201
|
Pérez-García MT, Cidad P, López-López JR. The secret life of ion channels: Kv1.3 potassium channels and proliferation. Am J Physiol Cell Physiol 2017; 314:C27-C42. [PMID: 28931540 DOI: 10.1152/ajpcell.00136.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kv1.3 channels are involved in the switch to proliferation of normally quiescent cells, being implicated in the control of cell cycle in many different cell types and in many different ways. They modulate membrane potential controlling K+ fluxes, sense changes in potential, and interact with many signaling molecules through their intracellular domains. From a mechanistic point of view, we can describe the role of Kv1.3 channels in proliferation with at least three different models. In the "membrane potential model," membrane hyperpolarization resulting from Kv1.3 activation provides the driving force for Ca2+ influx required to activate Ca2+-dependent transcription. This model explains most of the data obtained from several cells from the immune system. In the "voltage sensor model," Kv1.3 channels serve mainly as sensors that transduce electrical signals into biochemical cascades, independently of their effect on membrane potential. Kv1.3-dependent proliferation of vascular smooth muscle cells (VSMCs) could fit this model. Finally, in the "channelosome balance model," the master switch determining proliferation may be related to the control of the Kv1.3 to Kv1.5 ratio, as described in glial cells and also in VSMCs. Since the three mechanisms cannot function independently, these models are obviously not exclusive. Nevertheless, they could be exploited differentially in different cells and tissues. This large functional flexibility of Kv1.3 channels surely gives a new perspective on their functions beyond their elementary role as ion channels, although a conclusive picture of the mechanisms involved in Kv1.3 signaling to proliferation is yet to be reached.
Collapse
Affiliation(s)
- M Teresa Pérez-García
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas , Valladolid , Spain
| | - Pilar Cidad
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas , Valladolid , Spain
| | - José R López-López
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas , Valladolid , Spain
| |
Collapse
|
202
|
Fong-Ngern K, Ausakunpipat N, Singhto N, Sueksakit K, Thongboonkerd V. Prolonged K + deficiency increases intracellular ATP, cell cycle arrest and cell death in renal tubular cells. Metabolism 2017; 74:47-61. [PMID: 28095989 DOI: 10.1016/j.metabol.2016.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/02/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chronic potassium (K+) deficiency can cause renal damage namely hypokalemic nephropathy with unclear pathogenic mechanisms. In the present study, we investigated expression and functional alterations in renal tubular cells induced by prolonged K+ deficiency. METHODS MDCK cells were maintained in normal-K+ (CNK) (K+=5.3mmol/L), low-K+ (CLK) (K+=2.5mmol/L), or K+-depleted (CKD) (K+=0mmol/L) medium for 10days (n=5 independent cultures/condition). Differentially expressed proteins were identified by a proteomics approach followed by various functional assays. RESULTS Proteomic analysis revealed 46 proteins whose levels significantly differed among groups. The proteomic data were confirmed by Western blotting. Gene Ontology (GO) classification and protein network analysis revealed that majority of the altered proteins participated in metabolic process, whereas the rest involved in cellular component organization/biogenesis, cellular process (e.g., cell cycle, regulation of cell death), response to stress, and signal transduction. Interestingly, ATP measurement revealed that intracellular ATP production was increased in CLK and maximum in CKD. Flow cytometry showed cell cycle arrest at S-phase and G2/M-phase in CLK and CKD, respectively, consistent with cell proliferation and growth assays, which showed modest and marked degrees of delayed growth and prolonged doubling time in CLK and CKD, respectively. Cell death quantification also revealed modest and marked degrees of increased cell death in CLK and CKD, respectively. CONCLUSIONS In conclusion, prolonged K+ deficiency increased intracellular ATP, cell cycle arrest and cell death in renal tubular cells, which might be responsible for mechanisms underlying the development of hypokalemic nephropathy.
Collapse
Affiliation(s)
- Kedsarin Fong-Ngern
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Nardtaya Ausakunpipat
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Nilubon Singhto
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Kanyarat Sueksakit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
203
|
Zhu TG, Xiao X, Wei Q, Yue M, Zhang LX. Revealing potential long non-coding RNA biomarkers in lung adenocarcinoma using long non-coding RNA-mediated competitive endogenous RNA network. Braz J Med Biol Res 2017; 50:e6297. [PMID: 28793054 PMCID: PMC5572850 DOI: 10.1590/1414-431x20176297] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023] Open
Abstract
In our study, we aimed to reveal potential long non-coding RNAs (lncRNA) biomarkers in lung adenocarcinoma (LAD) using lncRNA-mediated competing endogenous RNAs (ceRNAs) network (LMCN). Competing lncRNA-mRNA interactions were identified using the hypergeometric test. Co-expression analysis for the competing lncRNA-mRNA interactions was implemented, and relying on the weight value >0.8, a highly competitive LMCN was further constructed. Degree distribution, betweenness and closeness for LMCN were carried out to analyze the network structure. Functional analyses of mRNAs in LMCN were carried out to further explore the biological functions of lncRNAs. Biclique algorithm was utilized to extract competing modules from the LMCN. Finally, we verified our findings in an independent sample set using qRT-PCR. Based on degrees >60, we identified 4 hubs, including DLEU2, SNHG12, HCP5, and LINC00472. Furthermore, 2 competing modules were identified, and LINC00472 in module 1 functioned as a hub in both LMCN and module. Functional implications of lncRNAs demonstrated that lncRNAs were related to histone modification, negative regulation of cell cycle, neuroactive ligand-receptor interaction, and regulation of actin cytoskeleton. qRT-PCR results demonstrated that lncRNAs LINC00472, and HCP5 were down-regulated in LAD tissues, while the expression level of SNHG12 was up-regulated in LAD tissues. Our study sheds novel light on the roles of lncRNA-related ceRNA network in LAD and facilitates the detection of potential lncRNA biomarkers for LAD diagnosis and treatment. Remarkably, in our study, LINC00472, HCP5, and SNHG12 might be potential biomarkers for LAD management.
