201
|
Abstract
A defining feature of many cancers is deregulated translational control. Typically, this occurs at the level of recruitment of the 40S ribosomes to the 5'-cap of cellular messenger RNAs (mRNAs), the rate-limiting step of protein synthesis, which is controlled by the heterotrimeric eukaryotic initiation complex eIF4F. Thus, eIF4F in particular, and translation initiation in general, represent an exploitable vulnerability and unique opportunity for therapeutic intervention in many transformed cells. In this article, we discuss the development, mode of action and biological activity of a number of small-molecule inhibitors that interrupt PI3K/mTOR signaling control of eIF4F assembly, as well as compounds that more directly block eIF4F activity.
Collapse
Affiliation(s)
- Abba Malina
- Department of Biochemistry and McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | |
Collapse
|
202
|
Hu SI, Katz M, Chin S, Qi X, Cruz J, Ibebunjo C, Zhao S, Chen A, Glass DJ. MNK2 inhibits eIF4G activation through a pathway involving serine-arginine-rich protein kinase in skeletal muscle. Sci Signal 2012; 5:ra14. [PMID: 22337810 DOI: 10.1126/scisignal.2002466] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skeletal muscle mass is regulated by activity, metabolism, and the availability of nutrients. During muscle atrophy, MNK2 expression increases. We found that MNK2 (mitogen-activated protein kinase-interacting kinase 2), but not MNK1, inhibited proteins involved in promoting protein synthesis, including eukaryotic translation initiation factor 4G (eIF4G) and mammalian target of rapamycin (mTOR). Phosphorylation at serine 1108 (Ser¹¹⁰⁸) of eIF4G, which is associated with enhanced protein translation, is promoted by insulin-like growth factor 1 and inhibited by rapamycin or starvation, suggesting that phosphorylation of this residue is regulated by mTOR. In cultured myotubes, small interfering RNA (siRNA) knockdown of MNK2 increased eIF4G Ser¹¹⁰⁸ phosphorylation and overcame rapamycin's inhibitory effect on this phosphorylation event. Phosphorylation of Ser¹¹⁰⁸ in eIF4G, in gastrocnemius muscle, was increased in mice lacking MNK2, but not those lacking MNK1, and this increased phosphorylation was maintained in MNK2-null animals under atrophy conditions and upon starvation. Conversely, overexpression of MNK2 decreased eIF4G Ser¹¹⁰⁸ phosphorylation. An siRNA screen revealed that serine-arginine-rich protein kinases linked increased MNK2 activity to decreased eIF4G phosphorylation. In addition, we found that MNK2 interacted with mTOR and inhibited phosphorylation of the mTOR target, the ribosomal kinase p70S6K (70-kD ribosomal protein S6 kinase), through a mechanism independent of the kinase activity of MNK2. These data indicate that MNK2 plays a unique role, not shared by its closest paralog MNK1, in limiting protein translation through its negative effect on eIF4G Ser¹¹⁰⁸ phosphorylation and p70S6K activation.
Collapse
Affiliation(s)
- Shou-Ih Hu
- Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci 2012; 13:1886-1918. [PMID: 22408430 PMCID: PMC3291999 DOI: 10.3390/ijms13021886] [Citation(s) in RCA: 587] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/28/2012] [Accepted: 01/30/2012] [Indexed: 01/20/2023] Open
Abstract
The conserved serine/threonine kinase mTOR (the mammalian target of rapamycin), a downstream effector of the PI3K/AKT pathway, forms two distinct multiprotein complexes: mTORC1 and mTORC2. mTORC1 is sensitive to rapamycin, activates S6K1 and 4EBP1, which are involved in mRNA translation. It is activated by diverse stimuli, such as growth factors, nutrients, energy and stress signals, and essential signalling pathways, such as PI3K, MAPK and AMPK, in order to control cell growth, proliferation and survival. mTORC2 is considered resistant to rapamycin and is generally insensitive to nutrients and energy signals. It activates PKC-α and AKT and regulates the actin cytoskeleton. Deregulation of multiple elements of the mTOR pathway (PI3K amplification/mutation, PTEN loss of function, AKT overexpression, and S6K1, 4EBP1 and eIF4E overexpression) has been reported in many types of cancers, particularly in melanoma, where alterations in major components of the mTOR pathway were reported to have significant effects on tumour progression. Therefore, mTOR is an appealing therapeutic target and mTOR inhibitors, including the rapamycin analogues deforolimus, everolimus and temsirolimus, are submitted to clinical trials for treating multiple cancers, alone or in combination with inhibitors of other pathways. Importantly, temsirolimus and everolimus were recently approved by the FDA for the treatment of renal cell carcinoma, PNET and giant cell astrocytoma. Small molecules that inhibit mTOR kinase activity and dual PI3K-mTOR inhibitors are also being developed. In this review, we aim to survey relevant research, the molecular mechanisms of signalling, including upstream activation and downstream effectors, and the role of mTOR in cancer, mainly in melanoma.
Collapse
Affiliation(s)
- Helena Pópulo
- Institute of Molecular Pathology and Immunology of University of Porto (IPATIMUP), University of Porto, 4200-465, Porto, Portugal; E-Mails: (H.P.); (J.M.L.)
- Medical Faculty, University of Porto, 4200-465 Porto, Portugal
| | - José Manuel Lopes
- Institute of Molecular Pathology and Immunology of University of Porto (IPATIMUP), University of Porto, 4200-465, Porto, Portugal; E-Mails: (H.P.); (J.M.L.)
- Medical Faculty, University of Porto, 4200-465 Porto, Portugal
- Department of Pathology, Hospital São João, 4200-465 Porto, Portugal
| | - Paula Soares
- Institute of Molecular Pathology and Immunology of University of Porto (IPATIMUP), University of Porto, 4200-465, Porto, Portugal; E-Mails: (H.P.); (J.M.L.)
- Medical Faculty, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
204
|
Dendritic mRNA targeting and translation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:285-305. [PMID: 22351061 DOI: 10.1007/978-3-7091-0932-8_13] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Selective targeting of specific mRNAs into neuronal dendrites and their locally regulated translation at particular cell contact sites contribute to input-specific synaptic plasticity. Thus, individual synapses become decision-making units, which control gene expression in a spatially restricted and nucleus-independent manner. Dendritic targeting of mRNAs is achieved by active, microtubule-dependent transport. For this purpose, mRNAs are packaged into large ribonucleoprotein (RNP) particles containing an array of trans-acting RNA-binding proteins. These are attached to molecular motors, which move their RNP cargo into dendrites. A variety of proteins may be synthesized in dendrites, including signalling and scaffold proteins of the synapse and neurotransmitter receptors. In some cases, such as the alpha subunit of the calcium/calmodulin-dependent protein kinase II (αCaMKII) and the activity-regulated gene of 3.1 kb (Arg3.1, also referred to as activity-regulated cDNA, Arc), their local synthesis at synapses can modulate long-term changes in synaptic efficiency. Local dendritic translation is regulated by several signalling cascades including Akt/mTOR and Erk/MAP kinase pathways, which are triggered by synaptic activity. More recent findings show that miRNAs also play an important role in protein synthesis at synapses. Disruption of local translation control at synapses, as observed in the fragile X syndrome (FXS) and its mouse models and possibly also in autism spectrum disorders, interferes with cognitive abilities in mice and men.
Collapse
|
205
|
George A, Panda S, Kudmulwar D, Chhatbar SP, Nayak SC, Krishnan HH. Hepatitis C virus NS5A binds to the mRNA cap-binding eukaryotic translation initiation 4F (eIF4F) complex and up-regulates host translation initiation machinery through eIF4E-binding protein 1 inactivation. J Biol Chem 2011; 287:5042-58. [PMID: 22184107 DOI: 10.1074/jbc.m111.308916] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Initiation, a major rate-limiting step of host protein translation, is a critical target in many viral infections. Chronic hepatitis C virus (HCV) infection results in hepatocellular carcinoma. Translation initiation, up-regulated in many cancers, plays a critical role in tumorigenesis. mTOR is a major regulator of host protein translation. Even though activation of PI3K-AKT-mTOR by HCV non-structural protein 5A (NS5A) is known, not much is understood about the regulation of host translation initiation by this virus. Here for the first time we show that HCV up-regulates host cap-dependent translation machinery in Huh7.5 cells through simultaneous activation of mTORC1 and eukaryotic translation initiation factor 4E (eIF4E) by NS5A. NS5A, interestingly, overexpressed and subsequently hyperphosphorylated 4EBP1. NS5A phosphorylated eIF4E through the p38 MAPK-MNK pathway. Both HCV infection and NS5A expression augmented eIF4F complex assembly, an indicator of cap-dependent translation efficiency. Global translation, however, was not altered by HCV NS5A. 4EBP1 phosphorylation, but not that of S6K1, was uniquely resistant to rapamycin in NS5A-Huh7.5 cells, indicative of an alternate phosphorylation mechanism of 4EBP1. Resistance of Ser-473, but not Thr-308, phosphorylation of AKT to PI3K inhibitors suggested an activation of mTORC2 by NS5A. NS5A associated with eIF4F complex and polysomes, suggesting its active involvement in host translation. This is the first report that implicates an HCV protein in the up-regulation of host translation initiation apparatus through concomitant regulation of multiple pathways. Because both mTORC1 activation and eIF4E phosphorylation are involved in tumorigenesis, we propose that their simultaneous activation by NS5A might contribute significantly to the development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Anju George
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad 500007, India
| | | | | | | | | | | |
Collapse
|
206
|
Attenuation of neurovirulence, biodistribution, and shedding of a poliovirus:rhinovirus chimera after intrathalamic inoculation in Macaca fascicularis. J Virol 2011; 86:2750-9. [PMID: 22171271 DOI: 10.1128/jvi.06427-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A dependence of poliovirus on an unorthodox translation initiation mode can be targeted selectively to drive viral protein synthesis and cytotoxicity in malignant cells. Transformed cells are naturally susceptible to poliovirus, due to widespread ectopic upregulation of the poliovirus receptor, Necl-5, in ectodermal/neuroectodermal cancers. Viral tumor cell killing and the host immunologic response it engenders produce potent, lasting antineoplastic effects in animal tumor models. Clinical application of this principle depends on unequivocal demonstration of safety in primate models for paralytic poliomyelitis. We conducted extensive dose-range-finding, toxicity, biodistribution, shedding, and neutralizing antibody studies of the prototype oncolytic poliovirus recombinant, PVS-RIPO, after intrathalamic inoculation in Macaca fascicularis. These studies suggest that intracerebral PVS-RIPO inoculation does not lead to viral propagation in the central nervous system (CNS), does not cause histopathological CNS lesions or neurological symptoms that can be attributed to the virus, is not associated with extraneural virus dissemination or replication and does not induce shedding of virus with stool. Intrathalamic PVS-RIPO inoculation induced neutralizing antibody responses against poliovirus serotype 1 in all animals studied.
