201
|
Jezierska S, Claus S, Van Bogaert INA. Identification and importance of mitochondrial citrate carriers and ATP citrate lyase for glycolipid production in Starmerella bombicola. Appl Microbiol Biotechnol 2020; 104:6235-6248. [PMID: 32474798 DOI: 10.1007/s00253-020-10702-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 09/16/2023]
Abstract
Starmerella bombicola is a non-conventional yeast commercially used as a microbial cell factory for sophorolipid production. Sophorolipids are glycolipid biosurfactants composed of a glucose disaccharide sophorose and a fatty acid. In de novo sophorolipid synthesis, the fatty acid moiety is derived from the fatty acid synthesis (FAS) complex; therefore, the yeast's lipid metabolism plays a crucial role in sophorolipid biosynthesis. As a fatty acid precursor, citric acid is a key primary metabolite that connects carbohydrate and lipid metabolism, and in S. bombicola, it also has a regulatory effect on sophorolipid composition and productivity. We aimed to identify the mitochondrial transporters involved in citrate shuttling and the ATP citrate lyase (Acl), the enzyme that converts citric acid into acetyl-CoA. Subsequently, we studied their role in the citric acid shuttle and glycolipid synthesis and the potential of citrate metabolism as a genetic manipulation target for increased glycolipid synthesis. Bioinformatics analyses predicted 32 mitochondrial carriers of which two were identified as citrate transporters, named SbCtp1 and SbYhm2. Deletion of these mitochondrial carriers led to a lesser sophorolipid yield and a shift in the lactonic/acidic sophorolipid ratio. However, only the knockout of SbYhm2 caused a decrease of citric and an increase of malic acid extracellular concentrations. Additionally, deletion of SbAcl1 had a negative effect on S. bombicola's specific growth rate and sophorolipid synthesis and contributed to extra- and intracellular citric acid accumulation. Unexpectedly, SbAcl1 overexpression also decreased glycolipid production.Key Points• Starmerella bombicola is an industrially relevant microbial cell factory for biosurfactant production.• There are 32 predicted mitochondrial carriers in S. bombicola.• Citrate mitochondrial carriers SbYhm2 and SbCtp1 are essential for glycolipid synthesis in S. bombicola.• Deletion of SbAcl1 negatively affects growth and sophorolipid production in S. bombicola. Graphical abstract.
Collapse
Affiliation(s)
- Sylwia Jezierska
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Silke Claus
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Inge N A Van Bogaert
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
202
|
Laforest M, Martin SL, Bisaillon K, Soufiane B, Meloche S, Page E. A chromosome-scale draft sequence of the Canada fleabane genome. PEST MANAGEMENT SCIENCE 2020; 76:2158-2169. [PMID: 31951071 DOI: 10.1002/ps.5753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Due to the accessibility of underlying technologies the 'Omics', in particular genomics, are becoming commonplace in several fields of research, including the study of agricultural pests. The weed community is starting to embrace these approaches; genome sequences have been made available in the past years, with several other sequencing projects underway, as promoted by the International Weed Genome Consortium. Chromosome-scale sequences are essential to fully exploit the power of genetics and genomics. RESULTS We report such an assembly for Conyza canadensis, an important agricultural weed. Third-generation sequencing technology was used to create a genome assembly of 426 megabases, of which nine chromosome-scale scaffolds cover more than 98% of the entire assembled sequence. As this weed was the first to be identified with glyphosate resistance, and since we do not have a firm handle on the genetic mechanisms responsible for several herbicide resistances in the species, the genome sequence was annotated with genes known to be associated with herbicide resistance. A high number of ABC-type transporters, cytochrome P450 and glycosyltransferases (159, 352 and 181, respectively) were identified among the list of ab initio predicted genes. CONCLUSION As C. canadensis has a small genome that is syntenic with other Asteraceaes, has a short life cycle and is relatively easy to cross, it has the potential to become a model weed species and, with the chromosome-scale genome sequence, contribute to a paradigm shift in the way non-target site resistance is studied. © 2020 Her Majesty the Queen in Right of CanadaPest Management Science © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Martin Laforest
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada Saint-Jean-sur-Richelieu, Quebec, Canada
| | - Sara L Martin
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Katherine Bisaillon
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada Saint-Jean-sur-Richelieu, Quebec, Canada
| | - Brahim Soufiane
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada Saint-Jean-sur-Richelieu, Quebec, Canada
| | - Sydney Meloche
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON, Canada
| | - Eric Page
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON, Canada
| |
Collapse
|
203
|
Dennis AB, Ballesteros GI, Robin S, Schrader L, Bast J, Berghöfer J, Beukeboom LW, Belghazi M, Bretaudeau A, Buellesbach J, Cash E, Colinet D, Dumas Z, Errbii M, Falabella P, Gatti JL, Geuverink E, Gibson JD, Hertaeg C, Hartmann S, Jacquin-Joly E, Lammers M, Lavandero BI, Lindenbaum I, Massardier-Galata L, Meslin C, Montagné N, Pak N, Poirié M, Salvia R, Smith CR, Tagu D, Tares S, Vogel H, Schwander T, Simon JC, Figueroa CC, Vorburger C, Legeai F, Gadau J. Functional insights from the GC-poor genomes of two aphid parasitoids, Aphidius ervi and Lysiphlebus fabarum. BMC Genomics 2020; 21:376. [PMID: 32471448 PMCID: PMC7257214 DOI: 10.1186/s12864-020-6764-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Parasitoid wasps have fascinating life cycles and play an important role in trophic networks, yet little is known about their genome content and function. Parasitoids that infect aphids are an important group with the potential for biological control. Their success depends on adapting to develop inside aphids and overcoming both host aphid defenses and their protective endosymbionts. RESULTS We present the de novo genome assemblies, detailed annotation, and comparative analysis of two closely related parasitoid wasps that target pest aphids: Aphidius ervi and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae). The genomes are small (139 and 141 Mbp) and the most AT-rich reported thus far for any arthropod (GC content: 25.8 and 23.8%). This nucleotide bias is accompanied by skewed codon usage and is stronger in genes with adult-biased expression. AT-richness may be the consequence of reduced genome size, a near absence of DNA methylation, and energy efficiency. We identify missing desaturase genes, whose absence may underlie mimicry in the cuticular hydrocarbon profile of L. fabarum. We highlight key gene groups including those underlying venom composition, chemosensory perception, and sex determination, as well as potential losses in immune pathway genes. CONCLUSIONS These findings are of fundamental interest for insect evolution and biological control applications. They provide a strong foundation for further functional studies into coevolution between parasitoids and their hosts. Both genomes are available at https://bipaa.genouest.org.
Collapse
Affiliation(s)
- Alice B Dennis
- Department of Aquatic Ecology, Eawag, 8600, Dübendorf, Switzerland.
- Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland.
- Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.
| | - Gabriel I Ballesteros
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, Talca, Chile
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Stéphanie Robin
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes, 35650, Le Rheu, France
- Université de Rennes 1, INRIA, CNRS, IRISA, 35000, Rennes, France
| | - Lukas Schrader
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | - Jens Bast
- Department of Ecology and Evolution, Université de Lausanne, 1015, Lausanne, Switzerland
- Institute of Zoology, Universität zu Köln, 50674, Köln, Germany
| | - Jan Berghöfer
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Maya Belghazi
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, PINT, PFNT, Marseille, France
| | - Anthony Bretaudeau
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes, 35650, Le Rheu, France
- Université de Rennes 1, INRIA, CNRS, IRISA, 35000, Rennes, France
| | - Jan Buellesbach
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | - Elizabeth Cash
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, CA, 94720, USA
| | | | - Zoé Dumas
- Department of Ecology and Evolution, Université de Lausanne, 1015, Lausanne, Switzerland
| | - Mohammed Errbii
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | | | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Elzemiek Geuverink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Joshua D Gibson
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Corinne Hertaeg
- Department of Aquatic Ecology, Eawag, 8600, Dübendorf, Switzerland
- Department of Environmental Systems Sciences, D-USYS, ETH Zürich, Zürich, Switzerland
| | - Stefanie Hartmann
- Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, F-78000, Versailles, France
| | - Mark Lammers
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | - Blas I Lavandero
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Ina Lindenbaum
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | | | - Camille Meslin
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, F-78000, Versailles, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, F-78000, Versailles, France
| | - Nina Pak
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, 85100, Potenza, Italy
| | - Chris R Smith
- Department of Biology, Earlham College, Richmond, IN, 47374, USA
| | - Denis Tagu
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes, 35650, Le Rheu, France
| | - Sophie Tares
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Tanja Schwander
- Department of Ecology and Evolution, Université de Lausanne, 1015, Lausanne, Switzerland
| | | | - Christian C Figueroa
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, Talca, Chile
| | - Christoph Vorburger
- Department of Aquatic Ecology, Eawag, 8600, Dübendorf, Switzerland
- Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Fabrice Legeai
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes, 35650, Le Rheu, France
- Université de Rennes 1, INRIA, CNRS, IRISA, 35000, Rennes, France
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany.
| |
Collapse
|
204
|
Kemena C, Dohmen E, Bornberg-Bauer E. DOGMA: a web server for proteome and transcriptome quality assessment. Nucleic Acids Res 2020; 47:W507-W510. [PMID: 31076763 PMCID: PMC6602495 DOI: 10.1093/nar/gkz366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 11/16/2022] Open
Abstract
Even in the era of next generation sequencing, in which bioinformatics tools abound, annotating transcriptomes and proteomes remains a challenge. This can have major implications for the reliability of studies based on these datasets. Therefore, quality assessment represents a crucial step prior to downstream analyses on novel transcriptomes and proteomes. DOGMA allows such a quality assessment to be carried out. The data of interest are evaluated based on a comparison with a core set of conserved protein domains and domain arrangements. Depending on the studied species, DOGMA offers precomputed core sets for different phylogenetic clades. We now developed a web server for the DOGMA software, offering a user-friendly, simple to use interface. Additionally, the server provides a graphical representation of the analysis results and their placement in comparison to publicly available data. The server is freely available under https://domainworld-services.uni-muenster.de/dogma/. Additionally, for large scale analyses the software can be downloaded free of charge from https://domainworld.uni-muenster.de.
Collapse
Affiliation(s)
- Carsten Kemena
- Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität Münster, Hüfferstrasse 1, NRW, 48149 Münster, Germany
| | - Elias Dohmen
- Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität Münster, Hüfferstrasse 1, NRW, 48149 Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität Münster, Hüfferstrasse 1, NRW, 48149 Münster, Germany
| |
Collapse
|
205
|
Genome Sequencing and Analysis of the Fungal Symbiont of Sirex noctilio, Amylostereum areolatum: Revealing the Biology of Fungus-Insect Mutualism. mSphere 2020; 5:5/3/e00301-20. [PMID: 32404513 PMCID: PMC7227769 DOI: 10.1128/msphere.00301-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sirex noctilio (F.), together with Amylostereum areolatum, a wood-decaying symbiotic fungus, causes severe damage to Pinus species worldwide. In China, it causes extensive death of Mongolian pine (Pinus sylvestris var. mongolica). There is an obligate dependency mutualism between the woodwasp and its fungus. Studies have suggested that the fungal growth rate affected the size of the wasps: larger adults emerged from sites with a higher fungus growth rate. This genome is the first reported genome sequence of a woodwasp symbiotic fungus. Genome sequence analysis of this fungus would prove the possibility of A. areolatum volatiles affecting the host selection of S. noctilio on a molecular basis. We further clarified that A. areolatum was a strict obligate symbiotic fungus and that it would provide S. noctilio with a suitable environment and with nutrients for the larval growth. These results would lay a foundation for our understanding of the mechanism of this entomogenous symbiosis. Amylostereum areolatum is the symbiotic fungus of the Eurasian woodwasp, Sirex noctilio, a globally invasive species. The mutualistic symbiont is associated with the woodwasp, assisting the damage process and providing nutrition for its insect partners. Colonization and growth of A. areolatum have essential impacts on the development and spread of S. noctilio, though the mechanism of interaction between the two has been poorly described. In this study, the first genome of this symbiotic fungus was sequenced, assembled, and annotated. The assembled A. areolatum genome was 57.5 Mb (54.51% GC content) with 15,611 protein-coding genes. We identified 580 carbohydrate-active enzymes (CAZymes), 661 genes associated with pathogen-host interactions, and 318 genes encoding transport proteins in total. The genome annotation revealed 10 terpene/phytoene synthases responsible for terpenoid biosynthesis, which could be classified into three clades. Terpene synthase gene clusters in clade II were conserved well across Russulales. In this cluster, genes encoding mevalonate kinase (MK), EGR12 (COG1557), and nonplant terpene cyclases (cd00687) were the known biosynthesis and regulatory genes. Genome sequence analysis of this fungus would prove the possibility of A. areolatum volatiles affecting the host selection of S. noctilio on a molecular basis. We further clarified that A. areolatum was a strict obligate symbiotic fungus. The wasps might protect the fungus before it was introduced into a suitable host substrate by oviposition, while the fungus would provide S. noctilio with a suitable environment and nutrients for the larval growth. These results would lay a foundation for our understanding of the mechanism of this entomogenous symbiosis. IMPORTANCESirex noctilio (F.), together with Amylostereum areolatum, a wood-decaying symbiotic fungus, causes severe damage to Pinus species worldwide. In China, it causes extensive death of Mongolian pine (Pinus sylvestris var. mongolica). There is an obligate dependency mutualism between the woodwasp and its fungus. Studies have suggested that the fungal growth rate affected the size of the wasps: larger adults emerged from sites with a higher fungus growth rate. This genome is the first reported genome sequence of a woodwasp symbiotic fungus. Genome sequence analysis of this fungus would prove the possibility of A. areolatum volatiles affecting the host selection of S. noctilio on a molecular basis. We further clarified that A. areolatum was a strict obligate symbiotic fungus and that it would provide S. noctilio with a suitable environment and with nutrients for the larval growth. These results would lay a foundation for our understanding of the mechanism of this entomogenous symbiosis.
