters through independent modeling or multiple parameter joint modeling to predict these mutations. Results Of all extracted values, separation (SP) demonstrated the best prediction performance for a single parameter (area under the receiver operating characteristic curve (AUC), 0.647; 95% confidence interval (CI), 0.557–0.731). Simultaneously, models based on the Calinski-Harabasz Index and sum of square error performed better in the training (AUC, 0.903; 95% CI, 0.831–0.96) and verification (AUC, 0.845; 95% CI, 0.723–0.942) sets for multiparameter joint modeling. Conclusion Based on the enhanced MRI of breast tumors and the subregions generated according to the habitat imaging theory, the parameters extracted to describe the clustering effect could reflect the BRCA1 status. Differences between clusters, including the general differences of cluster centers and clusters and the similarity of samples within clusters, were the embodiment of this mutation. We propose an algorithm to predict the BRCA1 mutation of a patient according to the enhanced MRI of the breast tumor.
Collapse
|
211
|
Labes S, Stupp D, Wagner N, Bloch I, Lotem M, L Lahad E, Polak P, Pupko T, Tabach Y. Machine-learning of complex evolutionary signals improves classification of SNVs. NAR Genom Bioinform 2022; 4:lqac025. [PMID: 35402908 PMCID: PMC8988715 DOI: 10.1093/nargab/lqac025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/08/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Conservation is a strong predictor for the pathogenicity of single-nucleotide variants (SNVs). However, some positions that present complex conservation patterns across vertebrates stray from this paradigm. Here, we analyzed the association between complex conservation patterns and the pathogenicity of SNVs in the 115 disease-genes that had sufficient variant data. We show that conservation is not a one-rule-fits-all solution since its accuracy highly depends on the analyzed set of species and genes. For example, pairwise comparisons between the human and 99 vertebrate species showed that species differ in their ability to predict the clinical outcomes of variants among different genes using conservation. Furthermore, certain genes were less amenable for conservation-based variant prediction, while others demonstrated species that optimize prediction. These insights led to developing EvoDiagnostics, which uses the conservation against each species as a feature within a random-forest machine-learning classification algorithm. EvoDiagnostics outperformed traditional conservation algorithms, deep-learning based methods and most ensemble tools in every prediction-task, highlighting the strength of optimizing conservation analysis per-species and per-gene. Overall, we suggest a new and a more biologically relevant approach for analyzing conservation, which improves prediction of variant pathogenicity.
Collapse
Affiliation(s)
- Sapir Labes
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, and Hadassah University Medical School, The Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Doron Stupp
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, and Hadassah University Medical School, The Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Naama Wagner
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Idit Bloch
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, and Hadassah University Medical School, The Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah University Medical Center, The Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Ephrat L Lahad
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem9103102, Israel
| | - Paz Polak
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, NY10029, USA
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, and Hadassah University Medical School, The Hebrew University of Jerusalem, Jerusalem9112001, Israel
| |
Collapse
|
212
|
Adamovich AI, Diabate M, Banerjee T, Nagy G, Smith N, Duncan K, Mendoza Mendoza E, Prida G, Freitas MA, Starita LM, Parvin JD. The functional impact of BRCA1 BRCT domain variants using multiplexed DNA double-strand break repair assays. Am J Hum Genet 2022; 109:618-630. [PMID: 35196514 DOI: 10.1016/j.ajhg.2022.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/26/2022] [Indexed: 11/30/2022] Open
Abstract
Pathogenic variants in BRCA1 are associated with a greatly increased risk of hereditary breast and ovarian cancer (HBOC). With the increased availability and affordability of genetic testing, many individuals have been identified with BRCA1 variants of uncertain significance (VUSs), which are individually detected in the population too infrequently to ascertain a clinical risk. Functional assays can be used to experimentally assess the effects of these variants. In this study, we used multiplexed DNA repair assays of variants in the BRCA1 carboxyl terminus to functionally characterize 2,271 variants for homology-directed repair function (HDR) and 1,427 variants for cisplatin resistance (CR). We found a high level of consistent results (Pearson's r = 0.74) in the two multiplexed functional assays with non-functional variants located within regions of the BRCA1 protein necessary for its tumor suppression activity. In addition, functional categorizations of variants tested in the multiplex HDR and CR assays correlated with known clinical significance and with other functional assays for BRCA1 (Pearson's r = 0.53 to 0.71). The results of the multiplex HDR and CR assays are useful resources for characterizing large numbers of BRCA1 VUSs.
Collapse
Affiliation(s)
- Aleksandra I Adamovich
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Mariame Diabate
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Tapahsama Banerjee
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Gregory Nagy
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Nahum Smith
- Department of Genome Sciences, University of Washington and Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Kathryn Duncan
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Erika Mendoza Mendoza
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Gisselle Prida
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Michael A Freitas
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Lea M Starita
- Department of Genome Sciences, University of Washington and Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Jeffrey D Parvin
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
213
|
Spectrum of BRCA1/2 Mutations in Romanian Breast and Ovarian Cancer Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074314. [PMID: 35409996 PMCID: PMC8998351 DOI: 10.3390/ijerph19074314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022]
Abstract
Background: About 10,000 women are diagnosed with breast cancer and about 2000 women are diagnosed with ovarian cancer each year in Romania. There is an insufficient number of genetic studies in the Romanian population to identify patients at high risk of inherited breast and ovarian cancer. Methods: We evaluated 250 women of Romanian ethnicity with BC and 240 women of Romanian ethnicity with ovarian cancer for the presence of damaging germline mutations in breast cancer genes 1 and 2 (BRCA1 and BRCA2, respectively) using Next-Generation Sequencing (NGS) technology. Results: Of the 250 breast cancer patients, 47 carried a disease-predisposing BRCA mutation (30 patients (63.83%) with a BRCA1 mutation and 17 patients (36.17%) with a BRCA2 mutation). Of the 240 ovarian cancer patients, 60 carried a BRCA mutation (43 patients (72%) with a BRCA1 mutation and 17 patients (28%) with a BRCA2 mutation). In the BRCA1 gene, we identified 18 variants (4 in both patient groups (ovarian and breast cancer patients), 1 mutation variant in the BC patient group, and 13 mutation variants in the ovarian cancer patient group). In the BRCA2 gene, we identified 17 variants (1 variant in both ovarian and breast cancer patients, 6 distinct variants in BC patients, and 10 distinct variants in ovarian cancer patients). The prevailing mutation variants identified were c.3607C>T (BRCA1) (18 cases) followed by c.5266dupC (BRCA1) (17 cases) and c.9371A>T (BRCA2) (12 cases). The most prevalent mutation, BRCA1 c.3607C>T, which is less common in the Romanian population, was mainly associated with triple-negative BC and ovarian serous adenocarcinoma. Conclusion: The results of our analysis may help to establish specific variants of BRCA mutations in the Romanian population and identify individuals at high risk of hereditary breast and ovarian cancer syndrome by genetic testing.
Collapse
|
214
|
Zarbo C, Brugnera A, Frigerio L, Celi C, Compare A, Dessì V, Giordano R, Malandrino C, Sina FP, Strepparava MG, Tessitore IV, Ventura M, Fruscio R. Cancer Anxiety Mediates the Association Between Satisfaction With Medical Communication and Psychological Quality of Life After Prophylactic Bilateral Salpingo-Oophorectomy. Front Psychol 2022; 13:840931. [PMID: 35356354 PMCID: PMC8959915 DOI: 10.3389/fpsyg.2022.840931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/21/2022] [Indexed: 11/30/2022] Open
Abstract
Background Prophylactic Bilateral Salpingo-Oophorectomy (PBSO) reduces the risk of developing ovarian cancer. However, the psychological mechanisms that may affect post-surgery Quality of Life (QoL) among patients who underwent PBSO are still largely unknown. Thus, this study aimed at exploring the direct and indirect associations of satisfaction with medical communication and cancer anxiety on post-surgery QoL among women at high risk of developing ovarian cancer. Method Fifty-nine women (mean age: 50.64 ± 6.7 years) who underwent PBSO took part in this cross-sectional study, filling out a sociodemographic and clinical questionnaire, a battery of validated psychological measures and an ad hoc developed scale for the assessment of cancer anxiety. We first examined the correlations among all variables of interest, and then tested if cancer anxiety mediated the association between satisfaction with medical communication and post-surgery psychological QoL, controlling both for time from surgery and education. Results Post-surgery psychological QoL was unrelated from any sociodemographic or clinical variable. Cancer anxiety had a significant direct negative effect on psychological QoL, while satisfaction with medical communication had a significant positive direct effect on it. Finally, cancer anxiety significantly mediated the association between satisfaction with medical communication and post-surgery psychological QoL. Discussion Results suggest that post-surgery psychological QoL of patients who underwent PBSO may be increased with interventions, delivered in a genetic counselling setting, targeting quality of medical communication and cancer anxiety.
Collapse
Affiliation(s)
- Cristina Zarbo
- Unit of Epidemiological and Evaluation Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Agostino Brugnera
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | - Luigi Frigerio
- Department of Obstetrics & Gynaecology, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Chiara Celi
- Clinical Psychology Unit, ASST-Monza, Monza, Italy
| | - Angelo Compare
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | - Valentina Dessì
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | - Rosalba Giordano
- Department of Obstetrics & Gynaecology, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Chiara Malandrino
- Department of Obstetrics & Gynaecology, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | | | - Maria Grazia Strepparava
- Clinical Psychology Unit, ASST-Monza, Monza, Italy.,Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | | | | | - Robert Fruscio
- Gynaecologic Surgery Unit, ASST-Monza, Monza, Italy.,Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| |
Collapse
|
215
|
Bilateral Prophylactic Nipple-Sparing Mastectomy: Analysis of the Risk-Reducing Effect in BRCA1/2 Mutation Carriers. Aesthetic Plast Surg 2022; 46:706-711. [PMID: 34342702 DOI: 10.1007/s00266-021-02506-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/24/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mutations in the BRCA1 or BRCA2 genes increase the lifetime risk of developing breast cancer to 68-72% by the age of 80. One of the modalities to manage the risk is a prophylactic mastectomy. Bilateral nipple-sparing mastectomy specifically offers the most favorable esthetic outcomes but the evidence for its oncological safety remains limited. Thus, we aimed to compare the occurrence of breast cancer between nipple-sparing mastectomy and surveillance groups of BRCA1 or BRCA 2 mutations carriers. MATERIALS AND METHODS BRCA1 or BRCA2-positive patients undergoing bilateral prophylactic nipple-sparing mastectomy at our department were identified. Only those unaffected by breast cancer were eligible. Each patient was pair-matched with a BRCA1 or BRCA2-positive patient of equal age from the surveillance group. Breast cancer incidence in both groups was recorded and the results were compared. RESULTS None of 105 patients who underwent NSM between 2009 and 2019 at a single institution with a mean follow-up time of 50 months developed breast cancer over this time period. One patient in this group died of an unrelated cause. Nine patients from 105 in the match-paired surveillance group were diagnosed with breast cancer during a mean follow-up time of 58.3 months, however, none of them died. CONCLUSION To the best of our knowledge, this is the largest single-center study of risk-reducing bilateral NSM in healthy BRCA1 or BRCA2 mutation carriers. Based on our results and those of other series, we conclude that NSM in its current form appears to be at least equally as safe as other types of mastectomy for preventing breast cancer in BRCA1 or BRCA2 mutation carriers. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
216
|
Kluźniak W, Szymiczek A, Rodrigue A, Wokołorczyk D, Rusak B, Stempa K, Huzarski T, Gronwald J, Lubiński J, Zamani N, Zhang S, Masson JY, Narod SA, Cybulski C, Akbari MR. Common Variant in ALDH2 Modifies the Risk of Breast Cancer Among Carriers of the p.K3326* Variant in BRCA2. JCO Precis Oncol 2022; 6:e2100450. [PMID: 35442721 DOI: 10.1200/po.21.00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The BRCA2 p.K3326* variant is considered a low-penetrance variant for breast cancer. Aldehydes that accumulate in cells under insufficient aldehyde oxidation were most recently shown to trigger carcinogenesis by promoting depletion of BRCA2 protein. Allele T of the common variant rs10744777 in the ALDH2 gene was associated with reduced expression of aldehyde dehydrogenase, the main enzyme in aldehyde oxidation. We hypothesized that this allele could modify breast cancer risk in women with the BRCA2 p.K3326* low-penetrance variant through reduced function of ALDH2, increased accumulation of cellular aldehydes, and depletion of BRCA2 protein. MATERIALS AND METHODS We genotyped 11,873 Polish women diagnosed with breast cancer and 7,615 ethnically matched controls for these two variants. Next, we extended our analysis of rs10744777 to 231 carriers of pathogenic BRCA2 mutations. RESULTS BRCA2 p.K3326* variant was associated with significant increase in breast cancer risk only in those who were homozygous for the T allele of the ALDH2 rs10744777 variant (odds ratio = 1.72; 95% CI, 1.19 to 2.48; P = .003). The BRCA2 p.K3326* variant did not increase the risk of breast cancer among those who were heterozygous or homozygous for the C allele of the ALDH2 rs10744777 variant (odds ratio = 1.05; 95% CI, 0.73 to 1.51; P = .81). In the carriers of high-risk BRCA2 mutations, the TT genotype of rs10744777 conferred a modest (18%) and not significant increase in breast cancer risk. CONCLUSION Our results suggest that BRCA2 p.K3326* variant, which is low-penetrance by itself, confers increased breast cancer risk on the background of the TT genotype of the ALDH2 rs10744777 variant in the Polish population.