Collapse
Affiliation(s)
- T-G Zhu
- Department of Pulmonary Disease, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - X Xiao
- Department of Heart Disease, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Q Wei
- Department of Heart Disease, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - M Yue
- Department of Internal Medicine, Lushuihe Forestry Bureau, Hospital of Jilin Province, Baishan, Jilin Province, China
| | - L-X Zhang
- Department of Pulmonary Disease, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| |
Collapse
|
204
|
Epigenetic Metabolite Acetate Inhibits Class I/II Histone Deacetylases, Promotes Histone Acetylation, and Increases HIV-1 Integration in CD4 + T Cells. J Virol 2017; 91:JVI.01943-16. [PMID: 28539453 DOI: 10.1128/jvi.01943-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 05/17/2017] [Indexed: 02/06/2023] Open
Abstract
In this study, we investigated the effect of acetate, the most concentrated short-chain fatty acid (SCFA) in the gut and bloodstream, on the susceptibility of primary human CD4+ T cells to HIV-1 infection. We report that HIV-1 replication is increased in CD3/CD28-costimulated CD4+ T cells upon acetate treatment. This enhancing effect correlates with increased expression of the early activation marker CD69 and impaired class I/II histone deacetylase (HDAC) activity. In addition, acetate enhances acetylation of histones H3 and H4 and augments HIV-1 integration into the genome of CD4+ T cells. Thus, we propose that upon antigen presentation, acetate influences class I/II HDAC activity that transforms condensed chromatin into a more relaxed structure. This event leads to a higher level of viral integration and enhanced HIV-1 production. In line with previous studies showing reactivation of latent HIV-1 by SCFAs, we provide evidence that acetate can also increase the susceptibility of primary human CD4+ T cells to productive HIV-1 infection.IMPORTANCE Alterations in the fecal microbiota and intestinal epithelial damage involved in the gastrointestinal disorder associated with HIV-1 infection result in microbial translocation that leads to disease progression and virus-related comorbidities. Indeed, notably via production of short-chain fatty acids, bacteria migrating from the lumen to the intestinal mucosa could influence HIV-1 replication by epigenetic regulatory mechanisms, such as histone acetylation. We demonstrate that acetate enhances virus production in primary human CD4+ T cells. Moreover, we report that acetate impairs class I/II histone deacetylase activity and increases integration of HIV-1 DNA into the host genome. Therefore, it can be postulated that bacterial metabolites such as acetate modulate HIV-1-mediated disease progression.
Collapse
|
205
|
Qi J, Ma L, Wang X, Li Y, Wang K. Observation of significant biomarkers in osteosarcoma via integrating module- identification method with attract. Cancer Biomark 2017; 20:87-93. [PMID: 28759958 DOI: 10.3233/cbm-170144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Osteosarcoma (OS) is the most frequent type of bone malignancy, and this disease has a poor prognosis. We aimed to identify the significant genes related with OS by integrating module-identification method and attract approach. METHODS OS-related microarray data E-GEOD-36001 were obtained from ArrayExpress database, and then protein-protein interaction (PPI) networks of normal and OS were re-weighted by means of spearman correlation coefficient (SCC). Next, maximal cliques were detected from the re-weighted PPI networks using clusteringbased on maximal cliques approach. Afterwards, highly overlapped cliques were merged according to the interconnectivity, following by candidate modules and seed modules identification. Attract proposed by Mar et al. who have suggested that this approach can extract and annotate the gene-sets which can distinguish between disease and control samples, and obtained differences of these gene-sets among the expression profile of samples were defined as attractors. Thus, we applied attract method to extract differential modules from the seed modules, and these obtained differential modules were defined as attractors. The genes in attractors were determined as attractor genes. RESULTS After eliminating the maximal cliques with nodes less than 4, there were 1,884 and 528 maximal cliques in normal and OS PPI networks, which were used to conduct module analysis. A total of 60 and 19 candidate modules were obtained in control and OS PPI networks, respectively. By comparing with normal group, 2 seed module pairs with similar gene composition were found. Significantly, based on attract method, we found that these 2 modules were differential. These 2 modules had the same gene size with 4 genes. Of note, genes CCNB1 and KIF11 simultaneously appeared in these two attractors. CONCLUSIONS We successfully identified two attractors via integrating module-identification method and attract approach, and attractor genes, for example, CCNB1 and KIF11 might play pathophysiological roles in OS development and progression.