Collapse
|
206
|
Brůna T, Lomsadze A, Borodovsky M. GeneMark-EP+: eukaryotic gene prediction with self-training in the space of genes and proteins. NAR Genom Bioinform 2020; 2:lqaa026. [PMID: 32440658 PMCID: PMC7222226 DOI: 10.1093/nargab/lqaa026] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/10/2020] [Accepted: 05/12/2020] [Indexed: 01/29/2023] Open
Abstract
We have made several steps toward creating a fast and accurate algorithm for gene prediction in eukaryotic genomes. First, we introduced an automated method for efficient ab initio gene finding, GeneMark-ES, with parameters trained in iterative unsupervised mode. Next, in GeneMark-ET we proposed a method of integration of unsupervised training with information on intron positions revealed by mapping short RNA reads. Now we describe GeneMark-EP, a tool that utilizes another source of external information, a protein database, readily available prior to the start of a sequencing project. A new specialized pipeline, ProtHint, initiates massive protein mapping to genome and extracts hints to splice sites and translation start and stop sites of potential genes. GeneMark-EP uses the hints to improve estimation of model parameters as well as to adjust coordinates of predicted genes if they disagree with the most reliable hints (the -EP+ mode). Tests of GeneMark-EP and -EP+ demonstrated improvements in gene prediction accuracy in comparison with GeneMark-ES, while the GeneMark-EP+ showed higher accuracy than GeneMark-ET. We have observed that the most pronounced improvements in gene prediction accuracy happened in large eukaryotic genomes.
Collapse
Affiliation(s)
- Tomáš Brůna
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alexandre Lomsadze
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mark Borodovsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.,School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
207
|
Draft Genome Assembly of Floccularia luteovirens, an Edible and Symbiotic Mushroom on Qinghai-Tibet Plateau. G3-GENES GENOMES GENETICS 2020; 10:1167-1173. [PMID: 32098800 PMCID: PMC7144084 DOI: 10.1534/g3.120.401037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Floccularia luteovirens, also known as "Yellow mushroom", is an edible ectomycorrhizal fungus widely distributed in the Qinghai-Tibet Plateau alpine meadow. So far, little genomic information is known about F. luteovirens, which is not conductive to the protection and utilization of it. In this manuscript, we present a first draft genome assembly and annotation of F. luteovirens The fruiting body of F. luteovirens was sequenced with PacBio Sequel and Illumina Hiseq 2500 system. The assembled genome size was 28.8 Mb, and comprising 183 contigs with a N50 contig size of 571 kb. A total of 8,333 protein-coding genes were predicted and 7,999 genes were further assigned to different public protein databases. Besides, 400 CAZymes were identified in F. luteovirens Phylogenetic analysis suggested that F. luteovirens should belong to the Agaricaceae family. Time tree result showed that the speciation of F. luteovirens happened approximately 170 Million years ago. Furthermore, 357 species-specific gene families were annotated against KEGG and GO database. This genome assembly and annotation should be an essential genomic foundation for understanding the phylogenetic, metabolic and symbiotic traits of F. luteovirens.
Collapse
|
208
|
Wang H, Sun S, Ge W, Zhao L, Hou B, Wang K, Lyu Z, Chen L, Xu S, Guo J, Li M, Su P, Li X, Wang G, Bo C, Fang X, Zhuang W, Cheng X, Wu J, Dong L, Chen W, Li W, Xiao G, Zhao J, Hao Y, Xu Y, Gao Y, Liu W, Liu Y, Yin H, Li J, Li X, Zhao Y, Wang X, Ni F, Ma X, Li A, Xu SS, Bai G, Nevo E, Gao C, Ohm H, Kong L. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 2020; 368:science.aba5435. [PMID: 32273397 DOI: 10.1126/science.aba5435] [Citation(s) in RCA: 325] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/26/2020] [Indexed: 12/22/2022]
Abstract
Fusarium head blight (FHB), a fungal disease caused by Fusarium species that produce food toxins, currently devastates wheat production worldwide, yet few resistance resources have been discovered in wheat germplasm. Here, we cloned the FHB resistance gene Fhb7 by assembling the genome of Thinopyrum elongatum, a species used in wheat distant hybridization breeding. Fhb7 encodes a glutathione S-transferase (GST) and confers broad resistance to Fusarium species by detoxifying trichothecenes through de-epoxidation. Fhb7 GST homologs are absent in plants, and our evidence supports that Th. elongatum has gained Fhb7 through horizontal gene transfer (HGT) from an endophytic Epichloë species. Fhb7 introgressions in wheat confers resistance to both FHB and crown rot in diverse wheat backgrounds without yield penalty, providing a solution for Fusarium resistance breeding.
Collapse
Affiliation(s)
- Hongwei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Silong Sun
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Wenyang Ge
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Lanfei Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Bingqian Hou
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Kai Wang
- Novogene Bioinformatics Institute, Beijing 100083, PR China
| | - Zhongfan Lyu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Liyang Chen
- Novogene Bioinformatics Institute, Beijing 100083, PR China
| | - Shoushen Xu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jun Guo
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, PR China
| | - Min Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Peisen Su
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xuefeng Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Guiping Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Cunyao Bo
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiaojian Fang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Wenwen Zhuang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xinxin Cheng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jianwen Wu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Luhao Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Wuying Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Wen Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Guilian Xiao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jinxiao Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yongchao Hao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Ying Xu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yu Gao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Wenjing Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yanhe Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Huayan Yin
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jiazhu Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 264005, PR China
| | - Xiang Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yan Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiaoqian Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Fei Ni
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xin Ma
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Anfei Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Steven S Xu
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, USA
| | - Guihua Bai
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS 66506, USA
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa 3498838, Israel
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Herbert Ohm
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
209
|
Wagner DN, Curry RL, Chen N, Lovette IJ, Taylor SA. Genomic regions underlying metabolic and neuronal signaling pathways are temporally consistent in a moving avian hybrid zone. Evolution 2020; 74:1498-1513. [PMID: 32243568 DOI: 10.1111/evo.13970] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/15/2022]
Abstract
The study of hybrid zones can provide insight into the genetic basis of species differences that are relevant for the maintenance of reproductive isolation. Hybrid zones can also provide insight into climate change, species distributions, and evolution. The hybrid zone between black-capped chickadees (Poecile atricapillus) and Carolina chickadees (Poecile carolinensis) is shifting northward in response to increasing winter temperatures but is not increasing in width. This pattern indicates strong selection against chickadees with admixed genomes. Using high-resolution genomic data, we identified regions of the genomes that are outliers in both time points and do not introgress between the species; these regions may be involved in the maintenance of reproductive isolation. Genes involved in metabolic regulation processes were overrepresented in this dataset. Several gene ontology categories were also temporally consistent-including glutamate signaling, synaptic transmission, and catabolic processes-but the nucleotide variants leading to this pattern were not. Our results support recent findings that hybrids between black-capped and Carolina chickadees have higher basal metabolic rates than either parental species and suffer spatial memory and problem-solving deficits. Metabolic breakdown, as well as spatial memory and problem-solving, in hybrid chickadees may act as strong postzygotic isolation mechanisms in this moving hybrid zone.
Collapse
Affiliation(s)
- Dominique N Wagner
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, 80309
| | - Robert L Curry
- Department of Biology, Villanova University, Villanova, Pennsylvania, 19085
| | - Nancy Chen
- Department of Biology, University of Rochester, Rochester, New York, 14627
| | - Irby J Lovette
- Cornell Lab of Ornithology, Cornell University, Ithaca, New York, 14850
| | - Scott A Taylor
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, 80309
| |
Collapse
|
210
|
Barrett K, Jensen K, Meyer AS, Frisvad JC, Lange L. Fungal secretome profile categorization of CAZymes by function and family corresponds to fungal phylogeny and taxonomy: Example Aspergillus and Penicillium. Sci Rep 2020; 10:5158. [PMID: 32198418 PMCID: PMC7083838 DOI: 10.1038/s41598-020-61907-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/28/2020] [Indexed: 01/02/2023] Open
Abstract
Fungi secrete an array of carbohydrate-active enzymes (CAZymes), reflecting their specialized habitat-related substrate utilization. Despite its importance for fitness, enzyme secretome composition is not used in fungal classification, since an overarching relationship between CAZyme profiles and fungal phylogeny/taxonomy has not been established. For 465 Ascomycota and Basidiomycota genomes, we predicted CAZyme-secretomes, using a new peptide-based annotation method, Conserved-Unique-Peptide-Patterns, enabling functional prediction directly from sequence. We categorized each enzyme according to CAZy-family and predicted molecular function, hereby obtaining a list of "EC-Function;CAZy-Family" observations. These "Function;Family"-based secretome profiles were compared, using a Yule-dissimilarity scoring algorithm, giving equal consideration to the presence and absence of individual observations. Assessment of "Function;Family" enzyme profile relatedness (EPR) across 465 genomes partitioned Ascomycota from Basidiomycota placing Aspergillus and Penicillium among the Ascomycota. Analogously, we calculated CAZyme "Function;Family" profile-similarities among 95 Aspergillus and Penicillium species to form an alignment-free, EPR-based dendrogram. This revealed a stunning congruence between EPR categorization and phylogenetic/taxonomic grouping of the Aspergilli and Penicillia. Our analysis suggests EPR grouping of fungi to be defined both by "shared presence" and "shared absence" of CAZyme "Function;Family" observations. This finding indicates that CAZymes-secretome evolution is an integral part of fungal speciation, supporting integration of cladogenesis and anagenesis.
Collapse
Affiliation(s)
- Kristian Barrett
- Department for Biotechnology and Biomedicine, Building 221, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Kristian Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Anne S Meyer
- Department for Biotechnology and Biomedicine, Building 221, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Jens C Frisvad
- Department for Biotechnology and Biomedicine, Building 221, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| | - Lene Lange
- LLa Bioeconomy, Research & Advisory, Karensgade 5, DK-2500, Valby, Denmark
| |
Collapse
|
211
|
Systematic genome analysis of a novel arachidonic acid-producing strain uncovered unique metabolic traits in the production of acetyl-CoA-derived products in Mortierellale fungi. Gene 2020; 741:144559. [PMID: 32169630 DOI: 10.1016/j.gene.2020.144559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/08/2020] [Indexed: 11/27/2022]
Abstract
The fungi in order Mortierellales are attractive producers for long-chain polyunsaturated fatty acids (PUFAs). Here, the genome sequencing and assembly of a novel strain of Mortierella sp. BCC40632 were done, yielding 65 contigs spanning of 49,964,116 total bases with predicted 12,149 protein-coding genes. We focused on the acetyl-CoA in relevant to its derived metabolic pathways for biosynthesis of macromolecules with biological functions, including PUFAs, eicosanoids and carotenoids. By comparative genome analysis between Mortierellales and Mucorales, the signature genetic characteristics of the arachidonic acid-producing strains, including Δ5-desaturase and GLELO-like elongase, were also identified in the strain BCC40632. Remarkably, this fungal strain contained only n-6 pathway of PUFA biosynthesis due to the absence of Δ15-desaturase or ω3-desaturase gene in contrast to other Mortierella species. Four putative enzyme sequences in the eicosanoid biosynthetic pathways were identified in the strain BCC40632 and others Mortierellale fungi, but were not detected in the Mucorales. Another unique metabolic trait of the Mortierellales was the inability in carotenoid synthesis as a result of the lack of phytoene synthase and phytoene desaturase genes. The findings provide a perspective in strain optimization for production of tailored-made products with industrial applications.
Collapse
|
212
|
Siadjeu C, Pucker B, Viehöver P, Albach DC, Weisshaar B. High Contiguity De Novo Genome Sequence Assembly of Trifoliate Yam ( Dioscorea dumetorum) Using Long Read Sequencing. Genes (Basel) 2020; 11:E274. [PMID: 32143301 PMCID: PMC7140821 DOI: 10.3390/genes11030274] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 12/17/2022] Open
Abstract
Trifoliate yam (Dioscorea dumetorum) is one example of an orphan crop, not traded internationally. Post-harvest hardening of the tubers of this species starts within 24 h after harvesting and renders the tubers inedible. Genomic resources are required for D. dumetorum to improve breeding for non-hardening varieties as well as for other traits. We sequenced the D. dumetorum genome and generated the corresponding annotation. The two haplophases of this highly heterozygous genome were separated to a large extent. The assembly represents 485 Mbp of the genome with an N50 of over 3.2 Mbp. A total of 35,269 protein-encoding gene models as well as 9941 non-coding RNA genes were predicted, and functional annotations were assigned.
Collapse
Affiliation(s)
- Christian Siadjeu
- Institute for Biology and Environmental Sciences, Biodiversity and Evolution of Plants, Carl-von-Ossietzky University Oldenburg, Carl-von-Ossietzky Str. 9-11, 26111 Oldenburg, Germany; (C.S.); (D.C.A.)
- Genetics and Genomics of Plants, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany; (B.P.); (P.V.)
| | - Boas Pucker
- Genetics and Genomics of Plants, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany; (B.P.); (P.V.)
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Prisca Viehöver
- Genetics and Genomics of Plants, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany; (B.P.); (P.V.)
| | - Dirk C. Albach
- Institute for Biology and Environmental Sciences, Biodiversity and Evolution of Plants, Carl-von-Ossietzky University Oldenburg, Carl-von-Ossietzky Str. 9-11, 26111 Oldenburg, Germany; (C.S.); (D.C.A.)