Collapse
Affiliation(s)
- Wojciech Kluźniak
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Agata Szymiczek
- Women's College Research Institute, University of Toronto, Toronto, Canada
| | - Amelie Rodrigue
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Axis, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Québec, Canada
| | - Dominika Wokołorczyk
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Bogna Rusak
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Klaudia Stempa
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Tomasz Huzarski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland.,Department of Clinical Genetics and Pathology, University of Zielona Góra, Poland
| | - Jacek Gronwald
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jan Lubiński
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Neda Zamani
- Women's College Research Institute, University of Toronto, Toronto, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Shiyu Zhang
- Women's College Research Institute, University of Toronto, Toronto, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Axis, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Québec, Canada
| | - Steven A Narod
- Women's College Research Institute, University of Toronto, Toronto, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | | | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Mohammad R Akbari
- Women's College Research Institute, University of Toronto, Toronto, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| |
Collapse
|
217
|
Valente PMS, Gomes MCB, Martins WDA, Castilho SRD. Familial breast cancer, pregnancy and cardiotoxicity associated with the use of doxorubicin and reaction with trastuzumab. J Oncol Pharm Pract 2022; 28:1893-1897. [PMID: 35321591 DOI: 10.1177/10781552221080081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Breast Cancer (BC) is a neoplasm with the highest prevalence in women in Brazil and worldwide. Pregnancy-associated with BC is defined as that which occurs during pregnancy or within 1 to 2 years postpartum. The objective is to present a clinical case of a young patient with a history of familial BC who had cancer during pregnancy. The patient had cardiotoxicity after using doxorubicin and trastuzumab. CASE REPORT She was a young patient within infiltrating ductal carcinoma in the right breast She was diagnosed within nine weeks of gestation and submitted to neoadjuvant chemotherapy with AC protocol (doxorubicina and cyclophosphamide) and mastectomy. Developed left atrial overload after treatment and still responding to hypersensitivity to trastuzumab. MANAGEMENT AND OUTCOME The patient presented an alteration in the electrocardiogram (ECG) after the use of doxorubicin. The exam was repeated and the ECG was normal. Trastuzumab was started after delivery and the patient had a hypersensitivity reaction. Administration of trastuzumab was stopped and hydrocortisone was administered. The patient showed improvement in symptoms with cessation of trastuzumab. DISCUSSION Although anthracycline-induced cardiotoxicity and hypersensitivity reactions to trastuzumab are common reactions, there are few studies on the effects of these drugs in patients with Gestational breast cancer (GBC). Monitoring cardiotoxicity in breast cancer treatment in pregnant patients is essential to avoid two complications: for the pregnant woman and the fetus.
Collapse
Affiliation(s)
| | | | | | - Selma Rodrigues de Castilho
- Posgraduate Program in Sciences Applied to Health Products, 28110Fluminense Federal University, Niterói, RJ, Brazil
| |
Collapse
|
218
|
Ho JCW, Chen J, Cheuk IWY, Siu MT, Shin VY, Kwong A. MicroRNA-199a-3p promotes drug sensitivity in triple negative breast cancer by down-regulation of BRCA1. Am J Transl Res 2022; 14:2021-2036. [PMID: 35422914 PMCID: PMC8991114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/07/2021] [Indexed: 06/14/2023]
Abstract
MiR-199a-3p was previously predicted to target tumor suppressor gene BRCA1, which has been linked to cancer onset and therapeutic response. In this study, the effects of miR-199a-3p-mediated BRCA1 dysfunction on triple-negative breast cancer (TNBC) progression and chemosensitivity were assessed. The association between miR-199a-3p and BRCA1 expression was examined in TNBC tumors and verified with luciferase reporter and protein assays. Tumorigenic functions of miR-199a-3p in TNBC cells were investigated by cell proliferation, clonogenic and migration assays. The sensitivities to chemotherapeutic drugs were tested with cisplatin and PARP inhibitor (veliparib) treatments. Mouse xenograft model was used to examine the effects of miR-199a-3p on tumor growth and drug response in vivo. MiR-199a-3p was shown to directly target BRCA1 in TNBC cells, resulting its downregulation and reduced luciferase reporter activity mediated by BRCA1 3'-UTR. Ectopic miR-199a-3p in TNBC cells exerted inhibitory effects on cell proliferation, migration and xenograft tumor growth. Moreover, miR-199a-3p was shown to reverse cisplatin-resistance and sensitize TNBC cells to veliparib, which might be due to repressed DNA repair ability and induced cell apoptosis. Our results demonstrated the tumor suppressive effects of miR-199a-3p on TNBC and induction on chemotherapeutic sensitivities, which were correlated with BRCA1 gene dysfunction. These findings may provide insights into the potential prognostic and therapeutic values of miR-199a-3p in patients with TNBC.
Collapse
Affiliation(s)
- John Chi-Wang Ho
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen HospitalHong Kong, China
| | - Jiawei Chen
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen HospitalHong Kong, China
| | - Isabella Wai-Yin Cheuk
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen HospitalHong Kong, China
| | - Man-Ting Siu
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen HospitalHong Kong, China
| | - Vivian Yvonne Shin
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen HospitalHong Kong, China
| | - Ava Kwong
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen HospitalHong Kong, China
- Department of Surgery, Hong Kong Sanatorium & HospitalHong Kong, China
- Hong Kong Hereditary Breast Cancer Family RegistryHong Kong, China
| |
Collapse
|
219
|
Engoren M, Jewell ES, Douville N, Moser S, Maile MD, Bauer ME. Genetic variants associated with sepsis. PLoS One 2022; 17:e0265052. [PMID: 35275946 PMCID: PMC8916629 DOI: 10.1371/journal.pone.0265052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/22/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The variable presentations and different phenotypes of sepsis suggest that risk of sepsis comes from many genes each having a small effect. The cumulative effect can be used to create individual risk profile. The purpose of this study was to create a polygenic risk score and determine the genetic variants associated with sepsis. METHODS We sequenced ~14 million single nucleotide polymorphisms with a minimac imputation quality R2>0.3 and minor allele frequency >10-6 in patients with Sepsis-2 or Sepsis-3. Genome-wide association was performed using Firth bias-corrected logistic regression. Semi-parsimonious logistic regression was used to create polygenic risk scores and reduced regression to determine the genetic variants independently associated with sepsis. FINDINGS 2261 patients had sepsis and 13,068 control patients did not. The polygenic risk scores had good discrimination: c-statistic = 0.752 ± 0.005 for Sepsis-2 and 0.752 ± 0.007 for Sepsis-3. We found 772 genetic variants associated with Sepsis-2 and 442 with Sepsis-3, p<0.01. After multivariate adjustment, 100 variants on 85 genes were associated with Sepsis-2 and 69 variants in 54 genes with Sepsis-3. Twenty-five variants were present in both the Sepsis-2 and Sepsis-3 groups out of 32 genes that were present in both groups. The other 7 genes had different variants present. Most variants had small effect sizes. CONCLUSIONS Sepsis-2 and Sepsis-3 have both separate and shared genetic variants. Most genetic variants have small effects sizes, but cumulatively, the polygenic risk scores have good discrimination.
Collapse
Affiliation(s)
- Milo Engoren
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Elizabeth S. Jewell
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Nicholas Douville
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Stephanie Moser
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Michael D. Maile
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Melissa E. Bauer
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States of America
- Department of Anesthesiology, Duke University, Durham, NC, United States of America
| |
Collapse
|
220
|
Yang XH, Xu BH, Zhou DL, Long YK, Liu Q, Huang C, Ye ZL, He CY. Inherited rare and common variants in PTCH1 and PTCH2 contributing to the predisposition to reproductive cancers. Gene 2022; 814:146157. [PMID: 34990798 DOI: 10.1016/j.gene.2021.146157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/11/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022]
Abstract
PTCH1 and PTCH2 are associated with nevoid basal cell carcinoma syndrome and basal cell carcinoma. We determined the prevalence of their common and rare variants in 877 patients with various reproductive cancers and 296 healthy subjects. Using targeted next-generation sequencing, we found significantly statistical associations of the minor alleles at seven common variants of PTCH1 and PTCH2 with a decreased risk of reproductive cancers (P = 9.69 × 10-12). Among these variants, two haplotype blocks in high linkage disequilibrium were consisted of rs2277184, rs2066829 and rs2236405 sites at PTCH1 and rs3795720, rs11573590 and rs11211040 sites at PTCH2. Single marker and haplotype-based analysis consistently revealed a decreased risk of reproductive cancers especially breast and prostate cancers in the subjects carrying the minor alleles, and on the contrary, an increased risk for major alleles. Healthy control subjects showed a higher rate of rare variants than that of cancer patients (P = 0.017). Notably, two frameshift variants (p.Ser391* and p.Cys101Alafs*48) of PTCH2 with deleterious effects were found in only four cancer patients. Higher frequencies of variants of PTCH genes might have a protective role against the development of reproductive cancers, whereas rare deleterious variants of PTCH2 might predispose a carrier to reproductive cancers.