Collapse
Affiliation(s)
- Jie Qi
- Department of Orthopaedics, Shaanxi Provicial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Liang Ma
- Department of Orthopaedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, China
| | - Xiaogang Wang
- Out-patient Department, Affiliated Tumor Hospital of Xinjiang Medical University, Wuluumuqi 830011, Xinjiang, China
| | - Ying Li
- Beijing Spirallink Medical Research Institute, Beijing 100054, China
| | - Kejun Wang
- Department of Orthopaedics, Jingzhou Central Hospital, Jingzhou 434020, Hubei, China
| |
Collapse
|
206
|
Potassium as a pluripotency-associated element identified through inorganic element profiling in human pluripotent stem cells. Sci Rep 2017; 7:5005. [PMID: 28694442 PMCID: PMC5504050 DOI: 10.1038/s41598-017-05117-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/24/2017] [Indexed: 12/20/2022] Open
Abstract
Despite their well-known function in maintaining normal cell physiology, how inorganic elements are relevant to cellular pluripotency and differentiation in human pluripotent stem cells (hPSCs) has yet to be systematically explored. Using total reflection X-ray fluorescence (TXRF) spectrometry and inductively coupled plasma mass spectrometry (ICP-MS), we analyzed the inorganic components of human cells with isogenic backgrounds in distinct states of cellular pluripotency. The elemental profiles revealed that the potassium content of human cells significantly differs when their cellular pluripotency changes. Pharmacological treatment that alters cell membrane permeability to potassium affected the maintenance and establishment of cellular pluripotency via multiple mechanisms in bona fide hPSCs and reprogrammed cells. Collectively, we report that potassium is a pluripotency-associated inorganic element in human cells and provide novel insights into the manipulation of cellular pluripotency in hPSCs by regulating intracellular potassium.
Collapse
|
207
|
Anantharaju PG, Reddy BD, Padukudru MA, Kumari Chitturi CHM, Vimalambike MG, Madhunapantula SV. Naturally occurring benzoic acid derivatives retard cancer cell growth by inhibiting histone deacetylases (HDAC). Cancer Biol Ther 2017; 18:492-504. [PMID: 28506198 PMCID: PMC5639858 DOI: 10.1080/15384047.2017.1324374] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/18/2017] [Accepted: 04/23/2017] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylases (HDACs), which modulate the expression of genes, are potential therapeutic targets in several cancers. Targeted inhibition of HDAC prevents the expression of oncogenes thereby help in the treatment of cancers. Hence, several pharmaceutical companies developed inhibitors of HDAC and tested them in preclinical models and in clinical trials. SAHA (suberanilohydroxamic acid) is one such HDAC inhibitor developed for treating breast and colorectal carcinomas. However, due to poor efficacy in clinical trials the utility of SAHA for treating cancers was discouraged. Similarly another HDAC inhibitor Trichostatin-A (TSA) also showed promising results in clinical trials but exhibited severe adverse effects, which dampened the interest of using this molecule for cancer treatment. Therefore, search for developing a potent HDAC inhibitor with minimal side effects still continues. Hence, in this study we have screened benzoic acid and benzoic acid derivatives with hydroxylic (-OH) groups and methoxy (-OCH3) groups for their efficacy to bind to the TSA binding site of HDAC using molecular docking studies. Molecules that showed much stronger affinity (than TSA) to HDAC were tested for inhibiting HDAC expressing cultured cancer cells. DHBA but not Dimethoxy Benzoic Acid (DMBA) inhibited HDAC activity, leading to cancer cell growth inhibition through the induction of ROS and cellular apoptosis mediated by Caspase-3. In addition, DHBA arrested cells in G2/M phase of the cell cycle and elevated the levels of sub-G0-G1 cell population. In summary, results of this study report that DHBA could be a strong HDAC inhibitor and inhibit cancer cell growth more effectively.
Collapse
Affiliation(s)
- Preethi G. Anantharaju
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, Jagadguru Sri Shivarathreeshwara University, Mysore, Karnataka, India
| | - Bandi Deepa Reddy
- Department of Applied Microbiology, Sri Padmavati Mahila Visvavidyalayam (Women's University), Tirupati, Andhra Pradesh, India
| | - Mahesh A. Padukudru
- Department of Pulmonary Medicine, JSS Medical College, Jagadguru Sri Shivarathreeshwara University, Mysore, Karnataka, India
| | - CH. M. Kumari Chitturi
- Department of Applied Microbiology, Sri Padmavati Mahila Visvavidyalayam (Women's University), Tirupati, Andhra Pradesh, India
| | - Manjunath G. Vimalambike
- Department of Pathology, JSS Medical College, Jagadguru Sri Shivarathreeshwara University, Mysore, Karnataka, India
| | - SubbaRao V. Madhunapantula
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, Jagadguru Sri Shivarathreeshwara University, Mysore, Karnataka, India
| |
Collapse
|
208
|
Bandulik S. Of channels and pumps: different ways to boost the aldosterone? Acta Physiol (Oxf) 2017; 220:332-360. [PMID: 27862984 DOI: 10.1111/apha.12832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/10/2016] [Accepted: 11/11/2016] [Indexed: 01/19/2023]
Abstract
The mineralocorticoid aldosterone is a major factor controlling the salt and water balance and thereby also the arterial blood pressure. Accordingly, primary aldosteronism (PA) characterized by an inappropriately high aldosterone secretion is the most common form of secondary hypertension. The physiological stimulation of aldosterone synthesis in adrenocortical glomerulosa cells by angiotensin II and an increased plasma K+ concentration depends on a membrane depolarization and an increase in the cytosolic Ca2+ activity. Recurrent gain-of-function mutations of ion channels and transporters have been identified in a majority of cases of aldosterone-producing adenomas and in familial forms of PA. In this review, the physiological role of these genes in the regulation of aldosterone synthesis and the altered function of the mutant proteins as well are described. The specific changes of the membrane potential and the cellular ion homoeostasis in adrenal cells expressing the different mutants are compared, and their impact on autonomous aldosterone production and proliferation is discussed.