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany; (B.P.); (P.V.)
| |
Collapse
|
213
|
Lu TM, Kanda M, Furuya H, Satoh N. Dicyemid Mesozoans: A Unique Parasitic Lifestyle and a Reduced Genome. Genome Biol Evol 2020; 11:2232-2243. [PMID: 31347665 PMCID: PMC6736024 DOI: 10.1093/gbe/evz157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2019] [Indexed: 12/25/2022] Open
Abstract
Dicyemids, previously called “mesozoans” (intermediates between unicellular protozoans and multicellular metazoans), are an enigmatic animal group. They have a highly simplified adult body, comprising only ∼30 cells, and they have a unique parasitic lifestyle. Recently, dicyemids were shown to be spiralians, with affinities to the Platyhelminthes. In order to understand molecular mechanisms involved in evolution of this odd animal, we sequenced the genome of Dicyema japonicum and a reference transcriptome assembly using mixed-stage samples. The D. japonicum genome features a high proportion of repetitive sequences that account for 49% of the genome. The dicyemid genome is reduced to ∼67.5 Mb with 5,012 protein-coding genes. Only four Hox genes exist in the genome, with no clustering. Gene distribution in KEGG pathways shows that D. japonicum has fewer genes in most pathways. Instead of eliminating entire critical metabolic pathways, parasitic lineages likely simplify pathways by eliminating pathway-specific genes, while genes with fundamental functions may be retained in multiple pathways. In principle, parasites can stand to lose genes that are unnecessary, in order to conserve energy. However, whether retained genes in incomplete pathways serve intermediate functions and how parasites overcome the physiological needs served by lost genes, remain to be investigated in future studies.
Collapse
Affiliation(s)
- Tsai-Ming Lu
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan.,Sars International Centre for Marine Molecular Biology, University of Bergen, Norway
| | - Miyuki Kanda
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Hidetaka Furuya
- Department of Biology, Graduate School of Science, Osaka University, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| |
Collapse
|
214
|
Manchanda N, Portwood JL, Woodhouse MR, Seetharam AS, Lawrence-Dill CJ, Andorf CM, Hufford MB. GenomeQC: a quality assessment tool for genome assemblies and gene structure annotations. BMC Genomics 2020; 21:193. [PMID: 32122303 PMCID: PMC7053122 DOI: 10.1186/s12864-020-6568-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/07/2020] [Indexed: 11/28/2022] Open
Abstract
Background Genome assemblies are foundational for understanding the biology of a species. They provide a physical framework for mapping additional sequences, thereby enabling characterization of, for example, genomic diversity and differences in gene expression across individuals and tissue types. Quality metrics for genome assemblies gauge both the completeness and contiguity of an assembly and help provide confidence in downstream biological insights. To compare quality across multiple assemblies, a set of common metrics are typically calculated and then compared to one or more gold standard reference genomes. While several tools exist for calculating individual metrics, applications providing comprehensive evaluations of multiple assembly features are, perhaps surprisingly, lacking. Here, we describe a new toolkit that integrates multiple metrics to characterize both assembly and gene annotation quality in a way that enables comparison across multiple assemblies and assembly types. Results Our application, named GenomeQC, is an easy-to-use and interactive web framework that integrates various quantitative measures to characterize genome assemblies and annotations. GenomeQC provides researchers with a comprehensive summary of these statistics and allows for benchmarking against gold standard reference assemblies. Conclusions The GenomeQC web application is implemented in R/Shiny version 1.5.9 and Python 3.6 and is freely available at https://genomeqc.maizegdb.org/ under the GPL license. All source code and a containerized version of the GenomeQC pipeline is available in the GitHub repository https://github.com/HuffordLab/GenomeQC.
Collapse
Affiliation(s)
- Nancy Manchanda
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - John L Portwood
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011, USA
| | | | - Arun S Seetharam
- Genome Informatics Facility, Iowa State University, Ames, IA, 50011, USA
| | - Carolyn J Lawrence-Dill
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.,Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Carson M Andorf
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011, USA
| | - Matthew B Hufford
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
215
|
Lichtner FJ, Jurick WM, Ayer KM, Gaskins VL, Villani SM, Cox KD. A Genome Resource for Several North American Venturia inaequalis Isolates with Multiple Fungicide Resistance Phenotypes. PHYTOPATHOLOGY 2020; 110:544-546. [PMID: 31729927 DOI: 10.1094/phyto-06-19-0222-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The apple scab pathogen, Venturia inaequalis, is among the most economically important fungal pathogens that affects apples. Fungicide applications are an essential part of disease management. Implementation of cultural practices and genetic sources of resistance in the host are vital components of scab management. This is the first presentation of multiple, high quality, well-annotated genomes of four North American V. inaequalis isolates having both sensitive and multiple fungicide resistance phenotypes. We envision that these isolates will enable investigations into fungicide resistance mechanisms, exploring fungal virulence factors and delineating phylogenomic relationships among apple scab isolates from around the world.
Collapse
Affiliation(s)
- Franz J Lichtner
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831
- Food Quality Laboratory, U.S. Department of Agriculture-Agriculture Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705
| | - Wayne M Jurick
- Food Quality Laboratory, U.S. Department of Agriculture-Agriculture Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705
| | - Katrin M Ayer
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| | - Verneta L Gaskins
- Food Quality Laboratory, U.S. Department of Agriculture-Agriculture Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705
| | - Sara M Villani
- Department of Entomology and Plant Pathology, Mountain Horticulture and Crops Research & Extension Center, North Carolina State University, Mills River, NC 28759
| | - Kerik D Cox
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| |
Collapse
|
216
|
Structural insights into NDH-1 mediated cyclic electron transfer. Nat Commun 2020; 11:888. [PMID: 32060291 PMCID: PMC7021789 DOI: 10.1038/s41467-020-14732-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/21/2020] [Indexed: 02/08/2023] Open
Abstract
NDH-1 is a key component of the cyclic-electron-transfer around photosystem I (PSI CET) pathway, an important antioxidant mechanism for efficient photosynthesis. Here, we report a 3.2-Å-resolution cryo-EM structure of the ferredoxin (Fd)-NDH-1L complex from the cyanobacterium Thermosynechococcus elongatus. The structure reveals three β-carotene and fifteen lipid molecules in the membrane arm of NDH-1L. Regulatory oxygenic photosynthesis-specific (OPS) subunits NdhV, NdhS and NdhO are close to the Fd-binding site whilst NdhL is adjacent to the plastoquinone (PQ) cavity, and they play different roles in PSI CET under high-light stress. NdhV assists in the binding of Fd to NDH-1L and accelerates PSI CET in response to short-term high-light exposure. In contrast, prolonged high-light irradiation switches on the expression and assembly of the NDH-1MS complex, which likely contains no NdhO to further accelerate PSI CET and reduce ROS production. We propose that this hierarchical mechanism is necessary for the survival of cyanobacteria in an aerobic environment. NDH-1 is a key component of the cyclic-electron-transfer around photosystem I pathway, an antioxidant mechanism for efficient photosynthesis. Here, authors report a cryo-EM structure of the ferredoxin (Fd)-NDH-1L complex from the cyanobacterium Thermosynechococcus elongatus.
Collapse
|
217
|
Shanmugam G, Jeon J, Hyun JW. Draft Genome Sequences of Elsinoë fawcettii and Elsinoë australis Causing Scab Diseases on Citrus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:135-137. [PMID: 31577163 DOI: 10.1094/mpmi-06-19-0169-a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Elsinoë fawcettii and E. australis (phylum Ascomycota) are phytopathogenic fungi causing scab diseases on citrus plants. We report here the high-quality draft genome sequences and ab initio gene predictions of two E. fawcettii strains and one E. australis strain, which differ in their host range. This genome sequence information will provide valuable resources to underpin genomic attributes for determining host range through comparative genomic analyses of citrus scab fungi.
Collapse
Affiliation(s)
- Gnanendra Shanmugam
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Korea
| | - Junhyun Jeon
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Korea
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
| | - Jae-Wook Hyun
- Citrus Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeju 63607, Korea
| |
Collapse
|
218
|
Hepler NK, Bowman A, Carey RE, Cosgrove DJ. Expansin gene loss is a common occurrence during adaptation to an aquatic environment. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:666-680. [PMID: 31627246 DOI: 10.1111/tpj.14572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 05/15/2023]
Abstract
Expansins comprise a superfamily of plant cell wall loosening proteins that can be divided into four individual families (EXPA, EXPB, EXLA and EXLB). Aside from inferred roles in a variety of plant growth and developmental traits, little is known regarding the function of specific expansin clades, for which there are at least 16 in flowering plants (angiosperms); however, there is evidence to suggest that some expansins have cell-specific functions, in root hair and pollen tube development, for example. Recently, two duckweed genomes have been sequenced (Spirodela polyrhiza strains 7498 and 9509), revealing significantly reduced superfamily sizes. We hypothesized that there would be a correlation between expansin loss and morphological reductions seen among highly adapted aquatic species. In order to provide an answer to this question, we characterized the expansin superfamilies of the greater duckweed Spirodela, the marine eelgrass Zostera marina and the bladderwort Utricularia gibba. We discovered rampant expansin gene and clade loss among the three, including a complete absence of the EXLB family and EXPA-VII. The most convincing correlation between morphological reduction and expansin loss was seen for Utricularia and Spirodela, which both lack root hairs and the root hair expansin clade EXPA-X. Contrary to the pattern observed in other species, four Utricularia expansins failed to branch within any clade, suggesting that they may be the result of neofunctionalization. Last, an expansin clade previously discovered only in eudicots was identified in Spirodela, allowing us to conclude that the last common ancestor of monocots and eudicots contained a minimum of 17 expansins.
Collapse
Affiliation(s)
- Nathan K Hepler
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alexa Bowman
- Program in Biochemistry and Molecular Biology, Lebanon Valley College, 101 N. College Ave., Annville, PA, 17003, USA
| | - Robert E Carey
- Department of Biology, Lebanon Valley College, 101 N. College Ave., Annville, PA, 17003, USA
| | - Daniel J Cosgrove
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
219
|
Dolby GA, Morales M, Webster TH, DeNardo DF, Wilson MA, Kusumi K. Discovery of a New TLR Gene and Gene Expansion Event through Improved Desert Tortoise Genome Assembly with Chromosome-Scale Scaffolds. Genome Biol Evol 2020; 12:3917-3925. [PMID: 32011707 PMCID: PMC7058155 DOI: 10.1093/gbe/evaa016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs) are a complex family of innate immune genes that are well characterized in mammals and birds but less well understood in nonavian sauropsids (reptiles). The advent of highly contiguous draft genomes of nonmodel organisms enables study of such gene families through analysis of synteny and sequence identity. Here, we analyze TLR genes from the genomes of 22 tetrapod species. Findings reveal a TLR8 gene expansion in crocodilians and turtles (TLR8B), and a second duplication (TLR8C) specifically within turtles, followed by pseudogenization of that gene in the nonfreshwater species (desert tortoise and green sea turtle). Additionally, the Mojave desert tortoise (Gopherus agassizii) has a stop codon in TLR8B (TLR8-1) that is polymorphic among conspecifics. Revised orthology further reveals a new TLR homolog, TLR21-like, which is exclusive to lizards, snakes, turtles, and crocodilians. These analyses were made possible by a new draft genome assembly of the desert tortoise (gopAga2.0), which used chromatin-based assembly to yield draft chromosomal scaffolds (L50 = 26 scaffolds, N50 = 28.36 Mb, longest scaffold = 107 Mb) and an enhanced de novo genome annotation with 25,469 genes. Our three-step approach to orthology curation and comparative analysis of TLR genes shows what new insights are possible using genome assemblies with chromosome-scale scaffolds that permit integration of synteny conservation data.
Collapse
Affiliation(s)
- Greer A Dolby
- School of Life Sciences, Arizona State University
- Center for Mechanisms of Evolution, Arizona State University
| | | | - Timothy H Webster
- School of Life Sciences, Arizona State University
- Department of Anthropology, University of Utah
| | | | - Melissa A Wilson
- School of Life Sciences, Arizona State University
- Center for Evolution and Medicine, Arizona State University
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University
| |
Collapse
|
220
|
Si E, Meng Y, Ma X, Li B, Wang J, Yao L, Yang K, Zhang Y, Shang X, Wang H. Genome Resource for Barley Leaf Stripe Pathogen Pyrenophora graminea. PLANT DISEASE 2020; 104:320-322. [PMID: 31804900 DOI: 10.1094/pdis-06-19-1179-a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pyrenophora graminea is the causative agent of barley leaf stripe disease. In this study, the strong pathogenic isolate QWC was used to generate DNA for Illumina sequencing. After assembly, its genome size was 42.5 Mb, consisting of 264 scaffolds, and a total of 10,376 genes was predicted. This is the first genome resource available for P. graminea. The genome sequences of P. graminea will accelerate the understanding interaction of P. graminea and barley.
Collapse
Affiliation(s)
- Erjing Si
- Gansu Provincial Key Laboratory of Aridland and Crop Science/Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yaxiong Meng
- Gansu Provincial Key Laboratory of Aridland and Crop Science/Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaole Ma
- Gansu Provincial Key Laboratory of Aridland and Crop Science/Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Baochun Li
- Gansu Provincial Key Laboratory of Aridland and Crop Science/Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juncheng Wang
- Gansu Provincial Key Laboratory of Aridland and Crop Science/Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lirong Yao
- Gansu Provincial Key Laboratory of Aridland and Crop Science/Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ke Yang
- Gansu Provincial Key Laboratory of Aridland and Crop Science/Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yu Zhang
- Gansu Plant Seed Administrative Station, Lanzhou 730020, China
| | - Xunwu Shang
- Gansu Provincial Key Laboratory of Aridland and Crop Science/Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou, 730070, China
| | - Huajun Wang
- Gansu Provincial Key Laboratory of Aridland and Crop Science/Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
221
|
Huang L, Feng G, Yan H, Zhang Z, Bushman BS, Wang J, Bombarely A, Li M, Yang Z, Nie G, Xie W, Xu L, Chen P, Zhao X, Jiang W, Zhang X. Genome assembly provides insights into the genome evolution and flowering regulation of orchardgrass. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:373-388. [PMID: 31276273 PMCID: PMC6953241 DOI: 10.1111/pbi.13205] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/27/2019] [Accepted: 06/29/2019] [Indexed: 05/18/2023]
Abstract
Orchardgrass (Dactylis glomerata L.) is an important forage grass for cultivating livestock worldwide. Here, we report an ~1.84-Gb chromosome-scale diploid genome assembly of orchardgrass, with a contig N50 of 0.93 Mb, a scaffold N50 of 6.08 Mb and a super-scaffold N50 of 252.52 Mb, which is the first chromosome-scale assembled genome of a cool-season forage grass. The genome includes 40 088 protein-coding genes, and 69% of the assembled sequences are transposable elements, with long terminal repeats (LTRs) being the most abundant. The LTRretrotransposons may have been activated and expanded in the grass genome in response to environmental changes during the Pleistocene between 0 and 1 million years ago. Phylogenetic analysis reveals that orchardgrass diverged after rice but before three Triticeae species, and evolutionarily conserved chromosomes were detected by analysing ancient chromosome rearrangements in these grass species. We also resequenced the whole genome of 76 orchardgrass accessions and found that germplasm from Northern Europe and East Asia clustered together, likely due to the exchange of plants along the 'Silk Road' or other ancient trade routes connecting the East and West. Last, a combined transcriptome, quantitative genetic and bulk segregant analysis provided insights into the genetic network regulating flowering time in orchardgrass and revealed four main candidate genes controlling this trait. This chromosome-scale genome and the online database of orchardgrass developed here will facilitate the discovery of genes controlling agronomically important traits, stimulate genetic improvement of and functional genetic research on orchardgrass and provide comparative genetic resources for other forage grasses.