Collapse
|
207
|
van der Merwe M, Franchini P, Roodt-Wilding R. Differential growth-related gene expression in abalone (Haliotis midae). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:1125-1139. [PMID: 21533523 DOI: 10.1007/s10126-011-9376-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 03/29/2011] [Indexed: 05/30/2023]
Abstract
The slow growth rate of Haliotis midae impedes the optimal commercial production of this most profitable South African aquaculture species. To date, no comprehensive effort has been made to identify genes associated with growth variation in farmed H. midae. The aim of this study was therefore to investigate growth variation in H. midae and to identify and quantify the expression of selected growth-related genes. Towards this aim, molecular methodologies and cell cultures were combined as a time-efficient and economical way of studying abalone transcriptomics and cell biology. Modern Illumina sequencing-by-synthesis technology and subsequent sequence annotation were used to elucidate differential gene expression between two sibling groups of abalone demonstrating significant growth variation. The expression of selected target genes involved in growth was subsequently analysed by quantitative real-time PCR (qPCR). Fast- and slow-growing abalone and in vitro primary haemocyte cultures treated with different growth-stimulating factors were used. The results obtained from transcriptome analysis and qPCR revealed significant differences in gene expression between large and small abalone, and between treated and untreated haemocyte cell cultures. Throughout in vivo and in vitro qPCR experiments, the up-regulation of genes involved in the insulin signalling pathway suggests that insulin may be involved in enhanced growth rate for various H. midae tissues.
Collapse
Affiliation(s)
- Mathilde van der Merwe
- Molecular Aquatic Research Group, Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | | | | |
Collapse
|
208
|
Drolet RE, Sanders JM, Kern JT. Leucine-rich repeat kinase 2 (LRRK2) cellular biology: a review of recent advances in identifying physiological substrates and cellular functions. J Neurogenet 2011; 25:140-51. [PMID: 22077787 DOI: 10.3109/01677063.2011.627072] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common forms of inheritable Parkinson's disease and likely play a role in sporadic disease as well. LRRK2 is a large multidomain protein containing two key groups, a Ras-like GTP binding domain and a serine, threonine kinase domain. Mutations in the LRRK2 gene that associate with Parkinson's disease reside primarily within the two functional domains of the protein, suggesting that LRRK2 function is critical to the pathogenesis of the disease. The most common LRRK2 mutation increases kinase activity, making LRRK2 kinase inhibition an attractive target for small molecule drug development. However, the physiological function of LRRK2 kinase as well as its endogenous protein substrates remains poorly understood and has hindered drug development efforts. Recent advances in LRRK2 biology have revealed several potential cellular roles, interacting proteins, and putative physiological substrates. Together, a picture emerges of a complex multifunctional protein that exists in multiple cellular compartments. Through unclear mechanisms, LRRK2 kinase regulates cytoskeleton architecture through control of protein translation, phosphorylation of cytoskeletal proteins, and response to cellular stressors. This article will briefly cover some interesting recent studies in LRRK2 cellular biology and highlight emerging cellular models of LRRK2 kinase function.
Collapse
Affiliation(s)
- Robert E Drolet
- Department of Neurosymptomatic Disorders, Department of Chemistry, Modeling, and Informatics, Merck Research Laboratories, Merck & Co, West Point, PA 19486, USA.
| | | | | |
Collapse
|
209
|
Santini E, Klann E. Dysregulated mTORC1-Dependent Translational Control: From Brain Disorders to Psychoactive Drugs. Front Behav Neurosci 2011; 5:76. [PMID: 22073033 PMCID: PMC3210466 DOI: 10.3389/fnbeh.2011.00076] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/21/2011] [Indexed: 01/09/2023] Open
Abstract
In the last decade, a plethora of studies utilizing pharmacological, biochemical, and genetic approaches have shown that precise translational control is required for long-lasting synaptic plasticity and the formation of long-term memory. Moreover, more recent studies indicate that alterations in translational control are a common pathophysiological feature of human neurological disorders, including developmental disorders, neuropsychiatric disorders, and neurodegenerative diseases. Finally, translational control mechanisms are susceptible to modification by psychoactive drugs. Taken together, these findings point to a central role for translational control in the regulation of synaptic function and behavior.
Collapse
Affiliation(s)
- Emanuela Santini
- Center for Neural Science, New York University New York, NY, USA
| | | |
Collapse
|
210
|
Goetz C, Dobrikova E, Shveygert M, Dobrikov M, Gromeier M. Oncolytic poliovirus against malignant glioma. Future Virol 2011; 6:1045-1058. [PMID: 21984883 DOI: 10.2217/fvl.11.76] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In cancerous cells, physiologically tight regulation of protein synthesis is lost, contributing to uncontrolled growth and proliferation. We describe a novel experimental cancer therapy approach based on genetically recombinant poliovirus that targets an intriguing aberration of translation control in malignancy. This strategy is based on the confluence of several factors enabling specific and efficacious cancer cell targeting. Poliovirus naturally targets the vast majority of ectodermal/neuroectodermal cancers expressing its cellular receptor. Evidence from glioblastoma patients suggests that the poliovirus receptor is ectopically upregulated on tumor cells and may be associated with stem cell-like cancer cell populations and proliferating tumor vasculature. We exploit poliovirus' reliance on an unorthodox mechanism of protein synthesis initiation to selectively drive viral translation, propagation and cytotoxicity in glioblastoma. PVSRIPO, a prototype nonpathogenic poliovirus recombinant, is scheduled to enter clinical investigation against glioblastoma.
Collapse
Affiliation(s)
- Christian Goetz
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
211
|
Activation of p38 MAPK in CD4 T cells controls IL-17 production and autoimmune encephalomyelitis. Blood 2011; 118:3290-300. [PMID: 21791428 DOI: 10.1182/blood-2011-02-336552] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although several transcription factors have been shown to be critical for the induction and maintenance of IL-17 expression by CD4 Th cells, less is known about the role of nontranscriptional mechanisms. Here we show that the p38 MAPK signaling pathway is essential for in vitro and in vivo IL-17 production by regulating IL-17 synthesis in CD4 T cells through the activation of the eukaryotic translation initiation factor 4E/MAPK-interacting kinase (eIF-4E/MNK) pathway. We also show that p38 MAPK activation is required for the development and progression of both chronic and relapsing-remitting forms of experimental allergic encephalomyelitis (EAE), the principal autoimmune model of multiple sclerosis. Furthermore, we show that regulation of p38 MAPK activity specifically in T cells is sufficient to modulate EAE severity. Thus, mechanisms other than the regulation of gene expression also contribute to Th17 cell effector functions and, potentially, to the pathogenesis of other Th17 cell-mediated diseases.
Collapse
|
212
|
Chao SK, Horwitz SB, McDaid HM. Insights into 4E-BP1 and p53 mediated regulation of accelerated cell senescence. Oncotarget 2011; 2:89-98. [PMID: 21399233 PMCID: PMC3248149 DOI: 10.18632/oncotarget.221] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Senescence is a valid tumor suppressive mechanism in cancer. Accelerated cell senescence describes the growth arrested state of cells that have been treated with anti-tumor drugs, such as doxorubicin that induce a DNA damage response. Discodermolide, a microtubule-stabilizing agent, is a potent inducer of accelerated cell senescence. Resistance to discodermolide is mediated via resistance to accelerated cell senescence, and is associated with reduced expression of the mTORC1 substrate, 4E-BP1 and increased expression of p53 [1]. Although the association of p53 with senescence induction is well-characterized, senescence reversion in the presence of high expression of p53 has not been well-documented. Furthermore, studies addressing the role of mTOR signaling in regulating senescence have been limited and recent data implicate a novel, senescence-associated role for 4E-BP1 in crosstalk with the transcription factor p53. This research perspective will address these somewhat contradictory findings and summarize recent research regarding senescence and mTORC1 signaling.
