201
|
Murakami J, Ishii M, Suehiro F, Ishihata K, Nakamura N, Nishimura M. Vascular endothelial growth factor-C induces osteogenic differentiation of human mesenchymal stem cells through the ERK and RUNX2 pathway. Biochem Biophys Res Commun 2017; 484:710-718. [DOI: 10.1016/j.bbrc.2017.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/01/2017] [Indexed: 02/08/2023]
|
202
|
Lampl M, Schoen M. How long bones grow children: Mechanistic paths to variation in human height growth. Am J Hum Biol 2017; 29. [DOI: 10.1002/ajhb.22983] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/01/2017] [Accepted: 02/05/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
- Michelle Lampl
- Center for the Study of Human Health; Emory University; Atlanta Georgia 30324
- Department of Anthropology; Emory University; Atlanta Georgia 30324
| | - Meriah Schoen
- Center for the Study of Human Health; Emory University; Atlanta Georgia 30324
- Department of Nutrition; Georgia State University; Atlanta Georgia 30302
| |
Collapse
|
203
|
Salmon DNA Accelerates Bone Regeneration by Inducing Osteoblast Migration. PLoS One 2017; 12:e0169522. [PMID: 28060874 PMCID: PMC5218488 DOI: 10.1371/journal.pone.0169522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/19/2016] [Indexed: 11/24/2022] Open
Abstract
The initial step of bone regeneration requires the migration of osteogenic cells to defective sites. Our previous studies suggest that a salmon DNA-based scaffold can promote the bone regeneration of calvarial defects in rats. We speculate that the salmon DNA may possess osteoinductive properties, including the homing of migrating osteogenic cells. In the present study, we investigated the influence of the salmon DNA on osteoblastic differentiation and induction of osteoblast migration using MG63 cells (human preosteoblasts) in vitro. Moreover, we analyzed the bone regeneration of a critical-sized in vivo calvarial bone defect (CSD) model in rats. The salmon DNA enhanced both mRNA and protein expression of the osteogenesis-related factors, runt-related transcription factor 2 (Runx2), alkaline phosphatase, and osterix (OSX) in the MG63 cells, compared with the cultivation using osteogenic induction medium alone. From the histochemical and immunohistochemical assays using frozen sections of the bone defects from animals that were implanted with DNA disks, many cells were found to express aldehyde dehydrogenase 1, one of the markers for mesenchymal stem cells. In addition, OSX was observed in the replaced connective tissue of the bone defects. These findings indicate that the DNA induced the migration and accumulation of osteogenic cells to the regenerative tissue. Furthermore, an in vitro transwell migration assay showed that the addition of DNA enhanced an induction of osteoblast migration, compared with the medium alone. The implantation of the DNA disks promoted bone regeneration in the CSD of rats, compared with that of collagen disks. These results indicate that the salmon DNA enhanced osteoblastic differentiation and induction of migration, resulting in the facilitation of bone regeneration.
Collapse
|
204
|
Zinc Up-Regulates Insulin Secretion from β Cell-Like Cells Derived from Stem Cells from Human Exfoliated Deciduous Tooth (SHED). Int J Mol Sci 2016; 17:ijms17122092. [PMID: 27983594 PMCID: PMC5187892 DOI: 10.3390/ijms17122092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/01/2016] [Accepted: 12/06/2016] [Indexed: 11/17/2022] Open
Abstract
Stem cells from human exfoliated deciduous tooth (SHED) offer several advantages over other stem cell sources. Using SHED, we examined the roles of zinc and the zinc uptake transporter ZIP8 (Zrt- and irt-like protein 8) while inducing SHED into insulin secreting β cell-like stem cells (i.e., SHED-β cells). We observed that ZIP8 expression increased as SHED differentiated into SHED-β cells, and that zinc supplementation at day 10 increased the levels of most pancreatic β cell markers-particularly Insulin and glucose transporter 2 (GLUT2). We confirmed that SHED-β cells produce insulin successfully. In addition, we note that zinc supplementation significantly increases insulin secretion with a significant elevation of ZIP8 transporters in SHED-β cells. We conclude that SHED can be converted into insulin-secreting β cell-like cells as zinc concentration in the cytosol is elevated. Insulin production by SHED-β cells can be regulated via modulation of zinc concentration in the media as ZIP8 expression in the SHED-β cells increases.
Collapse
|
205
|
Dou XW, Park W, Lee S, Zhang QZ, Carrasco LR, Le AD. Loss of Notch3 Signaling Enhances Osteogenesis of Mesenchymal Stem Cells from Mandibular Torus. J Dent Res 2016; 96:347-354. [PMID: 27879421 DOI: 10.1177/0022034516680349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mandibular torus (MT) is a common intraoral osseous outgrowth located on the lingual surface of the mandible. Histologic features include hyperplastic bone consisting of mature cortical and trabecular bone. Some theories on the etiology of MT have been postulated, such as genetic factors, masticatory hyperfunction, trauma, and continued growth, but the underlying mechanism remains largely unknown. In this study, we investigated the potential role of mesenchymal stem cells (MSCs) derived from human MT in the pathogenesis of bone outgrowth. We demonstrated that MT harbored a distinct subpopulation of MSCs, with enhanced osteogenic and decreased adipogenic differentiation capacities, as compared with their counterparts from normal jaw bone. The increased osteogenic differentiation of mandibular torus MSCs was associated with the suppression of Notch3 signaling and its downstream target genes, Jag1 and Hey1, and a reciprocal increase in the transcriptional activation of ATF4 and NFATc1 genes. Targeted knockdown of Notch3 expression by transient siRNA transfection promoted the expression of osteogenic transcription factors in normal jaw bone MSCs. Our data suggest that the loss of Notch3 signaling may contribute partly to bone outgrowth in MT, as mediated by enhanced MSC-driven osteogenic differentiation in the jaw bone.
Collapse
Affiliation(s)
- X W Dou
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - W Park
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA.,2 Department of Advanced General Dentistry, College of Dentistry, Yonsei University, Seoul, South Korea
| | - S Lee
- 3 Department of Endodontics, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Q Z Zhang
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - L R Carrasco
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA.,4 Department of Oral and Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - A D Le
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA.,4 Department of Oral and Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
206
|
Twine NA, Harkness L, Kassem M, Wilkins MR. Transcription factor ZNF25 is associated with osteoblast differentiation of human skeletal stem cells. BMC Genomics 2016; 17:872. [PMID: 27814695 PMCID: PMC5097439 DOI: 10.1186/s12864-016-3214-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/26/2016] [Indexed: 12/29/2022] Open
Abstract
Background The differentiation of human bone marrow derived skeletal stem cells (known as human bone marrow stromal or mesenchymal stem cells, hMSCs) into osteoblasts involves the activation of a small number of well-described transcription factors. To identify additional osteoblastic transcription factors, we studied gene expression of hMSCs during ex vivo osteoblast differentiation. Results Clustering of gene expression, and literature investigation, revealed three transcription factors of interest – ZNF25, ZNF608 and ZBTB38. siRNA knockdown of ZNF25 resulted in significant suppression of alkaline phosphatase (ALP) activity. This effect was not present for ZNF608 and ZBTB38. To identify possible target genes of ZNF25, we analyzed gene expression following ZNF25 siRNA knockdown. This revealed a 23-fold upregulation of matrix metallopeptidase 1 and an 18-fold upregulation of leucine-rich repeat containing G protein-coupled receptor 5 and RAN-binding protein 3-like. We also observed enrichment in extracellular matrix organization, skeletal system development and regulation of ossification in the entire upregulated set of genes. Consistent with its function as a transcription factor during osteoblast differentiation of hMSC, we showed that the ZNF25 protein exhibits nuclear localization and is expressed in osteoblastic and osteocytic cells in vivo. ZNF25 is conserved in tetrapod vertebrates and contains a KRAB (Krueppel-associated box) transcriptional repressor domain. Conclusions This study shows that the uncharacterized transcription factor, ZNF25, is associated with differentiation of hMSC to osteoblasts.