Collapse
Affiliation(s)
- Xin-Hua Yang
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, PR China
| | - Bo-Heng Xu
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, PR China
| | - Da-Lei Zhou
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, PR China
| | - Ya-Kang Long
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, PR China
| | - Qing Liu
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, PR China
| | - Chan Huang
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, PR China
| | - Zu-Lu Ye
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, PR China.
| | - Cai-Yun He
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, PR China.
| |
Collapse
|
221
|
McCormick S, Hicks S, Wooters M, Grant C. Toward a better understanding of the experience of patients with moderate penetrance breast cancer gene pathogenic/likely pathogenic variants: A focus on ATM and CHEK2. J Genet Couns 2022; 31:956-964. [PMID: 35246915 DOI: 10.1002/jgc4.1568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/25/2022]
Abstract
This study explored the experiences of patients with pathogenic or likely pathogenic variants in the moderate penetrance breast cancer genes, ATM and CHEK2. There were 139 eligible female patients who received genetic counseling at the Massachusetts General Hospital Center for Cancer Risk Assessment (MGH CCRA) from 2014 to 2018. They were sent surveys assessing their understanding of the clinical significance of their genetic test results, adherence to medical management recommendations, dissemination of genetic test results to relatives, and informational resource needs. In total, 66 surveys were returned with a response rate of 47.5%. Most participants reported understanding the clinical implications of their genetic test results and adhering to medical management recommendations. Although 20.3% found it upsetting, nearly all participants shared their genetic test results with relatives. When asked about resource needs, 54.5% reported seeking out additional resources. Our ATM/CHEK2 sample appears to have a good understanding of the personal and familial implications of their genetic test results but may benefit from additional resources. It is unclear whether similar results would be found in patients who do not receive genetic counseling from a board-certified genetic counselor, and this should be examined. This study is one of the first to assess the experiences and needs of the moderate risk population.
Collapse
Affiliation(s)
- Shelley McCormick
- Center for Cancer Risk Assessment, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Stephanie Hicks
- Center for Cancer Risk Assessment, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mackenzie Wooters
- Center for Cancer Risk Assessment, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Carly Grant
- Center for Cancer Risk Assessment, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
222
|
Green VL. Breast Cancer Risk Assessment and Management of the High-Risk Patient. Obstet Gynecol Clin North Am 2022; 49:87-116. [DOI: 10.1016/j.ogc.2021.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
223
|
Vergote I, González-Martín A, Ray-Coquard I, Harter P, Colombo N, Pujol P, Lorusso D, Mirza MR, Brasiuniene B, Madry R, Brenton JD, Ausems MGEM, Büttner R, Lambrechts D. European experts consensus: BRCA/homologous recombination deficiency testing in first-line ovarian cancer. Ann Oncol 2022; 33:276-287. [PMID: 34861371 DOI: 10.1016/j.annonc.2021.11.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Homologous recombination repair (HRR) enables fault-free repair of double-stranded DNA breaks. HRR deficiency is predicted to occur in around half of high-grade serous ovarian carcinomas. Ovarian cancers harbouring HRR deficiency typically exhibit sensitivity to poly-ADP ribose polymerase inhibitors (PARPi). Current guidelines recommend a range of approaches for genetic testing to identify predictors of sensitivity to PARPi in ovarian cancer and to identify genetic predisposition. DESIGN To establish a European-wide consensus for genetic testing (including the genetic care pathway), decision making and clinical management of patients with recently diagnosed advanced ovarian cancer, and the validity of biomarkers to predict the effectiveness of PARPi in the first-line setting. The collaborative European experts' consensus group consisted of a steering committee (n = 14) and contributors (n = 84). A (modified) Delphi process was used to establish consensus statements based on a systematic literature search, conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. RESULTS A consensus was reached on 34 statements amongst 98 caregivers (including oncologists, pathologists, clinical geneticists, genetic researchers, and patient advocates). The statements concentrated on (i) the value of testing for BRCA1/2 mutations and HRR deficiency testing, including when and whom to test; (ii) the importance of developing new and better HRR deficiency tests; (iii) the importance of germline non-BRCA HRR and mismatch repair gene mutations for predicting familial risk, but not for predicting sensitivity to PARPi, in the first-line setting; (iv) who should be able to inform patients about genetic testing, and what training and education should these caregivers receive. CONCLUSION These consensus recommendations, from a multidisciplinary panel of experts from across Europe, provide clear guidance on the use of BRCA and HRR deficiency testing for recently diagnosed patients with advanced ovarian cancer.
Collapse
Affiliation(s)
- I Vergote
- Division of Gynaecological Oncology, Department of Gynaecology and Obstetrics and Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium.
| | - A González-Martín
- Clinica Universidad de Navarra, Madrid, Spain; Program for Solid Tumors at Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - I Ray-Coquard
- Medical Oncology, Centre Leon Bérard and Université Claude Bernard Lyon, Lyon, France
| | - P Harter
- Department of Gynaecology & Gynaecologic Oncology, Ev. Kliniken Essen-Mitte, Essen, Germany
| | - N Colombo
- University of Milan-Bicocca and European Institute of Oncology IRCCS, Milan, Italy
| | - P Pujol
- Montpellier Faculty of Medicine, University Hospital of Montpellier, Montpellier, France
| | - D Lorusso
- Department of Women and Child Science and Public Health, Catholic University of Rome, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - M R Mirza
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - B Brasiuniene
- Department of Medical Oncology, National Cancer Institute of Lithuania, Faculty of Medicine of Vilnius University, Vilnius, Lithuania
| | - R Madry
- Oncological Gynaecology Department, Poznan University of Medical Sciences, Poznan, Poland
| | - J D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - M G E M Ausems
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - R Büttner
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - D Lambrechts
- Department of Human Genetics, VIB and KU Leuven, Leuven, Belgium
| |
Collapse
|
224
|
A Web Screening on Training Initiatives in Cancer Genomics for Healthcare Professionals. Genes (Basel) 2022; 13:genes13030430. [PMID: 35327984 PMCID: PMC8950486 DOI: 10.3390/genes13030430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
The disruptive advances in genomics contributed to achieve higher levels of precision in the diagnosis and treatment of cancer. This scientific advance entails the need for greater literacy for all healthcare professionals. Our study summarizes the training initiatives conducted worldwide in cancer genomics field for healthcare professionals. We conducted a web search of the training initiatives aimed at improving healthcare professionals’ literacy in cancer genomics undertaken worldwide by using two search engines (Google and Bing) in English language and conducted from 2003 to 2021. A total of 85,649 initiatives were identified. After the screening process, 36 items were included. The majority of training programs were organized in the United States (47%) and in the United Kingdom (28%). Most of the initiatives were conducted in the last five years (83%) by universities (30%) and as web-based modalities (80%). In front of the technological advances in genomics, education in cancer genomics remains fundamental. Our results may contribute to provide an update on the development of educational programs to build a skilled and appropriately trained genomics health workforce in the future.
Collapse
|
225
|
Mai PL, Miller A, Black A, Falk RT, Boggess JF, Tucker K, Stuckey AR, Rodriguez GC, Wong C, Amatruda TT, Wilkinson KJ, Modesitt SC, Yamada SD, Bixel KL, Glaser GE, Rose PG, Greene MH, Sherman ME. Effect of risk-reducing salpingo-oophorectomy on sex steroid hormone serum levels among postmenopausal women: an NRG Oncology/Gynecologic Oncology Group study. Am J Obstet Gynecol 2022; 227:61.e1-61.e18. [PMID: 35216968 DOI: 10.1016/j.ajog.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Risk-reducing salpingo-oophorectomy is an effective ovarian cancer risk reduction strategy. However, bilateral oophorectomy has also been associated with increased long-term nonneoplastic sequelae, effects suggested to be mediated through reductions in systemic sex steroid hormone levels. Currently, it is unclear whether the postmenopausal ovary contributes to the systemic hormonal milieu or whether postmenopausal ovarian volume or other factors, such as body mass index and age, affect systemic hormone levels. OBJECTIVE We examined the impact of oophorectomy on sex steroid hormone levels in postmenopausal women. Furthermore, we explored how well ovarian volume measured by transvaginal ultrasound correlated with direct ovarian measures obtained during surgical pathology evaluation and investigated the association between hormone levels and ovarian volumes. STUDY DESIGN Postmenopausal women who underwent risk-reducing salpingo-oophorectomy (180 cases) or ovarian cancer screening (38 controls) enrolled in an international, prospective study of risk-reducing salpingo-oophorectomy and risk of ovarian cancer algorithm-based screening among women at increased risk of ovarian cancer (Gynecologic Oncology Group-0199) were included in this analysis. Controls were frequency matched to the cases on age at menopause, age at study entry, and time interval between blood draws. Ovarian volume was calculated using measurements obtained from transvaginal ultrasound in both cases and controls and measurements recorded in surgical pathology reports from cases. Serum hormone levels of testosterone, androstenedione, androstenediol, dihydrotestosterone, androsterone, dehydroepiandrosterone, estrone, estradiol, and sex hormone-binding globulin were measured at baseline and follow-up. Spearman correlation coefficients were used to compare ovarian volumes as measured on transvaginal ultrasound and pathology examinations. Correlations between ovarian volumes by transvaginal ultrasound and measured hormone levels were examined using linear regression models. All models were adjusted for age. Paired t tests were performed to evaluate individual differences in hormone levels before and after risk-reducing salpingo-oophorectomy. RESULTS Ovarian volumes measured by transvaginal ultrasound were only moderately correlated with those reported on pathology reports (Spearman rho [ρ]=0.42). The median time interval between risk-reducing salpingo-oophorectomy and follow-up for the cases was 13.3 months (range, 6.0-19.3), and the median time interval between baseline and follow-up for the controls was 12.7 months (range, 8.7-13.4). Sex steroid levels decreased with age but were not correlated with transvaginal ultrasound ovarian volume, body mass index, or time since menopause. Estradiol levels were significantly lower after risk-reducing salpingo-oophorectomy (percentage change, -61.9 post-risk-reducing salpingo-oophorectomy vs +15.2 in controls; P=.02), but no significant differences were seen for the other hormones. CONCLUSION Ovarian volumes measured by transvaginal ultrasound were moderately correlated with volumes directly measured on pathology specimens and were not correlated with sex steroid hormone levels in postmenopausal women. Estradiol was the only hormone that declined significantly after risk-reducing salpingo-oophorectomy. Thus, it remains unclear whether the limited post-risk-reducing salpingo-oophorectomy changes in sex steroid hormones among postmenopausal women impact long-term adverse outcomes.
Collapse
Affiliation(s)
- Phuong L Mai
- Center for Clinical Genetics and Genomics, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh Medical Center Magee-Womens Hospital, Pittsburgh, PA.
| | - Austin Miller
- NRG Oncology, Clinical Trial Development Division, Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Amanda Black
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Roni T Falk
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - John F Boggess
- Department of Obstetrics and Gynecology, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Katherine Tucker
- Hereditary Cancer Centre, Nelune Comprehensive Cancer Centre, Department of Medical Oncology, Prince of Wales Hospital and Community Health Services, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Ashley R Stuckey
- Department of Obstetrics and Gynecology, Women & Infants Hospital, Providence, RI
| | - Gustavo C Rodriguez
- Division of Gynecologic Oncology, NorthShore University Health System, Evanston, IL
| | - Cheung Wong
- Division of Gynecologic Oncology, University of Vermont Medical Center, Burlington, VT
| | - Thomas T Amatruda
- Metro-Minnesota Community Oncology Research Consortium, Fridley Clinic, Fridley, MN
| | - Kelly J Wilkinson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Susan C Modesitt
- Division of Gynecologic Oncology, University of Virginia Health, Charlottesville, VA
| | - S Diane Yamada
- Division of Gynecologic Oncology, The University of Chicago Medicine, Chicago, IL
| | - Kristin L Bixel
- Division of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Peter G Rose
- Division of Gynecologic Oncology, Case Comprehensive Cancer Center, Cleveland Clinic, Cleveland, OH
| | - Mark H Greene
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Mark E Sherman
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL
| |
Collapse
|
226
|
Andoni T, Wiggins J, Robinson R, Charlton R, Sandberg M, Eeles R. Half of germline pathogenic and likely pathogenic variants found on panel tests do not fulfil NHS testing criteria. Sci Rep 2022; 12:2507. [PMID: 35190596 PMCID: PMC8861039 DOI: 10.1038/s41598-022-06376-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/20/2022] [Indexed: 12/22/2022] Open
Abstract
Genetic testing for cancer predisposition has been curtailed by the cost of sequencing, and testing has been restricted by eligibility criteria. As the cost of sequencing decreases, the question of expanding multi-gene cancer panels to a broader population arises. We evaluated how many additional actionable genetic variants are returned by unrestricted panel testing in the private sector compared to those which would be returned by adhering to current NHS eligibility criteria. We reviewed 152 patients referred for multi-gene cancer panels in the private sector between 2014 and 2016. Genetic counselling and disclosure of all results was standard of care provided by the Consultant. Every panel conducted was compared to current eligibility criteria. A germline pathogenic / likely pathogenic variant (P/LP), in a gene relevant to the personal or family history of cancer, was detected in 15 patients (detection rate of 10%). 46.7% of those found to have the P/LP variants (7 of 15), or 4.6% of the entire set (7 of 152), did not fulfil NHS eligibility criteria. 46.7% of P/LP variants in this study would have been missed by national testing guidelines, all of which were actionable. However, patients who do not fulfil eligibility criteria have a higher Variant of Uncertain Significance (VUS) burden. We demonstrated that the current England NHS threshold for genetic testing is missing pathogenic variants which would alter management in 4.6%, nearly 1 in 20 individuals. However, the clinical service burden that would ensue is a detection of VUS of 34%.