Collapse
Affiliation(s)
- S. Bandulik
- Medical Cell Biology; University of Regensburg; Regensburg Germany
| |
Collapse
|
209
|
Bai Z, Shi E, Wang Q, Dong Z, Xu P. A potential panel of two-long non-coding RNA signature to predict recurrence of patients with laryngeal cancer. Oncotarget 2017; 8:69641-69650. [PMID: 29050230 PMCID: PMC5642505 DOI: 10.18632/oncotarget.18751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/15/2017] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence has shown that aberrant lncRNA expression plays an oncogenic or tumor-suppressive role in the tumorigenesis of laryngeal cancer. However, the prognostic roles of lncRNAs in laryngeal cancer recurrence are still poorly understood. In this study, we obtained lncRNA expression profiles of 109 patients with laryngeal cancer by mining previously published gene expression microarray data from the Gene Expression Omnibus (GEO) and identified two lncRNAs associated with laryngeal cancer recurrence in the training dataset by using Cox regression analysis. Then these two lncRNAs were combined to a two-lncRNA signature for identifying patients at high-risk of disease recurrence. By applying this two-lncRNA signature to the testing dataset, a clear separation was observed in the survival curves between patients with low- or high-risk scores, indicating good reproducibility of this two-lncRNA signature in predicting disease-free survival of laryngeal cancer. Further analysis revealed that the prognostic value of the two-lncRNA signature was independent of other clinical features, including age, stage and grade. Subsequent gene set enrichment analysis suggested that the two-lncRNA signature was more likely to involve with GPCRs downstream signaling pathway, potassium channel pathway and aurora-A pathway. Our study demonstrated that the two-lncRNA signature may be a novel potential biomarker for prognosis of laryngeal cancer and may provide novel insights into the molecular mechanism of laryngeal cancer.
Collapse
Affiliation(s)
- Zhigang Bai
- Department of Otorhinolaryngology, Head and Neck Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Enhong Shi
- Department of Medical Oncology, Heilongjiang Province Hospital, Harbin 150001, China
| | - Qiwei Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Zhouwei Dong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Fourth Hospital of Harbin, Harbin 150070, China
| | - Ping Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
210
|
Zeng Z, Yan Y, Wang B, Liu N, Xu H. Discovery and identification of O, O-diethyl O-(4-(5-phenyl-4, 5-dihydroisoxazol-3-yl) phenyl) phosphorothioate (XP-1408) as a novel mode of action of organophosphorus insecticides. Sci Rep 2017; 7:3617. [PMID: 28620187 PMCID: PMC5472594 DOI: 10.1038/s41598-017-03663-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/03/2017] [Indexed: 12/28/2022] Open
Abstract
Organophosphorus (OP) insecticides play an important role in pest control. Many OP insecticides have been removed from the market because of their high toxicity to humans. We designed and synthesized a new OP insecticide with the goal of providing a low cost, and less toxic insecticide. The mode of action of O, O-diethyl O-(4-(5-phenyl-4, 5-dihydroisoxazol-3-yl) phenyl) phosphorothioate (XP-1408) was studied in Drosophila melanogaster. Bioassays showed that XP-1408 at a concentration of 50 mg/L delayed larval development. Molecular docking into Drosophila acetylcholinesterase (AChE) and voltage-gated sodium channels suggested that XP-1408 fitted into their active sites and could be inhibitory. Whole-cell patch clamp recordings indicated that XP-1408 exhibited synergistic effects involving the inhibition of cholinergic synaptic transmission and blockage of voltage-gated potassium (Kv) channels and sodium (Nav) channels. In conclusion, the multiple actions of XP-1408 rendered it as a lead compound for formulating OP insecticides with a novel mode of action.