Collapse
Affiliation(s)
- Natalie A Twine
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Linda Harkness
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital, Odense, Denmark.,Present Address: Pluripotent Stem Cell Group, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Moustapha Kassem
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital, Odense, Denmark.,Stem Cell Unit, Department of Anatomy, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
207
|
Liu CF, Samsa WE, Zhou G, Lefebvre V. Transcriptional control of chondrocyte specification and differentiation. Semin Cell Dev Biol 2016; 62:34-49. [PMID: 27771362 DOI: 10.1016/j.semcdb.2016.10.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022]
Abstract
A milestone in the evolutionary emergence of vertebrates was the invention of cartilage, a tissue that has key roles in modeling, protecting and complementing the bony skeleton. Cartilage is elaborated and maintained by chondrocytes. These cells derive from multipotent skeletal progenitors and they perform highly specialized functions as they proceed through sequential lineage commitment and differentiation steps. They form cartilage primordia, the primary skeleton of the embryo. They then transform these primordia either into cartilage growth plates, temporary drivers of skeletal elongation and endochondral ossification, or into permanent tissues, namely articular cartilage. Chondrocyte fate decisions and differentiated activities are controlled by numerous extrinsic and intrinsic cues, and they are implemented at the gene expression level by transcription factors. The latter are the focus of this review. Meritorious efforts from many research groups have led over the last two decades to the identification of dozens of key chondrogenic transcription factors. These regulators belong to all types of transcription factor families. Some have master roles at one or several differentiation steps. They include SOX9 and RUNX2/3. Others decisively assist or antagonize the activities of these masters. They include TWIST1, SOX5/6, and MEF2C/D. Many more have tissue-patterning roles and regulate cell survival, proliferation and the pace of cell differentiation. They include, but are not limited to, homeodomain-containing proteins and growth factor signaling mediators. We here review current knowledge of all these factors, one superclass, class, and family at a time. We then compile all knowledge into transcriptional networks. We also identify remaining gaps in knowledge and directions for future research to fill these gaps and thereby provide novel insights into cartilage disease mechanisms and treatment options.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
| | - William E Samsa
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| | - Guang Zhou
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Véronique Lefebvre
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
| |
Collapse
|
208
|
Fernandes MH, Gomes PDS. Bone Cells Dynamics during Peri-Implantitis: a Theoretical Analysis. EJOURNAL OF ORAL MAXILLOFACIAL RESEARCH 2016; 7:e6. [PMID: 27833731 PMCID: PMC5100646 DOI: 10.5037/jomr.2016.7306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/08/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The present manuscript aims a detailed characterization of the bone cells dynamics during physiological bone remodelling and, subsequently, to address the cellular and molecular mechanisms that play a fundamental role in the immune-inflammatory-induced uncoupled bone remodelling observed in peri-implantitis. RESULTS An intimate relationship between the immune system and bone is acknowledged to be determinant for bone tissue remodelling and integrity. Due to the close interaction of immune and bone cells, the two systems share a number of surface receptors, cytokines, signalling pathways and transcription factors that are involved in mutual regulatory mechanisms. This physiological equilibrium is disturbed in pathological conditions, as verified in peri-implantitis establishment and development. Activation of the innate and adaptive immune response, challenged by the local bacterial infection, induces the synthesis of high levels of a variety of pro- and anti-inflammatory cytokines that disturb the normal functioning of the bone cells, by uncoupling bone resorption and formation, ending up with a net alveolar bone loss and subsequent implant failure. Most data points to an immune-inflammatory induced osteoclast differentiation and function, as the major underlying mechanism to the uncoupled bone resorption to bone formation. Further, the disturbed functioning of osteoblasts, reflected by the possible expression of a fibro-osteoblastic phenotype, may also play a role. CONCLUSIONS Alveolar bone loss is a hallmark of peri-implantitis. A great deal of data is still needed on the cellular and humoral crosstalk in the context of an integrated view of the osteoimmunologic interplay occurring in the peri-implantitis environment subjacent to the bone loss outcome.
Collapse
|
209
|
Jaruga A, Hordyjewska E, Kandzierski G, Tylzanowski P. Cleidocranial dysplasia and RUNX2-clinical phenotype-genotype correlation. Clin Genet 2016; 90:393-402. [DOI: 10.1111/cge.12812] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/20/2016] [Accepted: 05/28/2016] [Indexed: 12/19/2022]
Affiliation(s)
- A. Jaruga
- Department of Biochemistry and Molecular Biology; Medical University; Lublin Poland
- Postgraduate School of Molecular Medicine; Warsaw Poland
| | - E. Hordyjewska
- Department of Biochemistry and Molecular Biology; Medical University; Lublin Poland
- Postgraduate School of Molecular Medicine; Warsaw Poland
| | - G. Kandzierski
- Children Orthopaedic and Rehabilitation Department; Medical University of Lublin; Lublin Poland
| | - P. Tylzanowski
- Department of Biochemistry and Molecular Biology; Medical University; Lublin Poland
- Laboratory for Developmental and Stem Cell Biology, Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre; University of Leuven; Leuven Belgium
| |
Collapse
|
210
|
Neves SC, Mota C, Longoni A, Barrias CC, Granja PL, Moroni L. Additive manufactured polymeric 3D scaffolds with tailored surface topography influence mesenchymal stromal cells activity. Biofabrication 2016; 8:025012. [DOI: 10.1088/1758-5090/8/2/025012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
211
|
Becker M, Potapenko T, Niklaus A, Bieback K, Ho AD, Müller AM. Polycomb Protein BMI1 Regulates Osteogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells Downstream of GSK3. Stem Cells Dev 2016; 25:922-33. [PMID: 27100571 DOI: 10.1089/scd.2015.0277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Polycomb proteins such as the B lymphoma Mo-MLV insertion region 1 homolog (BMI1) are essential chromatin factors for the self-renewal and differentiation of embryonic and adult stem cells. BMI1 also plays a critical role in osteogenesis as Bmi1-deficient mice display a skeletal phenotype caused by the exhaustion of the mesenchymal stem cell pool. In this study, we have studied the role of BMI1 in the osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells (hASCs). BMI1 protein, but not RNA levels, increases during in vitro osteogenic differentiation of hASCs. Overexpression of BMI1 leads to an osteogenic priming of hASCs under nondifferentiating conditions and enhanced osteogenesis upon differentiation, along with increased BMP2 and WNT11 expressions. Conversely, knockdown of BMI1 expression reduces osteogenic differentiation. Furthermore, our studies indicate that during osteogenic differentiation of hASCs, BMI1 is a downstream target of GSK3 signaling. BMI1, therefore, acts as a pro-osteogenic differentiation factor in hASCs and hence it is a promising target for active modulation of hASC-derived osteogenesis.
Collapse
Affiliation(s)
- Matthias Becker
- 1 Institute for Medical Radiation and Cell Research (MSZ), Center of Experimental Molecular Medicine (ZEMM) , Würzburg, Germany
| | - Tamara Potapenko
- 1 Institute for Medical Radiation and Cell Research (MSZ), Center of Experimental Molecular Medicine (ZEMM) , Würzburg, Germany
| | - Andrea Niklaus
- 1 Institute for Medical Radiation and Cell Research (MSZ), Center of Experimental Molecular Medicine (ZEMM) , Würzburg, Germany
| | - Karen Bieback
- 2 Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg , German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Anthony D Ho
- 3 Department of Internal Medicine V, Heidelberg University Hospital , Heidelberg, Germany
| | - Albrecht M Müller
- 1 Institute for Medical Radiation and Cell Research (MSZ), Center of Experimental Molecular Medicine (ZEMM) , Würzburg, Germany
| |
Collapse
|
212
|
Bouard C, Terreux R, Honorat M, Manship B, Ansieau S, Vigneron AM, Puisieux A, Payen L. Deciphering the molecular mechanisms underlying the binding of the TWIST1/E12 complex to regulatory E-box sequences. Nucleic Acids Res 2016; 44:5470-89. [PMID: 27151200 PMCID: PMC4914114 DOI: 10.1093/nar/gkw334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/13/2016] [Indexed: 12/29/2022] Open
Abstract
The TWIST1 bHLH transcription factor controls embryonic development and cancer processes. Although molecular and genetic analyses have provided a wealth of data on the role of bHLH transcription factors, very little is known on the molecular mechanisms underlying their binding affinity to the E-box sequence of the promoter. Here, we used an in silico model of the TWIST1/E12 (TE) heterocomplex and performed molecular dynamics (MD) simulations of its binding to specific (TE-box) and modified E-box sequences. We focused on (i) active E-box and inactive E-box sequences, on (ii) modified active E-box sequences, as well as on (iii) two box sequences with modified adjacent bases the AT- and TA-boxes. Our in silico models were supported by functional in vitro binding assays. This exploration highlighted the predominant role of protein side-chain residues, close to the heart of the complex, at anchoring the dimer to DNA sequences, and unveiled a shift towards adjacent ((-1) and (-1*)) bases and conserved bases of modified E-box sequences. In conclusion, our study provides proof of the predictive value of these MD simulations, which may contribute to the characterization of specific inhibitors by docking approaches, and their use in pharmacological therapies by blocking the tumoral TWIST1/E12 function in cancers.