Collapse
Affiliation(s)
- Tala Andoni
- The Institute of Cancer Research, London, UK.
| | | | - Rachel Robinson
- Leeds Genetics Laboratory, St James's University Hospital, Leeds, UK
| | - Ruth Charlton
- Leeds Genetics Laboratory, St James's University Hospital, Leeds, UK
| | | | | |
Collapse
|
227
|
Keyvani V, Riahi E, Yousefi M, Esmaeili SA, Shafabakhsh R, Moradi Hasan-Abad A, Mahjoubin-Tehran M, Hamblin MR, Mollazadeh S, Mirzaei H. Gynecologic Cancer, Cancer Stem Cells, and Possible Targeted Therapies. Front Pharmacol 2022; 13:823572. [PMID: 35250573 PMCID: PMC8888850 DOI: 10.3389/fphar.2022.823572] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Gynecologic cancer is one of the main causes of death in women. In this type of cancer, several molecules (oncogenes or tumor suppressor genes) contribute to the tumorigenic process, invasion, metastasis, and resistance to treatment. Based on recent evidence, the detection of molecular changes in these genes could have clinical importance for the early detection and evaluation of tumor grade, as well as the selection of targeted treatment. Researchers have recently focused on cancer stem cells (CSCs) in the treatment of gynecologic cancer because of their ability to induce progression and recurrence of malignancy. This has highlighted the importance of a better understanding of the molecular basis of CSCs. The purpose of this review is to focus on the molecular mechanism of gynecologic cancer and the role of CSCs to discover more specific therapeutic approaches to gynecologic cancer treatment.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Espanta Riahi
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran; Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Meysam Yousefi
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- *Correspondence: Samaneh Mollazadeh, ; Hamed Mirzaei, ,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Samaneh Mollazadeh, ; Hamed Mirzaei, ,
| |
Collapse
|
228
|
Singh N, Hutson R, Milton NGN, Javid FA. Ovarian cancer and KiSS-1 gene expression: A consideration of the use of Kisspeptin plus Kisspeptin aptamers in diagnostics and therapy. Eur J Pharmacol 2022; 917:174752. [PMID: 35026192 DOI: 10.1016/j.ejphar.2022.174752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 12/24/2022]
Abstract
Gynaecological cancers continue to present a significant health burden upon the health of the global female population. This deficit is most prominent with ovarian cancer which possesses the lowest survival rate compared to all other cancers occurring within this anatomical region, with an annual UK-mortality of 7,300. The poor tolerability and selectively of the treatment options that are currently available is likely to have contributed to this high mortality rate thus, demonstrating the need for the development of enhanced therapeutic approaches. Aptamer technology would involve the engineering of specifically sequenced oligonucleotide chains, which bind to macromolecular targets with a high degree of affinity and selectively. Recent in-vitro studies conducted upon the clinical utility of this technique have supported its superiority in targeting individual therapeutic drug targets compared to various other targeting moieties currently within therapeutic use such as, monoclonal antibodies. For this reason, the employment of this technique is likely to be favourable in reducing the incidence of non-specific, chemotherapy-associated adverse effects. Kisspeptin is a naturally expressed polypeptide with an established role in the development of the reproductive system and other proposed roles in influencing the ability of ovarian cancer growths to exhibit the metastasis hallmark. This distinctive feature would indicate the potential for the manipulation of this pathway through the application of aptamer structures in developing a novel prophylactic strategy and improve the long-term outcome for ovarian cancer patients.
Collapse
Affiliation(s)
- Navinder Singh
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
| | - Richard Hutson
- St James's Leeds University Teaching Hospital, Beckett Street, Leeds, LS9 7TF, United Kingdom
| | - Nathaniel G N Milton
- Centre for Biomedical Science Research, School of Health, Leeds Beckett University, City Campus, Leeds, LS1 3HE, United Kingdom
| | - Farideh A Javid
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom.
| |
Collapse
|
229
|
Gataa Allami ZZ, Abdulkadhim Dragh M. Identification of Some Breast Cancer Related Genes by RAPD Technique in Maysan Province, Iraq. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.01.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Breast cancer is a heterogeneous disease regarding its morphology, invasive behavior, metastatic capacity, hormone receptor expression and clinical outcome. Many risk factors for breast cancer, including genetic factors, account for 25-30% of the incidence. About 15-30% of breast cancer is heritable due to known familiar highly penetrates genes and the others are sporadic; It is worthy to state that this study was the first in the world to include amplified genes as a PCR template to determine the relationship between their polymorphism and breast cancer incidence using, RAPD of amplified genes. The study was designed first to evaluate the association of ABCG2 gene polymorphism beside miRNA-152 and ER-a using the RAPD technique with breast cancer incidence in Maysan province women, and second to use those genes as indicators for breast cancer prediction and diagnosis. The study included 100 patients with breast cancer and 30 control healthy women, and then all samples were amplified by conventional PCR by specific F and R primer for (ABCG2, ER-α, miRNA-152) genes and then the best (20 PCR product) from which was chosen as the template for PCR RAPD PCR technique. The results revealed there are significant differences (P < 0.05) in the unique band of ABCG2 at marker OPAA 11, OPU 15, OPAA 17, significant differences (P < 0.05) in the total band of ER- α at marker OPAA11, significant differences in the polymorphic band of ER- α at marker OPU 15, significant differences in the unique band of ER- α at marker OPAA11, OPU 15, and significant differences (P < 0.05) in the bands that had been size (50-60) bp, (140 - 150) bp, (170-180 ) bp of miRNA-152 at marker OPAA 17, OPD 18 between breast cancer patients and control. Our study proved the relationship between genetic polymorphism of breast cancer-related genes (ABCG2, ER-α, miRNA-152) and a higher incidence of cancer; The current study recommends employing these results for future prediction and diagnosis of breast cancers.
Collapse
|
230
|
Feasibility of targeted cascade genetic testing in the family members of BRCA1/2 gene pathogenic variant/likely pathogenic variant carriers. Sci Rep 2022; 12:1842. [PMID: 35115620 PMCID: PMC8813990 DOI: 10.1038/s41598-022-05931-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
The pathogenic variant (PV) or likely pathogenic variant (LPV) BRCA1/2 gene is strongly associated with hereditary breast or ovarian cancer. Therefore, it is important to screen blood relatives to establish preventive modalities and surveillance. This study evaluated the feasibility of targeted cascade genetic testing for family members of BRCA1/2 gene PV or LPV carriers. We screened 18 families for BRCA1/2 gene status via the conventional cascade genetic test (n = 9) and targeted cascade genetic test (n = 9), which targeted the exon region wherein the index patient showed PV or LPV. The pedigree and clinicopathologic characteristics were reviewed and analyzed. All index patients were diagnosed with breast cancer, while the third family members were all healthy. In the conventional cascade test group, 3 index patients and 3 family members had the BRCA1/2 gene PV or LPV. In the targeted cascade test group, 5 family members had same type of BRCA1/2 gene PV or LPV as their index patients. Two families had an identical string of BRCA1/2 gene PV or LPV. Although the targeted cascade genetic test cannot completely characterize the BRCA1/2 gene, it is sufficient for determining its PV or LPV status. This limited genetic test can be used for family members of PV or LPV carriers.
Collapse
|
231
|
“It was a no-brainer”: A Qualitative Study of Factors Driving Previvors’ Decision-Making when Considering Risk-Reducing Salpingectomy with Delayed Oophorectomy. Gynecol Oncol Rep 2022; 40:100948. [PMID: 35265744 PMCID: PMC8898920 DOI: 10.1016/j.gore.2022.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022] Open
Abstract
Self-advocacy and building rapport with providers facilitated decision-making for RRS-DO-focused previvors. Avoiding menopause through RRS was a key motivator for RRS-DO-focused previvors. RRS-DO-focused previvors viewed RRS as a stepwise approach to risk reduction. Understanding previvor priorities and experiences can help optimize shared decision-making.
Objective Previvors are becoming more aware of the option of risk-reducing salpingectomy with delayed oophorectomy (RRS-DO) to mitigate their risk of ovarian cancer. In this qualitative study, we explored the clinical and non-clinical factors that impacted previvors’ decision-making to pursue RRS-DO as a risk reduction strategy. Methods Semi-structured telephone interviews were conducted with previvors and transcribed verbatim. Using ATLAS.ti® software, two primary investigators interpreted data through thematic analysis. After coding four interviews, the investigators discussed discrepancies between codes with a moderator and resolved and refined code. The investigators applied the universal codebook to all interviews and revised the codebook using an iterative approach. Examining codes within and across interviews allowed for major themes and patterns to emerge. Results Interviews were conducted with seventeen previvors (ages 31–46). 6 (25%) previvors had a BRCA1 mutation, 7 (41%), a BRCA2 mutation, 3 (13%), a Lynch-related mutation, and 1 (6%), other (MUTYH mutation). At the time of interview, 12 previvors (71%) were planning (6) or had undergone (6) RRS-DO, 4 (23%) were planning (1) or had undergone (3) risk reducing salpingo-oophorectomy (RRSO), and 1 (6%) was undecided. Three major themes emerged: motivating factors for selecting surgical risk reduction option, barriers complicating surgical decision-making, and facilitating factors for surgical decision-making. RRS-DO-focused previvors prioritized avoiding menopause, and they also emphasized that self-advocacy and building rapport with providers facilitated their decision-making. Conclusion By understanding previvors’ priorities and experiences, physicians can better partner with previvors as they navigate their ovarian cancer risk reduction journey. This will ultimately optimize shared decision-making.