Collapse
Affiliation(s)
- Zhigang Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, P.R. China
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, P.R. China
| | - Ying Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Bingfeng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Niu Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, P.R. China.
| |
Collapse
|
211
|
Pedersen SF, Novak I, Alves F, Schwab A, Pardo LA. Alternating pH landscapes shape epithelial cancer initiation and progression: Focus on pancreatic cancer. Bioessays 2017; 39. [DOI: 10.1002/bies.201600253] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Stine F. Pedersen
- Section for Cell Biology and Physiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Ivana Novak
- Section for Cell Biology and Physiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Frauke Alves
- Max Planck Institute of Experimental Medicine; Göttingen Germany
- Institute for Diagnostic and Interventional Radiology; University Medical Center; Göttingen Germany
- Department of Hematology and Medical Oncology; University Medical Center; Göttingen Germany
| | - Albrecht Schwab
- Institute of Physiology II; University of Münster; Münster Germany
| | - Luis A. Pardo
- Max Planck Institute of Experimental Medicine; Göttingen Germany
| |
Collapse
|
212
|
Wang Q, Shi CJ, Lv SH. Benchmarking pathway interaction network for colorectal cancer to identify dysregulated pathways. ACTA ACUST UNITED AC 2017; 50:e5981. [PMID: 28380197 PMCID: PMC5423740 DOI: 10.1590/1414-431x20175981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/13/2017] [Indexed: 12/22/2022]
Abstract
Different pathways act synergistically to participate in many biological processes. Thus, the purpose of our study was to extract dysregulated pathways to investigate the pathogenesis of colorectal cancer (CRC) based on the functional dependency among pathways. Protein-protein interaction (PPI) information and pathway data were retrieved from STRING and Reactome databases, respectively. After genes were aligned to the pathways, each pathway activity was calculated using the principal component analysis (PCA) method, and the seed pathway was discovered. Subsequently, we constructed the pathway interaction network (PIN), where each node represented a biological pathway based on gene expression profile, PPI data, as well as pathways. Dysregulated pathways were then selected from the PIN according to classification performance and seed pathway. A PIN including 11,960 interactions was constructed to identify dysregulated pathways. Interestingly, the interaction of mRNA splicing and mRNA splicing-major pathway had the highest score of 719.8167. Maximum change of the activity score between CRC and normal samples appeared in the pathway of DNA replication, which was selected as the seed pathway. Starting with this seed pathway, a pathway set containing 30 dysregulated pathways was obtained with an area under the curve score of 0.8598. The pathway of mRNA splicing, mRNA splicing-major pathway, and RNA polymerase I had the maximum genes of 107. Moreover, we found that these 30 pathways had crosstalks with each other. The results suggest that these dysregulated pathways might be used as biomarkers to diagnose CRC.
Collapse
Affiliation(s)
- Q Wang
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
| | - C-J Shi
- Department of Endocrinology, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, China
| | - S-H Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, China
| |
Collapse
|
213
|
Pollak J, Rai KG, Funk CC, Arora S, Lee E, Zhu J, Price ND, Paddison PJ, Ramirez JM, Rostomily RC. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy. PLoS One 2017; 12:e0172884. [PMID: 28264064 PMCID: PMC5338779 DOI: 10.1371/journal.pone.0172884] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/01/2017] [Indexed: 12/11/2022] Open
Abstract
Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.
Collapse
Affiliation(s)
- Julia Pollak
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Karan G. Rai
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Cory C. Funk
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Eunjee Lee
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Nathan D. Price
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Patrick J. Paddison
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- Department of Neurosurgery, University of Washington, Seattle, Washington, United States of America
| | - Robert C. Rostomily
- Department of Neurosurgery, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- Houston Methodist Research Institute, Houston, Texas, United States of America
- Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas, United States of America
| |
Collapse
|
214
|
Han SS, Lee DE, Shim HE, Lee S, Jung T, Oh JH, Lee HA, Moon SH, Jeon J, Yoon S, Kim K, Kang SW. Physiological Effects of Ac4ManNAz and Optimization of Metabolic Labeling for Cell Tracking. Theranostics 2017; 7:1164-1176. [PMID: 28435456 PMCID: PMC5399584 DOI: 10.7150/thno.17711] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022] Open
Abstract
Metabolic labeling techniques are powerful tools for cell labeling, tracking and proteomic analysis. However, at present, the effects of the metabolic labeling agents on cell metabolism and physiology are not known. To address this question, in this study, we analyzed the effects of cells treated with Ac4ManNAz through microarray analysis and analyses of membrane channel activity, individual bio-physiological properties, and glycolytic flux. According to the results, treatment with 50 μM Ac4ManNAz led to the reduction of major cellular functions, including energy generation capacity, cellular infiltration ability and channel activity. Interestingly, 10 μM Ac4ManNAz showed the least effect on cellular systems and had a sufficient labeling efficiency for cell labeling, tracking and proteomic analysis. Based on our results, we suggest 10 μM as the optimum concentration of Ac4ManNAz for in vivo cell labeling and tracking. Additionally, we expect that our approach could be used for cell-based therapy for monitoring the efficacy of molecule delivery and the fate of recipient cells.