Collapse
Affiliation(s)
- Charlotte Bouard
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France LabEX DEVweCAN, Lyon, France UNIV UMR1052, Lyon 69008, France Centre Léon Bérard, Lyon 69373, France Université de Lyon1, ISPB, Lyon 69008, France
| | - Raphael Terreux
- Université de Lyon1, ISPB, Lyon 69008, France Institut de Biochimie des protéines IBCP, Lyon 69007, France CNRS UMR 5305, Lyon 69007, France
| | - Mylène Honorat
- Institut de Biochimie des protéines IBCP, Lyon 69007, France
| | | | - Stéphane Ansieau
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France LabEX DEVweCAN, Lyon, France UNIV UMR1052, Lyon 69008, France Centre Léon Bérard, Lyon 69373, France
| | - Arnaud M Vigneron
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France LabEX DEVweCAN, Lyon, France UNIV UMR1052, Lyon 69008, France Centre Léon Bérard, Lyon 69373, France
| | - Alain Puisieux
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France LabEX DEVweCAN, Lyon, France UNIV UMR1052, Lyon 69008, France Centre Léon Bérard, Lyon 69373, France Université de Lyon1, ISPB, Lyon 69008, France Institut Universitaire de France, Paris 75231, France
| | - Léa Payen
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France LabEX DEVweCAN, Lyon, France UNIV UMR1052, Lyon 69008, France Centre Léon Bérard, Lyon 69373, France Université de Lyon1, ISPB, Lyon 69008, France Hospices Civils de Lyon, Laboratoire de Biochimie et Biologie Moléculaire du CHLS, Lyon 69003, France
| |
Collapse
|
213
|
Gonçalves F, de Moraes MS, Ferreira LB, Carreira ACO, Kossugue PM, Boaro LCC, Bentini R, Garcia CRDS, Sogayar MC, Arana-Chavez VE, Catalani LH. Combination of Bioactive Polymeric Membranes and Stem Cells for Periodontal Regeneration: In Vitro and In Vivo Analyses. PLoS One 2016; 11:e0152412. [PMID: 27031990 PMCID: PMC4816539 DOI: 10.1371/journal.pone.0152412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/14/2016] [Indexed: 11/18/2022] Open
Abstract
Regeneration of periodontal tissues requires a concerted effort to obtain consistent and predictable results in vivo. The aim of the present study was to test a new family of bioactive polymeric membranes in combination with stem cell therapy for periodontal regeneration. In particular, the novel polyester poly(isosorbide succinate-co-L-lactide) (PisPLLA) was compared with poly(L-lactide) (PLLA). Both polymers were combined with collagen (COL), hydroxyapatite (HA) and the growth factor bone morphogenetic protein-7 (BMP7), and their osteoinductive capacity was evaluated via in vitro and in vivo experiments. Membranes composed of PLLA/COL/HA or PisPLLA/COL/HA were able to promote periodontal regeneration and new bone formation in fenestration defects in rat jaws. According to quantitative real-time polymerase chain reaction (qRT-PCR) and Alizarin Red assays, better osteoconductive capacity and increased extracellular mineralization were observed for PLLA/COL/HA, whereas better osteoinductive properties were associated with PisPLLA/COL/HA. We concluded that membranes composed of either PisPLLA/COL/HA or PLLA/COL/HA present promising results in vitro as well as in vivo and that these materials could be potentially applied in periodontal regeneration.
Collapse
Affiliation(s)
- Flávia Gonçalves
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Míriam Santos de Moraes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–090
| | - Lorraine Braga Ferreira
- Departamento de Biomateriais e Biologia Oral, Faculdade de Odontologia, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Ana Cláudia Oliveira Carreira
- NUCEL/NETCEM—Núcleo de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil, 05360–130
| | - Patrícia Mayumi Kossugue
- NUCEL/NETCEM—Núcleo de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil, 05360–130
| | - Letícia Cristina Cidreira Boaro
- Departamento de Biomateriais e Biologia Oral, Faculdade de Odontologia, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Ricardo Bentini
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Célia Regina da Silva Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–090
| | - Mari Cleide Sogayar
- NUCEL/NETCEM—Núcleo de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil, 05360–130
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Victor Elias Arana-Chavez
- Departamento de Biomateriais e Biologia Oral, Faculdade de Odontologia, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Luiz Henrique Catalani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
- * E-mail:
| |
Collapse
|
214
|
Scaffold-Free Fabrication of Osteoinductive Cellular Constructs Using Mouse Gingiva-Derived Induced Pluripotent Stem Cells. Stem Cells Int 2016; 2016:6240794. [PMID: 27110251 PMCID: PMC4826709 DOI: 10.1155/2016/6240794] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 02/18/2016] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) cell constructs are expected to provide osteoinductive materials to develop cell-based therapies for bone regeneration. The proliferation and spontaneous aggregation capability of induced pluripotent stem cells (iPSCs) thus prompted us to fabricate a scaffold-free iPSC construct as a transplantation vehicle. Embryoid bodies of mouse gingival fibroblast-derived iPSCs (GF-iPSCs) were seeded in a cell chamber with a round-bottom well made of a thermoresponsive hydrogel. Collected ball-like cell constructs were cultured in osteogenic induction medium for 30 days with gentle shaking, resulting in significant upregulation of osteogenic marker genes. The constructs consisted of an inner region of unstructured cell mass and an outer osseous tissue region that was surrounded by osteoblast progenitor-like cells. The outer osseous tissue was robustly calcified with elemental calcium and phosphorous as well as hydroxyapatite. Subcutaneous transplantation of the GF-iPSC constructs into immunodeficient mice contributed to extensive ectopic bone formation surrounded by teratoma tissue. These results suggest that mouse GF-iPSCs could facilitate the fabrication of osteoinductive scaffold-free 3D cell constructs, in which the calcified regions and surrounding osteoblasts may function as scaffolds and drivers of osteoinduction, respectively. With incorporation of technologies to inhibit teratoma formation, this system could provide a promising strategy for bone regenerative therapies.
Collapse
|
215
|
Iaculli F, Di Filippo ES, Piattelli A, Mancinelli R, Fulle S. Dental pulp stem cells grown on dental implant titanium surfaces: An in vitro evaluation of differentiation and microRNAs expression. J Biomed Mater Res B Appl Biomater 2016; 105:953-965. [PMID: 26856387 DOI: 10.1002/jbm.b.33628] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/15/2015] [Accepted: 01/14/2016] [Indexed: 12/21/2022]
Abstract
The surface roughness of dental implants influences the proliferation and differentiation rate of adult mesenchymal stem cells (MSCs). The aim of the present study was to evaluate whether specifically treated titanium implant surfaces influenced human dental pulp stem cells (DPSCs) differentiation in an osteogenic pattern through modulation of microRNAs expression. The degree of differentiation was evaluated after 7, 14, and 21 days, through the expression of microRNAs characterizing the osteogenesis (miR-133 and miR-135), of Runx2 and Smad5 (key factor transcriptions associated with osteoblast differentiation) and Osteocalcin, marker for the bone formation process. DPSCs were cultured on sandblasted and acid-etched titanium disks, with (Test) or without the presence of ions (Control). Early differentiation of DPSCs cultured on titanium could be detected at all the evaluated time points, respect to cells grown alone. Moreover, the Test surfaces seemed to induce a more marked cells differentiation. The obtained results demonstrated that microRNAs played a pivotal role in the differentiation of MSCs and could be used as marker of osteogenic differentiation. Furthermore, the evaluated ionized sandblasted and acid-etched surface seemed to markedly enhance the development of osteoblast cells. A faster osseointegration could be achieved in the presence of specifically treated implant surfaces, promising encouraging clinical outcomes. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 953-965, 2017.
Collapse
Affiliation(s)
- Flavia Iaculli
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Ester Sara Di Filippo
- Cell Physiology Laboratory, Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Rosa Mancinelli
- Cell Physiology Laboratory, Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Stefania Fulle
- Cell Physiology Laboratory, Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti, Italy
| |
Collapse
|
216
|
Chen C, Tang Z, Song Q, Yang M, Shi Q, Weng Y. Downregulated microRNA-23b promotes BMP9-mediated osteogenesis in C2C12 myoblast cells by targeting Runx2. Mol Med Rep 2016; 13:2492-8. [PMID: 26820568 PMCID: PMC4768947 DOI: 10.3892/mmr.2016.4814] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 12/01/2015] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs are identified as negative regulators in gene expression through silencing gene expression at the post-transcriptional and translational levels. Bone morphogenetic protein 9 (BMP9) is the most effective in inducing osteogenesis in the BMP family, the members of which were originally identified as osteoinductive cytokines. In the current study, the role of miR-23b in the progression of BMP9-induced C2C12 myoblasts was investigated. The results indicated that miR-23b was significantly downregulated in C2C12 myoblasts induced by BMP9. Overexpression of miR-23b significantly inhibited osteogenesis in the C2C12 myoblasts. In addition, it was observed that Runx2 was negatively regulated by miR-23b at the post-transcriptional level, via a specific target site within the 3′UTR of Runx2. Knockdown of Runx2 promoted miR-23b-induced inhibition of osteogenesis in C2C12 myoblasts. The expression of Runx2 was observed to be frequently upregulated in osteoblast cell lines and inversely correlated with miR-23b expression. Thus, the results of the present study suggest that miR-23b inhibits BMP9-induced C2C12 myoblast osteogenesis via targeting of the Runx2 gene, acting as a suppressor. The current study contributes to the understanding of the functions of BMP9 in ossification.