Collapse
Affiliation(s)
- Linkai Huang
- Department of Grassland ScienceAnimal Science and Technology CollegeSichuan Agricultural UniversityChengduChina
| | - Guangyan Feng
- Department of Grassland ScienceAnimal Science and Technology CollegeSichuan Agricultural UniversityChengduChina
| | - Haidong Yan
- Department of Grassland ScienceAnimal Science and Technology CollegeSichuan Agricultural UniversityChengduChina
- School of Plant and Environmental SciencesVirginia TechBlacksburgVAUSA
| | | | | | - Jianping Wang
- Agronomy DepartmentUniversity of FloridaGainesvilleFLUSA
| | | | - Mingzhou Li
- Animal Science and Technology CollegeSichuan Agricultural UniversityChengduChina
| | - Zhongfu Yang
- Department of Grassland ScienceAnimal Science and Technology CollegeSichuan Agricultural UniversityChengduChina
| | - Gang Nie
- Department of Grassland ScienceAnimal Science and Technology CollegeSichuan Agricultural UniversityChengduChina
| | - Wengang Xie
- State Key Laboratory of Grassland Agro‐EcosystemsCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Lei Xu
- Department of Grassland ScienceAnimal Science and Technology CollegeSichuan Agricultural UniversityChengduChina
| | - Peilin Chen
- Department of Grassland ScienceAnimal Science and Technology CollegeSichuan Agricultural UniversityChengduChina
| | - Xinxin Zhao
- Department of Grassland ScienceAnimal Science and Technology CollegeSichuan Agricultural UniversityChengduChina
| | | | - Xinquan Zhang
- Department of Grassland ScienceAnimal Science and Technology CollegeSichuan Agricultural UniversityChengduChina
| |
Collapse
|
222
|
Whole-genome and time-course dual RNA-Seq analyses reveal chronic pathogenicity-related gene dynamics in the ginseng rusty root rot pathogen Ilyonectria robusta. Sci Rep 2020; 10:1586. [PMID: 32005849 PMCID: PMC6994667 DOI: 10.1038/s41598-020-58342-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 01/13/2020] [Indexed: 01/04/2023] Open
Abstract
Ilyonectria robusta causes rusty root rot, the most devastating chronic disease of ginseng. Here, we for the first time report the high-quality genome of the I. robusta strain CD-56. Time-course (36 h, 72 h, and 144 h) dual RNA-Seq analysis of the infection process was performed, and many genes, including candidate effectors, were found to be associated with the progression and success of infection. The gene expression profile of CD-56 showed a trend of initial inhibition and then gradually returned to a profile similar to that of the control. Analyses of the gene expression patterns and functions of pathogenicity-related genes, especially candidate effector genes, indicated that the stress response changed to an adaptive response during the infection process. For ginseng, gene expression patterns were highly related to physiological conditions. Specifically, the results showed that ginseng defenses were activated by CD-56 infection and persisted for at least 144 h thereafter but that the mechanisms invoked were not effective in preventing CD-56 growth. Moreover, CD-56 did not appear to fully suppress plant defenses, even in late stages after infection. Our results provide new insight into the chronic pathogenesis of CD-56 and the comprehensive and complex inducible defense responses of ginseng root to I. robusta infection.
Collapse
|
223
|
Guan DL, Hao XQ, Mi D, Peng J, Li Y, Xie JY, Huang H, Xu SQ. Draft Genome of a Blister Beetle Mylabris aulica. Front Genet 2020; 10:1281. [PMID: 32010178 PMCID: PMC6972506 DOI: 10.3389/fgene.2019.01281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/21/2019] [Indexed: 11/13/2022] Open
Abstract
Mylabris aulica is a widely distributed blister beetle of the Meloidae family. It has the ability to synthesize a potent defensive secretion that includes cantharidin, a toxic compound used to treat many major illnesses. However, owing to the lack of genetic studies on cantharidin biosynthesis in M. aulica, the commercial use of this species is less extensive than that of other blister beetle species in China. This study reports a draft assembly and possible genes and pathways related to cantharidin biosynthesis for the M. aulica blister beetle using nanopore sequencing data. The draft genome assembly size was 288.5 Mb with a 467.8 Kb N50, and a repeat content of 50.62%. An integrated gene finding pipeline performed for assembly obtained 16,500 protein coding genes. Benchmarking universal single-copy orthologs assessment showed that this gene set included 94.4% complete Insecta universal single-copy orthologs. Over 99% of these genes were assigned functional annotations in the gene ontology, Kyoto Encyclopedia of Genes and Genomes, or Genbank non-redundant databases. Comparative genomic analysis showed that the completeness and continuity of our assembly was better than those of Hycleus cichorii and Hycleus phaleratus blister beetle genomes. The analysis of homologous orthologous genes and inference from evolutionary history imply that the Mylabris and Hycleus genera are genetically close, have a similar genetic background, and have differentiated within one million years. This M. aulica genome assembly provides a valuable resource for future blister beetle studies and will contribute to cantharidin biosynthesis.
Collapse
Affiliation(s)
- De-Long Guan
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Xiao-Qian Hao
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Da Mi
- NextOmics Biosciences Institute, Wuhan, China
| | - Jiong Peng
- NextOmics Biosciences Institute, Wuhan, China
| | - Yuan Li
- NextOmics Biosciences Institute, Wuhan, China
| | - Juan-Ying Xie
- College of Computer Science, Shaanxi Normal University, Xi’an, China
| | - Huateng Huang
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Sheng-Quan Xu
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
224
|
Ibarra Caballero JR, Ata JP, Leddy KA, Glenn TC, Kieran TJ, Klopfenstein NB, Kim MS, Stewart JE. Genome comparison and transcriptome analysis of the invasive brown root rot pathogen, Phellinus noxius, from different geographic regions reveals potential enzymes associated with degradation of different wood substrates. Fungal Biol 2020; 124:144-154. [PMID: 32008755 DOI: 10.1016/j.funbio.2019.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 11/25/2022]
Abstract
Phellinus noxius is a root-decay pathogen with a pan-tropical/subtropical distribution that attacks a wide range of tree hosts. For this study, genomic sequencing was conducted on P. noxius isolate P919-02W.7 from Federated States of Micronesia (Pohnpei), and its gene expression profile was analyzed using different host wood (Acer, Pinus, Prunus, and Salix) substrates. The assembled genome was 33.92 Mbp with 2954 contigs and 9389 predicted genes. Only small differences were observed in size and gene content in comparison with two other P. noxius genome assemblies (isolates OVT-YTM/97 from Hong Kong, China and FFPRI411160 from Japan, respectively). Genome analysis of P. noxius isolate P919-02W.7 revealed 488 genes encoding proteins related to carbohydrate and lignin metabolism, many of these enzymes are associated with degradation of plant cell wall components. Most of the transcripts expressed by P. noxius isolate P919-02W.7 were similar regardless of wood substrates. This study highlights the vast suite of decomposing enzymes produced by P. noxius, which suggests potential for degrading diverse wood substrates, even from temperate host trees. This information contributes to our understanding of pathogen ecology, mechanisms of wood decomposition, and pathogenic/saprophytic lifestyle.
Collapse
Affiliation(s)
- Jorge R Ibarra Caballero
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| | - Jessa P Ata
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA; Department of Forest Biological Sciences, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - K A Leddy
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - Troy J Kieran
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - Ned B Klopfenstein
- USDA Forest Service, Rocky Mountain Research Station, Moscow, ID 83843, USA
| | - Mee-Sook Kim
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331, USA.
| | - Jane E Stewart
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
225
|
Long-read sequencing reveals genomic structural variations that underlie creation of quality protein maize. Nat Commun 2020; 11:17. [PMID: 31911615 PMCID: PMC6946643 DOI: 10.1038/s41467-019-14023-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/12/2019] [Indexed: 02/05/2023] Open
Abstract
Mutation of o2 doubles maize endosperm lysine content, but it causes an inferior kernel phenotype. Developing quality protein maize (QPM) by introgressing o2 modifiers (Mo2s) into the o2 mutant benefits millions of people in developing countries where maize is a primary protein source. Here, we report genome sequence and annotation of a South African QPM line K0326Y, which is assembled from single-molecule, real-time shotgun sequencing reads collinear with an optical map. We achieve a N50 contig length of 7.7 million bases (Mb) directly from long-read assembly, compared to those of 1.04 Mb for B73 and 1.48 Mb for Mo17. To characterize Mo2s, we map QTLs to chromosomes 1, 6, 7, and 9 using an F2 population derived from crossing K0326Y and W64Ao2. RNA-seq analysis of QPM and o2 endosperms reveals a group of differentially expressed genes that coincide with Mo2 QTLs, suggesting a potential role in vitreous endosperm formation. The South African quality protein maize (QPM) cultivars have the desired high lysine content and kernel hardness due to o2 mutation and the introgression of modifiers of o2 (Mo2) QTLs, respectively. Here, the authors assemble the genome of a QPM line and identify candidate genes underlying Mo2 QTLs.
Collapse
|
226
|
Wey B, Heavner ME, Wittmeyer KT, Briese T, Hopper KR, Govind S. Immune Suppressive Extracellular Vesicle Proteins of Leptopilina heterotoma Are Encoded in the Wasp Genome. G3 (BETHESDA, MD.) 2020; 10:1-12. [PMID: 31676506 PMCID: PMC6945029 DOI: 10.1534/g3.119.400349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022]
Abstract
Leptopilina heterotoma are obligate parasitoid wasps that develop in the body of their Drosophila hosts. During oviposition, female wasps introduce venom into the larval hosts' body cavity. The venom contains discrete, 300 nm-wide, mixed-strategy extracellular vesicles (MSEVs), until recently referred to as virus-like particles. While the crucial immune suppressive functions of L. heterotoma MSEVs have remained undisputed, their biotic nature and origin still remain controversial. In recent proteomics analyses of L. heterotoma MSEVs, we identified 161 proteins in three classes: conserved eukaryotic proteins, infection and immunity related proteins, and proteins without clear annotation. Here we report 246 additional proteins from the L. heterotoma MSEV proteome. An enrichment analysis of the entire proteome supports vesicular nature of these structures. Sequences for more than 90% of these proteins are present in the whole-body transcriptome. Sequencing and de novo assembly of the 460 Mb-sized L. heterotoma genome revealed 90% of MSEV proteins have coding regions within the genomic scaffolds. Altogether, these results explain the stable association of MSEVs with their wasps, and like other wasp structures, their vertical inheritance. While our results do not rule out a viral origin of MSEVs, they suggest that a similar strategy for co-opting cellular machinery for immune suppression may be shared by other wasps to gain advantage over their hosts. These results are relevant to our understanding of the evolution of figitid and related wasp species.
Collapse
Affiliation(s)
- Brian Wey
- Biology Department, The City College of New York, 160 Convent Avenue, New York, 10031
- PhD Program in Biology, The Graduate Center of the City University of New York
| | - Mary Ellen Heavner
- Biology Department, The City College of New York, 160 Convent Avenue, New York, 10031
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, 10016
- Laboratory of Host-Pathogen Biology, Rockefeller University, 1230 York Ave, New York, 10065
| | - Kameron T Wittmeyer
- USDA-ARS, Beneficial Insect Introductions Research Unit, Newark, DE 19713, and
| | - Thomas Briese
- Center of Infection and Immunity, and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, 10032
| | - Keith R Hopper
- USDA-ARS, Beneficial Insect Introductions Research Unit, Newark, DE 19713, and
| | - Shubha Govind
- Biology Department, The City College of New York, 160 Convent Avenue, New York, 10031,
- PhD Program in Biology, The Graduate Center of the City University of New York
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, 10016
| |
Collapse
|
227
|
Wang C, Ulloa M, Nichols RL, Roberts PA. Sequence Composition of Bacterial Chromosome Clones in a Transgressive Root-Knot Nematode Resistance Chromosome Region in Tetraploid Cotton. FRONTIERS IN PLANT SCIENCE 2020; 11:574486. [PMID: 33381129 PMCID: PMC7767830 DOI: 10.3389/fpls.2020.574486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/15/2020] [Indexed: 05/08/2023]
Abstract
Plants evolve innate immunity including resistance genes to defend against pest and pathogen attack. Our previous studies in cotton (Gossypium spp.) revealed that one telomeric segment on chromosome (Chr) 11 in G. hirsutum cv. Acala NemX (rkn1 locus) contributed to transgressive resistance to the plant parasitic nematode Meloidogyne incognita, but the highly homologous segment on homoeologous Chr 21 had no resistance contribution. To better understand the resistance mechanism, a bacterial chromosome (BAC) library of Acala N901 (Acala NemX resistance source) was used to select, sequence, and analyze BAC clones associated with SSR markers in the complex rkn1 resistance region. Sequence alignment with the susceptible G. hirsutum cv. TM-1 genome indicated that 23 BACs mapped to TM-1-Chr11 and 18 BACs mapped to TM-1-Chr 21. Genetic and physical mapping confirmed less BAC sequence (53-84%) mapped with the TM-1 genome in the rkn1 region on Chr 11 than to the homologous region (>89%) on Chr 21. A 3.1-cM genetic distance between the rkn1 flanking markers CIR316 and CIR069 was mapped in a Pima S-7 × Acala NemX RIL population with a physical distance ∼1 Mbp in TM-1. NCBI Blast and Gene annotation indicated that both Chr 11 and Chr 21 harbor resistance gene-rich cluster regions, but more multiple homologous copies of Resistance (R) proteins and of adjacent transposable elements (TE) are present within Chr 11 than within Chr 21. (CC)-NB-LRR type R proteins were found in the rkn1 region close to CIR316, and (TIR)-NB-LRR type R proteins were identified in another resistance rich region 10 cM from CIR 316 (∼3.1 Mbp in the TM-1 genome). The identified unique insertion/deletion in NB-ARC domain, different copies of LRR domain, multiple copies or duplication of R proteins, adjacent protein kinases, or TE in the rkn1 region on Chr 11 might be major factors contributing to complex recombination and transgressive resistance.