Collapse
Affiliation(s)
- Suzan K Chao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
213
|
Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 2011; 75:50-83. [PMID: 21372320 DOI: 10.1128/mmbr.00031-10] [Citation(s) in RCA: 2257] [Impact Index Per Article: 161.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs by relaying extracellular signals to intracellular responses. In mammals, there are more than a dozen MAPK enzymes that coordinately regulate cell proliferation, differentiation, motility, and survival. The best known are the conventional MAPKs, which include the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinases 1 to 3 (JNK1 to -3), p38 (α, β, γ, and δ), and ERK5 families. There are additional, atypical MAPK enzymes, including ERK3/4, ERK7/8, and Nemo-like kinase (NLK), which have distinct regulation and functions. Together, the MAPKs regulate a large number of substrates, including members of a family of protein Ser/Thr kinases termed MAPK-activated protein kinases (MAPKAPKs). The MAPKAPKs are related enzymes that respond to extracellular stimulation through direct MAPK-dependent activation loop phosphorylation and kinase activation. There are five MAPKAPK subfamilies: the p90 ribosomal S6 kinase (RSK), the mitogen- and stress-activated kinase (MSK), the MAPK-interacting kinase (MNK), the MAPK-activated protein kinase 2/3 (MK2/3), and MK5 (also known as p38-regulated/activated protein kinase [PRAK]). These enzymes have diverse biological functions, including regulation of nucleosome and gene expression, mRNA stability and translation, and cell proliferation and survival. Here we review the mechanisms of MAPKAPK activation by the different MAPKs and discuss their physiological roles based on established substrates and recent discoveries.
Collapse
|
214
|
Hou R, Bao Z, Wang S, Su H, Li Y, Du H, Hu J, Wang S, Hu X. Transcriptome sequencing and de novo analysis for Yesso scallop (Patinopecten yessoensis) using 454 GS FLX. PLoS One 2011; 6:e21560. [PMID: 21720557 PMCID: PMC3123371 DOI: 10.1371/journal.pone.0021560] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 06/03/2011] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Bivalves comprise 30,000 extant species, constituting the second largest group of mollusks. However, limited genetic research has focused on this group of animals so far, which is, in part, due to the lack of genomic resources. The advent of high-throughput sequencing technologies enables generation of genomic resources in a short time and at a minimal cost, and therefore provides a turning point for bivalve research. In the present study, we performed de novo transcriptome sequencing to first produce a comprehensive expressed sequence tag (EST) dataset for the Yesso scallop (Patinopecten yessoensis). RESULTS In a single 454 sequencing run, 805,330 reads were produced and then assembled into 32,590 contigs, with about six-fold sequencing coverage. A total of 25,237 unique protein-coding genes were identified from a variety of developmental stages and adult tissues based on sequence similarities with known proteins. As determined by GO annotation and KEGG pathway mapping, functional annotation of the unigenes recovered diverse biological functions and processes. Transcripts putatively involved in growth, reproduction and stress/immune-response were identified. More than 49,000 single nucleotide polymorphisms (SNPs) and 2,700 simple sequence repeats (SSRs) were also detected. CONCLUSION Our data provide the most comprehensive transcriptomic resource currently available for P. yessoensis. Candidate genes potentially involved in growth, reproduction, and stress/immunity-response were identified, and are worthy of further investigation. A large number of SNPs and SSRs were also identified and ready for marker development. This resource should lay an important foundation for future genetic or genomic studies on this species.
Collapse
Affiliation(s)
- Rui Hou
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences. Ocean University of China, Qingdao, China
| | - Zhenmin Bao
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences. Ocean University of China, Qingdao, China
| | - Shan Wang
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences. Ocean University of China, Qingdao, China
| | - Hailin Su
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences. Ocean University of China, Qingdao, China
| | - Yan Li
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences. Ocean University of China, Qingdao, China
| | - Huixia Du
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences. Ocean University of China, Qingdao, China
| | - Jingjie Hu
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences. Ocean University of China, Qingdao, China
| | - Shi Wang
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences. Ocean University of China, Qingdao, China
- * E-mail: (SW); (XH)
| | - Xiaoli Hu
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences. Ocean University of China, Qingdao, China
- * E-mail: (SW); (XH)
| |
Collapse
|
215
|
Phosphorylation of eukaryotic translation initiation factor 4G1 (eIF4G1) by protein kinase C{alpha} regulates eIF4G1 binding to Mnk1. Mol Cell Biol 2011; 31:2947-59. [PMID: 21576361 DOI: 10.1128/mcb.05589-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Signal transduction through mitogen-activated protein kinases (MAPKs) is implicated in growth and proliferation control through translation regulation and involves posttranslational modification of translation initiation factors. For example, convergent MAPK signals to Mnk1 lead to phosphorylation of eukaryotic translation initiation factor 4E (eIF4E), which has been linked to malignant transformation. However, understanding the compound effects of mitogenic signaling on the translation apparatus and on protein synthesis control remains elusive. This is particularly true for the central scaffold of the translation initiation apparatus and ribosome adaptor eIF4G. To unravel the effects of signal transduction to eIF4G on translation, we used specific activation of protein kinase C (PKC)-Ras-Erk signaling with phorbol esters. Phospho-proteomic and mutational analyses revealed that eIF4G1 is a substrate for PKCα at Ser1186. We show that PKCα activation elicits a cascade of orchestrated phosphorylation events that may modulate eIF4G1 structure and control interaction with the eIF4E kinase, Mnk1.
Collapse
|
216
|
The multifaceted poliovirus 2A protease: regulation of gene expression by picornavirus proteases. J Biomed Biotechnol 2011; 2011:369648. [PMID: 21541224 PMCID: PMC3085340 DOI: 10.1155/2011/369648] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/18/2011] [Accepted: 02/17/2011] [Indexed: 11/17/2022] Open
Abstract
After entry into animal cells, most viruses hijack essential components involved in gene expression. This is the case of poliovirus, which abrogates cellular translation soon after virus internalization. Abrogation is achieved by cleavage of both eIF4GI and eIF4GII by the viral protease 2A. Apart from the interference of poliovirus with cellular protein synthesis, other gene expression steps such as RNA and protein trafficking between nucleus and cytoplasm are also altered. Poliovirus 2Apro is capable of hydrolyzing components of the nuclear pore, thus preventing an efficient antiviral response by the host cell. Here, we compare in detail poliovirus 2Apro with other viral proteins (from picornaviruses and unrelated families) as regard to their activity on key host factors that control gene expression. It is possible that future analyses to determine the cellular proteins targeted by 2Apro will uncover other cellular functions ablated by poliovirus infection. Further understanding of the cellular proteins hydrolyzed by 2Apro will add further insight into the molecular mechanism by which poliovirus and other viruses interact with the host cell.
Collapse
|
217
|
Kang MK, Han SJ. Post-transcriptional and post-translational regulation during mouse oocyte maturation. BMB Rep 2011; 44:147-57. [DOI: 10.5483/bmbrep.2011.44.3.147] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
218
|
Martin F, Barends S, Jaeger S, Schaeffer L, Prongidi-Fix L, Eriani G. Cap-assisted internal initiation of translation of histone H4. Mol Cell 2011; 41:197-209. [PMID: 21255730 DOI: 10.1016/j.molcel.2010.12.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/08/2010] [Accepted: 11/10/2010] [Indexed: 11/30/2022]
Abstract
In eukaryotes, a crucial step of translation initiation is the binding of the multifactor complex eIF4F to the 5' end of the mRNA, a prerequisite to recruitment of the activated small ribosomal 43S particle. Histone H4 mRNAs have short 5'UTRs, which do not conform to the conventional scanning-initiation model. Here we show that the ORF of histone mRNA contains two structural elements critical for translation initiation. One of the two structures binds eIF4E without the need of the cap. Ribosomal 43S particles become tethered to this site and directly loaded in the vicinity of the AUG. The other structure, 19 nucleotides downstream of the initiation codon, forms a three-way helix junction, which sequesters the m(7)G cap. This element facilitates direct positioning of the ribosome on the cognate start codon. This unusual translation initiation mode might be considered as a hybrid mechanism between the canonical and the IRES-driven translation initiation process.
Collapse
Affiliation(s)
- Franck Martin
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg CEDEX, France
| | | | | | | | | | | |
Collapse
|
219
|
Farley AR, Powell DW, Weaver CM, Jennings JL, Link AJ. Assessing the components of the eIF3 complex and their phosphorylation status. J Proteome Res 2011; 10:1481-94. [PMID: 21280672 DOI: 10.1021/pr100877m] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The eukaryotic initiation factor 3 (eIF3) is an essential, highly conserved multiprotein complex that is a key component in the recruitment and assembly of the translation initiation machinery. To better understand the molecular function of eIF3, we examined its composition and phosphorylation status in Saccharomyces cerevisiae. The yeast eIF3 complex contains five core components: Rpg1, Nip1, Prt1, Tif34, and Tif35. 2-D LC-MS/MS analysis of affinity purified eIF3 complexes showed that several other initiation factors (Fun12, Tif5, Sui3, Pab1, Hcr1, and Sui1) and the casein kinase 2 complex (CK2) copurify. In Vivo metabolic labeling of proteins with (32)P revealed that Nip1 is phosphorylated. Using 2-D LC-MS/MS analysis of eIF3 complexes, we identified Prt1 phosphopeptides indicating phosphorylation at S22 and T707 and a Tif5 phosphopeptide with phosphorylation at T191. Additionally, we used immobilized metal affinity chromatography (IMAC) to enrich for eIF3 phosphopeptides and tandem mass spectrometry to identify phosphorylated residues. We found that three CK2 consensus sequences in Nip1 are phosphorylated: S98, S99, and S103. Using in vitro kinase assays, we showed that CK2 phophorylates Nip1 and that a synthetic Nip1 peptide containing S98, S99, and S103 competitively inhibits the reaction. Replacement of these three Nip1 serines with alanines causes a slow growth phenotype.