Collapse
Affiliation(s)
- Chu Chen
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 40016, P.R. China
| | - Zuchuan Tang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 40016, P.R. China
| | - Qiling Song
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 40016, P.R. China
| | - Min Yang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 40016, P.R. China
| | - Qiong Shi
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 40016, P.R. China
| | - Yaguang Weng
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 40016, P.R. China
| |
Collapse
|
217
|
Kim G, Elnabawi O, Shin D, Pae EK. Transient Intermittent Hypoxia Exposure Disrupts Neonatal Bone Strength. Front Pediatr 2016; 4:15. [PMID: 27014665 PMCID: PMC4779887 DOI: 10.3389/fped.2016.00015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 02/22/2016] [Indexed: 12/20/2022] Open
Abstract
A brief intermittent hypoxia (IH, ambient O2 levels alternating between room air and 12% O2) for 1 h immediately after birth resulted in pancreatic islet dysfunction associated with zinc deficiency as previously reported. We hypothesized that IH exposure modulates zinc homeostasis in bone as well, which leads to increased bone fragility. To test this hypothesis, we used neonatal rats and human osteoblasts (HObs). To examine IH influences on osteoblasts devoid of neural influences, we quantified amounts of alkaline phosphatase and mineralization in IH-treated HObs. Bones harvested from IH-treated animals showed significantly reduced hardness and elasticity. The IH group also showed discretely decreased levels of alkaline phosphatase and mineralization amounts. The IH group showed a decreased expression of ZIP8 or Zrt and Irt-like protein 8 (a zinc uptake transporter), Runx2 (or Runt-related transcription factor 2, a master protein in bone formation), Collagen-1 (a major protein comprising the extracellular matrix of the bone), osteocalcin, and zinc content. When zinc was eliminated from the media containing HObs using a zinc chelate and added later with zinc sulfate, Runx2, ZIP8, and osteocalcin expression decreased first, and recovered with zinc supplementation. Adenovirus-mediated ZIP8 over-expression in osteoblasts increased mineralization significantly as well. We conclude that IH impairs zinc homeostasis in bones and osteoblasts, and that such disturbances decrease bone strength, which can be recovered by zinc supplementation.
Collapse
Affiliation(s)
- Gyuyoup Kim
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Maryland , Baltimore, MD , USA
| | - Omar Elnabawi
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Maryland , Baltimore, MD , USA
| | | | - Eung-Kwon Pae
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Maryland , Baltimore, MD , USA
| |
Collapse
|
218
|
Jao HY, Hsu JD, Lee YR, Lo CS, Lee HJ. Mulberry water extract regulates the osteoblast/osteoclast balance in an ovariectomic rat model. Food Funct 2016; 7:4753-4763. [DOI: 10.1039/c6fo00852f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mulberry has favorable antioxidant ability.
Collapse
Affiliation(s)
- Hsing-Yu Jao
- Institute of Biochemistry
- Microbiology and Immunology
- Medical College
- Chung Shan Medical University
- Taichung
| | - Jeng-Dong Hsu
- Department of Pathology
- Chung Shan Medical University Hospital
- Taichung
- Taiwan
| | - Yi-Ru Lee
- Institute of Biochemistry
- Microbiology and Immunology
- Medical College
- Chung Shan Medical University
- Taichung
| | - Chien-Sheng Lo
- Department of Orthopaediology
- Show Chwuan Memory Hospital
- Changhua
- Taiwan
| | - Huei-Jane Lee
- Institute of Biochemistry
- Microbiology and Immunology
- Medical College
- Chung Shan Medical University
- Taichung
| |
Collapse
|
219
|
Caron I, Rossi F, Papa S, Aloe R, Sculco M, Mauri E, Sacchetti A, Erba E, Panini N, Parazzi V, Barilani M, Forloni G, Perale G, Lazzari L, Veglianese P. A new three dimensional biomimetic hydrogel to deliver factors secreted by human mesenchymal stem cells in spinal cord injury. Biomaterials 2016; 75:135-147. [DOI: 10.1016/j.biomaterials.2015.10.024] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 02/06/2023]
|
220
|
Ordinary and Activated Bone Grafts: Applied Classification and the Main Features. BIOMED RESEARCH INTERNATIONAL 2015; 2015:365050. [PMID: 26649300 PMCID: PMC4662978 DOI: 10.1155/2015/365050] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 10/15/2015] [Indexed: 12/19/2022]
Abstract
Bone grafts are medical devices that are in high demand in clinical practice for substitution of bone defects and recovery of atrophic bone regions. Based on the analysis of the modern groups of bone grafts, the particularities of their composition, the mechanisms of their biological effects, and their therapeutic indications, applicable classification was proposed that separates the bone substitutes into “ordinary” and “activated.” The main differential criterion is the presence of biologically active components in the material that are standardized by qualitative and quantitative parameters: growth factors, cells, or gene constructions encoding growth factors. The pronounced osteoinductive and (or) osteogenic properties of activated osteoplastic materials allow drawing upon their efficacy in the substitution of large bone defects.
Collapse
|
221
|
Khan SR, Gambaro G. Role of Osteogenesis in the Formation of Randall's Plaques. Anat Rec (Hoboken) 2015; 299:5-7. [PMID: 26414710 DOI: 10.1002/ar.23275] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/01/2015] [Accepted: 08/19/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Saeed R Khan
- Departments of Pathology and Urology College of Medicine, University of Florida, Gainesville, Florida
| | - Giovanni Gambaro
- Division of Nephrology and Dialysis, Columbus-Gemelli University Hospital Catholic University, School of Medicine, Rome, Italy
| |
Collapse
|
222
|
Jing D, Hao J, Shen Y, Tang G, Li ML, Huang SH, Zhao ZH. The role of microRNAs in bone remodeling. Int J Oral Sci 2015. [PMID: 26208037 PMCID: PMC4582559 DOI: 10.1038/ijos.2015.22] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bone remodeling is balanced by bone formation and bone resorption as well as by alterations in the quantities and functions of seed cells, leading to either the maintenance or deterioration of bone status. The existing evidence indicates that microRNAs (miRNAs), known as a family of short non-coding RNAs, are the key post-transcriptional repressors of gene expression, and growing numbers of novel miRNAs have been verified to play vital roles in the regulation of osteogenesis, osteoclastogenesis, and adipogenesis, revealing how they interact with signaling molecules to control these processes. This review summarizes the current knowledge of the roles of miRNAs in regulating bone remodeling as well as novel applications for miRNAs in biomaterials for therapeutic purposes.
Collapse
Affiliation(s)
- Dian Jing
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Hao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shen
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ge Tang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei-Le Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shi-Hu Huang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Zhi-He Zhao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
223
|
Girolami I, Mancini I, Simoni A, Baldi GG, Simi L, Campanacci D, Beltrami G, Scoccianti G, D'Arienzo A, Capanna R, Franchi A. Denosumab treated giant cell tumour of bone: a morphological, immunohistochemical and molecular analysis of a series. J Clin Pathol 2015; 69:240-7. [PMID: 26338802 DOI: 10.1136/jclinpath-2015-203248] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/16/2015] [Indexed: 11/03/2022]
Abstract
AIMS Denosumab, a fully human monoclonal antibody directed against RANKL, has recently been introduced in the treatment strategy of giant cell tumour of bone (GCTB). Aim of this study was to investigate the phenotypical modifications induced by denosumab treatment in a series of 15 GCTB. METHODS The tumours were characterised for histone 3.3 mutations, and studied immunohistochemically for the modifications of RANKL, RANK, SATB2 and RUNX2 expression, as well as of tumour proliferative activity and angiogenesis. RESULTS Nine of 11 tumours investigated presented a histone 3.3 mutation in H3F3A, and 2 of these for which the analysis was carried out in pretreatment and post-treatment specimens showed the same mutation in both. Denosumab induced the disappearance of osteoclast-like giant cells, leaving residual spindle neoplastic cells arranged in a storiform pattern, with deposition of trabecular collagen matrix and osteoid, which tended to maturation in the peripheral portions of the lesion. RANK and RANKL expression was variable, with no significant variation after treatment. Moreover, we did not observe any significant modification of the expression of the osteoblastic markers SATB2 and RUNX2. Denosumab treatment determined a significant reduction of the proliferative index and of tumour angiogenesis (p=0.001, Wilcoxon rank-sum test). CONCLUSIONS These results indicate that denosumab induces a partial maturation towards the osteoblastic phenotype of the neoplastic cells of GCTB, with production of fibrous and osteoid matrix, but with minor immunophenotypical changes. Finally, we first report an antiangiogenic activity of denosumab in GCTB, possibly mediated by a RANKL-dependent pathway.