Collapse
|
232
|
Cui X. The Prevalence and Death Risk of Male Breast Cancer: A Study Based on the Surveillance, Epidemiology, and End Results Database. Am J Mens Health 2022; 16:15579883221074818. [PMID: 35094596 PMCID: PMC8808035 DOI: 10.1177/15579883221074818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study was to investigate the prevalence and death risk of male breast cancer (MBC) patients. The prevalence trend was based on the Surveillance, Epidemiology, and End Results (SEER) database from 1975 to 2017. A competitive risk analysis was performed to analyze the death risk of MBC patients. Hazard ratio (HR) and 95% confidence intervals (CIs) were calculated. The results indicated that the prevalence of MBC after the standardization of the total population increased in 1975–2017 and its annual percentage change (APC) was 0.536% (95% CI = [0.362%, 0.713%]). The prevalence of MBC was rapidly increased in patients aged ≥70 years (APC = 0.780%; 95% CI = [0.491%, 1.076%]) and Grade Ⅱ tumors (APC = 1.462%; 95% CI = [1.260%, 1.686%]). The 1-, 3-, and 5-year cumulative mortality of MBC patients who died of MBC was 2.23% (95% CI = [1.61%, 2.85%]), 7.56% (95% CI = [6.33%, 8.78%]), and 13.10% (95% CI = [11.10%, 11.32%]), respectively. Competitive risk analysis demonstrated that Blacks (HR = 1.76; 95% CI = [1.12, 2.77]), Grade 3 (HR = 2.56; 95% CI = [1.03, 6.35]), AJCC (American Joint Committee on Cancer) Stage Ⅲ (HR = 3.04; 95% CI = [1.76, 5.26]), and AJCC Stage Ⅳ (HR = 7.27; 95% CI = [1.36, 38.83]) were associated with an increased MBC-specific death risk, whereas married status (HR = 0.40; 95% CI = [0.25, 0.64]), surgery (HR = 0.25; 95% CI = [0.12, 0.50]), Luminal A subtype (HR = 0.20; 95% CI = [0.07, 0.53]), and Luminal B subtype (HR = 0.29; 95% CI = [0.10, 0.87]) were related to a reduced MBC-specific death risk. In addition, similar results can be observed in patients with surgery recommended and done (p < .05). This study may provide evidence for the prevalence trend, cumulative mortality, and death risk of MBC patients.
Collapse
Affiliation(s)
- Xiaofei Cui
- Department of Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China.,Molecular Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| |
Collapse
|
233
|
Wu N, Wei L, Li L, Li F, Yu J, Liu J. Perspectives on the role of breast cancer susceptibility gene in breast cancer. Int J Clin Oncol 2022; 27:495-511. [PMID: 35064849 DOI: 10.1007/s10147-021-02098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/26/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Breast cancer susceptibility gene 1/2 can repair damaged DNA through homologous recombination. Besides, the local immune microenvironment of breast cancer is closely linked to the prognosis of patients. But the relationship of breast cancer susceptibility gene 1/2 expression and local immunosuppressive microenvironment in breast cancer is not clear. The aim of this study was to discuss the correlation between them. METHODS The fresh primary breast tumors and paired normal tissues of 156 cases of breast cancer patients as well as peripheral blood of 156 cases among them in Tianjin Medical University Cancer Institute and Hospital from January 2014 to October 2018 were collected. The association between breast cancer susceptibility gene 1/2 germline mutation and immune status of microenvironment in situ was analyzed. RESULTS The results indicated that the germline mutation of breast cancer susceptibility gene 1/2 was inconsistent with the breast cancer susceptibility gene 1/2 protein expression, and the proportion of immune cells in patients with negative expression of breast cancer susceptibility gene 1/2 protein was higher than patients with positive expression of breast cancer susceptibility gene 1/2 protein (p < 0.05). And the expression of programmed cell death protein 1, cytotoxic T-Lymphocyte Antigen 4, programmed death ligand-1 of CD3+ T cells in patients with negative expression of breast cancer susceptibility gene 1/2 protein was higher than patients with positive expression of breast cancer susceptibility gene 1/2 protein (p < 0.05). The breast cancer susceptibility gene 1 protein expression was significantly correlated with family history of breast cancer patients (p = 0.006), local lymph node metastases (p = 0.001), and TNM staging (p ≤ 0.001). The breast cancer susceptibility gene 2 protein expression was significantly related to local lymph node metastases (p ≤ 0.001), III stage rate(p = 0.003) and molecular subtyping (p ≤ 0.001). Besides, the 5 years disease free survival was worse for G1 group and pathological III stage patients than other groups and other TNM stage patients. CONCLUSION In short, the immune therapy may be a potential therapy method for breast cancer patients with negative expression of breast cancer susceptibility gene 1/2 protein.
Collapse
Affiliation(s)
- Nan Wu
- Cancer Prevention Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tiyuanbei, Huanhuxi Rode, Hexi District, Tianjin, 300060, China
| | - Lijuan Wei
- Cancer Prevention Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tiyuanbei, Huanhuxi Rode, Hexi District, Tianjin, 300060, China
| | - Lijuan Li
- Cancer Prevention Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tiyuanbei, Huanhuxi Rode, Hexi District, Tianjin, 300060, China
| | - Fangxuan Li
- Cancer Prevention Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tiyuanbei, Huanhuxi Rode, Hexi District, Tianjin, 300060, China
| | - Jinpu Yu
- The Molecular Diagnostics, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tiyuanbei, Huanhuxi Rode, Hexi District, Tianjin, 300060, China.
| | - Juntian Liu
- Cancer Prevention Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tiyuanbei, Huanhuxi Rode, Hexi District, Tianjin, 300060, China.
- The Second Department of Breast Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
234
|
Kasuga A, Okamoto T, Udagawa S, Mori C, Mie T, Furukawa T, Yamada Y, Takeda T, Matsuyama M, Sasaki T, Ozaka M, Ueki A, Sasahira N. Molecular Features and Clinical Management of Hereditary Pancreatic Cancer Syndromes and Familial Pancreatic Cancer. Int J Mol Sci 2022; 23:1205. [PMID: 35163129 PMCID: PMC8835700 DOI: 10.3390/ijms23031205] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Hereditary pancreatic cancers are caused by several inherited genes. Familial pancreatic cancer is defined as pancreatic cancer arising in a patient with at least two first-degree relatives with pancreatic cancer in the absence of an identified genetic cause. Hereditary pancreatic cancer syndromes and familial pancreatic cancers account for about 10% of pancreatic cancer cases. Germline mutations in BRCA1, BRCA2, ATM, PALB2, CDKN2A, STK11, and TP53 and mismatch repair genes (MLH1, MSH2, MSH6, PMS2, and EPCAM) are among the well-known inherited susceptibility genes. Currently available targeted medications include poly (ADP-ribose) polymerase inhibitors (PARP) for cases with mutant BRCA and immune checkpoint inhibitors for cases with mismatch repair deficiency. Loss of heterozygosity of hereditary pancreatic cancer susceptibility genes such as BRCA1/2 plays a key role in carcinogenesis and sensitivity to PARP inhibitors. Signature 3 identified by whole genome sequencing is also associated with homologous recombination deficiency and sensitivity to targeted therapies. In this review, we summarize molecular features and treatments of hereditary pancreatic cancer syndromes and surveillance procedures for unaffected high-risk cases. We also review transgenic murine models to gain a better understanding of carcinogenesis in hereditary pancreatic cancer.
Collapse
Affiliation(s)
- Akiyoshi Kasuga
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Takeshi Okamoto
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Shohei Udagawa
- Department of Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan;
| | - Chinatsu Mori
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Takafumi Mie
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Takaaki Furukawa
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Yuto Yamada
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Tsuyoshi Takeda
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Masato Matsuyama
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Takashi Sasaki
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Masato Ozaka
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Arisa Ueki
- Department of Clinical Genetics, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan;
| | - Naoki Sasahira
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| |
Collapse
|
235
|
Huguet M, Joutard X, Ray-Coquard I, Perrier L. What underlies the observed hospital volume-outcome relationship? BMC Health Serv Res 2022; 22:70. [PMID: 35031047 PMCID: PMC8760746 DOI: 10.1186/s12913-021-07449-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background Studies of the hospital volume-outcome relationship have highlighted that a greater volume activity improves patient outcomes. While this finding has been known for years, most studies to date have failed to delve into what underlies this relationship. Objective This study aimed to shed light on the basis of the hospital volume effect on patient outcomes by comparing treatment modalities for epithelial ovarian carcinoma patients. Data An exhaustive dataset of 355 patients in first-line treatment for Epithelial Ovarian Carcinoma (EOC) in 2012 in three regions of France was used. These regions account for 15% of the metropolitan French population. Methods In the presence of endogeneity induced by a reverse causality between hospital volume and patient outcomes, we used an instrumental variable approach. Hospital volume of activity was instrumented by the distance from patients’ homes to their hospital, the population density, and the median net income of patient municipalities. Results Based on our parameter estimates, we found that the rate of complete tumor resection would increase by 15.5 percentage points with centralized care, and by 8.3 percentage points if treatment decisions were coordinated by high-volume centers compared to decentralized care. Conclusion As volume alone is an imperfect correlate of quality, policy-makers need to know what volume is a proxy for in order to devise volume-based policies. Supplementary Information The online version contains supplementary material available at 10.1186/s12913-021-07449-2.
Collapse
Affiliation(s)
- Marius Huguet
- MINES Saint-Ètienne, Centre for Biomedical and Healthcare Engineering, 158 cours Fauriel, 42023, Saint-Ètienne, cedex 2, France.,Human and Social Sciences Department, Léon Bérard Centre, F-69008, Lyon, France
| | - Xavier Joutard
- Aix-Marseille Univ, CNRS, LEST, Aix-en-Provence, France.,OFCE, Sciences Po, Paris, France
| | | | - Lionel Perrier
- Human and Social Sciences Department, Léon Bérard Centre, F-69008, Lyon, France.,Univ Lyon, Leon Berard Cancer Centre, GATE UMR 5824, F-69008, Lyon, France
| |
Collapse
|
236
|
Kim DM, Feilotter HE, Davey SK. BRCA1 Variant Assessment Using a Simple Analytic Assay. J Appl Lab Med 2022; 7:674-688. [PMID: 35021209 DOI: 10.1093/jalm/jfab163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/04/2021] [Indexed: 11/14/2022]
Abstract
BACKGROUND We previously developed a biological assay to accurately predict BRCA1 (BRCA1 DNA repair associated) mutation status, based on gene expression profiles of Epstein-Barr virus-transformed lymphoblastoid cell lines. The original work was done using whole genome expression microarrays, and nearest shrunken centroids analysis. While these approaches are appropriate for model building, they are difficult to implement clinically, where more targeted testing and analysis are required for time and cost savings. METHODS Here, we describe adaptation of the original predictor to use the NanoString nCounter platform for testing, with analysis based on the k-top scoring pairs (k-TSP) method. RESULTS Assessing gene expression using the nCounter platform on a set of lymphoblastoid cell lines yielded 93.8% agreement with the microarray-derived data, and 87.5% overall correct classification of BRCA1 carriers and controls. Using the original gene expression microarray data used to develop our predictor with nearest shrunken centroids, we rebuilt a classifier based on the k-TSP method. This classifier relies on the relative expression of 10 pairs of genes, compared to the original 43 identified by nearest shrunken centroids (NSC), and was 96.2% concordant with the original training set prediction, with a 94.3% overall correct classification of BRCA1 carriers and controls. CONCLUSIONS The k-TSP classifier was shown to accurately predict BRCA1 status using data generated on the nCounter platform and is feasible for initiating a clinical validation.