Collapse
Affiliation(s)
- Adam R Farley
- Department of Biochemisty, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2363, United States
| | | | | | | | | |
Collapse
|
220
|
Cargnello M, Roux PP. Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Microbiol Mol Biol Rev 2011. [DOI: 78495111110.1128/mmbr.00031-10' target='_blank'>'"<>78495111110.1128/mmbr.00031-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [78495111110.1128/mmbr.00031-10','', '10.1093/emboj/18.1.270')">Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
78495111110.1128/mmbr.00031-10" />
Abstract
SUMMARYThe mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs by relaying extracellular signals to intracellular responses. In mammals, there are more than a dozen MAPK enzymes that coordinately regulate cell proliferation, differentiation, motility, and survival. The best known are the conventional MAPKs, which include the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinases 1 to 3 (JNK1 to -3), p38 (α, β, γ, and δ), and ERK5 families. There are additional, atypical MAPK enzymes, including ERK3/4, ERK7/8, and Nemo-like kinase (NLK), which have distinct regulation and functions. Together, the MAPKs regulate a large number of substrates, including members of a family of protein Ser/Thr kinases termed MAPK-activated protein kinases (MAPKAPKs). The MAPKAPKs are related enzymes that respond to extracellular stimulation through direct MAPK-dependent activation loop phosphorylation and kinase activation. There are five MAPKAPK subfamilies: the p90 ribosomal S6 kinase (RSK), the mitogen- and stress-activated kinase (MSK), the MAPK-interacting kinase (MNK), the MAPK-activated protein kinase 2/3 (MK2/3), and MK5 (also known as p38-regulated/activated protein kinase [PRAK]). These enzymes have diverse biological functions, including regulation of nucleosome and gene expression, mRNA stability and translation, and cell proliferation and survival. Here we review the mechanisms of MAPKAPK activation by the different MAPKs and discuss their physiological roles based on established substrates and recent discoveries.
Collapse
Affiliation(s)
- Marie Cargnello
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Quebec, Canada
| | - Philippe P. Roux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Quebec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
221
|
Satheesha S, Cookson VJ, Coleman LJ, Ingram N, Madhok B, Hanby AM, Suleman CAB, Sabine VS, Macaskill EJ, Bartlett JMS, Dixon JM, McElwaine JN, Hughes TA. Response to mTOR inhibition: activity of eIF4E predicts sensitivity in cell lines and acquired changes in eIF4E regulation in breast cancer. Mol Cancer 2011; 10:19. [PMID: 21320304 PMCID: PMC3055230 DOI: 10.1186/1476-4598-10-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 02/14/2011] [Indexed: 11/10/2022] Open
Abstract
Background Inhibitors of the kinase mTOR, such as rapamycin and everolimus, have been used as cancer therapeutics with limited success since some tumours are resistant. Efforts to establish predictive markers to allow selection of patients with tumours likely to respond have centred on determining phosphorylation states of mTOR or its targets 4E-BP1 and S6K in cancer cells. In an alternative approach we estimated eIF4E activity, a key effector of mTOR function, and tested the hypothesis that eIF4E activity predicts sensitivity to mTOR inhibition in cell lines and in breast tumours. Results We found a greater than three fold difference in sensitivity of representative colon, lung and breast cell lines to rapamycin. Using an assay to quantify influences of eIF4E on the translational efficiency specified by structured 5'UTRs, we showed that this estimate of eIF4E activity was a significant predictor of rapamycin sensitivity, with higher eIF4E activities indicative of enhanced sensitivity. Surprisingly, non-transformed cell lines were not less sensitive to rapamycin and did not have lower eIF4E activities than cancer lines, suggesting the mTOR/4E-BP1/eIF4E axis is deregulated in these non-transformed cells. In the context of clinical breast cancers, we estimated eIF4E activity by analysing expression of eIF4E and its functional regulators within tumour cells and combining these scores to reflect inhibitory and activating influences on eIF4E. Estimates of eIF4E activity in cancer biopsies taken at diagnosis did not predict sensitivity to 11-14 days of pre-operative everolimus treatment, as assessed by change in tumour cell proliferation from diagnosis to surgical excision. However, higher pre-treatment eIF4E activity was significantly associated with dramatic post-treatment changes in expression of eIF4E and 4E-binding proteins, suggesting that eIF4E is further deregulated in these tumours in response to mTOR inhibition. Conclusions Estimates of eIF4E activity predict sensitivity to mTOR inhibition in cell lines but breast tumours with high estimated eIF4E activity gain changes in eIF4E regulation in order to enhance resistance.
Collapse
Affiliation(s)
- Sampoorna Satheesha
- Leeds Institute of Molecular Medicine, St, James's University Hospital, Leeds University, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Konicek BW, Stephens JR, McNulty AM, Robichaud N, Peery RB, Dumstorf CA, Dowless MS, Iversen PW, Parsons S, Ellis KE, McCann DJ, Pelletier J, Furic L, Yingling JM, Stancato LF, Sonenberg N, Graff JR. Therapeutic inhibition of MAP kinase interacting kinase blocks eukaryotic initiation factor 4E phosphorylation and suppresses outgrowth of experimental lung metastases. Cancer Res 2011; 71:1849-57. [PMID: 21233335 DOI: 10.1158/0008-5472.can-10-3298] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activation of the translation initiation factor 4E (eIF4E) promotes malignant transformation and metastasis. Signaling through the AKT-mTOR pathway activates eIF4E by phosphorylating the inhibitory 4E binding proteins (4E-BP). This liberates eIF4E and allows binding to eIF4G. eIF4E can then be phosphorylated at serine 209 by the MAPK-interacting kinases (Mnk), which also interact with eIF4G. Although dispensable for normal development, Mnk function and eIF4E phosphorylation promote cellular proliferation and survival and are critical for malignant transformation. Accordingly, Mnk inhibition may serve as an attractive cancer therapy. We now report the identification of a potent, selective and orally bioavailable Mnk inhibitor that effectively blocks 4E phosphorylation both in vitro and in vivo. In cultured cancer cell lines, Mnk inhibitor treatment induces apoptosis and suppresses proliferation and soft agar colonization. Importantly, a single, orally administered dose of this Mnk inhibitor substantially suppresses eIF4E phosphorylation for at least 4 hours in human xenograft tumor tissue and mouse liver tissue. Moreover, oral dosing with the Mnk inhibitor significantly suppresses outgrowth of experimental B16 melanoma pulmonary metastases as well as growth of subcutaneous HCT116 colon carcinoma xenograft tumors, without affecting body weight. These findings offer the first description of a novel, orally bioavailable MNK inhibitor and the first preclinical proof-of-concept that MNK inhibition may provide a tractable cancer therapeutic approach.
Collapse
Affiliation(s)
- Bruce W Konicek
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Yángüez E, Nieto A. So similar, yet so different: selective translation of capped and polyadenylated viral mRNAs in the influenza virus infected cell. Virus Res 2010; 156:1-12. [PMID: 21195735 DOI: 10.1016/j.virusres.2010.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/22/2010] [Accepted: 12/22/2010] [Indexed: 02/05/2023]
Abstract
Influenza virus is included among the Orthomyxoviridae family and it is a major public health problem causing annual mortality worldwide. Viral mRNAs bear short capped oligonucleotide sequences at their 5'-ends, acquired from host cell pre-mRNAs during viral transcription, and are polyadenylated at their 3'-end. Therefore, viral and cellular mRNAs are undistinguishable from a structural point of view. However, selective translation of viral proteins occurs upon infection, while initiation and elongation steps of cellular mRNA translation are efficiently inhibited. Viruses do not possess the complex machinery required to translate their mRNAs and are then obliged to compete for host-cell factors and manipulate the translation apparatus to their own benefit. Thus, the understanding of the processes that govern viral translation could facilitate the finding of possible targets for anti viral interventions. In the present review, we will point out the mechanisms by which influenza virus takes control of the host-cell protein synthesis machinery to ensure the production of new viral particles. First, we will discuss the mechanisms by which the virus counteracts the anti viral translation repression induced in the infected cell. Next, we will focus on the shut-off of cellular protein synthesis and the specific requirements for the eIF4F complex on influenza mRNA translation. Finally, we will discuss the role of different cellular and viral proteins in the selective translation of viral messengers in the infected cell and we will summarize the proposed mechanisms for the recruitment of cellular translational machinery to the viral mRNAs.