Collapse
Affiliation(s)
- Ilaria Girolami
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Irene Mancini
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Antonella Simoni
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | | | - Lisa Simi
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Domenico Campanacci
- Department of Orthopaedic Oncology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Giovanni Beltrami
- Department of Orthopaedic Oncology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Guido Scoccianti
- Department of Orthopaedic Oncology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Antonio D'Arienzo
- Department of Orthopaedic Oncology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Rodolfo Capanna
- Department of Orthopaedic Oncology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Alessandro Franchi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| |
Collapse
|
224
|
Pan H, Li X, Wang J, Zhang K, Yang H, Li Z, Zheng Z, Liu H. LIM Mineralization Protein-1 Enhances Bone Morphogenetic Protein-2-Mediated Osteogenesis Through Activation of ERK1/2 MAPK Pathway and Upregulation of Runx2 Transactivity. J Bone Miner Res 2015; 30:1523-35. [PMID: 25677945 DOI: 10.1002/jbmr.2481] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/31/2015] [Accepted: 02/10/2015] [Indexed: 12/16/2022]
Abstract
LIM mineralization protein-1 (LMP-1) is an intracellular regulator of bone formation. Upregulation of bone morphogenetic proteins (BMPs) and stabilization of BMP/Smad signaling have been proven to be the key mechanisms through which LMP-1 enhances osteogenesis. However, how LMP-1 regulates BMPs expression and related bone formation remains unclear. In this study, a LMP-1-induced osteogenesis cell model was used to study the molecular action of LMP-1 on BMP-2 expression and bone formation. The results show that overexpression of LMP-1 significantly increases, whereas downregulation of endogenous LMP-1 decreases BMP-2 expression and bone formation. Antagonism of BMP-2 with noggin or short hairpin BMP-2 significantly attenuates the osteoinductive effect of LMP-1, suggesting that the osteoinductive effect of LMP-1 is mediated by BMP-2. LMP-1 regulation of BMP-2 is found to occur at the transcription level using a luciferase reporter assay with a reporter construct containing a BMP-2 promoter. A promoter deletion assay reveals that -1000/-500 bp is the key regulated region by LMP-1. A Runx2-binding site is then located at -934/-920 bp and confirmed by luciferase assay using a reporter construct containing repeats of this Runx2-binding site and the site-directed mutagenesis analysis. Overexpression of LMP-1 significantly increases Runx2 expression. Downregulation of Runx2 expression significantly decreases BMP-2 promoter activity and BMP-2 expression. A ChIP assay demonstrates that LMP-1 increases the interaction between Runx2 and BMP-2 promoter. A luciferase reporter assay using the OSE2 promoter containing a Runx2-binding site confirms that Runx2 transactivity can be upregulated by LMP-1. Moreover, inhibiting the activation of different pathways with specific pathway inhibitors reveals that ERK1/2 MAPK activation is essential for LMP-1-induced upregulation of Runx2 transactivity and subsequent BMP-2 expression. In conclusion, our novel findings describe a positive regulatory effect of LMP-1 on BMP-2 expression and BMP-2-mediated osteogenesis. This effect occurs through activation of ERK1/2 pathway and subsequent upregulation of Runx2 transactivity.
Collapse
Affiliation(s)
- Hehai Pan
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianru Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kuibo Zhang
- Department of Orthopedics, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Yang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zemin Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
225
|
Joshi S, Clapp WL, Wang W, Khan SR. Osteogenic changes in kidneys of hyperoxaluric rats. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2000-12. [PMID: 26122267 DOI: 10.1016/j.bbadis.2015.06.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/30/2015] [Accepted: 06/25/2015] [Indexed: 02/06/2023]
Abstract
Many calcium oxalate (CaOx) kidney stones develop attached to renal papillary sub-epithelial deposits of calcium phosphate (CaP), called Randall's plaque (RP). Pathogenesis of the plaques is not fully understood. We hypothesize that abnormal urinary environment in stone forming kidneys leads to epithelial cells losing their identity and becoming osteogenic. To test our hypothesis male rats were made hyperoxaluric by administration of hydroxy-l-proline (HLP). After 28days, rat kidneys were extracted. We performed genome wide analyses of differentially expressed genes and determined changes consistent with dedifferentiation of epithelial cells into osteogenic phenotype. Selected molecules were further analyzed using quantitative-PCR and immunohistochemistry. Genes for runt related transcription factors (RUNX1 and 2), zinc finger protein Osterix, bone morphogenetic proteins (BMP2 and 7), bone morphogenetic protein receptor (BMPR2), collagen, osteocalcin, osteonectin, osteopontin (OPN), matrix-gla-protein (MGP), osteoprotegrin (OPG), cadherins, fibronectin (FN) and vimentin (VIM) were upregulated while those for alkaline phosphatase (ALP) and cytokeratins 10 and 18 were downregulated. In conclusion, epithelial cells of hyperoxaluric kidneys acquire a number of osteoblastic features but without CaP deposition, perhaps a result of downregulation of ALP and upregulation of OPN and MGP. Plaque formation may additionally require localized increases in calcium and phosphate and decrease in mineralization inhibitory potential.
Collapse
Affiliation(s)
- Sunil Joshi
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - William L Clapp
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Wei Wang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Saeed R Khan
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States; Department of Urology, College of Medicine, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
226
|
Abstract
The Hedgehog (Hh) signalling pathway plays many important roles in development, homeostasis and tumorigenesis. The critical function of Hh signalling in bone formation has been identified in the past two decades. Here, we review the evolutionarily conserved Hh signalling mechanisms with an emphasis on the functions of the Hh signalling pathway in bone development, homeostasis and diseases. In the early stages of embryonic limb development, Sonic Hedgehog (Shh) acts as a major morphogen in patterning the limb buds. Indian Hedgehog (Ihh) has an essential function in endochondral ossification and induces osteoblast differentiation in the perichondrium. Hh signalling is also involved intramembrane ossification. Interactions between Hh and Wnt signalling regulate cartilage development, endochondral bone formation and synovial joint formation. Hh also plays an important role in bone homeostasis, and reducing Hh signalling protects against age-related bone loss. Disruption of Hh signalling regulation leads to multiple bone diseases, such as progressive osseous heteroplasia. Therefore, understanding the signalling mechanisms and functions of Hh signalling in bone development, homeostasis and diseases will provide important insights into bone disease prevention, diagnoses and therapeutics.
Collapse
|
227
|
Lynch PJ, Thompson EE, McGinnis K, Rovira Gonzalez YI, Lo Surdo J, Bauer SR, Hursh DA. Chromatin Changes at thePPAR-γ2Promoter During Bone Marrow-Derived Multipotent Stromal Cell Culture Correlate With Loss of Gene Activation Potential. Stem Cells 2015; 33:2169-81. [DOI: 10.1002/stem.1967] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 01/06/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Patrick J. Lynch
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration; Bethesda Maryland USA
| | - Elaine E. Thompson
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration; Bethesda Maryland USA
| | - Kathleen McGinnis
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration; Bethesda Maryland USA
| | - Yazmin I. Rovira Gonzalez
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration; Bethesda Maryland USA
| | - Jessica Lo Surdo
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration; Bethesda Maryland USA
| | - Steven R. Bauer
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration; Bethesda Maryland USA
| | - Deborah A. Hursh
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration; Bethesda Maryland USA
| |
Collapse
|
228
|
Fang S, Deng Y, Gu P, Fan X. MicroRNAs regulate bone development and regeneration. Int J Mol Sci 2015; 16:8227-53. [PMID: 25872144 PMCID: PMC4425078 DOI: 10.3390/ijms16048227] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/18/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous small noncoding ~22-nt RNAs, which have been reported to play a crucial role in maintaining bone development and metabolism. Osteogenesis originates from mesenchymal stem cells (MSCs) differentiating into mature osteoblasts and each period of bone formation is inseparable from the delicate regulation of various miRNAs. Of note, apprehending the sophisticated circuit between miRNAs and osteogenic homeostasis is of great value for artificial skeletal regeneration for severe bone defects. In this review, we highlight how different miRNAs interact with diverse osteo-related genes and endeavor to sketch the contours of potential manipulations of miRNA-modulated bone repair.
Collapse
Affiliation(s)
- Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| | - Yuan Deng
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
229
|
Kang IH, Jeong BC, Hur SW, Choi H, Choi SH, Ryu JH, Hwang YC, Koh JT. MicroRNA-302a stimulates osteoblastic differentiation by repressing COUP-TFII expression. J Cell Physiol 2015; 230:911-21. [PMID: 25215426 DOI: 10.1002/jcp.24822] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 09/05/2014] [Indexed: 12/20/2022]
Abstract
Chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) is a potent transcription factor that represses osteoblast differentiation and bone formation. Previously, we observed that stimuli for osteoblast differentiation, such as bone morphogenetic protein 2 (BMP2), inhibits COUP-TFII expression. This study was undertaken to identify BMP2-regulated and COUP-TFII-targeting microRNAs (miRNAs), and to explore their regulatory roles in osteoblast differentiation. Based on in silico analysis, 12 miRNAs were selected and their expression in BMP2-treated MC3T3-E1 cells was examined. BMP2 induced miR-302a expression in dose- and time-dependent manners with the decrease in COUP-TFII expression. Runx2, a BMP2-downstream transcription factor, specifically regulated miR-302a expression and its promoter activity. A computer-based prediction algorithm led to the identification of two miR-302a binding sites on the 3'-untranslational region of COUP-TFII mRNA (S1: 620-626 bp, S2: 1,016-1,022 bp), and a luciferase assay showed that miR-302a directly targeted S1 and S2. Transfection of miR-302a precursor significantly enhanced expression of osteogenic marker genes with decreasing COUP-TFII mRNA and protein level, alkaline phosphatase activity and matrix mineralization. On the other hand, inhibition of miR-302a significantly attenuated BMP2-induced osteoblast specific gene expression, alkaline phosphatase activity, and matrix mineralization with increasing COUP-TFII mRNA and protein level. These results indicate that miR-302a is induced by osteogenic stimuli and promotes osteoblast differentiation by targeting COUP-TFII. MiR-302a could be a positive regulator for osteoblast differentiation.