Collapse
|
215
|
Amorini F, Zironi I, Marzocchi M, Gualandi I, Calienni M, Cramer T, Fraboni B, Castellani G. Electrically Controlled "Sponge Effect" of PEDOT:PSS Governs Membrane Potential and Cellular Growth. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6679-6689. [PMID: 28150491 DOI: 10.1021/acsami.6b12480] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
PSS is a highly conductive material with good thermal and chemical stability and enhanced biocompatibility that make it suitable for bioengineering applications. The electrical control of the oxidation state of PEDOT:PSS films allows modulation of peculiar physical and chemical properties of the material, such as topography, wettability, and conductivity, and thus offers a possible route for controlling cellular behavior. Through the use of (i) the electrophysiological response of the plasma membrane as a biosensor of the ionic availability; (ii) relative abundance around the cells via X-ray spectroscopy; and (iii) atomic force microscopy to monitor PEDOT:PSS film thickness relative to its oxidation state, we demonstrate that redox processes confer to PEDOT:PSS the property to modify the ionic environment at the film-liquid interface through a "sponge-like" effect on ions. Finally, we show how this property offers the capability to electrically control central cellular properties such as viability, substrate adhesion, and growth, paving the way for novel bioelectronics and biotechnological applications.
Collapse
Affiliation(s)
- Fabrizio Amorini
- Department of Physics and Astronomy, University of Bologna , viale Berti-Pichat 6/2, 40127 Bologna, Italy
| | - Isabella Zironi
- Department of Physics and Astronomy, University of Bologna , viale Berti-Pichat 6/2, 40127 Bologna, Italy
- Interdepartmental Centre "L. Galvani" for Integrated Studies of Bioinformatics, Biophysics and Biocomplexity , via Zamboni 67, 40126 Bologna, Italy
| | - Marco Marzocchi
- Department of Physics and Astronomy, University of Bologna , viale Berti-Pichat 6/2, 40127 Bologna, Italy
| | - Isacco Gualandi
- Department of Physics and Astronomy, University of Bologna , viale Berti-Pichat 6/2, 40127 Bologna, Italy
| | - Maria Calienni
- Department of Physics and Astronomy, University of Bologna , viale Berti-Pichat 6/2, 40127 Bologna, Italy
| | - Tobias Cramer
- Department of Physics and Astronomy, University of Bologna , viale Berti-Pichat 6/2, 40127 Bologna, Italy
| | - Beatrice Fraboni
- Department of Physics and Astronomy, University of Bologna , viale Berti-Pichat 6/2, 40127 Bologna, Italy
| | - Gastone Castellani
- Department of Physics and Astronomy, University of Bologna , viale Berti-Pichat 6/2, 40127 Bologna, Italy
- Interdepartmental Centre "L. Galvani" for Integrated Studies of Bioinformatics, Biophysics and Biocomplexity , via Zamboni 67, 40126 Bologna, Italy
| |
Collapse
|
216
|
Evaluation of Possible Consequences of Zika Virus Infection in the Developing Nervous System. Mol Neurobiol 2017; 55:1620-1629. [DOI: 10.1007/s12035-017-0442-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/03/2017] [Indexed: 01/05/2023]
|
217
|
Horst CH, Titze-de-Almeida R, Titze-de-Almeida SS. The involvement of Eag1 potassium channels and miR-34a in rotenone-induced death of dopaminergic SH-SY5Y cells. Mol Med Rep 2017; 15:1479-1488. [PMID: 28259991 PMCID: PMC5364983 DOI: 10.3892/mmr.2017.6191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 11/25/2016] [Indexed: 12/21/2022] Open
Abstract
The loss of dopaminergic neurons and the resultant motor impairment are hallmarks of Parkinson's disease. The SH‑SY5Y cell line is a model of dopaminergic neurons, and allows for the study of dopaminergic neuronal injury. Previous studies have revealed changes in Ether à go‑go 1 (Eag1) potassium channel expression during p53-induced SH‑SY5Y apoptosis, and the regulatory involvement of microRNA‑34a (miR‑34a) was demonstrated. In the present study, the involvement of Eag1 and miR‑34a in rotenone‑induced SH‑SY5Y cell injury was investigated. Rotenone is a neurotoxin, which is often used to generate models of Parkinson's disease, since it causes the death of nigrostriatal neurons by inducing intracellular aggregation of alpha synuclein and ubiquitin. In the present study, rotenone resulted in a dose‑dependent decrease in cell viability, as revealed by 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) and trypan blue cell counting assays. In addition, Eag1 was demonstrated to be constitutively expressed by SH‑SY5Y cells, and involved in cell viability. Suppression of Eag1 with astemizole resulted in a dose‑dependent decrease in cell viability, as revealed by MTT assay. Astemizole also enhanced the severity of rotenone‑induced injury in SH‑SY5Y cells. RNA interference against Eag1, using synthetic small interfering RNAs (siRNAs), corroborated this finding, as siRNAs potentiated rotenone‑induced injury. Eag1‑targeted siRNAs (kv10.1‑3 or EAG1hum_287) resulted in a statistically significant 16.4‑23.5% increase in vulnerability to rotenone. An increased number of apoptotic nuclei were observed in cells transfected with EAG1hum_287. Notably, this siRNA intensified rotenone‑induced apoptosis, as revealed by an increase in caspase 3/7 activity. Conversely, a miR‑34a inhibitor was demonstrated to exert neuroprotective effects. The viability of cells exposed to rotenone for 24 or 48 h and treated with miR‑34a inhibitor was restored by 8.4‑8.8%. In conclusion, Eag1 potassium channels and miR‑34a are involved in the response to rotenone-induced injury in SH‑SY5Y cells. The neuroprotective effect of mir‑34a inhibitors merits further investigations in animal models of Parkinson's disease.