Collapse
Affiliation(s)
- Emilio Yángüez
- Centro Nacional de Biotecnología, C.S.I.C., Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
224
|
Karyala P, Namsa ND, Chilakalapudi DR. Translational up-regulation and high-level protein expression from plasmid vectors by mTOR activation via different pathways in PC3 and 293T cells. PLoS One 2010; 5:e14408. [PMID: 21203441 PMCID: PMC3010991 DOI: 10.1371/journal.pone.0014408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 11/16/2010] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Though 293T cells are widely used for expression of proteins from transfected plasmid vectors, the molecular basis for the high-level expression is yet to be understood. We recently identified the prostate carcinoma cell line PC3 to be as efficient as 293T in protein expression. This study was undertaken to decipher the molecular basis of high-level expression in these two cell lines. METHODOLOGY/PRINCIPAL FINDINGS In a survey of different cell lines for efficient expression of platelet-derived growth factor-B (PDGF-B), β-galactosidase (β-gal) and green fluorescent protein (GFP) from plasmid vectors, PC3 was found to express at 5-50-fold higher levels compared to the bone metastatic prostate carcinoma cell line PC3BM and many other cell lines. Further, the efficiency of transfection and level of expression of the reporters in PC3 were comparable to that in 293T. Comparative analyses revealed that the high level expression of the reporters in the two cell lines was due to increased translational efficiency. While phosphatidic acid (PA)-mediated activation of mTOR, as revealed by drastic reduction in reporter expression by n-butanol, primarily contributed to the high level expression in PC3, multiple pathways involving PA, PI3K/Akt and ERK1/2 appear to contribute to the abundant reporter expression in 293T. Thus the extent of translational up-regulation attained through the concerted activation of mTOR by multiple pathways in 293T could be achieved through its activation primarily by the PA pathway in PC3. CONCLUSIONS/SIGNIFICANCE Our studies reveal that the high-level expression of proteins from plasmid vectors is effected by translational up-regulation through mTOR activation via different signaling pathways in the two cell lines and that PC3 is as efficient as 293T for recombinant protein expression. Further, PC3 offers an advantage in that the level of expression of the protein can be regulated by simple addition of n-butanol to the culture medium.
Collapse
Affiliation(s)
- Prashanthi Karyala
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Nima D. Namsa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Durga Rao Chilakalapudi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
225
|
Gosselin P, Oulhen N, Jam M, Ronzca J, Cormier P, Czjzek M, Cosson B. The translational repressor 4E-BP called to order by eIF4E: new structural insights by SAXS. Nucleic Acids Res 2010; 39:3496-503. [PMID: 21183464 PMCID: PMC3082885 DOI: 10.1093/nar/gkq1306] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
eIF4E binding protein (4E-BP) inhibits translation of capped mRNA by binding to the initiation factor eIF4E and is known to be mostly or completely unstructured in both free and bound states. Using small angle X-ray scattering (SAXS), we report here the analysis of 4E-BP structure in solution, which reveals that while 4E-BP is intrinsically disordered in the free state, it undergoes a dramatic compaction in the bound state. Our results demonstrate that 4E-BP and eIF4E form a ‘fuzzy complex’, challenging current visions of eIF4E/4E-BP complex regulation.
Collapse
Affiliation(s)
- Pauline Gosselin
- UPMC Univ Paris 06, UMR 7150, Mer et Santé, Equipe Traduction Cycle Cellulaire et Développement, Station Biologique de Roscoff, 29680 Roscoff, France.
| | | | | | | | | | | | | |
Collapse
|
226
|
Tenorio G, Connor SA, Guévremont D, Abraham WC, Williams J, O'Dell TJ, Nguyen PV. 'Silent' priming of translation-dependent LTP by ß-adrenergic receptors involves phosphorylation and recruitment of AMPA receptors. Learn Mem 2010; 17:627-38. [PMID: 21097606 DOI: 10.1101/lm.1974510] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The capacity for long-term changes in synaptic efficacy can be altered by prior synaptic activity, a process known as "metaplasticity." Activation of receptors for modulatory neurotransmitters can trigger downstream signaling cascades that persist beyond initial receptor activation and may thus have metaplastic effects. Because activation of β-adrenergic receptors (β-ARs) strongly enhances the induction of long-term potentiation (LTP) in the hippocampal CA1 region, we examined whether activation of these receptors also had metaplastic effects on LTP induction. Our results show that activation of β-ARs induces a protein synthesis-dependent form of metaplasticity that primes the future induction of late-phase LTP by a subthreshold stimulus. β-AR activation also induced a long-lasting increase in phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) GluA1 subunits at a protein kinase A (PKA) site (S845) and transiently activated extracellular signal-regulated kinase (ERK). Consistent with this, inhibitors of PKA and ERK blocked the metaplastic effects of β-AR activation. β-AR activation also induced a prolonged, translation-dependent increase in cell surface levels of GluA1 subunit-containing AMPA receptors. Our results indicate that β-ARs can modulate hippocampal synaptic plasticity by priming synapses for the future induction of late-phase LTP through up-regulation of translational processes, one consequence of which is the trafficking of AMPARs to the cell surface.
Collapse
Affiliation(s)
- Gustavo Tenorio
- Department of Physiology, University of Alberta School of Medicine, Edmonton, Canada
| | | | | | | | | | | | | |
Collapse
|
227
|
Natural occurrence and physiological role of a truncated eIF4E in the porcine endometrium during implantation. Biochem J 2010; 432:353-63. [DOI: 10.1042/bj20100801] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study is the first report providing evidence for a physiological role of a truncated form of the mRNA cap-binding protein eIF4E1 (eukaryotic initiation factor 4E1). Our initial observation was that eIF4E, which mediates the mRNA cap function by recruiting the eIF4F complex (composed of eIF4E, 4G and 4A), occurs in two forms in porcine endometrial tissue in a strictly temporally restricted fashion. The ubiquitous prototypical 25 kDa form of eIF4E was found in ovariectomized and cyclic animals. A new stable 23 kDa variant, however, is predominant during early pregnancy at the time of implantation. Northern blotting, cDNA sequence analysis, in vitro protease assays and MS showed that the 23 kDa form does not belong to a new class of eIF4E proteins. It represents a proteolytically processed variant of eIF4E1, lacking not more than 21 amino acids at the N-terminus. Steroid replacements indicated that progesterone in combination with 17β-oestradiol induced the formation of the 23 kDa eIF4E. Modified cell-free translation systems mimicking the situation in the endometrium revealed that, besides eIF4E, eIF4G was also truncated, but not eIF4A or PABP [poly(A)-binding protein]. The 23 kDa form of eIF4E reduced the repressive function of 4E-BP1 (eIF4E-binding protein 1) and the truncated eIF4G lacked the PABP-binding site. Thus we suggest that the truncated eIF4E provides an alternative regulation mechanism by an altered dynamic of eIF4E/4E-BP1 binding under conditions where 4E-BP1 is hypophosphorylated. Together with the impaired eIF4G–PABP interaction, the modified translational initiation might particularly regulate protein synthesis during conceptus attachment at the time of implantation.
Collapse
|
228
|
Noncytotoxic inhibition of viral infection through eIF4F-independent suppression of translation by 4EGi-1. J Virol 2010; 85:853-64. [PMID: 21068241 DOI: 10.1128/jvi.01873-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The eukaryotic initiation factor eIF4F recruits ribosomes to capped mRNAs while eIF2 mediates start codon recognition to initiate protein synthesis. Increasing interest in targeting translation to suppress tumor growth has led to the development of new classes of inhibitors, including 4EGi-1, which disrupts eIF4F complexes. However, the full effects of this inhibitor and its potential uses in the treatment of other disease states remain unclear. Here, we show that overall rates of protein synthesis in primary human cells were affected only modestly by eIF4F disruption using the mTOR inhibitor Torin1, yet were highly sensitive to 4EGi-1. Translational suppression occurred even at concentrations of 4EGi-1 that were below those required to significantly alter eIF4F levels but were instead found to increase the association of ribosomal complexes containing inactive eIF2α. Although highly stable in culture, the effects of 4EGi-1 on both cellular protein synthesis and ribosome association were readily reversible upon inhibitor removal. In addition, despite potently inhibiting translation, prolonged exposure to 4EGi-1 had only modest effects on cell morphology and protein abundance without affecting viability or stress tolerance to any significant degree, although differential effects on heat shock protein (hsp) expression highlighted distinct 4EGi-1-sensitive modes of hsp induction. In contrast, 4EGi-1 potently suppressed poxvirus replication as well as both reactivation and lytic phases of herpesvirus infection. These findings identify a novel way in which 4EGi-1 affects the host cell's protein synthesis machinery and demonstrate its potential as a noncytotoxic inhibitor of diverse forms of viral infection.
Collapse
|
229
|
Topisirovic I, Svitkin YV, Sonenberg N, Shatkin AJ. Cap and cap-binding proteins in the control of gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:277-98. [PMID: 21957010 DOI: 10.1002/wrna.52] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The 5' mRNA cap structure is essential for efficient gene expression from yeast to human. It plays a critical role in all aspects of the life cycle of an mRNA molecule. Capping occurs co-transcriptionally on the nascent pre-mRNA as it emerges from the RNA exit channel of RNA polymerase II. The cap structure protects mRNAs from degradation by exonucleases and promotes transcription, polyadenylation, splicing, and nuclear export of mRNA and U-rich, capped snRNAs. In addition, the cap structure is required for the optimal translation of the vast majority of cellular mRNAs, and it also plays a prominent role in the expression of eukaryotic, viral, and parasite mRNAs. Cap-binding proteins specifically bind to the cap structure and mediate its functions in the cell. Two major cellular cap-binding proteins have been described to date: eukaryotic translation initiation factor 4E (eIF4E) in the cytoplasm and nuclear cap binding complex (nCBC), a nuclear complex consisting of a cap-binding subunit cap-binding protein 20 (CBP 20) and an auxiliary protein cap-binding protein 80 (CBP 80). nCBC plays an important role in various aspects of nuclear mRNA metabolism such as pre-mRNA splicing and nuclear export, whereas eIF4E acts primarily as a facilitator of mRNA translation. In this review, we highlight recent findings on the role of the cap structure and cap-binding proteins in the regulation of gene expression. We also describe emerging regulatory pathways that control mRNA capping and cap-binding proteins in the cell.