Collapse
Affiliation(s)
- In-Hong Kang
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea; Research Center for Biomineralization Disorders and Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
230
|
McCarty MF, DiNicolantonio JJ. The Molecular Biology and Pathophysiology of Vascular Calcification. Postgrad Med 2015; 126:54-64. [DOI: 10.3810/pgm.2014.03.2740] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
231
|
Sun SS, Zhang L, Yang J, Zhou X. Role of runt-related transcription factor 2 in signal network of tumors as an inter-mediator. Cancer Lett 2015; 361:1-7. [PMID: 25727319 DOI: 10.1016/j.canlet.2015.02.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/20/2015] [Accepted: 02/20/2015] [Indexed: 10/23/2022]
Abstract
Runt-related transcription factor 2 (RUNX2) is a member of the polyomavirus enhancer-binding protein 2/core-binding factor superfamily. RUNX2 is known for its contribution to osteoblast phenotype and bone formation. In recent years, increasing attention has been focused on the relationship of Runx2 with tumorigenesis. In different types of tumor cells, RUNX2 cooperates with its co-activators or co-inhibitors, and mediates the responses of cells to various signaling pathways that are hyperactive in tumors. Thus, several downstream target genes of RUNX2 are activated when RUNX2 interacts with its co-factors, leading to a variety of effects on tumor cells (epithelial-mesenchymal transition, metastasis, proliferation, and osteolytic lesion). This review focuses on the involvement of RUNX2 in tumor cells in the crosstalk of diverse signaling pathways and its multiple functions to develop optimal and feasible approaches for clinical treatment based on the functions of RUNX2.
Collapse
Affiliation(s)
- Shan-Shan Sun
- The Maxillary Facial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer, Institute & Hospital, Tianjin Key Laboratory of Cancer, Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin 300060, China
| | - Lun Zhang
- The Maxillary Facial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer, Institute & Hospital, Tianjin Key Laboratory of Cancer, Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin 300060, China
| | - Jingxuan Yang
- Department of Medicine, University of Oklahoma Health Science Center, Stanton L. Young Biomedical, Research Center, BRC I264, Oklahoma City, OK 73 104, USA
| | - Xuan Zhou
- The Maxillary Facial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer, Institute & Hospital, Tianjin Key Laboratory of Cancer, Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin 300060, China.
| |
Collapse
|
232
|
Han J, Xu X, Zhang B, Chen B, Hang W. Expression of ATF4 and RUNX2 in periodontal tissue of pressure side during orthodontic tooth movement in rat. Int J Clin Exp Med 2015; 8:934-938. [PMID: 25785078 PMCID: PMC4358533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVE This study aims to explore the expression levels of ATF4 and RUNX and their interactions in periodontal tissue of the pressure side during orthodontic tooth movement. METHODS A total of 72 SPF level male Sprague Dawley rats were used in this study, they were divided into 9 groups randomly and 8 rats in each group. The expression changes of ATF4 and RUNX2 in periodontal tissue of pressure side at different straining time point were detected with RT-PCR and Western blotting methods. The morphological changes of cells in the tissue samples were observed by HE staining. The data were analyzed with SPSS 19.0 software. RESULTS The expression levels of ATF4 and RUNX2 increased during orthodontic tooth movement and were related with the movement time. They reached highest after straining for 24 h and began to decrease after straining for 12 d. CONCLUSIONS The expression levels of ATF4 and RUNX2 in periodontal tissue can increase transiently induced by stress, which play a role in the process of osteogenesis and reconstruction of periodontal tissue during orthodontic tooth movement.
Collapse
Affiliation(s)
- Jinyou Han
- Department of Stomatology, Liaocheng People’s HospitalShandong Province, Liaocheng 252000, China
| | - Xiaodong Xu
- Hangzhou Normal University School of MedicineZhejiang Province, Hangzhou 310036, China
| | - Bin Zhang
- Department of Stomatology, Liaocheng People’s HospitalShandong Province, Liaocheng 252000, China
| | - Baoxing Chen
- Department of Stomatology, Liaocheng People’s HospitalShandong Province, Liaocheng 252000, China
| | - Wangyan Hang
- Department of Stomatology, Liaocheng People’s HospitalShandong Province, Liaocheng 252000, China
| |
Collapse
|
233
|
Feng X, Huang D, Lu X, Feng G, Xing J, Lu J, Xu K, Xia W, Meng Y, Tao T, Li L, Gu Z. Insulin-like growth factor 1 can promote proliferation and osteogenic differentiation of human dental pulp stem cells via mTOR pathway. Dev Growth Differ 2014; 56:615-24. [PMID: 25388971 DOI: 10.1111/dgd.12179] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 08/23/2014] [Accepted: 08/25/2014] [Indexed: 01/05/2023]
Abstract
Insulin-like growth factor 1 (IGF-1) is a multifunctional peptide that can enhance osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs). However, it remains unclear whether IGF-1 can promote osteogenic differentiation of human dental pulp stem cells (DPSCs). In our study, DPSCs were isolated from the impacted third molars, and treated with IGF-1. Osteogenic differentiation abilities were investigated. We found that IGF-1 activated the mTOR signaling pathway during osteogenic differentiation of DPSCs. IGF-1 also increased the expression of runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osterix (OSX) and collagen type I (COL I) during this process. Rapamycin, an mTOR inhibitor, blocked osteogenic differentiation induced by IGF-1. Meanwhile, CCK-8 assay and flow cytometry results demonstrated that 10-200 ng/mL IGF-1 could enhance proliferation ability of DPSCs and 100 ng/mL was the optimal concentration. In summary, IGF-1 could promote proliferation and osteogenic differentiation of DPSCs via mTOR pathways, which might have clinical implications for osteoporosis.
Collapse
Affiliation(s)
- Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Filipowska J, Pawlik J, Cholewa-Kowalska K, Tylko G, Pamula E, Niedzwiedzki L, Szuta M, Laczka M, Osyczka AM. Incorporation of sol–gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties. Biomed Mater 2014; 9:065001. [DOI: 10.1088/1748-6041/9/6/065001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
235
|
Zancan I, Bellesso S, Costa R, Salvalaio M, Stroppiano M, Hammond C, Argenton F, Filocamo M, Moro E. Glucocerebrosidase deficiency in zebrafish affects primary bone ossification through increased oxidative stress and reduced Wnt/β-catenin signaling. Hum Mol Genet 2014; 24:1280-94. [PMID: 25326392 DOI: 10.1093/hmg/ddu538] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Loss of lysosomal glucocerebrosidase (GBA1) function is responsible for several organ defects, including skeletal abnormalities in type 1 Gaucher disease (GD). Enhanced bone resorption by infiltrating macrophages has been proposed to lead to major bone defects. However, while more recent evidences support the hypothesis that osteoblastic bone formation is impaired, a clear pathogenetic mechanism has not been depicted yet. Here, by combining different molecular approaches, we show that Gba1 loss of function in zebrafish is associated with defective canonical Wnt signaling, impaired osteoblast differentiation and reduced bone mineralization. We also provide evidence that increased reactive oxygen species production precedes the Wnt signaling impairment, which can be reversed upon human GBA1 overexpression. Type 1 GD patient fibroblasts similarly exhibit reduced Wnt signaling activity, as a consequence of increased β-catenin degradation. Our results support a novel model in which a primary defect in canonical Wnt signaling antecedes bone defects in type 1 GD.
Collapse
Affiliation(s)
| | | | | | | | - Marina Stroppiano
- Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche Istituto Giannina Gaslini, Genova 16147, Italy and
| | - Chrissy Hammond
- Department of Biochemistry, Physiology & Pharmacology, University of Bristol, BS8 1TD Bristol, UK
| | | | - Mirella Filocamo
- Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche Istituto Giannina Gaslini, Genova 16147, Italy and
| | | |
Collapse
|
236
|
Artigas N, Ureña C, Rodríguez-Carballo E, Rosa JL, Ventura F. Mitogen-activated protein kinase (MAPK)-regulated interactions between Osterix and Runx2 are critical for the transcriptional osteogenic program. J Biol Chem 2014; 289:27105-27117. [PMID: 25122769 PMCID: PMC4175347 DOI: 10.1074/jbc.m114.576793] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/06/2014] [Indexed: 11/06/2022] Open
Abstract
The transcription factors Runx2 and Osx (Osterix) are required for osteoblast differentiation and bone formation. Runx2 expression occurs at early stages of osteochondroprogenitor determination, followed by Osx induction during osteoblast maturation. We demonstrate that coexpression of Osx and Runx2 leads to cooperative induction of expression of the osteogenic genes Col1a1, Fmod, and Ibsp. Functional interaction of Osx and Runx2 in the regulation of these promoters is mediated by enhancer regions with adjacent Sp1 and Runx2 DNA-binding sites. These enhancers allow formation of a cooperative transcriptional complex, mediated by the binding of Osx and Runx2 to their specific DNA promoter sequences and by the protein-protein interactions between them. We also identified the domains involved in the interaction between Osx and Runx2. These regions contain the amino acids in Osx and Runx2 known to be phosphorylated by p38 and ERK MAPKs. Inhibition of p38 and ERK kinase activities or mutation of their known phosphorylation sites in Osx or Runx2 strongly disrupts their physical interaction and cooperative transcriptional effects. Altogether, our results provide a molecular description of a mechanism for Osx and Runx2 transcriptional cooperation that is subject to further regulation by MAPK-activating signals during osteogenesis.