Collapse
Affiliation(s)
- Congli Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Department of Nematology, University of California, Riverside, Riverside, CA, United States
| | - Mauricio Ulloa
- United States Department of Agriculture-Agricultural Research Service, Plains Area, Cropping Systems Research Laboratory, Plant Stress and Germplasm Development Research, Lubbock, TX, United States
| | | | - Philip A. Roberts
- Department of Nematology, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Philip A. Roberts,
| |
Collapse
|
228
|
Haag KL, Pombert JF, Sun Y, de Albuquerque NRM, Batliner B, Fields P, Lopes TF, Ebert D. Microsporidia with Vertical Transmission Were Likely Shaped by Nonadaptive Processes. Genome Biol Evol 2020; 12:3599-3614. [PMID: 31825473 PMCID: PMC6944219 DOI: 10.1093/gbe/evz270] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
Microsporidia have the leanest genomes among eukaryotes, and their physiological and genomic simplicity has been attributed to their intracellular, obligate parasitic life-style. However, not all microsporidia genomes are small or lean, with the largest dwarfing the smallest ones by at least an order of magnitude. To better understand the evolutionary mechanisms behind this genomic diversification, we explore here two clades of microsporidia with distinct life histories, Ordospora and Hamiltosporidium, parasitizing the same host species, Daphnia magna. Based on seven newly assembled genomes, we show that mixed-mode transmission (the combination of horizontal and vertical transmission), which occurs in Hamiltosporidium, is found to be associated with larger and AT-biased genomes, more genes, and longer intergenic regions, as compared with the exclusively horizontally transmitted Ordospora. Furthermore, the Hamiltosporidium genome assemblies contain a variety of repetitive elements and long segmental duplications. We show that there is an excess of nonsynonymous substitutions in the microsporidia with mixed-mode transmission, which cannot be solely attributed to the lack of recombination, suggesting that bursts of genome size in these microsporidia result primarily from genetic drift. Overall, these findings suggest that the switch from a horizontal-only to a mixed mode of transmission likely produces population bottlenecks in Hamiltosporidium species, therefore reducing the effectiveness of natural selection, and allowing their genomic features to be largely shaped by nonadaptive processes.
Collapse
Affiliation(s)
- Karen L Haag
- Department of Genetics and Post-Graduation Program of Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Yukun Sun
- Department of Biology, Illinois Institute of Technology
| | - Nathalia Rammé M de Albuquerque
- Department of Genetics and Post-Graduation Program of Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Peter Fields
- Department of Environmental Sciences, Zoology, Basel University, Switzerland
| | - Tiago Falcon Lopes
- Department of Genetics and Post-Graduation Program of Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, Basel University, Switzerland
| |
Collapse
|
229
|
Oppenheim S, Cao X, Rueppel O, Krongdang S, Phokasem P, DeSalle R, Goodwin S, Xing J, Chantawannakul P, Rosenfeld JA. Whole Genome Sequencing and Assembly of the Asian Honey Bee Apis dorsata. Genome Biol Evol 2020; 12:3677-3683. [PMID: 31860080 PMCID: PMC6953811 DOI: 10.1093/gbe/evz277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 12/16/2022] Open
Abstract
The Asian honey bee (Apis dorsata) is distinct from its more widely distributed cousin Apis mellifera by a few key characteristics. Most prominently, A. dorsata, nest in the open by forming a colony clustered around the honeycomb, whereas A. mellifera nest in concealed cavities. Additionally, the worker and reproductive castes are all of the same size in A. dorsata. In order to investigate these differences, we performed whole genome sequencing of A. dorsata using a hybrid Oxford Nanopore and Illumina approach. The 223 Mb genome has an N50 of 35 kb with the largest scaffold of 302 kb. We have found that there are many genes in the dorsata genome that are distinct from other hymenoptera and also large amounts of transposable elements, and we suggest some candidate genes for A. dorsata's exceptional level of defensive aggression.
Collapse
Affiliation(s)
- Sara Oppenheim
- Sackler Institute for Comparative Genomics, American Museum of Natural History
| | - Xiaolong Cao
- Department of Genetics, Human Genetic Institute of New Jersey, Rutgers, The State University of New Jersey
| | - Olav Rueppel
- Biology Department, University of North Carolina at Greensboro
| | - Sasiprapa Krongdang
- Department of Biology & Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Thailand
| | - Patcharin Phokasem
- Department of Biology & Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Thailand
| | - Rob DeSalle
- Sackler Institute for Comparative Genomics, American Museum of Natural History
| | | | - Jinchuan Xing
- Department of Genetics, Human Genetic Institute of New Jersey, Rutgers, The State University of New Jersey
| | - Panuwan Chantawannakul
- Department of Biology & Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Thailand
| | - Jeffrey A Rosenfeld
- Sackler Institute for Comparative Genomics, American Museum of Natural History
- Rutgers Cancer Institute of New Jersey
- Department of Pathology, Robert Wood Johnson Medical School
| |
Collapse
|
230
|
Marsh JT, Jayasena S, Gaskin F, Baumert JL, Johnson P. Thermal processing of peanut impacts detection by current analytical techniques. Food Chem 2019; 313:126019. [PMID: 31931421 DOI: 10.1016/j.foodchem.2019.126019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 11/17/2022]
Abstract
Recalls of spice containing products due to undeclared peanut have highlighted the importance of analytical methods in these foods. We examined the performance of peanut detection methods in cumin and garlic, focusing on quantitative ELISA. Although suitable for qualitative detection, accurate quantitation proved difficult. Roasting of peanut contaminants influenced ELISA results, with raw peanut over-detected (3.9-fold) and roasted peanut under-detected (3.5-fold). Further investigation demonstrated the importance of protein targets for ELISA. The kit which gave the least variable results was based on detection of 2S albumin proteins. Additionally, we show that these proteins are more efficiently extracted from roasted peanut. We conclude that current methods are largely suitable for the qualitative detection of peanut in cumin and garlic. Quantitation relies on assumptions as to the state of thermal processing of peanut. We suggest that analytical method providers address robust detection by target selection, including identifying targets by MS.
Collapse
Affiliation(s)
- Justin T Marsh
- Department of Food Science & Technology, Food Allergy Research & Resource Program, University of Nebraska-Lincoln, Food Innovation Center, 1901 North 21st Street Lincoln, NE 68588-6205, United States.
| | - Shyamali Jayasena
- Department of Food Science & Technology, Food Allergy Research & Resource Program, University of Nebraska-Lincoln, Food Innovation Center, 1901 North 21st Street Lincoln, NE 68588-6205, United States
| | - Ferdelie Gaskin
- Department of Food Science & Technology, Food Allergy Research & Resource Program, University of Nebraska-Lincoln, Food Innovation Center, 1901 North 21st Street Lincoln, NE 68588-6205, United States
| | - Joseph L Baumert
- Department of Food Science & Technology, Food Allergy Research & Resource Program, University of Nebraska-Lincoln, Food Innovation Center, 1901 North 21st Street Lincoln, NE 68588-6205, United States
| | - Philip Johnson
- Department of Food Science & Technology, Food Allergy Research & Resource Program, University of Nebraska-Lincoln, Food Innovation Center, 1901 North 21st Street Lincoln, NE 68588-6205, United States.
| |
Collapse
|
231
|
Pan B, Chen X, Hou L, Zhang Q, Qu Z, Warren A, Miao M. Comparative Genomics Analysis of Ciliates Provides Insights on the Evolutionary History Within "Nassophorea-Synhymenia-Phyllopharyngea" Assemblage. Front Microbiol 2019; 10:2819. [PMID: 31921016 PMCID: PMC6920121 DOI: 10.3389/fmicb.2019.02819] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/20/2019] [Indexed: 11/13/2022] Open
Abstract
Ciliated protists (ciliates) are widely used for investigating evolution, mostly due to their successful radiation after their early evolutionary branching. In this study, we employed high-throughput sequencing technology to reveal the phylogenetic position of Synhymenia, as well as two classes Nassophorea and Phyllopharyngea, which have been a long-standing puzzle in the field of ciliate systematics and evolution. We obtained genomic and transcriptomic data from single cells of one synhymenian (Chilodontopsis depressa) and six other species of phyllopharyngeans (Chilodochona sp., Dysteria derouxi, Hartmannula sinica, Trithigmostoma cucullulus, Trochilia petrani, and Trochilia sp.). Phylogenomic analysis based on 157 orthologous genes comprising 173,835 amino acid residues revealed the affiliation of C. depressa within the class Phyllopharyngea, and the monophyly of Nassophorea, which strongly support the assignment of Synhymenia as a subclass within the class Phyllopharyngea. Comparative genomic analyses further revealed that C. depressa shares more orthologous genes with the class Nassophorea than with Phyllopharyngea, and the stop codon usage in C. depressa resembles that of Phyllopharyngea. Functional enrichment analysis demonstrated that biological pathways in C. depressa are more similar to Phyllopharyngea than Nassophorea. These results suggest that genomic and transcriptomic data can be used to provide insights into the evolutionary relationships within the "Nassophorea-Synhymenia-Phyllopharyngea" assemblage.
Collapse
Affiliation(s)
- Bo Pan
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao Chen
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States
| | - Lina Hou
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qianqian Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zhishuai Qu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,Ecology Group, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Miao Miao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
232
|
Soza VL, Lindsley D, Waalkes A, Ramage E, Patwardhan RP, Burton JN, Adey A, Kumar A, Qiu R, Shendure J, Hall B. The Rhododendron Genome and Chromosomal Organization Provide Insight into Shared Whole-Genome Duplications across the Heath Family (Ericaceae). Genome Biol Evol 2019; 11:3353-3371. [PMID: 31702783 PMCID: PMC6907397 DOI: 10.1093/gbe/evz245] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
The genus Rhododendron (Ericaceae), which includes horticulturally important plants such as azaleas, is a highly diverse and widely distributed genus of >1,000 species. Here, we report the chromosome-scale de novo assembly and genome annotation of Rhododendron williamsianum as a basis for continued study of this large genus. We created multiple short fragment genomic libraries, which were assembled using ALLPATHS-LG. This was followed by contiguity preserving transposase sequencing (CPT-seq) and fragScaff scaffolding of a large fragment library, which improved the assembly by decreasing the number of scaffolds and increasing scaffold length. Chromosome-scale scaffolding was performed by proximity-guided assembly (LACHESIS) using chromatin conformation capture (Hi-C) data. Chromosome-scale scaffolding was further refined and linkage groups defined by restriction-site associated DNA (RAD) sequencing of the parents and progeny of a genetic cross. The resulting linkage map confirmed the LACHESIS clustering and ordering of scaffolds onto chromosomes and rectified large-scale inversions. Assessments of the R. williamsianum genome assembly and gene annotation estimate them to be 89% and 79% complete, respectively. Predicted coding sequences from genome annotation were used in syntenic analyses and for generating age distributions of synonymous substitutions/site between paralgous gene pairs, which identified whole-genome duplications (WGDs) in R. williamsianum. We then analyzed other publicly available Ericaceae genomes for shared WGDs. Based on our spatial and temporal analyses of paralogous gene pairs, we find evidence for two shared, ancient WGDs in Rhododendron and Vaccinium (cranberry/blueberry) members that predate the Ericaceae family and, in one case, the Ericales order.