Collapse
Affiliation(s)
- Ivan Topisirovic
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montréal, QC, Canada
| | | | | | | |
Collapse
|
230
|
Korneeva NL, Soung YH, Kim HI, Giordano A, Rhoads RE, Gram H, Chung J. Mnk mediates integrin α6β4-dependent eIF4E phosphorylation and translation of VEGF mRNA. Mol Cancer Res 2010; 8:1571-8. [PMID: 21047768 DOI: 10.1158/1541-7786.mcr-10-0091] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It was previously shown that integrin α6β4 contributes to translation of cancer-related mRNAs such as VEGF via initiation factor eIF4E. In this study, we found that integrin α6β4 regulates the activity of eIF4E through the Ser/Thr kinase Mnk. Although a role for Mnk in various aspects of cancer progression has been established, a link between integrin and Mnk activity has not. Here we show that Mnk1 is a downstream effector of integrin α6β4 and mediates the α6β4 signaling, important for translational control. Integrin α6β4 signals through MEK and p38 MAPK to increase phosphorylation of Mnk1 and eIF4E. Inhibition of Mnk1 activity by CGP57380 or downregulation by shRNA blocks α6β4-dependent translation of VEGF mRNA. Our studies suggest that Mnk1 could be a therapeutic target in cancers where the integrin α6β4 level is high.
Collapse
Affiliation(s)
- Nadejda L Korneeva
- Department of Emergency Medicine, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA.
| | | | | | | | | | | | | |
Collapse
|
231
|
Sun C, Pager CT, Luo G, Sarnow P, Cate JHD. Hepatitis C virus core-derived peptides inhibit genotype 1b viral genome replication via interaction with DDX3X. PLoS One 2010; 5. [PMID: 20862261 PMCID: PMC2941470 DOI: 10.1371/journal.pone.0012826] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 08/24/2010] [Indexed: 01/06/2023] Open
Abstract
The protein DDX3X is a DEAD-box RNA helicase that is essential for the hepatitis C virus (HCV) life cycle. The HCV core protein has been shown to bind to DDX3X both in vitro and in vivo. However, the specific interactions between these two proteins and the functional importance of these interactions for the HCV viral life cycle remain unclear. We show that amino acids 16–36 near the N-terminus of the HCV core protein interact specifically with DDX3X both in vitro and in vivo. Replication of HCV replicon NNeo/C-5B RNA (genotype 1b) is significantly suppressed in HuH-7-derived cells expressing green fluorescent protein (GFP) fusions to HCV core protein residues 16–36, but not by GFP fusions to core protein residues 16–35 or 16–34. Notably, the inhibition of HCV replication due to expression of the GFP fusion to HCV core protein residues 16–36 can be reversed by overexpression of DDX3X. These results suggest that the protein interface on DDX3X that binds the HCV core protein is important for replicon maintenance. However, infection of HuH-7 cells by HCV viruses of genotype 2a (JFH1) was not affected by expression of the GFP fusion protein. These results suggest that the role of DDX3X in HCV infection involves aspects of the viral life cycle that vary in importance between HCV genotypes.
Collapse
Affiliation(s)
- Chaomin Sun
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, USA
| | | | | | | | | |
Collapse
|
232
|
Drake JC, Alway SE, Hollander JM, Williamson DL. AICAR treatment for 14 days normalizes obesity-induced dysregulation of TORC1 signaling and translational capacity in fasted skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1546-54. [PMID: 20844264 DOI: 10.1152/ajpregu.00337.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of this study was to determine the effect of 14 days of 5-aminoimidazole-4-carboxamide-1β-4-ribofuranoside (AICAR) treatment on mammalian target of rapamycin (mTOR) signaling and mTOR-regulated processes (i.e., translation initiation) in obese mouse skeletal muscle. Our hypothesis was that daily treatment (14 days) with AICAR would normalize obesity-induced alterations in skeletal muscle mTOR signaling and mTOR-regulated processes to lean levels and positively affect muscle mass. Fourteen-week-old male, lean (L; 31.3 g body wt) wild-type and ob/ob (O; 59.6 g body wt) mice were injected with the AMP-activated kinase (AMPK) activator AICAR (A) at 0.5 mg·g body wt(-1)·day(-1) or saline control (C) for 14 days. At 24 h after the last injection (including a 12-h fast), all mice were killed, and the plantar flexor complex muscle (gastrocnemius, soleus, and plantaris) was excised for analysis. Muscle mass was lower in OC (159 ± 12 mg) than LC, LA, and OA (176 ± 10, 178 ± 9, and 166 ± 16 mg, respectively) mice, independent of a body weight change. A decrease in obese muscle mass corresponded with higher muscle cross section staining intensity for lipid and glycogen, higher blood glucose and insulin levels, and lower nuclear-enriched fractions for peroxisome proliferator-activated receptor-γ coactivator-1α protein expression in OC skeletal muscle, which was normalized with AICAR treatment. AMPK and acetyl-cocarboxylase phosphorylation was reduced in OC mice and augmented by AICAR treatment in OA mice. Conversely, OC mice displayed higher activation of downstream targets (S6 kinase-1 and ribosomal protein S6) of mTOR and lower raptor-associated mTOR than LC mice, which were reciprocally altered after 14 days of AICAR treatment. Dysregulation of translational capacity was improved in OA mice, as assessed by sucrose density gradient fractionation of ribosomes, total and ribosome-associated RNA content, eukaryotic initiation factor 4F complex formation, and eukaryotic initiation factor 4G phosphorylation. These data show that short-term (14 days) AMPK agonist treatment augments regulatory processes in atrophic obese mouse skeletal muscle through the normalization of mTOR signaling and mRNA translation closer to lean levels.
Collapse
Affiliation(s)
- Joshua C Drake
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | | | | | | |
Collapse
|
233
|
Goh SH, Hong SH, Hong SH, Lee BC, Ju MH, Jeong JS, Cho YR, Kim IH, Lee YS. eIF3m expression influences the regulation of tumorigenesis-related genes in human colon cancer. Oncogene 2010; 30:398-409. [DOI: 10.1038/onc.2010.422] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
234
|
Regulation of eukaryotic initiation factor 4E (eIF4E) phosphorylation by mitogen-activated protein kinase occurs through modulation of Mnk1-eIF4G interaction. Mol Cell Biol 2010; 30:5160-7. [PMID: 20823271 DOI: 10.1128/mcb.00448-10] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The m(7)G cap binding protein eukaryotic initiation factor 4E (eIF4E) is a rate-limiting determinant of protein synthesis. Elevated eIF4E levels, commonly associated with neoplasia, promote oncogenesis, and phosphorylation of eIF4E at Ser209 is critical for its tumorigenic potential. eIF4E phosphorylation is catalyzed by mitogen-activated protein kinase (MAPK)-interacting serine/threonine kinase (Mnk), a substrate of Erk1/2 and p38 MAPKs. Interaction with the scaffolding protein eIF4G, which also binds eIF4E, brings Mnk and its substrate into physical proximity. Thus, Mnk-eIF4G interaction is important for eIF4E phosphorylation. Through coimmunoprecipitation assays, we showed that MAPK-mediated phosphorylation of the Mnk1 active site controls eIF4G binding. Utilizing a naturally occurring splice variant, we demonstrated that the C-terminal domain of Mnk1 restricts its interaction with eIF4G, preventing eIF4E phosphorylation in the absence of MAPK signaling. Furthermore, using a small-molecule Mnk1 inhibitor and kinase-dead mutant, we established that Mnk1 autoregulates its interaction with eIF4G, releasing itself from the scaffold after phosphorylation of its substrate. Our findings indicate tight control of eIF4E phosphorylation through modulation of Mnk1-eIF4G interaction.
Collapse
|
235
|
Hsieh AC, Ruggero D. Targeting eukaryotic translation initiation factor 4E (eIF4E) in cancer. Clin Cancer Res 2010; 16:4914-20. [PMID: 20702611 DOI: 10.1158/1078-0432.ccr-10-0433] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances in understanding the role of eukaryotic translation initiator factor 4E (eIF4E) in tumorigenesis and cancer progression have generated significant interest in therapeutic agents that indirectly or directly target aberrant activation of eIF4E in cancer. Here, we address the general function of eIF4E in translation initiation and cancer, present evidence supporting its role in cancer initiation and progression, and highlight emerging therapeutics that efficiently target hyperactivated eIF4E. In doing so, we also highlight the major differences between these therapeutics that may influence their mechanism of action.
Collapse
Affiliation(s)
- Andrew C Hsieh
- Department of Urology, Helen Diller Family Comprehensive Cancer Center, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | | |
Collapse
|
236
|
|
237
|
Combined deficiency for MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) delays tumor development. Proc Natl Acad Sci U S A 2010; 107:13984-90. [PMID: 20679220 DOI: 10.1073/pnas.1008136107] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) are protein-serine/threonine kinases that are activated by ERK or p38 and phosphorylate eIF4E, which is involved in cap-dependent translation initiation. However, Mnk1/2 double knockout (Mnk-DKO) mice show normal cell growth and development despite an absence of eIF4E phosphorylation. Here we show that the tumorigenesis occurring in the Lck-Pten mouse model (referred to here as tPten(-/-) mice) can be suppressed by the loss of Mnk1/2. Phosphorylation of eIF4E was greatly enhanced in lymphomas of parental tPten(-/-) mice compared with lymphoid tissues of wild-type mice, but was totally absent in lymphomas of tPten(-/-); Mnk-DKO mice. Notably, stable knockdown of Mnk1 in the human glioma cell line U87MG resulted in dramatically decreased tumor formation when these cells were injected into athymic nude mice. Our data demonstrate an oncogenic role for Mnk1/2 in tumor development, and highlight these molecules as potential anticancer drug targets that could be inactivated with minimal side effects.