Collapse
Affiliation(s)
- Natalia Artigas
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), E-08907 L'Hospitalet de Llobregat, Spain
| | - Carlos Ureña
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), E-08907 L'Hospitalet de Llobregat, Spain
| | - Edgardo Rodríguez-Carballo
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), E-08907 L'Hospitalet de Llobregat, Spain
| | - José Luis Rosa
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), E-08907 L'Hospitalet de Llobregat, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), E-08907 L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
237
|
Pawlowska E, Wysokiński D, Tokarz P, Piastowska-Ciesielska A, Szczepanska J, Blasiak J. Dexamethasone and 1,25-dihydroxyvitamin D3 reduce oxidative stress-related DNA damage in differentiating osteoblasts. Int J Mol Sci 2014; 15:16649-64. [PMID: 25244015 PMCID: PMC4200756 DOI: 10.3390/ijms150916649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/13/2014] [Accepted: 09/09/2014] [Indexed: 01/22/2023] Open
Abstract
The process of osteoblast differentiation is regulated by several factors, including RUNX2. Recent reports suggest an involvement of RUNX2 in DNA damage response (DDR), which is important due to association of differentiation with oxidative stress. In the present work we explore the influence of two RUNX2 modifiers, dexamethasone (DEX) and 1,25-dihydroxyvitamin D3 (1,25-D3), in DDR in differentiating MC3T3-E1 preosteoblasts challenged by oxidative stress. The process of differentiation was associated with reactive oxygen species (ROS) production and tert-butyl hydroperoxide (TBH) reduced the rate of differentiation. The activity of alkaline phosphatase (ALP), a marker of the process of osteoblasts differentiation, increased in a time-dependent manner and TBH further increased this activity. This may indicate that additional oxidative stress, induced by TBH, may accelerate the differentiation process. The cells displayed changes in the sensitivity to TBH in the course of differentiation. DEX increased ALP activity, but 1,25-D3 had no effect on it. These results suggest that DEX might stimulate the process of preosteoblasts differentiation. Finally, we observed a protective effect of DEX and 1,25-D3 against DNA damage induced by TBH, except the day 24 of differentiation, when DEX increased the extent of TBH-induced DNA damage. We conclude that oxidative stress is associated with osteoblasts differentiation and induce DDR, which may be modulated by RUNX2-modifiers, DEX and 1,25-D3.
Collapse
Affiliation(s)
- Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland.
| | - Daniel Wysokiński
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Paulina Tokarz
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | | | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
238
|
Synergistic effect of Indian hedgehog and bone morphogenetic protein-2 gene transfer to increase the osteogenic potential of human mesenchymal stem cells. Stem Cell Res Ther 2014; 4:105. [PMID: 24004723 PMCID: PMC3854715 DOI: 10.1186/scrt316] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/02/2013] [Indexed: 01/08/2023] Open
Abstract
Introduction To stimulate healing of large bone defects research has concentrated on the application of mesenchymal stem cells (MSCs). Methods In the present study, we induced the overexpression of the growth factors bone morphogenetic protein 2 (BMP-2) and/or Indian hedgehog (IHH) in human MSCs by adenoviral transduction to increase their osteogenic potential. GFP and nontransduced MSCs served as controls. The influence of the respective genetic modification on cell metabolic activity, proliferation, alkaline phosphatase (ALP) activity, mineralization in cell culture, and osteogenic marker gene expression was investigated. Results Transduction had no negative influence on cell metabolic activity or proliferation. ALP activity showed a typical rise-and-fall pattern with a maximal activity at day 14 and 21 after osteogenic induction. Enzyme activity was significantly higher in groups cultured with osteogenic media. The overexpression of BMP-2 and especially IHH + BMP-2 resulted in a significantly higher mineralization after 28 days. This was in line with obtained quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analyses, which showed a significant increase in osteopontin and osteocalcin expression for osteogenically induced BMP-2 and IHH + BMP-2 transduced cells when compared with the other groups. Moreover, an increase in runx2 expression was observed in all osteogenic groups toward day 21. It was again more pronounced for BMP-2 and IHH + BMP-2 transduced cells cultured in osteogenic media. Conclusions In summary, viral transduction did not negatively influence cell metabolic activity and proliferation. The overexpression of BMP-2 in combination with or without IHH resulted in an increased deposition of mineralized extracellular matrix, and expression of osteogenic marker genes. Viral transduction therefore represents a promising means to increase the osteogenic potential of MSCs and the combination of different transgenes may result in synergistic effects.
Collapse
|
239
|
Hayrapetyan A, Jansen JA, van den Beucken JJJP. Signaling pathways involved in osteogenesis and their application for bone regenerative medicine. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:75-87. [PMID: 25015093 DOI: 10.1089/ten.teb.2014.0119] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bone regeneration is a well organized but complex physiological process, in which different cell types and their activated signaling pathways are involved. In bone regeneration and remodeling processes, mesenchymal stem cells (MSCs) have a crucial role, and their differentiation during these processes is regulated by specific signaling molecules (growth factors/cytokines and hormones) and their activated intracellular networks. Especially the utilization of the molecular machinery seems crucial to consider prior to developing bone implants, bone-substitute materials, and cell-based constructs for bone regeneration. The aim of this review is to provide an overview of the signaling mechanisms involved in bone regeneration and remodeling and the osteogenic potential of MSCs to become a key cellular resource for such regeneration and remodeling processes. Additionally, an overview of possibilities to beneficially exploit cell signaling processes to optimize bone regeneration is provided.
Collapse
|
240
|
Robubi A, Berger C, Schmid M, Huber KR, Engel A, Krugluger W. Gene expression profiles induced by growth factors in in vitro cultured osteoblasts. Bone Joint Res 2014; 3:236-40. [PMID: 25057185 PMCID: PMC4112778 DOI: 10.1302/2046-3758.37.2000231] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Objectives Effects of insulin-like growth factor 1 (IGF1), fibroblast growth
factor 2 (FGF2) and bone morphogenetic protein 2 (BMP2) on the expression
of genes involved in the proliferation and differentiation of osteoblasts
in culture were analysed. The best sequence of growth factor addition
that induces expansion of cells before their differentiation was
sought. Methods Primary human osteoblasts in in vitro culture
were treated with IGF1, BMP2 or FGF2 (10 ng/ml) for 24 hours (IGF1)
or 48 hours (BMP2 and FGF2). Experiments were performed during the
exponential growth phase with approximately 1e7 cells per 75 cm2 flask.
mRNA was reverse transcribed directly and analysed using RT-PCR
Taqman assays. Expression levels of key genes involved in cell growth
and differentiation (CDH11, TNFRSF11B, RUNX2, POSTN, ALP, WNT5A,
LEF1, HSPA5, FOS, p21) were monitored using RT-PCR with gene-specific
Taqman probes. Results Autocrine expression of BMP2 is stimulated by FGF2 and BMP2 itself.
BMP2 and FGF2 act as proliferative factors as indicated by reduced
expression of ALP and POSTN, whereas IGF1 exhibits a more subtle
picture: the Wingless und Int-1 (Wnt) signalling pathway and the
Smad pathway, but not p38 mitogen-activated protein (MAP) kinase signalling,
were shown to be activated by IGF1, leading to proliferation and
differentiation of the cells. Conclusions For future use of autologous bone cells in the management of
bony defects, new treatment options take advantage of growth factors
and differentiation factors. Thus, our results might help to guide
the timely application of these factors for the expansion and subsequent
differentiation of osteoblastic cells in culture. Cite this article: Bone Joint Res 2014;3:236–40.
Collapse
Affiliation(s)
- A Robubi
- Donauspital, Department of Laboratory Medicine, Langobardenstr. 122, 1220 Wien, Austria
| | - C Berger
- Donauspital, Department of Orthopaedics, Langobardenstr. 122, 1220 Wien, Austria
| | - M Schmid
- Donauspital, Department of Laboratory Medicine, Langobardenstr. 122, 1220 Wien, Austria
| | - K R Huber
- Donauspital, Department of Laboratory Medicine, Langobardenstr. 122, 1220 Wien, Austria
| | - A Engel
- Donauspital, Department of Orthopaedics, Langobardenstr. 122, 1220 Wien, Austria
| | - W Krugluger
- Donauspital, Department of Laboratory Medicine, Langobardenstr. 122, 1220 Wien, Austria
| |
Collapse
|
241
|
Nuclear translocation of CBP/p300-interacting protein CITED1 induced by parathyroid hormone requires serine phosphorylation at position 79 in its 63-84 domain. Cell Signal 2014; 26:2436-45. [PMID: 25049079 DOI: 10.1016/j.cellsig.2014.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 01/01/2023]
Abstract
The transcriptional cofactor CITED1 inhibits osteoblastic differentiation and blunts the stimulation of osteoblastic differentiation by parathyroid hormone (PTH). In the MC3T3-E1 osteoblastic cell line, we found that CITED1 was located predominantly in the cytoplasm and that hPTH(1-34) increased translocation of CITED1 from the cytoplasm to the nucleus. This response to hPTH(1-34) was not observed when all 9 serine residues within the 63-84 domain of CITED1 were mutated to alanines (CITED1 9S>A) or when a single serine to alanine mutation was made at position 79 (CITED1 S(79)>A). CITED1 containing mutations of these 9 serines to glutamic acid (9S>E) retained the same nuclear translocation response to hPTH(1-34) as the wild type CITED1. ALP activity and formation of mineralized nodules were inhibited in cells transfected with pcDNA3-CFP-CITED1 or with pcDNA3-CFP-CITED1 9S>E with or without hPTH(1-34) treatment (all P<0.05); these changes were not observed using CITED1 9S>A. Cells exposed to intermittent treatment with hPTH(1-34) expressed more ALP2, Runx2 and osteocalcin than vehicle-treated cells. These effects of hPTH(1-34) were inhibited in cells transfected with pcDNA3-CFP-CITED1 or pcDNA3-CFP-CITED1 9S>E, but were slightly enhanced by the alanine mutants. PKC activator (TPA) increased nuclear translocation of CITED1, whereas a PKC inhibitor (Go6983) blunted the effect of hPTH(1-34) on the nuclear translocation of wildtype CITED1 but not of CITED1 S(79)>E. The data indicated that serine phosphorylation at position 79 in the 63-84 domain is associated with PKC activation, and is required for both CITED1 nuclear translocation induced by PTH and the negative effects of CITED1 on osteoblastic differentiation and mineralization.