Collapse
Affiliation(s)
- Daniel M Kim
- Department of Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Queen's University, Kingston, ON, Canada.,Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Harriet E Feilotter
- Department of Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Queen's University, Kingston, ON, Canada.,Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Scott K Davey
- Department of Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Queen's University, Kingston, ON, Canada.,Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, ON, Canada.,Departments of Oncology and Biomedical and Molecular Sciences, Queen's University Cancer Research Institute, Queen's University, Kingston, ON, Canada
| |
Collapse
|
237
|
Saghatchian M, Abehsera M, Yamgnane A, Geyl C, Gauthier E, Hélin V, Bazire M, Villoing-Gaudé L, Reyes C, Gentien D, Golmard L, Stoppa-Lyonnet D. Feasibility of personalized screening and prevention recommendations in the general population through breast cancer risk assessment: results from a dedicated risk clinic. Breast Cancer Res Treat 2022; 192:375-383. [PMID: 34994879 PMCID: PMC8739506 DOI: 10.1007/s10549-021-06445-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/08/2021] [Indexed: 11/02/2022]
Abstract
PURPOSE A personalized approach to prevention and early detection based on known risk factors should contribute to early diagnosis and treatment of breast cancer. We initiated a risk assessment clinic for all women wishing to undergo an individual breast cancer risk assessment. METHODS Women underwent a complete breast cancer assessment including a questionnaire, mammogram with evaluation of breast density, collection of saliva sample, consultation with a radiologist, and a breast cancer specialist. Women aged 40 or older, with 0 or 1 first-degree relative with breast cancer diagnosed after the age of 40 were eligible for risk assessment using MammoRisk, a machine learning-based tool that provides an individual 5-year estimated risk of developing breast cancer based on the patient's clinical data and breast density, with or without polygenic risk scores (PRSs). DNA was extracted from saliva samples for genotyping of 76 single-nucleotide polymorphisms. The individual risk was communicated to the patient, with individualized screening and prevention recommendations. RESULTS A total of 290 women underwent breast cancer assessment, among which 196 women (68%) were eligible for risk assessment using MammoRisk (median age 52, range 40-72). When PRS was added to MammoRisk, 40% (n = 78) of patients were assigned a different risk category, with 28% (n = 55) of patients changing from intermediate to moderate or high risk. CONCLUSION Individual risk assessment is feasible in the general population. Screening recommendations could be given based on individual risk. The use of PRS changed the risk score and screening recommendations in 40% of women.
Collapse
Affiliation(s)
- Mahasti Saghatchian
- American Hospital of Paris, Neuilly-sur-Seine, France. .,Paris-Descartes University, Paris, France.
| | - Marc Abehsera
- American Hospital of Paris, Neuilly-sur-Seine, France
| | | | - Caroline Geyl
- American Hospital of Paris, Neuilly-sur-Seine, France
| | | | | | | | | | | | | | - Lisa Golmard
- INSERM U830 D.R.U.M. Team, Institut Curie Hospital, Paris-University, Paris, France
| | - Dominique Stoppa-Lyonnet
- Institut Curie, Paris, France.,INSERM U830 D.R.U.M. Team, Institut Curie Hospital, Paris-University, Paris, France
| |
Collapse
|
238
|
Brabaharan S, Veettil SK, Kaiser JE, Raja Rao VR, Wattanayingcharoenchai R, Maharajan M, Insin P, Talungchit P, Anothaisintawee T, Thakkinstian A, Chaiyakunapruk N. Association of Hormonal Contraceptive Use With Adverse Health Outcomes: An Umbrella Review of Meta-analyses of Randomized Clinical Trials and Cohort Studies. JAMA Netw Open 2022; 5:e2143730. [PMID: 35029663 PMCID: PMC8760614 DOI: 10.1001/jamanetworkopen.2021.43730] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/22/2021] [Indexed: 01/08/2023] Open
Abstract
Importance Meta-analyses have reported conflicting data on the safety of hormonal contraception, but the quality of evidence for the associations between hormonal contraceptive use and adverse health outcomes has not been quantified in aggregate. Objective To grade the evidence from meta-analyses of randomized clinical trials (RCTs) and cohort studies that assessed the associations between hormonal contraceptive use and adverse health outcomes among women. Data Sources MEDLINE, Embase, and the Cochrane Database of Systematic Reviews were searched from database inception to August 2020. Search terms included hormonal contraception, contraceptive agents, progesterone, desogestrel, norethindrone, megestrol, algestone, norprogesterones, and levonorgestrel combined with terms such as systematic review or meta-analysis. Evidence Review The methodological quality of each meta-analysis was graded using the Assessment of Multiple Systematic Reviews, version 2, which rated quality as critically low, low, moderate, or high. The Grading of Recommendation, Assessment, Development and Evaluations approach was used to assess the certainty of evidence in meta-analyses of RCTs, with evidence graded as very low, low, moderate, or high. Evidence of associations from meta-analyses of cohort studies was ranked according to established criteria as nonsignificant, weak, suggestive, highly suggestive, or convincing. Results A total of 2996 records were screened; of those, 310 full-text articles were assessed for eligibility, and 58 articles (13 meta-analyses of RCTs and 45 meta-analyses of cohort studies) were selected for evidence synthesis. Sixty associations were described in meta-analyses of RCTs, and 96 associations were described in meta-analyses of cohort studies. Among meta-analyses of RCTs, 14 of the 60 associations were nominally statistically significant (P ≤ .05); no associations between hormonal contraceptive use and adverse outcomes were supported by high-quality evidence. The association between the use of a levonorgestrel-releasing intrauterine system and reductions in endometrial polyps associated with tamoxifen use (odds ratio [OR], 0.22; 95% CI, 0.13-0.38) was graded as having high-quality evidence, and this evidence ranking was retained in the subgroup analysis. Among meta-analyses of cohort studies, 40 of the 96 associations were nominally statistically significant; however, no associations between hormonal contraceptive use and adverse outcomes were supported by convincing evidence in the primary and subgroup analyses. The risk of venous thromboembolism among those using vs not using oral contraception (OR, 2.42; 95% CI, 1.76-3.32) was initially supported by highly suggestive evidence, but this evidence was downgraded to weak in the sensitivity analysis. Conclusions And Relevance The results of this umbrella review supported preexisting understandings of the risks and benefits associated with hormonal contraceptive use. Overall, the associations between hormonal contraceptive use and cardiovascular risk, cancer risk, and other major adverse health outcomes were not supported by high-quality evidence.
Collapse
Affiliation(s)
- Sharmila Brabaharan
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Sajesh K. Veettil
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City
| | - Jennifer E. Kaiser
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City
| | | | - Rujira Wattanayingcharoenchai
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Marikannan Maharajan
- Department of Pharmacy Practice, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Putsarat Insin
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Rajavithi Hospital, Bangkok, Thailand
| | - Pattarawalai Talungchit
- Department of Obstetrics and Gynecology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thunyarat Anothaisintawee
- Department of Family Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ammarin Thakkinstian
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nathorn Chaiyakunapruk
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City
- School of Pharmacy, University of Wisconsin–Madison, Madison
| |
Collapse
|
239
|
Prophylactic mastectomy – Correlation between skin flap thickness and residual glandular tissue evaluated postoperatively by imaging. J Plast Reconstr Aesthet Surg 2022; 75:1813-1819. [DOI: 10.1016/j.bjps.2022.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 12/27/2021] [Accepted: 01/09/2022] [Indexed: 10/19/2022]
|
240
|
Werner H. BRCA1: An Endocrine and Metabolic Regulator. Front Endocrinol (Lausanne) 2022; 13:844575. [PMID: 35432218 PMCID: PMC9009035 DOI: 10.3389/fendo.2022.844575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
The breast and ovarian cancer susceptibility gene (BRCA1) is a tumor suppressor whose mutation has been associated with the development of breast, ovarian and, probably, other malignancies at young ages. The BRCA1 gene product participates in multiple biological pathways including the DNA damage response, transcriptional control, cell growth and apoptosis. Inactivating germline mutations of the BRCA1 gene can be detected in a substantial portion of families with inherited breast and/or ovarian cancer. While the genomic and cancer-related actions of BRCA1 have been extensively investigated, not much information exists regarding the cellular and circulating factors involved in regulation of BRCA1 expression and action. The present review article dissects the emerging role of BRCA1 as an important regulator of various endocrine and metabolic axes. Experimental and clinical evidence links BRCA1 with a number of peptide and steroid hormones. Furthermore, comprehensive analyses identified complex interactions between the insulin/insulin-like growth factor-1 (IGF1) signaling axis and BRCA1. The correlation between metabolic disorders, including diabetes and the metabolic syndrome, and BRCA1 mutations, are discussed in this article.
Collapse
|
241
|
Carleton N, Nasrazadani A, Gade K, Beriwal S, Barry PN, Brufsky AM, Bhargava R, Berg WA, Zuley ML, van Londen GJ, Marroquin OC, Thull DL, Mai PL, Diego EJ, Lotze MT, Oesterreich S, McAuliffe PF, Lee AV. Personalising therapy for early-stage oestrogen receptor-positive breast cancer in older women. THE LANCET. HEALTHY LONGEVITY 2022; 3:e54-e66. [PMID: 35047868 PMCID: PMC8765742 DOI: 10.1016/s2666-7568(21)00280-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Age is one of the most important risk factors for the development of breast cancer. Nearly a third of all breast cancer cases occur in older women (aged ≥70 years), with most cases being oestrogen receptor-positive (ER+). Such tumours are often indolent and unlikely to be the ultimate cause of death for older women, particularly when considering other comorbidities. This Review focuses on unique clinical considerations for screening, detection, and treatment regimens for older women who develop ER+ breast cancers-specifically, we focus on recent trends for de-implementation of screening, staging, surgery, and adjuvant therapies along the continuum of care. Additionally, we also review emerging basic and translational research that will further uncover the unique underlying biology of these tumours, which develop in the context of systemic age-related inflammation and changing hormone profiles. With prevailing trends of clinical de-implementation, new insights into mechanistic biology might provide an opportunity for precision medicine approaches to treat patients with well tolerated, low-toxicity agents to extend patients' lives with a higher quality of life, prevent tumour recurrences, and reduce cancer-related burdens.
Collapse
Affiliation(s)
- Neil Carleton
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Azadeh Nasrazadani
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Kristine Gade
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Sushil Beriwal
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Parul N Barry
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Adam M Brufsky
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Rohit Bhargava
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Wendie A Berg
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Margarita L Zuley
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - G J van Londen
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Oscar C Marroquin
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Darcy L Thull
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Phuong L Mai
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Emilia J Diego
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Michael T Lotze
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Steffi Oesterreich
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Priscilla F McAuliffe
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Adrian V Lee
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| |
Collapse
|
242
|
Li H, Engel C, de la Hoya M, Peterlongo P, Yannoukakos D, Livraghi L, Radice P, Thomassen M, Hansen TVO, Gerdes AM, Nielsen HR, Caputo SM, Zambelli A, Borg A, Solano A, Thomas A, Parsons MT, Antoniou AC, Leslie G, Yang X, Chenevix-Trench G, Caldes T, Kwong A, Pedersen IS, Lautrup CK, John EM, Terry MB, Hopper JL, Southey MC, Andrulis IL, Tischkowitz M, Janavicius R, Boonen SE, Kroeldrup L, Varesco L, Hamann U, Vega A, Palmero EI, Garber J, Montagna M, Van Asperen CJ, Foretova L, Greene MH, Selkirk T, Moller P, Toland AE, Domchek SM, James PA, Thorne H, Eccles DM, Nielsen SM, Manoukian S, Pasini B, Caligo MA, Lazaro C, Kirk J, Wappenschmidt B, Spurdle AB, Couch FJ, Schmutzler R, Goldgar DE. Risks of breast and ovarian cancer for women harboring pathogenic missense variants in BRCA1 and BRCA2 compared with those harboring protein truncating variants. Genet Med 2022; 24:119-129. [PMID: 34906479 PMCID: PMC10170303 DOI: 10.1016/j.gim.2021.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/22/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Germline genetic testing for BRCA1 and BRCA2 variants has been a part of clinical practice for >2 decades. However, no studies have compared the cancer risks associated with missense pathogenic variants (PVs) with those associated with protein truncating (PTC) variants. METHODS We collected 582 informative pedigrees segregating 1 of 28 missense PVs in BRCA1 and 153 pedigrees segregating 1 of 12 missense PVs in BRCA2. We analyzed 324 pedigrees with PTC variants in BRCA1 and 214 pedigrees with PTC variants in BRCA2. Cancer risks were estimated using modified segregation analysis. RESULTS Estimated breast cancer risks were markedly lower for women aged >50 years carrying BRCA1 missense PVs than for the women carrying BRCA1 PTC variants (hazard ratio [HR] = 3.9 [2.4-6.2] for PVs vs 12.8 [5.7-28.7] for PTC variants; P = .01), particularly for missense PVs in the BRCA1 C-terminal domain (HR = 2.8 [1.4-5.6]; P = .005). In case of BRCA2, for women aged >50 years, the HR was 3.9 (2.0-7.2) for those heterozygous for missense PVs compared with 7.0 (3.3-14.7) for those harboring PTC variants. BRCA1 p.[Cys64Arg] and BRCA2 p.[Trp2626Cys] were associated with particularly low risks of breast cancer compared with other PVs. CONCLUSION These results have important implications for the counseling of at-risk women who harbor missense PVs in the BRCA1/2 genes.