Collapse
|
238
|
eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proc Natl Acad Sci U S A 2010; 107:14134-9. [PMID: 20679199 DOI: 10.1073/pnas.1005320107] [Citation(s) in RCA: 403] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Translational regulation plays a critical role in the control of cell growth and proliferation. A key player in translational control is eIF4E, the mRNA 5' cap-binding protein. Aberrant expression of eIF4E promotes tumorigenesis and has been implicated in cancer development and progression. The activity of eIF4E is dysregulated in cancer. Regulation of eIF4E is partly achieved through phosphorylation. However, the physiological significance of eIF4E phosphorylation in mammals is not clear. Here, we show that knock-in mice expressing a nonphosphorylatable form of eIF4E are resistant to tumorigenesis in a prostate cancer model. By using a genome-wide analysis of translated mRNAs, we show that the phosphorylation of eIF4E is required for translational up-regulation of several proteins implicated in tumorigenesis. Accordingly, increased phospho-eIF4E levels correlate with disease progression in patients with prostate cancer. Our findings establish eIF4E phosphorylation as a critical event in tumorigenesis. These findings raise the possibility that chemical compounds that prevent the phosphorylation of eIF4E could act as anticancer drugs.
Collapse
|
239
|
Goetz C, Everson RG, Zhang LC, Gromeier M. MAPK signal-integrating kinase controls cap-independent translation and cell type-specific cytotoxicity of an oncolytic poliovirus. Mol Ther 2010; 18:1937-46. [PMID: 20648000 DOI: 10.1038/mt.2010.145] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many animal viruses exhibit proficient growth in transformed cells, a property that has been harnessed for the development of novel therapies against cancer. Despite overwhelming evidence for this phenomenon, understanding of the molecular mechanisms enabling tumor-cell killing is rudimentary for most viruses. We report here that growth and cytotoxicity of the prototype oncolytic poliovirus (PV), PVSRIPO, in glioblastoma multiforme (GBM) is promoted by mitogen-activated protein kinases (MAPKs) converging on the MAPK signal-integrating kinase 1 (Mnk1) and its primary substrate, the eukaryotic initiation factor (eIF) 4E. Inducing Mnk1-catalyzed eIF4E phosphorylation through expression of oncogenic Ras substantially enhanced PVSRIPO translation, replication, and cytotoxicity in resistant cells. This effect was mimicked by expression of constitutively active forms of Mnk1 and correlated with enhanced translation of subgenomic reporter RNAs. Our findings implicate Mnk1 activity in stimulation of PVSRIPO cap-independent translation, an effect that can be synergistically enhanced by inhibition of the phosphoinositide-3 kinase (PI3K).
Collapse
Affiliation(s)
- Christian Goetz
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
240
|
Wang H, Ryu WS. Hepatitis B virus polymerase blocks pattern recognition receptor signaling via interaction with DDX3: implications for immune evasion. PLoS Pathog 2010; 6:e1000986. [PMID: 20657822 PMCID: PMC2904777 DOI: 10.1371/journal.ppat.1000986] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 06/04/2010] [Indexed: 12/12/2022] Open
Abstract
Viral infection leads to induction of pattern-recognition receptor signaling, which leads to interferon regulatory factor (IRF) activation and ultimately interferon (IFN) production. To establish infection, many viruses have strategies to evade the innate immunity. For the hepatitis B virus (HBV), which causes chronic infection in the liver, the evasion strategy remains uncertain. We now show that HBV polymerase (Pol) blocks IRF signaling, indicating that HBV Pol is the viral molecule that effectively counteracts host innate immune response. In particular, HBV Pol inhibits TANK-binding kinase 1 (TBK1)/IkappaB kinase-epsilon (IKKepsilon), the effector kinases of IRF signaling. Intriguingly, HBV Pol inhibits TBK1/IKKepsilon activity by disrupting the interaction between IKKepsilon and DDX3 DEAD box RNA helicase, which was recently shown to augment TBK1/IKKepsilon activity. This unexpected role of HBV Pol may explain how HBV evades innate immune response in the early phase of the infection. A therapeutic implication of this work is that a strategy to interfere with the HBV Pol-DDX3 interaction might lead to the resolution of life-long persistent infection.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Biochemistry, Yonsei University, Seoul, Korea
| | - Wang-Shick Ryu
- Department of Biochemistry, Yonsei University, Seoul, Korea
- * E-mail:
| |
Collapse
|
241
|
Clark MS, Thorne MA, Vieira FA, Cardoso JC, Power DM, Peck LS. Insights into shell deposition in the Antarctic bivalve Laternula elliptica: gene discovery in the mantle transcriptome using 454 pyrosequencing. BMC Genomics 2010; 11:362. [PMID: 20529341 PMCID: PMC2896379 DOI: 10.1186/1471-2164-11-362] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 06/08/2010] [Indexed: 11/21/2022] Open
Abstract
Background The Antarctic clam, Laternula elliptica, is an infaunal stenothermal bivalve mollusc with a circumpolar distribution. It plays a significant role in bentho-pelagic coupling and hence has been proposed as a sentinel species for climate change monitoring. Previous studies have shown that this mollusc displays a high level of plasticity with regard to shell deposition and damage repair against a background of genetic homogeneity. The Southern Ocean has amongst the lowest present-day CaCO3 saturation rate of any ocean region, and is predicted to be among the first to become undersaturated under current ocean acidification scenarios. Hence, this species presents as an ideal candidate for studies into the processes of calcium regulation and shell deposition in our changing ocean environments. Results 454 sequencing of L. elliptica mantle tissue generated 18,290 contigs with an average size of 535 bp (ranging between 142 bp-5.591 kb). BLAST sequence similarity searching assigned putative function to 17% of the data set, with a significant proportion of these transcripts being involved in binding and potentially of a secretory nature, as defined by GO molecular function and biological process classifications. These results indicated that the mantle is a transcriptionally active tissue which is actively proliferating. All transcripts were screened against an in-house database of genes shown to be involved in extracellular matrix formation and calcium homeostasis in metazoans. Putative identifications were made for a number of classical shell deposition genes, such as tyrosinase, carbonic anhydrase and metalloprotease 1, along with novel members of the family 2 G-Protein Coupled Receptors (GPCRs). A membrane transport protein (SEC61) was also characterised and this demonstrated the utility of the clam sequence data as a resource for examining cold adapted amino acid substitutions. The sequence data contained 46,235 microsatellites and 13,084 Single Nucleotide Polymorphisms(SNPs/INDELS), providing a resource for population and also gene function studies. Conclusions This is the first 454 data from an Antarctic marine invertebrate. Sequencing of mantle tissue from this non-model species has considerably increased resources for the investigation of the processes of shell deposition and repair in molluscs in a changing environment. A number of promising candidate genes were identified for functional analyses, which will be the subject of further investigation in this species and also used in model-hopping experiments in more tractable and economically important model aquaculture species, such as Crassostrea gigas and Mytilus edulis.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB30ET, UK.
| | | | | | | | | | | |
Collapse
|
242
|
Pond AC, Herschkowitz JI, Schwertfeger KL, Welm B, Zhang Y, York B, Cardiff RD, Hilsenbeck S, Perou CM, Creighton CJ, Lloyd RE, Rosen JM. Fibroblast growth factor receptor signaling dramatically accelerates tumorigenesis and enhances oncoprotein translation in the mouse mammary tumor virus-Wnt-1 mouse model of breast cancer. Cancer Res 2010; 70:4868-79. [PMID: 20501844 DOI: 10.1158/0008-5472.can-09-4404] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fibroblast growth factor (FGF) cooperates with the Wnt/beta-catenin pathway to promote mammary tumorigenesis. To investigate the mechanisms involved in FGF/Wnt cooperation, we genetically engineered a model of inducible FGF receptor (iFGFR) signaling in the context of the well-established mouse mammary tumor virus-Wnt-1 transgenic mouse. In the bigenic mice, iFGFR1 activation dramatically enhanced mammary tumorigenesis. Expression microarray analysis did not show transcriptional enhancement of Wnt/beta-catenin target genes but instead showed a translational gene signature that also correlated with elevated FGFR1 and FGFR2 in human breast cancer data sets. Additionally, iFGFR1 activation enhanced recruitment of RNA to polysomes, resulting in a marked increase in protein expression of several different Wnt/beta-catenin target genes. FGF pathway activation stimulated extracellular signal-regulated kinase and the phosphorylation of key translation regulators both in vivo in the mouse model and in vitro in a human breast cancer cell line. Our results suggest that cooperation of the FGF and Wnt pathways in mammary tumorigenesis is based on the activation of protein translational pathways that result in, but are not limited to, increased expression of Wnt/beta-catenin target genes (at the level of protein translation). Further, they reveal protein translation initiation factors as potential therapeutic targets for human breast cancers with alterations in FGF signaling.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Disease Models, Animal
- Fluorescent Antibody Technique
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Oligonucleotide Array Sequence Analysis
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- Phosphorylation
- Polyribosomes/metabolism
- Protein Biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/physiology
- Receptor, Fibroblast Growth Factor, Type 2/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Wnt1 Protein/metabolism
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Adam C Pond
- Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Bellé R, Prigent S, Siegel A, Cormier P. Model of cap-dependent translation initiation in sea urchin: a step towards the eukaryotic translation regulation network. Mol Reprod Dev 2010; 77:257-64. [PMID: 20014323 DOI: 10.1002/mrd.21142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The large and rapid increase in the rate of protein synthesis following fertilization of the sea urchin egg has long been a paradigm of translational control, an important component of the regulation of gene expression in cells. This translational up-regulation is linked to physiological changes that occur upon fertilization and is necessary for entry into first cell division cycle. Accumulated knowledge on cap-dependent initiation of translation makes it suited and timely to start integrating the data into a system view of biological functions. Using a programming environment for system biology coupled with model validation (named Biocham), we have built an integrative model for cap-dependent initiation of translation. The model is described by abstract rules. It contains 51 reactions involved in 74 molecular complexes. The model proved to be coherent with existing knowledge by using queries based on computational tree logic (CTL) as well as Boolean simulations. The model could simulate the change in translation occurring at fertilization in the sea urchin model. It could also be coupled with an existing model designed for cell-cycle control. Therefore, the cap-dependent translation initiation model can be considered a first step towards the eukaryotic translation regulation network.