Collapse
|
242
|
Plaisancié J, Collet C, Pelletier V, Perdomo Y, Studer F, Fradin M, Schaefer E, Speeg-Schatz C, Bloch-Zupan A, Flori E, Dollfus H. MSX2 Gene Duplication in a Patient with Eye Development Defects. Ophthalmic Genet 2014; 36:353-8. [PMID: 24666290 DOI: 10.3109/13816810.2014.886270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND MSX2 mutations are a very rare cause of craniosynostosis. Gain-of-function mutations may lead to the Boston-type craniosynostosis with limb defects and refraction errors, whereas loss-of-function mutations causes primary osseous defects such as enlarged parietal foramina. MATERIALS AND METHODS Herein we report the case of a child with bicoronal synostosis and cutaneous syndactylies, who presented iridal and chorioretinal colobomas. Due to the craniofacial features that were prominent in the clinical picture, the genes involved in craniosynostosis were explored. RESULTS The patient disclosed an intragenic duplication of the entire MSX2 gene whereas no mutation was identified in any major genes known to be involved in craniosynostosis. CONCLUSION This is the first report of an eye development defect due to an increase in the MSX2 copy number in a human being. The implication of this gene in eye development has already been shown in several animal models. Indeed, overexpression of the Msx2 gene in a mouse model resulted also in optic nerve aplasia and microphthalmia. This report expands the phenotypic spectrum of the MSX2 mutations impacting early ocular development knowledge.
Collapse
Affiliation(s)
- Julie Plaisancié
- a Centre de référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), Hôpital Civil , Strasbourg , France
| | - Corinne Collet
- b Service de Biochimie et Biologie Moléculaire, Hôpital Lariboisière , Paris , France
| | - Valerie Pelletier
- a Centre de référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), Hôpital Civil , Strasbourg , France
| | - Yaumara Perdomo
- a Centre de référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), Hôpital Civil , Strasbourg , France
| | - Fouzia Studer
- a Centre de référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), Hôpital Civil , Strasbourg , France
| | - Mélanie Fradin
- c Service de Génétique Médicale, Hôpital de Hautepierre , Strasbourg , France
| | - Elise Schaefer
- c Service de Génétique Médicale, Hôpital de Hautepierre , Strasbourg , France
| | | | - Agnès Bloch-Zupan
- e Reference Centre for Orodental Manifestations of Rare Diseases, Pôle de Médecine et Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg , Strasbourg , France
| | - Elisabeth Flori
- f Laboratoire de Cytogénétique , Hôpital de Hautepierre , Strasbourg , France , and
| | - Hélène Dollfus
- a Centre de référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), Hôpital Civil , Strasbourg , France .,c Service de Génétique Médicale, Hôpital de Hautepierre , Strasbourg , France .,g Laboratoire de Génétique Médicale , INSERM U1112 , Strasbourg , France
| |
Collapse
|
243
|
Markunas CA, Enterline DS, Dunlap K, Soldano K, Cope H, Stajich J, Grant G, Fuchs H, Gregory SG, Ashley-Koch AE. Genetic evaluation and application of posterior cranial fossa traits as endophenotypes for Chiari type I malformation. Ann Hum Genet 2013; 78:1-12. [PMID: 24359474 DOI: 10.1111/ahg.12041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/21/2013] [Indexed: 11/29/2022]
Abstract
Chiari Type I Malformation (CMI) is characterized by herniation of the cerebellar tonsils through the base of the skull. Although cerebellar tonsillar herniation (CTH) is hypothesized to result from an underdeveloped posterior cranial fossa (PF), patients are frequently diagnosed by the extent of CTH without cranial morphometric assessment. We recently completed the largest CMI whole genome qualitative linkage screen to date. Despite an initial lack of statistical evidence, stratified analyses using clinical criteria to reduce heterogeneity resulted in a striking increase in evidence for linkage. The present study focused on the use of cranial base morphometrics to further dissect this heterogeneity and increase power to identify disease genes. We characterized the genetic contribution for a series of PF traits and evaluated the use of heritable, disease-relevant PF traits in ordered subset analysis (OSA). Consistent with a genetic hypothesis for CMI, much of the PF morphology was found to be heritable and multiple genomic regions were strongly implicated from OSA, including regions on Chromosomes 1 (LOD = 3.07, p = 3 × 10(-3) ) and 22 (LOD = 3.45, p = 6 × 10(-5) ) containing several candidates warranting further investigation. This study underscores the genetic heterogeneity of CMI and the utility of PF traits in CMI genetic studies.
Collapse
|
244
|
Janssen A, Hosen MJ, Jeannin P, Coucke PJ, De Paepe A, Vanakker OM. Second family with the Boston-type craniosynostosis syndrome: novel mutation and expansion of the clinical spectrum. Am J Med Genet A 2013; 161A:2352-7. [PMID: 23918290 DOI: 10.1002/ajmg.a.36077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/03/2013] [Indexed: 11/08/2022]
Abstract
Craniosynostosis, caused by early fusion of one or more cranial sutures, can affect the coronal or lambdoid sutures, or include premature fusion of the sagittal (scaphocephaly) or metopic suture (trigonocephaly). Often occurring as isolated finding, their co-existence in a craniosynostosis syndrome is infrequent. We describe a four-generation family with variable expression of a craniosynostosis phenotype with scaphocephaly and a particularly severe trigonocephaly. Molecular analysis revealed a missense mutation in the MSX2-associated with the Boston-type craniosynostosis syndrome-affecting the same amino-acid residue as in the original Boston family. Besides unique features such as the cranial sutures involved, minor limb abnormalities and incomplete penetrance, our patients share with the original family autosomal dominant inheritance and the presence of multiple endocranial erosions on CT imaging. Though these findings appear to be important diagnostic clues for MSX2-related craniosynostosis, it is noteworthy that the first affected generation in this family presented merely with isolated sagittal or unicoronal craniosynostosis and cutaneous syndactyly. Molecular analysis of MSX2 should therefore be considered in patients with isolated scaphocephaly/unicoronal synostosis, especially in the presence of a family history for craniosynostosis or syndactyly.
Collapse
Affiliation(s)
- Alexander Janssen
- Department of Neurosurgery, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
245
|
Abstract
Small cell lung cancer (SCLC) accounts for nearly 15% of human lung cancers and is one of the most aggressive solid tumors. The SCLC cells are thought to derive from self-renewing pulmonary neuroendocrine cells by oncogenic transformation. However, whether the SCLC cells possess stemness and plasticity for differentiation as normal stem cells has not been well understood thus far. In this study, we investigated the expressions of multilineage stem cell markers in the cancer cells of SCLC cell line (NCI-H446) and analyzed their clonogenicity, tumorigenicity, and plasticity for inducing differentiation. It has been found that most cancer cells of the cell line expressed multilineage stem cell markers under the routine culture conditions and generated single-cell clones in anchorage-dependent or -independent conditions. These cancer cells could form subcutaneous xenograft tumors and orthotopic lung xenograft tumors in BALB/C-nude mice. Most cells in xenograft tumors expressed stem cell markers and proliferation cell nuclear antigen Ki67, suggesting that these cancer cells remained stemness and highly proliferative ability in vivo. Intriguingly, the cancer cells could be induced to differentiate into neurons, adipocytes, and osteocytes, respectively, in vitro. During the processes of cellular phenotype-conversions, autophagy and apoptosis were two main metabolic events. There is cross-talking between autophagy and apoptosis in the differentiated cancer cells. In addition, the effects of the inhibitor and agonist for Sirtuin1/2 on the inducing osteogenic differentiation indicated that Sirtuin1/2 had an important role in this process. Taken together, these results indicate that most cancer cells of NCI-H446 cell line possess stemness and plasticity for multilineage differentiation. These findings have potentially some translational applications in treatments of SCLC with inducing differentiation therapy.
Collapse
|
246
|
Xue P, Wu X, Zhou L, Ma H, Wang Y, Liu Y, Ma J, Li Y. IGF1 promotes osteogenic differentiation of mesenchymal stem cells derived from rat bone marrow by increasing TAZ expression. Biochem Biophys Res Commun 2013; 433:226-31. [DOI: 10.1016/j.bbrc.2013.02.088] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 02/23/2013] [Indexed: 01/10/2023]
|