Collapse
Affiliation(s)
- Valerie L Soza
- Department of Biology, University of Washington, Seattle, WA
| | - Dale Lindsley
- Department of Biology, University of Washington, Seattle, WA
- Retired
| | - Adam Waalkes
- Department of Biology, University of Washington, Seattle, WA
- Department of Laboratory Medicine, University of Washington, Seattle, WA
| | | | | | - Joshua N Burton
- Department of Genome Sciences, University of Washington, Seattle, WA
- Adaptive Biotechnologies, Seattle, WA
| | - Andrew Adey
- Department of Genome Sciences, University of Washington, Seattle, WA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR
| | - Akash Kumar
- Department of Genome Sciences, University of Washington, Seattle, WA
- Department of Pediatrics, Stanford University, Palo Alto, CA
| | - Ruolan Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA
- Retired
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA
- Brotman Baty Institute for Precision Medicine, Seattle, WA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA
| | - Benjamin Hall
- Department of Biology, University of Washington, Seattle, WA
| |
Collapse
|
233
|
Souza GM, Van Sluys MA, Lembke CG, Lee H, Margarido GRA, Hotta CT, Gaiarsa JW, Diniz AL, Oliveira MDM, Ferreira SDS, Nishiyama MY, ten-Caten F, Ragagnin GT, Andrade PDM, de Souza RF, Nicastro GG, Pandya R, Kim C, Guo H, Durham AM, Carneiro MS, Zhang J, Zhang X, Zhang Q, Ming R, Schatz MC, Davidson B, Paterson AH, Heckerman D. Assembly of the 373k gene space of the polyploid sugarcane genome reveals reservoirs of functional diversity in the world's leading biomass crop. Gigascience 2019; 8:giz129. [PMID: 31782791 PMCID: PMC6884061 DOI: 10.1093/gigascience/giz129] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/23/2019] [Accepted: 10/08/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Sugarcane cultivars are polyploid interspecific hybrids of giant genomes, typically with 10-13 sets of chromosomes from 2 Saccharum species. The ploidy, hybridity, and size of the genome, estimated to have >10 Gb, pose a challenge for sequencing. RESULTS Here we present a gene space assembly of SP80-3280, including 373,869 putative genes and their potential regulatory regions. The alignment of single-copy genes in diploid grasses to the putative genes indicates that we could resolve 2-6 (up to 15) putative homo(eo)logs that are 99.1% identical within their coding sequences. Dissimilarities increase in their regulatory regions, and gene promoter analysis shows differences in regulatory elements within gene families that are expressed in a species-specific manner. We exemplify these differences for sucrose synthase (SuSy) and phenylalanine ammonia-lyase (PAL), 2 gene families central to carbon partitioning. SP80-3280 has particular regulatory elements involved in sucrose synthesis not found in the ancestor Saccharum spontaneum. PAL regulatory elements are found in co-expressed genes related to fiber synthesis within gene networks defined during plant growth and maturation. Comparison with sorghum reveals predominantly bi-allelic variations in sugarcane, consistent with the formation of 2 "subgenomes" after their divergence ∼3.8-4.6 million years ago and reveals single-nucleotide variants that may underlie their differences. CONCLUSIONS This assembly represents a large step towards a whole-genome assembly of a commercial sugarcane cultivar. It includes a rich diversity of genes and homo(eo)logous resolution for a representative fraction of the gene space, relevant to improve biomass and food production.
Collapse
Affiliation(s)
- Glaucia Mendes Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Marie-Anne Van Sluys
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP 05508-090, Brazil
| | - Carolina Gimiliani Lembke
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Hayan Lee
- Cold Spring Harbor Laboratory, One Bungtown Road, Koch Building #1119, Cold Spring Harbor, NY11724, United States of America
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CACA94598, United States of America
| | - Gabriel Rodrigues Alves Margarido
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Avenida Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil
| | - Carlos Takeshi Hotta
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Jonas Weissmann Gaiarsa
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP 05508-090, Brazil
| | - Augusto Lima Diniz
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Mauro de Medeiros Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Sávio de Siqueira Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP 05508-090, Brazil
| | - Milton Yutaka Nishiyama
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, SP05503-900, Brazil
| | - Felipe ten-Caten
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Geovani Tolfo Ragagnin
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP 05508-090, Brazil
| | - Pablo de Morais Andrade
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Robson Francisco de Souza
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av.Professor Lineu Prestes, 1734, São Paulo, SP 05508-900, Brazil
| | - Gianlucca Gonçalves Nicastro
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av.Professor Lineu Prestes, 1734, São Paulo, SP 05508-900, Brazil
| | - Ravi Pandya
- Microsoft Research, One Microsoft Way, Redmond, WA 98052, United States of America
| | - Changsoo Kim
- Plant Genome Mapping Laboratory, University of Georgia, 120 Green Street, Athens, GA 30602-7223,United States of America
- Department of Crop Science, Chungnam National University, 99 Daehak Ro Yuseong Gu, Deajeon,34134, South Korea
| | - Hui Guo
- Plant Genome Mapping Laboratory, University of Georgia, 120 Green Street, Athens, GA 30602-7223,United States of America
| | - Alan Mitchell Durham
- Departamento de Ciências da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010, São Paulo, SP 05508-090, Brazil
| | - Monalisa Sampaio Carneiro
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Rodovia Washington Luis km 235, Araras, SP 13.565-905, Brazil
| | - Jisen Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Shangxiadian Road, Fuzhou 350002, Fujian, China
| | - Xingtan Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Shangxiadian Road, Fuzhou 350002, Fujian, China
| | - Qing Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Shangxiadian Road, Fuzhou 350002, Fujian, China
| | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Shangxiadian Road, Fuzhou 350002, Fujian, China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 201 W. Gregory Dr. Urbana, Urbana, Illinois 61801, United States of America
| | - Michael C Schatz
- Cold Spring Harbor Laboratory, One Bungtown Road, Koch Building #1119, Cold Spring Harbor, NY11724, United States of America
- Departments of Computer Science and Biology, Johns Hopkins University, 3400 North Charles Street,Baltimore, MD 21218-2608, United States of America
| | - Bob Davidson
- Microsoft Research, One Microsoft Way, Redmond, WA 98052, United States of America
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, 120 Green Street, Athens, GA 30602-7223,United States of America
| | - David Heckerman
- Microsoft Research, One Microsoft Way, Redmond, WA 98052, United States of America
| |
Collapse
|
234
|
Dudin O, Ondracka A, Grau-Bové X, Haraldsen AA, Toyoda A, Suga H, Bråte J, Ruiz-Trillo I. A unicellular relative of animals generates a layer of polarized cells by actomyosin-dependent cellularization. eLife 2019; 8:49801. [PMID: 31647412 PMCID: PMC6855841 DOI: 10.7554/elife.49801] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022] Open
Abstract
In animals, cellularization of a coenocyte is a specialized form of cytokinesis that results in the formation of a polarized epithelium during early embryonic development. It is characterized by coordinated assembly of an actomyosin network, which drives inward membrane invaginations. However, whether coordinated cellularization driven by membrane invagination exists outside animals is not known. To that end, we investigate cellularization in the ichthyosporean Sphaeroforma arctica, a close unicellular relative of animals. We show that the process of cellularization involves coordinated inward plasma membrane invaginations dependent on an actomyosin network and reveal the temporal order of its assembly. This leads to the formation of a polarized layer of cells resembling an epithelium. We show that this stage is associated with tightly regulated transcriptional activation of genes involved in cell adhesion. Hereby we demonstrate the presence of a self-organized, clonally-generated, polarized layer of cells in a unicellular relative of animals.
Collapse
Affiliation(s)
- Omaya Dudin
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Andrej Ondracka
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Xavier Grau-Bové
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Arthur Ab Haraldsen
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Jon Bråte
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.,Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
235
|
Wang C, Becker K, Pfütze S, Kuhnert E, Stadler M, Cox RJ, Skellam E. Investigating the Function of Cryptic Cytochalasan Cytochrome P450 Monooxygenases Using Combinatorial Biosynthesis. Org Lett 2019; 21:8756-8760. [PMID: 31644300 DOI: 10.1021/acs.orglett.9b03372] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tailoring enzymes in cytochalasan biosynthesis are relatively promiscuous. Exploiting this property, we deduced the function of four cryptic cytochrome P450 monooxygenases via heterologous expression of six cytochrome P450-encoding genes, originating from Hypoxylon fragiforme and Pyricularia oryzae, in pyrichalasin H ΔP450 strains. Three cryptic cytochrome P450 enzymes (HffD, HffG, and CYP1) restored pyrichalasin H production in mutant strains, while CYP3 catalyzed a site-selective epoxidation leading to the isolation of three novel cytochalasans.
Collapse
Affiliation(s)
- Chongqing Wang
- Institute for Organic Chemistry and Centre for Biomolecular Drug Research , Leibniz University Hannover , Schneiderberg 38 , Hannover 30167 , Germany
| | - Kevin Becker
- Department Microbial Drugs , Helmholtz Centre for Infection Research (HZI) , Inhoffenstraße 7 , 38124 Braunschweig , Germany
| | - Sebastian Pfütze
- Department Microbial Drugs , Helmholtz Centre for Infection Research (HZI) , Inhoffenstraße 7 , 38124 Braunschweig , Germany
| | - Eric Kuhnert
- Institute for Organic Chemistry and Centre for Biomolecular Drug Research , Leibniz University Hannover , Schneiderberg 38 , Hannover 30167 , Germany
| | - Marc Stadler
- Department Microbial Drugs , Helmholtz Centre for Infection Research (HZI) , Inhoffenstraße 7 , 38124 Braunschweig , Germany
| | - Russell J Cox
- Institute for Organic Chemistry and Centre for Biomolecular Drug Research , Leibniz University Hannover , Schneiderberg 38 , Hannover 30167 , Germany
| | - Elizabeth Skellam
- Institute for Organic Chemistry and Centre for Biomolecular Drug Research , Leibniz University Hannover , Schneiderberg 38 , Hannover 30167 , Germany
| |
Collapse
|
236
|
Kourelis J, Kaschani F, Grosse-Holz FM, Homma F, Kaiser M, van der Hoorn RAL. A homology-guided, genome-based proteome for improved proteomics in the alloploid Nicotiana benthamiana. BMC Genomics 2019; 20:722. [PMID: 31585525 PMCID: PMC6778390 DOI: 10.1186/s12864-019-6058-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/22/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Nicotiana benthamiana is an important model organism of the Solanaceae (Nightshade) family. Several draft assemblies of the N. benthamiana genome have been generated, but many of the gene-models in these draft assemblies appear incorrect. RESULTS Here we present an improved proteome based on the Niben1.0.1 draft genome assembly guided by gene models from other Nicotiana species. Due to the fragmented nature of the Niben1.0.1 draft genome, many protein-encoding genes are missing or partial. We complement these missing proteins by similarly annotating other draft genome assemblies. This approach overcomes problems caused by mis-annotated exon-intron boundaries and mis-assigned short read transcripts to homeologs in polyploid genomes. With an estimated 98.1% completeness; only 53,411 protein-encoding genes; and improved protein lengths and functional annotations, this new predicted proteome is better in assigning spectra than the preceding proteome annotations. This dataset is more sensitive and accurate in proteomics applications, clarifying the detection by activity-based proteomics of proteins that were previously predicted to be inactive. Phylogenetic analysis of the subtilase family of hydrolases reveal inactivation of likely homeologs, associated with a contraction of the functional genome in this alloploid plant species. Finally, we use this new proteome annotation to characterize the extracellular proteome as compared to a total leaf proteome, which highlights the enrichment of hydrolases in the apoplast. CONCLUSIONS This proteome annotation provides the community working with Nicotiana benthamiana with an important new resource for functional proteomics.
Collapse
Affiliation(s)
- Jiorgos Kourelis
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Farnusch Kaschani
- Chemische Biologie, Zentrum fur Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Essen, Germany
| | - Friederike M Grosse-Holz
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Felix Homma
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Markus Kaiser
- Chemische Biologie, Zentrum fur Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Essen, Germany
| | - Renier A L van der Hoorn
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
237
|
Martin SL, Parent JS, Laforest M, Page E, Kreiner JM, James T. Population Genomic Approaches for Weed Science. PLANTS (BASEL, SWITZERLAND) 2019; 8:E354. [PMID: 31546893 PMCID: PMC6783936 DOI: 10.3390/plants8090354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
Abstract
Genomic approaches are opening avenues for understanding all aspects of biological life, especially as they begin to be applied to multiple individuals and populations. However, these approaches typically depend on the availability of a sequenced genome for the species of interest. While the number of genomes being sequenced is exploding, one group that has lagged behind are weeds. Although the power of genomic approaches for weed science has been recognized, what is needed to implement these approaches is unfamiliar to many weed scientists. In this review we attempt to address this problem by providing a primer on genome sequencing and provide examples of how genomics can help answer key questions in weed science such as: (1) Where do agricultural weeds come from; (2) what genes underlie herbicide resistance; and, more speculatively, (3) can we alter weed populations to make them easier to control? This review is intended as an introduction to orient weed scientists who are thinking about initiating genome sequencing projects to better understand weed populations, to highlight recent publications that illustrate the potential for these methods, and to provide direction to key tools and literature that will facilitate the development and execution of weed genomic projects.
Collapse
Affiliation(s)
- Sara L Martin
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Jean-Sebastien Parent
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Martin Laforest
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada.
| | - Eric Page
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON N0R 1G0, Canada.
| | - Julia M Kreiner
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| | - Tracey James
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| |
Collapse
|
238
|
Kreplak J, Madoui MA, Cápal P, Novák P, Labadie K, Aubert G, Bayer PE, Gali KK, Syme RA, Main D, Klein A, Bérard A, Vrbová I, Fournier C, d'Agata L, Belser C, Berrabah W, Toegelová H, Milec Z, Vrána J, Lee H, Kougbeadjo A, Térézol M, Huneau C, Turo CJ, Mohellibi N, Neumann P, Falque M, Gallardo K, McGee R, Tar'an B, Bendahmane A, Aury JM, Batley J, Le Paslier MC, Ellis N, Warkentin TD, Coyne CJ, Salse J, Edwards D, Lichtenzveig J, Macas J, Doležel J, Wincker P, Burstin J. A reference genome for pea provides insight into legume genome evolution. Nat Genet 2019; 51:1411-1422. [PMID: 31477930 DOI: 10.1038/s41588-019-0480-1] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 07/10/2019] [Indexed: 02/03/2023]
Abstract
We report the first annotated chromosome-level reference genome assembly for pea, Gregor Mendel's original genetic model. Phylogenetics and paleogenomics show genomic rearrangements across legumes and suggest a major role for repetitive elements in pea genome evolution. Compared to other sequenced Leguminosae genomes, the pea genome shows intense gene dynamics, most likely associated with genome size expansion when the Fabeae diverged from its sister tribes. During Pisum evolution, translocation and transposition differentially occurred across lineages. This reference sequence will accelerate our understanding of the molecular basis of agronomically important traits and support crop improvement.