Collapse
Affiliation(s)
- Robert Bellé
- UPMC univ Paris 06, UMR 7150 Mer et santé, Equipe Traduction Cycle Cellulaire et Développement, Station Biologique, Roscoff, France.
| | | | | | | |
Collapse
|
244
|
White RJ, Sharrocks AD. Coordinated control of the gene expression machinery. Trends Genet 2010; 26:214-20. [PMID: 20381190 DOI: 10.1016/j.tig.2010.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/19/2010] [Accepted: 02/19/2010] [Indexed: 01/06/2023]
Abstract
Gene expression is a multi-step process starting from transcribing DNA through to the eventual production of proteins or RNA products. It is important that this process is controlled coordinately to ensure that all steps function in a concerted manner. Signal transduction pathways orchestrate such control and bring about wholesale changes in the gene expression profiles of cells that ultimately determine their phenotype. Recent studies on the MAP kinase and mTOR signaling pathways in mammalian cells have illustrated how integrated responses to signaling pathways are achieved. This occurs at both the transcriptional level, through the coordinate regulation of RNA polymerases I-III and downstream in the coordinate regulation of transcription with RNA processing and translation.
Collapse
Affiliation(s)
- Robert J White
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | | |
Collapse
|
245
|
Abstract
Remarkable progress has been made in defining a new understanding of the role of mRNA translation and protein synthesis in human cancer. Translational control is a crucial component of cancer development and progression, directing both global control of protein synthesis and selective translation of specific mRNAs that promote tumour cell survival, angiogenesis, transformation, invasion and metastasis. Translational control of cancer is multifaceted, involving alterations in translation factor levels and activities unique to different types of cancers, disease stages and the tumour microenvironment. Several clinical efforts are underway to target specific components of the translation apparatus or unique mRNA translation elements for cancer therapeutics.
Collapse
|
246
|
Goetz C, Gromeier M. Preparing an oncolytic poliovirus recombinant for clinical application against glioblastoma multiforme. Cytokine Growth Factor Rev 2010; 21:197-203. [PMID: 20299272 DOI: 10.1016/j.cytogfr.2010.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PVS-RIPO is a genetically recombinant, non-pathogenic poliovirus chimera with a tumor-specific conditional replication phenotype. Consisting of the genome of the live attenuated poliovirus type 1 (Sabin) vaccine with its cognate IRES element replaced with that of human rhinovirus type 2, PVS-RIPO displays an inability to translate its genome in untransformed neuronal cells, but effectively does so in cells originating from primary tumors in the central nervous system or other cancers. Hence, PVS-RIPO unleashes potent cytotoxic effects on infected cancer cells and produces sustained anti-tumoral responses in animal tumor models. PVS-RIPO presents a novel approach to the treatment of patients with glioblastoma multiforme, based on conditions favoring an unconventional viral translation initiation mechanism in cancerous cells. In this review we summarize advances in the understanding of major molecular determinants of PVS-RIPO oncolytic efficacy and safety and discuss their implications for upcoming clinical investigations.
Collapse
Affiliation(s)
- Christian Goetz
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
247
|
Chakravarti N, Kadara H, Yoon DJ, Shay JW, Myers JN, Lotan D, Sonenberg N, Lotan R. Differential inhibition of protein translation machinery by curcumin in normal, immortalized, and malignant oral epithelial cells. Cancer Prev Res (Phila) 2010; 3:331-8. [PMID: 20145189 DOI: 10.1158/1940-6207.capr-09-0076] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Curcumin has shown some promise in the prevention of oral carcinogenesis by mechanism(s) that are still not completely resolved. Messenger RNA translation is mediated in eukaryotes by the eIF4F complex composed of eukaryotic translation initiation factors eIF4E, eIF4G, and eIF4A. Overexpression of some of these components or the inactivation of initiation repressor proteins (4E-BP1) has been implicated in cancer development including oral carcinogenesis by affecting cell survival, angiogenesis, and tumor growth and invasion. In this study, we examined the possibility that curcumin affects the translational machinery differently in normal, immortalized normal, leukoplakia, and malignant cells. Curcumin treatment in vitro inhibited the growth of immortalized oral mucosa epithelial cells (NOM9-CT) and the leukoplakia cells (MSK-Leuk1s) as well as in the UMSCC22B and SCC4 cells derived from head and neck squamous cell carcinoma. Curcumin only exerted minor effects on the growth of normal oral epithelial cells (NOM9). In the immortalized, leukoplakia, and cancer cells, curcumin inhibited cap-dependent translation by suppressing the phosphorylation of 4E-BP1, eIF4G, eIF4B, and Mnk1, and also reduced the total levels of eIF4E and Mnk1. Our findings show that immortalized normal, leukoplakia, and malignant oral cells are more sensitive to curcumin and show greater modulation of protein translation machinery than the normal oral cells, indicating that targeting this process may be an important approach to chemoprevention in general and for curcumin in particular.
Collapse
Affiliation(s)
- Nitin Chakravarti
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
248
|
Incorporation of eukaryotic translation initiation factor eIF4E into viral nucleocapsids via interaction with hepatitis B virus polymerase. J Virol 2010; 84:52-8. [PMID: 19776122 DOI: 10.1128/jvi.01232-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The DNA genome of hepatitis B virus (HBV) replicates via reverse transcription within capsids following the encapsidation of an RNA template, the pregenomic RNA (pgRNA). We previously demonstrated that the 5' cap proximity of the stem-loop structure (epsilon or epsilon), an encapsidation signal, is critically important for the encapsidation of the pgRNA (J. K. Jeong, G. S. Yoon, and W. S. Ryu, J. Virol. 74:5502-5508, 2000). Therefore, we speculated that the viral polymerase (Pol), while bound to the 5' epsilon stem-loop structure, could recognize the cap via its interaction with eIF4E, a eukaryotic translation initiation factor. Our data showed the direct interaction between HBV Pol and eIF4E, as measured by coimmunoprecipitation. Further, we demonstrated that eIF4E interacts with the Pol-epsilon ribonucleoprotein complex (RNP) rather than Pol alone, resulting in eIF4E-Pol-epsilon RNP complex formation. In addition, we asked whether eIF4E remains engaged to the Pol-epsilon RNP complex during nucleocapsid assembly. Density gradient analysis revealed that eIF4E indeed was incorporated into nucleocapsids. It is of great importance to uncover whether the incorporated eIF4E contributes to viral reverse transcription or other steps in the HBV life cycle.
Collapse
|
249
|
Smith L, Brannan RA, Hanby AM, Shaaban AM, Verghese ET, Peter MB, Pollock S, Satheesha S, Szynkiewicz M, Speirs V, Hughes TA. Differential regulation of oestrogen receptor β isoforms by 5' untranslated regions in cancer. J Cell Mol Med 2010; 14:2172-84. [PMID: 20920096 PMCID: PMC3823008 DOI: 10.1111/j.1582-4934.2009.00867.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oestrogen receptors (ERs) are critical regulators of the behaviour of many cancers. Despite this, the roles and regulation of one of the two known ERs – ERβ– are poorly understood. This is partly because analyses have been confused by discrepancies between ERβ expression at mRNA and proteins levels, and because ERβ is expressed as several functionally distinct isoforms. We investigated human ERβ 5′ untranslated regions (UTRs) and their influences on ERβ expression and function. We demonstrate that two alternative ERβ 5′UTRs have potent and differential influences on expression acting at the level of translation. We show that their influences are modulated by cellular context and in carcinogenesis, and demonstrate the contributions of both upstream open reading frames and RNA secondary structure. These regulatory mechanisms offer explanations for the non-concordance of ERβ mRNA and protein. Importantly, we also demonstrate that 5′UTRs allow the first reported mechanisms for differential regulation of the expression of the ERβ isoforms 1, 2 and 5, and thereby have critical influences on ERβ function.
Collapse
Affiliation(s)
- Laura Smith
- Leeds Institute of Molecular Medicine, Leeds University, Leeds, UK Department of Histopathology, St James's University Hospital, Leeds, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Kim J, Kim B. Differential Regulation of MAPK Isoforms during Cast-Immobilization -Induced Atrophy in Rat Gastrocnemius Muscle. J Phys Ther Sci 2010. [DOI: 10.1589/jpts.22.217] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Junghwan Kim
- Department of Physical Therapy, College of Public Health & Welfare, Yongin University
| | - Bokyung Kim
- Department of Physiology, Institute of Functional Genomics, School of Medicine, Konkuk University
| |
Collapse
|