Collapse
Affiliation(s)
- Hongyan Li
- Cancer Control and Population Science, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM - the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, National Centre for Scientific Research "Demokritos", INRASTES Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, Athens, Greece
| | - Luca Livraghi
- Medical Oncology Unit, AZIENDA SOCIO SANITARIA TERRITORIALE PAPA GIOVANNI XXIII, Bergamo, Italy; University of Siena, Siena, Italy
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Thomas V O Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Henriette R Nielsen
- Department of Clinical Genetics Sygehus Lillebaelt, Vejle Hospital, Vejle, Denmark
| | - Sandrine M Caputo
- Service de Génétique, Institut Curie, Paris, France; Paris Sciences and Lettres Research University, Paris, France
| | - Alberto Zambelli
- Medical Oncology Unit, AZIENDA SOCIO SANITARIA TERRITORIALE PAPA GIOVANNI XXIII, Bergamo, Italy
| | - Ake Borg
- Divisions of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Angela Solano
- INBIOMED, Faculty of Medicine, University of Buenos Aires, CONICET and Genotyping Laboratory, Department of Clinical Chemistry, CEMIC, Buenos Aires, Argentina
| | - Abigail Thomas
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Michael T Parsons
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Xin Yang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Trinidad Caldes
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain
| | - Ava Kwong
- Cancer Genetics Centre, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong; Department of Surgery, LKS Faculty of Medicine,University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Inge Søkilde Pedersen
- Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark; Clinical Cancer Research Center and Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, The Faculty of Medicine, Aalborg University of Aalborg, Aalborg, Denmark
| | - Charlotte K Lautrup
- Clinical Cancer Research Center and Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, The Faculty of Medicine, Aalborg University of Aalborg, Aalborg, Denmark
| | - Esther M John
- Department of Epidemiology & Population Health and Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia; Department of Clinical Pathology, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia; Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marc Tischkowitz
- Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, University of Cambridge, Cambridge, United Kingdom
| | - Ramunas Janavicius
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania; State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Susanne E Boonen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Lone Kroeldrup
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Liliana Varesco
- Unit of Hereditary Cancer, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana Vega
- Fundación Pública galega Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Edenir I Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil; National Cancer Institute, Rio de Janeiro, Brazil
| | - Judy Garber
- Center for Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, IOV - Istituto Oncologico Veneto - IRCCS, Padova, Italy
| | - Christi J Van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Mark H Greene
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Tina Selkirk
- NorthShore University HealthSystem, University of Chicago, Evanston, IL
| | - Pal Moller
- Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Center for Hereditary Tumors, HELIOS-Klinikum Wuppertal, University of Witten-Herdecke, Wuppertal, Germany
| | - Amanda E Toland
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH
| | - Susan M Domchek
- Basser Center for BRCA, Abramson Cancer Center, Penn Medicine, University of Pennsylvania, Philadelphia, PA
| | - Paul A James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Heather Thorne
- The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Diana M Eccles
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sarah M Nielsen
- Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Barbara Pasini
- Medical Genetics Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Maria A Caligo
- SOD Genetica Molecolare, University Hospital, Pisa, Italy
| | - Conxi Lazaro
- ONCOBELL-IDIBELL-IDIBGI-IGTP, CIBERONC, Hereditary Cancer Program, Catalan Institute of Oncology, Barcelona, Spain
| | - Judy Kirk
- Familial Cancer Service, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney Medical School, University of Sydney, Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Barbara Wappenschmidt
- Center for Hereditary Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Integrated Oncology (CIO), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Rita Schmutzler
- Center for Hereditary Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Integrated Oncology (CIO), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - David E Goldgar
- Cancer Control and Population Science, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT.
| |
Collapse
|
243
|
Arun BK, Peterson SK, Sweeney LE, Bluebond RD, Tidwell RSS, Makhnoon S, Kushwaha AC. Increasing referral of at-risk women for genetic counseling and BRCA testing using a screening tool in a community breast imaging center. Cancer 2022; 128:94-102. [PMID: 34424535 PMCID: PMC8678171 DOI: 10.1002/cncr.33866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Genetic evaluation and testing for hereditary breast and ovarian cancer (HBOC) remain suboptimal. The authors evaluated the feasibility of using a screening tool at a breast imaging center to increase HBOC assessment referrals. METHODS A brief questionnaire based on the National Comprehensive Cancer Network HBOC genetic counseling referral guidelines was developed and added to the standard intake forms of patients undergoing mammography at a community breast imaging center from 2012 through 2015. Patients who met the criteria in the guidelines were referred for genetic counseling. RESULTS A total of 34,851 patients were screened during the study period, and 1246 (4%) patients were found to be eligible for referral; 245 of these patients made a genetic counseling appointment, and 142 patients received genetic counseling. Forty patients (28%) had a personal history of breast cancer but were not previously tested. Following counseling, 105 patients were tested for BRCA1/2. Eight patients (8%) tested positive for a pathogenic mutation and nine (9%) had a variant of unknown significance. Although they tested negative, many patients met the criteria to add breast magnetic resonance imaging to their screening due to greater than 20% lifetime breast cancer risk based on their family cancer history. This study led to improved clinical risk management in 67% of the patients who underwent genetic counseling. CONCLUSIONS This study shows that large-scale screening of patients for HBOC syndromes at time of breast imaging is practical and highly feasible. The screening tool identified women with actionable BRCA1/2 mutations and mutation-negative but high-risk women, leading to significant changes in their risk management; these women would otherwise have been missed. LAY SUMMARY Hereditary breast and ovarian cancer (HBOC) caused by pathogenic mutations in breast cancer genes (BRCA1/BRCA2) increase an individual's lifetime risk of getting HBOC. Identifying these high-risk individuals and using proven preventive clinical risk management strategies can significantly reduce their lifetime risk of HBOC. Using an innovative family cancer history questionnaire, 34,000 women were screened at a community breast imaging center, and genetic counseling and testing were provided to eligible women from the screening. Several women at high risk for HBOC were identified and this led to positive clinical risk management changes. These women would have been missed if not for intervention.
Collapse
Affiliation(s)
- Banu K. Arun
- Departments of Breast Medical Oncology and Clinical Cancer Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Susan K. Peterson
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lilian E. Sweeney
- Houston Breast Screening Network, Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rachel D. Bluebond
- Department of Clinical Cancer Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rebecca SS Tidwell
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sukh Makhnoon
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne C. Kushwaha
- Houston Breast Screening Network, Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
244
|
Sekine M, Enomoto T, Arai M, Den H, Nomura H, Ikeuchi T, Nakamura S. Differences in age at diagnosis of ovarian cancer for each BRCA mutation type in Japan: optimal timing to carry out risk-reducing salpingo-oophorectomy. J Gynecol Oncol 2022; 33:e46. [PMID: 35557031 PMCID: PMC9250856 DOI: 10.3802/jgo.2022.33.e46] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/10/2021] [Accepted: 03/05/2022] [Indexed: 12/04/2022] Open
Abstract
Objective BRCA1 and BRCA2 mutation carriers are recommended to undergo risk-reducing salpingo-oophorectomy (RRSO) by age 40 and 45, respectively. However, the carriers have a different way of thinking about their life plan. We aimed to investigate the distribution of age at diagnosis of ovarian cancer (OC) patients to examine the optimal timing of RRSO in the carriers. Methods We examined a correlation between age at diagnosis of OC and common mutation types in 3,517 probands that received BRCA genetic testing. Among them, germline BRCA1 mutation (gBRCA1m), germline BRCA2 mutation (gBRCA2m) and germline BRCA wild-type (gBRCAwt) were found in 185, 42 and 241 OC patients, respectively. Results The average age at diagnosis of OC in gBRCA1m and gBRCA2m was 51.3 and 58.3 years, respectively, and the difference from gBRCAwt (53.8 years) was significant. The gBRCA2m carriers did not develop OC under the age of 40. The average age was 50.1 years for L63X and 52.8 years for Q934X in BRCA1, and 55.1 years for R2318X and 61.1 years for STOP1861 in BRCA2. The age at diagnosis in L63X or R2318X carriers was relatively younger than other BRCA1 or BRCA2 carriers, however their differences were not significant. With L63X and R2318X carriers, 89.4% (42/47) and 100% (7/7) of women were able to prevent the development of OC, respectively, when RRSO was performed at age 40. Conclusion There appears to be no difference in the age at diagnosis of OC depending on the type of BRCA common mutation. Further analysis would be needed. This is the first report to present the optimal timing of risk-reducing salpingo-oophorectomy for each BRCA mutation type in Japan. The average age at diagnosis of ovarian cancer (OC) in germline BRCA2 mutation (gBRCA2m) is higher than that in germline BRCA wild-type. The gBRCA2m carriers did not develop OC under the age of 40. The average age at diagnosis in L63X or R2318X carriers was relatively younger than other BRCA mutation carriers, though the differences were not significant.
Collapse
Affiliation(s)
- Masayuki Sekine
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masami Arai
- Clinical Genetics, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Hiroki Den
- Department of Hygiene, Public Health, and Preventative Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hiroyuki Nomura
- Department of Obstetrics and Gynecology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Seigo Nakamura
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
245
|
Yamamoto H, Hirasawa A. Homologous Recombination Deficiencies and Hereditary Tumors. Int J Mol Sci 2021; 23:348. [PMID: 35008774 PMCID: PMC8745585 DOI: 10.3390/ijms23010348] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 12/16/2022] Open
Abstract
Homologous recombination (HR) is a vital process for repairing DNA double-strand breaks. Germline variants in the HR pathway, comprising at least 10 genes, such as BRCA1, BRCA2, ATM, BARD1, BRIP1, CHEK2, NBS1(NBN), PALB2, RAD51C, and RAD51D, lead to inherited susceptibility to specific types of cancers, including those of the breast, ovaries, prostate, and pancreas. The penetrance of germline pathogenic variants of each gene varies, whereas all their associated protein products are indispensable for maintaining a high-fidelity DNA repair system by HR. The present review summarizes the basic molecular mechanisms and components that collectively play a role in maintaining genomic integrity against DNA double-strand damage and their clinical implications on each type of hereditary tumor.