Collapse
Affiliation(s)
- Jonathan Kreplak
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Mohammed-Amin Madoui
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Petr Cápal
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Petr Novák
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Grégoire Aubert
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Philipp E Bayer
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia
| | - Krishna K Gali
- Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Robert A Syme
- Centre for Crop and Disease Management, Curtin University, Bentley, Western Australia, Australia
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, USA
| | - Anthony Klein
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Aurélie Bérard
- Etude du Polymorphisme des Génomes Végétaux, INRA, Université Paris-Saclay, Evry, France
| | - Iva Vrbová
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Cyril Fournier
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Leo d'Agata
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Caroline Belser
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Wahiba Berrabah
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Helena Toegelová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Zbyněk Milec
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - HueyTyng Lee
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Ayité Kougbeadjo
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Morgane Térézol
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Cécile Huneau
- UMR 1095 Génétique, Diversité, Ecophysiologie des Céréales, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Chala J Turo
- Centre for Crop and Disease Management, School of Molecular and Life Science, Curtin University, Bentley, Western Australia, Australia
| | | | - Pavel Neumann
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Matthieu Falque
- GQE-Le Moulon, INRA, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Karine Gallardo
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Rebecca McGee
- USDA Agricultural Research Service, Pullman, WA, USA
| | - Bunyamin Tar'an
- Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay, INRA, CNRS, University of Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Orsay, France
| | - Jean-Marc Aury
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia
| | | | - Noel Ellis
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Thomas D Warkentin
- Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Jérome Salse
- UMR 1095 Génétique, Diversité, Ecophysiologie des Céréales, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia
| | - Judith Lichtenzveig
- School of Agriculture and Environment, University of Western Australia, Perth, Western Australia, Australia
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Judith Burstin
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté Bourgogne, Université Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
239
|
Stortz JF, Del Rosario M, Singer M, Wilkes JM, Meissner M, Das S. Formin-2 drives polymerisation of actin filaments enabling segregation of apicoplasts and cytokinesis in Plasmodium falciparum. eLife 2019; 8:e49030. [PMID: 31322501 PMCID: PMC6688858 DOI: 10.7554/elife.49030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
In addition to its role in erythrocyte invasion, Plasmodium falciparum actin is implicated in endocytosis, cytokinesis and inheritance of the chloroplast-like organelle called the apicoplast. Previously, the inability to visualise filamentous actin (F-actin) dynamics had restricted the characterisation of both F-actin and actin regulatory proteins, a limitation we recently overcame for Toxoplasma (Periz et al, 2017). Here, we have expressed and validated actin-binding chromobodies as F-actin-sensors in Plasmodium falciparum and characterised in-vivo actin dynamics. F-actin could be chemically modulated, and genetically disrupted upon conditionally deleting actin-1. In a comparative approach, we demonstrate that Formin-2, a predicted nucleator of F-actin, is responsible for apicoplast inheritance in both Plasmodium and Toxoplasma, and additionally mediates efficient cytokinesis in Plasmodium. Finally, time-averaged local intensity measurements of F-actin in Toxoplasma conditional mutants revealed molecular determinants of spatiotemporally regulated F-actin flow. Together, our data indicate that Formin-2 is the primary F-actin nucleator during apicomplexan intracellular growth, mediating multiple essential functions.
Collapse
Affiliation(s)
- Johannes Felix Stortz
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & InflammationUniversity of GlasgowGlasgowUnited Kingdom
| | - Mario Del Rosario
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & InflammationUniversity of GlasgowGlasgowUnited Kingdom
| | - Mirko Singer
- Faculty of Veterinary Medicine, Experimental ParasitologyLudwig Maximilian UniversityMunichGermany
| | - Jonathan M Wilkes
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & InflammationUniversity of GlasgowGlasgowUnited Kingdom
| | - Markus Meissner
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & InflammationUniversity of GlasgowGlasgowUnited Kingdom
- Faculty of Veterinary Medicine, Experimental ParasitologyLudwig Maximilian UniversityMunichGermany
| | - Sujaan Das
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & InflammationUniversity of GlasgowGlasgowUnited Kingdom
- Faculty of Veterinary Medicine, Experimental ParasitologyLudwig Maximilian UniversityMunichGermany
| |
Collapse
|
240
|
Abstract
As in any endeavor, the strategy applied to a genome project can mean the difference between success and failure. This is especially important when limited funding often means only a single approach may be tried at a given time. Although the advance of all areas of genomics and transcriptomics in recent years has led to an embarrassment of riches, methods in the field have not quite reached the turn-key production status for all species, despite being closer than ever. Here I contrast and compare the technical approaches to genome projects in the hope of enabling strategy choices with higher probabilities of success. Finally, I review the new technologies that are not yet widely distributed which are revolutionizing the future of genomics.
Collapse
Affiliation(s)
- Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
241
|
Seasonal adaptations of the hypothalamo-neurohypophyseal system of the dromedary camel. PLoS One 2019; 14:e0216679. [PMID: 31211771 PMCID: PMC6581255 DOI: 10.1371/journal.pone.0216679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
The “ship” of the Arabian and North African deserts, the one-humped dromedary camel (Camelus dromedarius) has a remarkable capacity to survive in conditions of extreme heat without needing to drink water. One of the ways that this is achieved is through the actions of the antidiuretic hormone arginine vasopressin (AVP), which is made in a specialised part of the brain called the hypothalamo-neurohypophyseal system (HNS), but exerts its effects at the level of the kidney to provoke water conservation. Interestingly, our electron microscopy studies have shown that the ultrastructure of the dromedary HNS changes according to season, suggesting that in the arid conditions of summer the HNS is in an activated state, in preparation for the likely prospect of water deprivation. Based on our dromedary genome sequence, we have carried out an RNAseq analysis of the dromedary HNS in summer and winter. Amongst the 171 transcripts found to be significantly differentially regulated (>2 fold change, p value <0.05) there is a significant over-representation of neuropeptide encoding genes, including that encoding AVP, the expression of which appeared to increase in summer. Identification of neuropeptides in the HNS and analysis of neuropeptide profiles in extracts from individual camels using mass spectrometry indicates that overall AVP peptide levels decreased in the HNS during summer compared to winter, perhaps due to increased release during periods of dehydration in the dry season.
Collapse
|
242
|
Pucker B, Holtgräwe D, Stadermann KB, Frey K, Huettel B, Reinhardt R, Weisshaar B. A chromosome-level sequence assembly reveals the structure of the Arabidopsis thaliana Nd-1 genome and its gene set. PLoS One 2019; 14:e0216233. [PMID: 31112551 PMCID: PMC6529160 DOI: 10.1371/journal.pone.0216233] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/16/2019] [Indexed: 01/27/2023] Open
Abstract
In addition to the BAC-based reference sequence of the accession Columbia-0 from the year 2000, several short read assemblies of THE plant model organism Arabidopsis thaliana were published during the last years. Also, a SMRT-based assembly of Landsberg erecta has been generated that identified translocation and inversion polymorphisms between two genotypes of the species. Here we provide a chromosome-arm level assembly of the A. thaliana accession Niederzenz-1 (AthNd-1_v2c) based on SMRT sequencing data. The best assembly comprises 69 nucleome sequences and displays a contig length of up to 16 Mbp. Compared to an earlier Illumina short read-based NGS assembly (AthNd-1_v1), a 75 fold increase in contiguity was observed for AthNd-1_v2c. To assign contig locations independent from the Col-0 gold standard reference sequence, we used genetic anchoring to generate a de novo assembly. In addition, we assembled the chondrome and plastome sequences. Detailed analyses of AthNd-1_v2c allowed reliable identification of large genomic rearrangements between A. thaliana accessions contributing to differences in the gene sets that distinguish the genotypes. One of the differences detected identified a gene that is lacking from the Col-0 gold standard sequence. This de novo assembly extends the known proportion of the A. thaliana pan-genome.
Collapse
Affiliation(s)
- Boas Pucker
- Bielefeld University, Faculty of Biology & Center for Biotechnology, Bielefeld, Germany
| | - Daniela Holtgräwe
- Bielefeld University, Faculty of Biology & Center for Biotechnology, Bielefeld, Germany
| | - Kai Bernd Stadermann
- Bielefeld University, Faculty of Biology & Center for Biotechnology, Bielefeld, Germany
| | - Katharina Frey
- Bielefeld University, Faculty of Biology & Center for Biotechnology, Bielefeld, Germany
| | - Bruno Huettel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Richard Reinhardt
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Bernd Weisshaar
- Bielefeld University, Faculty of Biology & Center for Biotechnology, Bielefeld, Germany
| |
Collapse
|
243
|
Sforça DA, Vautrin S, Cardoso-Silva CB, Mancini MC, Romero-da Cruz MV, Pereira GDS, Conte M, Bellec A, Dahmer N, Fourment J, Rodde N, Van Sluys MA, Vicentini R, Garcia AAF, Forni-Martins ER, Carneiro MS, Hoffmann HP, Pinto LR, Landell MGDA, Vincentz M, Berges H, de Souza AP. Gene Duplication in the Sugarcane Genome: A Case Study of Allele Interactions and Evolutionary Patterns in Two Genic Regions. FRONTIERS IN PLANT SCIENCE 2019; 10:553. [PMID: 31134109 PMCID: PMC6514446 DOI: 10.3389/fpls.2019.00553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/11/2019] [Indexed: 05/25/2023]
Abstract
Sugarcane (Saccharum spp.) is highly polyploid and aneuploid. Modern cultivars are derived from hybridization between S. officinarum and S. spontaneum. This combination results in a genome exhibiting variable ploidy among different loci, a huge genome size (~10 Gb) and a high content of repetitive regions. An approach using genomic, transcriptomic, and genetic mapping can improve our knowledge of the behavior of genetics in sugarcane. The hypothetical HP600 and Centromere Protein C (CENP-C) genes from sugarcane were used to elucidate the allelic expression and genomic and genetic behaviors of this complex polyploid. The physically linked side-by-side genes HP600 and CENP-C were found in two different homeologous chromosome groups with ploidies of eight and ten. The first region (Region01) was a Sorghum bicolor ortholog region with all haplotypes of HP600 and CENP-C expressed, but HP600 exhibited an unbalanced haplotype expression. The second region (Region02) was a scrambled sugarcane sequence formed from different noncollinear genes containing partial duplications of HP600 and CENP-C (paralogs). This duplication resulted in a non-expressed HP600 pseudogene and a recombined fusion version of CENP-C and the orthologous gene Sobic.003G299500 with at least two chimeric gene haplotypes expressed. It was also determined that it occurred before Saccharum genus formation and after the separation of sorghum and sugarcane. A linkage map was constructed using markers from nonduplicated Region01 and for the duplication (Region01 and Region02). We compare the physical and linkage maps, demonstrating the possibility of mapping markers located in duplicated regions with markers in nonduplicated region. Our results contribute directly to the improvement of linkage mapping in complex polyploids and improve the integration of physical and genetic data for sugarcane breeding programs. Thus, we describe the complexity involved in sugarcane genetics and genomics and allelic dynamics, which can be useful for understanding complex polyploid genomes.
Collapse
Affiliation(s)
| | - Sonia Vautrin
- Centre National de Ressources Genomiques Vegetales (CNRGV), Institut National de la Recherche Agronomique (INRA), Castanet Tolosan, France
| | | | | | | | | | - Mônica Conte
- Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Arnaud Bellec
- Centre National de Ressources Genomiques Vegetales (CNRGV), Institut National de la Recherche Agronomique (INRA), Castanet Tolosan, France
| | - Nair Dahmer
- Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Joelle Fourment
- Centre National de Ressources Genomiques Vegetales (CNRGV), Institut National de la Recherche Agronomique (INRA), Castanet Tolosan, France
| | - Nathalie Rodde
- Centre National de Ressources Genomiques Vegetales (CNRGV), Institut National de la Recherche Agronomique (INRA), Castanet Tolosan, France
| | | | | | | | | | | | - Hermann Paulo Hoffmann
- Centro de Ciências Agrárias, Universidade Federal de São Carlos (UFSCAR), Araras, Brazil
| | | | | | - Michel Vincentz
- Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Helene Berges
- Centre National de Ressources Genomiques Vegetales (CNRGV), Institut National de la Recherche Agronomique (INRA), Castanet Tolosan, France
| | | |
Collapse
|
244
|
Isolation and Characterization of Live Yeast Cells from Ancient Vessels as a Tool in Bio-Archaeology. mBio 2019; 10:mBio.00388-19. [PMID: 31040238 PMCID: PMC6495373 DOI: 10.1128/mbio.00388-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
So far, most of the study of ancient organisms has been based mainly on the analysis of ancient DNA. Here we show that it is possible to isolate and study microorganisms—yeast in this case—from ancient pottery vessels used for fermentation. We demonstrate that it is highly likely that these cells are descendants of the original yeast strains that participated in the fermentation process and were absorbed into the clay matrix of the pottery vessels. Moreover, we characterized the isolated yeast strains, their genomes, and the beer they produced. These results open new and exciting avenues in the study of domesticated microorganisms and contribute significantly to the fields of bio- and experimental archaeology that aim to reconstruct ancient artifacts and products. Ancient fermented food has been studied based on recipes, residue analysis, and ancient-DNA techniques and reconstructed using modern domesticated yeast. Here, we present a novel approach based on our hypothesis that enriched yeast populations in fermented beverages could have become the dominant species in storage vessels and their descendants could be isolated and studied today. We developed a pipeline of yeast isolation from clay vessels and screened for yeast cells in beverage-related and non-beverage-related ancient vessels and sediments from several archaeological sites. We found that yeast cells could be successfully isolated specifically from clay containers of fermented beverages. The findings that genotypically the isolated yeasts are similar to those found in traditional African beverages and phenotypically they grow similar to modern beer-producing yeast strongly suggest that they are descendants of the original fermenting yeast. These results demonstrate that modern microorganisms can serve as a new tool in bio-archaeology research.