Collapse
Affiliation(s)
- Camila Hillesheim Horst
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília 70910‑900, Brazil
| | - Ricardo Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília 70910‑900, Brazil
| | - Simoneide Souza Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília 70910‑900, Brazil
| |
Collapse
|
218
|
Eag1 Voltage-Dependent Potassium Channels: Structure, Electrophysiological Characteristics, and Function in Cancer. J Membr Biol 2017; 250:123-132. [DOI: 10.1007/s00232-016-9944-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/19/2016] [Indexed: 01/07/2023]
|
219
|
Yuan B, Ma N, Zhao L, Zhao E, Gao Z, Wang W, Song M, Zhang G, Hu Q, Xiao H. In vitro and in vivo inhibitory effects of a Pleurotus eryngii protein on colon cancer cells. Food Funct 2017; 8:3553-3562. [DOI: 10.1039/c7fo00895c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The inhibitory effects of a protein isolated from Pleurotus eryngii were demonstrated in both cell culture and mouse allograft tumor models.
Collapse
Affiliation(s)
- Biao Yuan
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing
- China
- Department of Food Science
| | - Ning Ma
- College of Food Science and Engineering
- Nanjing University of Finance and Economics
- Nanjing
- China
| | - Liyan Zhao
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing
- China
| | - Ermin Zhao
- College of Food Science and Engineering
- Nanjing University of Finance and Economics
- Nanjing
- China
| | - Zili Gao
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Weicang Wang
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Mingyue Song
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Guodong Zhang
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Qiuhui Hu
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing
- China
| | - Hang Xiao
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| |
Collapse
|
220
|
Zhang H, Zheng J, Liu A, Xiao H, He L. Label-free Imaging and Characterization of Cancer Cell Responses to Polymethoxyflavones Using Raman Microscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9708-9713. [PMID: 27977189 DOI: 10.1021/acs.jafc.6b03899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We determined the cellular responses of human colon cancer HT29 and HCT116 cells to the treatments of nobiletin (NBT) and 5-demethylnobiletin (5DN) using Raman microscopy. Evaluation at both single cell and cell population levels revealed found that NBT induced more changes in the peak intensity of nucleic acid than 5DN, whereas 5DN induced more changes in the peak intensity of localized lipid than NBT. This result indicates the different modes of inhibitory action of these two PMFs against colon cancer cells. Between the two colon cancer cells tested, HCT116 cells were more sensitive to both PMFs than HT29 cells. The Raman data were generally in a good agreement with the flow cytometry data. Our results demonstrate that Raman microscopy is able to provide macromolecular information on cellular responses to anticancer treatments.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences , Beijing 100193, People's Republic of China
| | - Anna Liu
- Department of Mathematics and Statistics, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Hang Xiao
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Lili He
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| |
Collapse
|
221
|
Abstract
Activation of the PI3K pathway is central to a variety of physiological and pathological processes. In these contexts, AKT is classically considered the de facto mediator of PI3K-dependent signaling. However, in recent years, accumulating data point to the existence of additional effectors of PI3K activity, parallel to and independent of AKT, that play critical and unique roles in mediating different developmental, homeostatic, and pathological processes. In this review, I summarize and discuss our current understanding of the function of the serine/threonine kinase SGK1 as a downstream effector of PI3K, and try to separate targets and pathways validated as uniquely SGK1-dependent from those shared with AKT.
Collapse
|
222
|
Urrego D, Movsisyan N, Ufartes R, Pardo LA. Periodic expression of Kv10.1 driven by pRb/E2F1 contributes to G2/M progression of cancer and non-transformed cells. Cell Cycle 2016; 15:799-811. [PMID: 27029528 PMCID: PMC4845928 DOI: 10.1080/15384101.2016.1138187] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Progression of cell cycle is associated with changes in K+ channel expression and activity. In this study, we report that Kv10.1, a K+ channel that increases cell proliferation and tumor growth, is regulated at the transcriptional level by the pRb/E2F1 pathway. De-repression of E2F1 by HPV-E7 oncoprotein leads to increased expression of Kv10.1. In proliferating cells, E2F1 transcription factor binds directly to the Kv10.1 promoter during (or close to) G2/M, resulting in transient expression of the channel. Importantly, this happens not only in cancer cells but also in non-transformed cells. Lack of Kv10.1 in both cancer and non-transformed cells resulted in prolonged G2/M phase, as indicated by phosphorylation of Cdk1 (Y15) and sustained pRb hyperphosphorylation. Our results strongly suggest that Kv10.1 expression is coupled to cell cycle progression and facilitates G2/M progression in both healthy and tumor cells.