Collapse
Affiliation(s)
- Hideki Yamamoto
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan;
| | | |
Collapse
|
246
|
Zhu C, Zhang S, Liu D, Wang Q, Yang N, Zheng Z, Wu Q, Zhou Y. A Novel Gene Prognostic Signature Based on Differential DNA Methylation in Breast Cancer. Front Genet 2021; 12:742578. [PMID: 34956313 PMCID: PMC8693898 DOI: 10.3389/fgene.2021.742578] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Background: DNA methylation played essential roles in regulating gene expression. The impact of DNA methylation status on the occurrence and development of cancers has been well demonstrated. However, little is known about its prognostic role in breast cancer (BC). Materials: The Illumina Human Methylation450 array (450k array) data of BC was downloaded from the UCSC xena database. Transcriptomic data of BC was downloaded from the Cancer Genome Atlas (TCGA) database. Firstly, we used univariate and multivariate Cox regression analysis to screen out independent prognostic CpGs, and then we identified methylation-associated prognosis subgroups by consensus clustering. Next, a methylation prognostic model was developed using multivariate Cox analysis and was validated with the Illumina Human Methylation27 array (27k array) dataset of BC. We then screened out differentially expressed genes (DEGs) between methylation high-risk and low-risk groups and constructed a methylation-based gene prognostic signature. Further, we validated the gene signature with three subgroups of the TCGA-BRCA dataset and an external dataset GSE146558 from the Gene Expression Omnibus (GEO) database. Results: We established a methylation prognostic signature and a methylation-based gene prognostic signature, and there was a close positive correlation between them. The gene prognostic signature involved six genes: IRF2, KCNJ11, ZDHHC9, LRP11, PCMT1, and TMEM70. We verified their expression in mRNA and protein levels in BC. Both methylation and methylation-based gene prognostic signatures showed good prognostic stratification ability. The AUC values of 3-years, 5-years overall survival (OS) were 0.737, 0.744 in the methylation signature and 0.725, 0.715 in the gene signature, respectively. In the validation groups, high-risk patients were confirmed to have poorer OS. The AUC values of 3 years were 0.757, 0.735, 0.733 in the three subgroups of TCGA dataset and 0.635 in GSE146558 dataset. Conclusion: This study revealed the DNA methylation landscape and established promising methylation and methylation-based gene prognostic signatures that could serve as potential prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Chunmei Zhu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuyuan Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Di Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qingqing Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ningning Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhewen Zheng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yunfeng Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
247
|
Park J, Huang D, Chang YJ, Lim MC, Myung SK. Oral contraceptives and risk of breast cancer and ovarian cancer in women with a BRCA1 or BRCA2 mutation: A meta-analysis of observational studies. Carcinogenesis 2021; 43:231-242. [PMID: 34958358 DOI: 10.1093/carcin/bgab107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/10/2021] [Accepted: 11/01/2021] [Indexed: 11/14/2022] Open
Abstract
It remains inconclusive whether the use of oral contraceptives (OCs) alters the risks of breast or ovarian cancer in women with a BRCA1 or BRCA2 mutation. We investigated the association between OC use and the risks of breast or ovarian cancer in this group by using a meta-analysis. PubMed and EMBASE were searched using keywords until February 2021 to identify relevant studies that evaluated the association between OC ever use and the risks of breast or ovarian cancer in women with a BRCA1 or BRCA2 mutation. Twelve studies for breast cancer and eight studies for ovarian cancer were identified. In the random-effects meta-analysis, the ever use of OCs was significantly associated with an increased risk of breast cancer [odds ratio (OR), relative risk (RR), or hazard ration (HR) = 1.24; 95% confidence interval (CI) 1.08 - 1.41] and a decreased risk of ovarian cancer (OR/RR/HR = 0.53, 95% CI 0.41 - 0.67). Consistent findings were observed, when BRCA1 and BRCA2 mutation carriers were analyzed separately. The increased risk of breast cancer was observed only in the long-term (>5 years) users of OCs, while the decrease risk of ovarian cancer was observed regardless of the duration of OC use. The current study suggests that the ever use of OCs in BRCA mutation carriers is significantly associated with an increased risk of breast cancer and a decreased risk of ovarian cancer. Therefore, the use of OCs as chemoprevention of ovarian cancer should be cautious in BRCA mutation carriers.
Collapse
Affiliation(s)
- Junli Park
- Center for Cancer Prevention and Detection, Hospital, National Cancer Center, Goyang, Korea.,Department of Family Medicine, Myongji Hospital, Goyang, Korea
| | - Dan Huang
- Division of Cancer Control & Policy, National Cancer Control Institute, National Cancer Center, Goyang, Korea.,Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yoon Jung Chang
- Division of Cancer Control & Policy, National Cancer Control Institute, National Cancer Center, Goyang, Korea.,Department of Cancer Control and Population Health, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea.,Department of Family Medicine, Hospital, National Cancer Center, Goyang, Korea
| | - Myong Cheol Lim
- Department of Cancer Control and Population Health, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea.,Center for Gynecologic Cancer, Hospital, National Cancer Center, Goyang, Korea.,Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, Korea
| | - Seung-Kwon Myung
- Department of Family Medicine, Hospital, National Cancer Center, Goyang, Korea.,Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea.,Division of Cancer Epidemiology and Management, Research Institute, National Cancer Center, Goyang, Korea
| |
Collapse
|
248
|
Vodolazhsky DI, Mayakovskaya AV, Kubyshkin AV, Aliev KA, Fomochkina II. Clinical significance of gene polymorphisms for hereditary predisposition to breast and ovarian cancer (review of literature). Klin Lab Diagn 2021; 66:760-767. [PMID: 35020290 DOI: 10.51620/0869-2084-2021-66-12-760-767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The review presents classical and modern views on the molecular genetic causes underlying hereditary predisposition to breast and ovarian cancer. A computerized literature search was carried out in the electronic databases MEDLINE, Scopus, and Web of Science, published between January 1994 and May 2021, using the keywords: «hereditary breast and ovarian cancer», «BRCA» and «DNA repair». Current views on the role of germline mutations in genes for susceptibility to breast cancer (BC): BRCA1, BRCA2, PALB2, TP53, CHEK2, PTEN, ATM, and PPM1D are presented. The role of a complex of genes involved in homologous DNA repair and causing other hereditary oncological diseases is considered. The role of the loss of heterozygosity in these genes, which increases the level of chromosomal instability and leads to an increased risk of malignant transformation, is considered. Germinal mutations in the genes under consideration in 90% of clinical cases are the cause of initiation of tissue malignancy and greatly increase the risk of developing hereditary breast cancer and OC. The review emphasizes the complex nature of pathogenesis and significant polymorphism of genetic targets for hereditary breast cancer and OC. It is concluded that it is necessary to use NGS panels for complex screening of genes of hereditary susceptibility to these oncological diseases. The review provides data on the clinical significance of each group of genes of hereditary predisposition in the pathogenesis of breast cancer and OC, and also demonstrates the possible role of methylation of the promoter regions of genes and the state of mitochondrial DNA in the development of these pathologies. The purpose of this review was to broaden the horizons of specialists in the field of oncology and clinical diagnostics in the context of the rapidly expanding spectrum of molecular genetic markers of hereditary breast and ovarian cancers.
Collapse
Affiliation(s)
- D I Vodolazhsky
- Medical Academy named after S.I. Georgievsky of Vernadsky CFU
| | | | - A V Kubyshkin
- Medical Academy named after S.I. Georgievsky of Vernadsky CFU
| | - K A Aliev
- Medical Academy named after S.I. Georgievsky of Vernadsky CFU
| | - I I Fomochkina
- Medical Academy named after S.I. Georgievsky of Vernadsky CFU
| |
Collapse
|
249
|
Futamura M, Yoshida K. Current status of AYA-generation breast cancer: trends worldwide and in Japan. Int J Clin Oncol 2021; 27:16-24. [PMID: 34921319 DOI: 10.1007/s10147-021-02087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022]
Abstract
Breast cancer (BC) is the most common cancer worldwide among women. In Japan, the incidence of BC gradually increased. The recent number of adolescent and young adult (AYA)-BC patients is approximately 4,000-5,000 every year, accounting for 5% of all BC cases. BC in young people has been attracting attention since Japan's third basic plan to promote cancer control programs incorporated cancer control measures for pediatric (age ≤ 14 years) and adolescent and young adult (AYA)-generation (age 15-39 years) cancers in 2018. Attention is needed to detect AYA-BC because of the presence of dense breasts. AYA-BC patients are clinically characterized by larger tumor size, more lymph node metastases, advanced stages, and a higher rate of aggressive phenotypes, such as triple-negative or HER2-positive subtypes, and are strongly associated with family history and genetic germline alterations, including hereditary breast and ovarian cancers. Given that AYA-BC patients show a poorer prognosis than older BC patients, they often require intensive therapies, including surgery, radiation, chemotherapy, and endocrine therapy. We must solve many survivorship-associated problems in AYA-BC patients, including fertility preservation, comorbidity after treatment, and long-term follow-up. Under these circumstances, national and local governments and various academic societies have started addressing these problems by formulating laws and guidelines, establishing medical systems, and offering financial support to conquer cancer and maintain a better quality of life. This review summarizes the current trends of AYA-BC worldwide and in Japan. Further Japan-specific data on AYA-BC are required to clarify its characteristics and improve prognosis and survivorship.
Collapse
Affiliation(s)
- Manabu Futamura
- Breast Surgery, Department of Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Kazuhiro Yoshida
- Gastroenterological Surgery, Department of Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
250
|
Ha HI, Park EY, Eoh KJ, Lee YJ, Seo SS, Kang S, Park SY, Lim MC. Clinical outcomes of BRCA1/2 pathogenic variants in ovarian cancer cluster region in patients with primary peritoneal, epithelial ovarian, and fallopian tube cancer. Gynecol Oncol 2021; 164:415-420. [PMID: 34924242 DOI: 10.1016/j.ygyno.2021.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE An "ovarian cancer cluster region" (OCCR) has been reported in both BRCA1 and BRCA2. However, the clinical significance of the OCCR of BRCA1/2 has not yet been investigated. METHODS The medical records of 991 patients with epithelial ovarian, primary peritoneal, and fallopian tube cancer who underwent genetic testing for BRCA1 and/or BRCA2 from January 1, 2006, to August 31, 2019, were retrospectively reviewed. Sanger and next-generation sequencing analyses were used to test the BRCA1 and BRCA2 mutation status. Progression-free survival (PFS) and overall survival (OS) were compared according to the mutation location (OCCR vs. non-OCCR region). Survival outcomes were determined using Kaplan-Meier survival analysis. RESULTS A total of 162 patients had BRCA1 pathogenic variants (PVs), and 76 had BRCA2 PVs. Patients with BRCA1 PV that in the OCCR region showed shorter PFS than those with BRCA1 PV outside the OCCR (22.6 months vs. 27.6 months, P = 0.038). In the platinum-sensitive subgroup of BRCA1, patients with BRCA1 PV in the OCCR region showed shorter PFS than those in the non-OCCR group (P = 0.0197). On the other hand, BRCA2 variants did not exhibit any particular trend (32.8 months vs. 27.9 months, P = 0.468). However, no significant differences were detected in OS between patients with BRCA1/2 PVs, regardless of the location of the variants. CONCLUSIONS Patients with BRCA1 PV in the OCCR had shorter PFS than those outside the OCCR. This tendency was more pronounced in the platinum-sensitive subgroup. To our knowledge, this is the first study of BRCA1/2 mutations based on the OCCR.
Collapse
Affiliation(s)
- Hyeong In Ha
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital, Pusan National School of Medicine, Yangsan, Republic of Korea
| | - Eun Young Park
- Biostatistics Collaboration Team, Research Core Center, National Cancer Center, Goyang, Republic of Korea; Department of Statistics and Data Science, Yonsei University, Republic of Korea
| | - Kyung Jin Eoh
- Department of Obstetrics and Gynecology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Yeon Jee Lee
- Center for Gynecologic Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Sang-Soo Seo
- Center for Gynecologic Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Sokbom Kang
- Center for Gynecologic Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Sang-Yoon Park
- Center for Gynecologic Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Myong Cheol Lim
- Center for Gynecologic Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea; Division of Tumor Immunology and Center for Gynecologic Cancer, Research Institute and Hospital, Department of Cancer Control and Population Health, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea.
| |
Collapse
|