Collapse
|
245
|
Stevens L, Félix M, Beltran T, Braendle C, Caurcel C, Fausett S, Fitch D, Frézal L, Gosse C, Kaur T, Kiontke K, Newton MD, Noble LM, Richaud A, Rockman MV, Sudhaus W, Blaxter M. Comparative genomics of 10 new Caenorhabditis species. Evol Lett 2019; 3:217-236. [PMID: 31007946 PMCID: PMC6457397 DOI: 10.1002/evl3.110] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/08/2019] [Accepted: 02/25/2019] [Indexed: 01/29/2023] Open
Abstract
The nematode Caenorhabditis elegans has been central to the understanding of metazoan biology. However, C. elegans is but one species among millions and the significance of this important model organism will only be fully revealed if it is placed in a rich evolutionary context. Global sampling efforts have led to the discovery of over 50 putative species from the genus Caenorhabditis, many of which await formal species description. Here, we present species descriptions for 10 new Caenorhabditis species. We also present draft genome sequences for nine of these new species, along with a transcriptome assembly for one. We exploit these whole-genome data to reconstruct the Caenorhabditis phylogeny and use this phylogenetic tree to dissect the evolution of morphology in the genus. We reveal extensive variation in genome size and investigate the molecular processes that underlie this variation. We show unexpected complexity in the evolutionary history of key developmental pathway genes. These new species and the associated genomic resources will be essential in our attempts to understand the evolutionary origins of the C. elegans model.
Collapse
Affiliation(s)
- Lewis Stevens
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological SciencesUniversity of EdinburghEdinburghEH9 3JTUnited Kingdom
| | - Marie‐Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Normale SupérieureParis Sciences et Lettres75005ParisFrance
| | - Toni Beltran
- MRC London Institute of Medical SciencesLondonW12 0NNUnited Kingdom
| | - Christian Braendle
- Université Côte d'Azur, Centre National de la Recherche Scientifique, InsermInstitute of Biology Valrose06108NiceFrance
| | - Carlos Caurcel
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological SciencesUniversity of EdinburghEdinburghEH9 3JTUnited Kingdom
| | - Sarah Fausett
- Université Côte d'Azur, Centre National de la Recherche Scientifique, InsermInstitute of Biology Valrose06108NiceFrance
| | - David Fitch
- Department of BiologyNew York UniversityNew YorkNew York10003
| | - Lise Frézal
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Normale SupérieureParis Sciences et Lettres75005ParisFrance
| | - Charlie Gosse
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Normale SupérieureParis Sciences et Lettres75005ParisFrance
| | - Taniya Kaur
- Center for Genomics and Systems Biology, Department of BiologyNew York UniversityNew YorkNew York10003
| | - Karin Kiontke
- Department of BiologyNew York UniversityNew YorkNew York10003
| | - Matthew D. Newton
- MRC London Institute of Medical SciencesLondonW12 0NNUnited Kingdom
- Molecular Virology, Department of MedicineImperial College LondonDu Cane RoadLondonW12 0NNUnited Kingdom
| | - Luke M. Noble
- Center for Genomics and Systems Biology, Department of BiologyNew York UniversityNew YorkNew York10003
| | - Aurélien Richaud
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Normale SupérieureParis Sciences et Lettres75005ParisFrance
| | - Matthew V. Rockman
- Center for Genomics and Systems Biology, Department of BiologyNew York UniversityNew YorkNew York10003
| | - Walter Sudhaus
- Institut für Biologie/ZoologieFreie Universität BerlinBerlinD‐14195Germany
| | - Mark Blaxter
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological SciencesUniversity of EdinburghEdinburghEH9 3JTUnited Kingdom
| |
Collapse
|
246
|
Yao G, Peng C, Zhu Y, Fan C, Jiang H, Chen J, Cao Y, Shi Q. High-Throughput Identification and Analysis of Novel Conotoxins from Three Vermivorous Cone Snails by Transcriptome Sequencing. Mar Drugs 2019; 17:md17030193. [PMID: 30917600 PMCID: PMC6471451 DOI: 10.3390/md17030193] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
The venom of each Conus species consists of a diverse array of neurophysiologically active peptides, which are mostly unique to the examined species. In this study, we performed high-throughput transcriptome sequencing to extract and analyze putative conotoxin transcripts from the venom ducts of 3 vermivorous cone snails (C. caracteristicus, C. generalis, and C. quercinus), which are resident in offshore waters of the South China Sea. In total, 118, 61, and 48 putative conotoxins (across 22 superfamilies) were identified from the 3 Conus species, respectively; most of them are novel, and some possess new cysteine patterns. Interestingly, a series of 45 unassigned conotoxins presented with a new framework of C-C-C-C-C-C, and their mature regions were sufficiently distinct from any other known conotoxins, most likely representing a new superfamily. O- and M-superfamily conotoxins were the most abundant in transcript number and transcription level, suggesting their critical roles in the venom functions of these vermivorous cone snails. In addition, we identified numerous functional proteins with potential involvement in the biosynthesis, modification, and delivery process of conotoxins, which may shed light on the fundamental mechanisms for the generation of these important conotoxins within the venom duct of cone snails.
Collapse
Affiliation(s)
- Ge Yao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Chao Peng
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Yabing Zhu
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China.
| | - Chongxu Fan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Jisheng Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Ying Cao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
247
|
Dale AL, Feau N, Everhart SE, Dhillon B, Wong B, Sheppard J, Bilodeau GJ, Brar A, Tabima JF, Shen D, Brasier CM, Tyler BM, Grünwald NJ, Hamelin RC. Mitotic Recombination and Rapid Genome Evolution in the Invasive Forest Pathogen Phytophthora ramorum. mBio 2019; 10:e02452-18. [PMID: 30862749 PMCID: PMC6414701 DOI: 10.1128/mbio.02452-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022] Open
Abstract
Invasive alien species often have reduced genetic diversity and must adapt to new environments. Given the success of many invasions, this is sometimes called the genetic paradox of invasion. Phytophthora ramorum is invasive, limited to asexual reproduction within four lineages, and presumed clonal. It is responsible for sudden oak death in the United States, sudden larch death in Europe, and ramorum blight in North America and Europe. We sequenced the genomes of 107 isolates to determine how this pathogen can overcome the invasion paradox. Mitotic recombination (MR) associated with transposons and low gene density has generated runs of homozygosity (ROH) affecting 2,698 genes, resulting in novel genotypic diversity within the lineages. One ROH enriched in effectors was fixed in the NA1 lineage. An independent ROH affected the same scaffold in the EU1 lineage, suggesting an MR hot spot and a selection target. Differences in host infection between EU1 isolates with and without the ROH suggest that they may differ in aggressiveness. Non-core regions (not shared by all lineages) had signatures of accelerated evolution and were enriched in putative pathogenicity genes and transposons. There was a striking pattern of gene loss, including all effectors, in the non-core EU2 genome. Positive selection was observed in 8.0% of RxLR and 18.8% of Crinkler effector genes compared with 0.9% of the core eukaryotic gene set. We conclude that the P. ramorum lineages are diverging via a rapidly evolving non-core genome and that the invasive asexual lineages are not clonal, but display genotypic diversity caused by MR.IMPORTANCE Alien species are often successful invaders in new environments, despite the introduction of a few isolates with a reduced genetic pool. This is called the genetic paradox of invasion. We found two mechanisms by which the invasive forest pathogen causing sudden oak and sudden larch death can evolve. Extensive mitotic recombination producing runs of homozygosity generates genotypic diversity even in the absence of sexual reproduction, and rapid turnover of genes in the non-core, or nonessential portion of genome not shared by all isolates, allows pathogenicity genes to evolve rapidly or be eliminated while retaining essential genes. Mitotic recombination events occur in genomic hot spots, resulting in similar ROH patterns in different isolates or groups; one ROH, independently generated in two different groups, was enriched in pathogenicity genes and may be a target for selection. This provides important insights into the evolution of invasive alien pathogens and their potential for adaptation and future persistence.
Collapse
Affiliation(s)
- Angela L Dale
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- GC-New Construction Materials, FPInnovations, Vancouver, British Columbia, Canada
| | - Nicolas Feau
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sydney E Everhart
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska, USA
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Braham Dhillon
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Barbara Wong
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Faculté de Foresterie et Géomatique, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada
| | - Julie Sheppard
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guillaume J Bilodeau
- Ottawa Plant Laboratory, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Avneet Brar
- Ottawa Plant Laboratory, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Javier F Tabima
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Clive M Brasier
- Forest Research, Alice Holt Lodge, Farnham, Surrey, United Kingdom
| | - Brett M Tyler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USA
| | - Niklaus J Grünwald
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, Oregon, USA
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Faculté de Foresterie et Géomatique, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada
| |
Collapse
|
248
|
Leonard G, Labarre A, Milner DS, Monier A, Soanes D, Wideman JG, Maguire F, Stevens S, Sain D, Grau-Bové X, Sebé-Pedrós A, Stajich JE, Paszkiewicz K, Brown MW, Hall N, Wickstead B, Richards TA. Comparative genomic analysis of the 'pseudofungus' Hyphochytrium catenoides. Open Biol 2019; 8:rsob.170184. [PMID: 29321239 PMCID: PMC5795050 DOI: 10.1098/rsob.170184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic microbes have three primary mechanisms for obtaining nutrients and energy: phagotrophy, photosynthesis and osmotrophy. Traits associated with the latter two functions arose independently multiple times in the eukaryotes. The Fungi successfully coupled osmotrophy with filamentous growth, and similar traits are also manifested in the Pseudofungi (oomycetes and hyphochytriomycetes). Both the Fungi and the Pseudofungi encompass a diversity of plant and animal parasites. Genome-sequencing efforts have focused on host-associated microbes (mutualistic symbionts or parasites), providing limited comparisons with free-living relatives. Here we report the first draft genome sequence of a hyphochytriomycete ‘pseudofungus’; Hyphochytrium catenoides. Using phylogenomic approaches, we identify genes of recent viral ancestry, with related viral derived genes also present on the genomes of oomycetes, suggesting a complex history of viral coevolution and integration across the Pseudofungi. H. catenoides has a complex life cycle involving diverse filamentous structures and a flagellated zoospore with a single anterior tinselate flagellum. We use genome comparisons, drug sensitivity analysis and high-throughput culture arrays to investigate the ancestry of oomycete/pseudofungal characteristics, demonstrating that many of the genetic features associated with parasitic traits evolved specifically within the oomycete radiation. Comparative genomics also identified differences in the repertoire of genes associated with filamentous growth between the Fungi and the Pseudofungi, including differences in vesicle trafficking systems, cell-wall synthesis pathways and motor protein repertoire, demonstrating that unique cellular systems underpinned the convergent evolution of filamentous osmotrophic growth in these two eukaryotic groups.
Collapse
Affiliation(s)
- Guy Leonard
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Aurélie Labarre
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - David S Milner
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Adam Monier
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Darren Soanes
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Jeremy G Wideman
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Finlay Maguire
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Sam Stevens
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Divya Sain
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92506, USA
| | - Xavier Grau-Bové
- Institute of Evolutionary Biology, CSIC-UPF, Barcelona, Catalonia, Spain
| | | | - Jason E Stajich
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92506, USA
| | - Konrad Paszkiewicz
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Neil Hall
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Thomas A Richards
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
249
|
Li Y, Li Y, Jin W, Sharpton TJ, Mackie RI, Cann I, Cheng Y, Zhu W. Combined Genomic, Transcriptomic, Proteomic, and Physiological Characterization of the Growth of Pecoramyces sp. F1 in Monoculture and Co-culture With a Syntrophic Methanogen. Front Microbiol 2019; 10:435. [PMID: 30894845 PMCID: PMC6414434 DOI: 10.3389/fmicb.2019.00435] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/19/2019] [Indexed: 11/13/2022] Open
Abstract
In this study, the effects of a syntrophic methanogen on the growth of Pecoramyces sp. F1 was investigated by characterizing fermentation profiles, as well as functional genomic, transcriptomic, and proteomic analysis. The estimated genome size, GC content, and protein coding regions of strain F1 are 106.83 Mb, 16.07%, and 23.54%, respectively. Comparison of the fungal monoculture with the methanogen co-culture demonstrated that during the fermentation of glucose, the co-culture initially expressed and then down-regulated a large number of genes encoding both enzymes involved in intermediate metabolism and plant cell wall degradation. However, the number of up-regulated proteins doubled at the late-growth stage in the co-culture. In addition, we provide a mechanistic understanding of the metabolism of this fungus in co-culture with a syntrophic methanogen. Further experiments are needed to explore this interaction during degradation of more complex plant cell wall substrates.
Collapse
Affiliation(s)
- Yuanfei Li
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Yuqi Li
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Wei Jin
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China.,Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China
| | - Thomas J Sharpton
- Department of Microbiology - Department of Statistics, Oregon State University, Corvallis, OR, United States
| | - Roderick I Mackie
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Isaac Cann
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Department of Microbiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China.,Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China.,Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
250
|
Abstract
Rapidly improving sequencing technology coupled with computational developments in sequence assembly are making reference-quality genome assembly economical. Hundreds of vertebrate genome assemblies are now publicly available, and projects are being proposed to sequence thousands of additional species in the next few years. Such dense sampling of the tree of life should give an unprecedented new understanding of evolution and allow a detailed determination of the events that led to the wealth of biodiversity around us. To gain this knowledge, these new genomes must be compared through genome alignment (at the sequence level) and comparative annotation (at the gene level). However, different alignment and annotation methods have different characteristics; before starting a comparative genomics analysis, it is important to understand the nature of, and biases and limitations inherent in, the chosen methods. This review is intended to act as a technical but high-level overview of the field that should provide this understanding. We briefly survey the state of the genome alignment and comparative annotation fields and potential future directions for these fields in a new, large-scale era of comparative genomics.
Collapse
Affiliation(s)
- Joel Armstrong
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California 95064, USA;
| | - Ian T Fiddes
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California 95064, USA;
- 10x Genomics, Pleasanton, California 94566, USA
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California 95064, USA;
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California 95064, USA;
| |
Collapse
|