Collapse
Affiliation(s)
- Diana Urrego
- a Oncophysiology Group, Max-Planck-Institute of Experimental Medicine , Göttingen , Germany
| | - Naira Movsisyan
- a Oncophysiology Group, Max-Planck-Institute of Experimental Medicine , Göttingen , Germany
| | - Roser Ufartes
- b Department of Molecular Biology of Neuronal Signals , Max-Planck-Institute of Experimental Medicine , Göttingen , Germany
| | - Luis A Pardo
- a Oncophysiology Group, Max-Planck-Institute of Experimental Medicine , Göttingen , Germany
| |
Collapse
|
223
|
Bojórquez-Quintal E, Ruiz-Lau N, Velarde-Buendía A, Echevarría-Machado I, Pottosin I, Martínez-Estévez M. Natural variation in primary root growth and K + retention in roots of habanero pepper (Capsicum chinense) under salt stress. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:1114-1125. [PMID: 32480531 DOI: 10.1071/fp15391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 07/24/2016] [Indexed: 06/11/2023]
Abstract
In this work, we analysed the natural variation in mechanisms for protection against salt stress in pepper varieties (Capsicum chinense Jacq. cv. Rex, Chichen-Itza and Naranja and Capsicum annuum L. cv. Padron), considering primary root growth and viability of the post-stressed seedlings. NaCl-induced K+ and H+ efflux in roots was also studied by ion-selective microelectrodes under application of pharmacological agents. In these pepper varieties, the magnitude of the K+ leakage in the roots positively correlated with growth inhibition of the primary root in the presence of NaCl, with Rex variety showing a higher level of tolerance than Chichen-Itza. The K+ leakage and the activity of the H+ pump in the roots were dependent on the NaCl concentration. Pharmacological analysis indicated that the NaCl-induced K+ leakage was mediated by TEA+-sensitive KOR channels but not by NSCC channels. In addition, we present evidence for the possible participation of proline, and a Na+-insensitive HAK K+ transporter expressed in habanero pepper roots for maintaining K+ homeostasis under salt stress conditions.
Collapse
Affiliation(s)
- Emanuel Bojórquez-Quintal
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Yucatán, México
| | - Nancy Ruiz-Lau
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Yucatán, México
| | - Ana Velarde-Buendía
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, México
| | - Ileana Echevarría-Machado
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Yucatán, México
| | - Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, México
| | - Manuel Martínez-Estévez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Yucatán, México
| |
Collapse
|
224
|
Béchohra L, Laraba-Djebari F, Hammoudi-Triki D. Cytotoxic activity of Androctonus australis hector venom and its toxic fractions on human lung cancer cell line. J Venom Anim Toxins Incl Trop Dis 2016; 22:29. [PMID: 27790250 PMCID: PMC5075196 DOI: 10.1186/s40409-016-0085-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/30/2016] [Indexed: 01/04/2023] Open
Abstract
Background Several studies have showed that animal venoms are a source of bioactive compounds that may inhibit the growth of cancer cells, which makes them useful agents for therapeutic applications. Recently, it was established that venom toxins from scorpions induced cytotoxic, antiproliferative and apoptogenic effects on cancer cells. Therefore, the present study aims to investigate the cytotoxic activity of Androctonus australis hector (Aah) scorpion venom and its toxic fractions (FtoxG-50 and F3) on NCI-H358 human lung cancer cells. Methods The cytotoxic and antiproliferative activities were estimated using MTT assay, lactate dehydrogenase release and clonogenic assays. Apoptosis was evaluated by Hoechst 33258 staining, DNA fragmentation assay and caspase-3 activity. Oxidative stress was analyzed by reactive oxygen species, nitric oxide, malondialdehyde and protein carbonyl levels along with assessment of antioxidant status. In addition, alteration of mitochondrial membrane potential was analyzed by JC1 fluorescent dye. Results The present findings showed that F3 fraction was more cytotoxic towards NCI-H358 lung cancer cells with an IC50 of 27.05 ± 0.70 μg/mL than venom alone (396.60 ± 1.33 μg/mL) and its toxic fraction FtoxG-50 (45.86 ± 0.91 μg/mL). Nevertheless, F3 fraction was not cytotoxic at these concentrations on normal human lung fibroblast MRC-5 cells. Inhibition of NCI-H358 cell proliferation after F3 fraction exposure occurred mainly by apoptosis as evidenced by damaged nuclei, significant DNA fragmentation level and caspase-3 activation in a dose dependent manner. Moreover, F3 fraction enhanced oxidative and nitrosative stress biomarkers and dissipated mitochondrial membrane potential in lung cancer cells along with significant depletion in cellular enzymatic and non-enzymatic antioxidants. Further, the apoptosis induced by F3 fraction was markedly prevented by the antioxidant N-acetylcysteine (NAC) suggesting the potential mechanism of oxidative stress. Conclusion These findings suggest that F3 fraction could induce apoptosis in lung cancer cells through involvement of oxidative stress and mitochondrial dysfunction. Hence, these properties make F3 fraction a promising candidate for development of new anticancer agents.
Collapse
Affiliation(s)
- Louisa Béchohra
- USTHB, Faculty of Biological Sciences, Laboratory of cellular and Molecular Biology, BP32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of cellular and Molecular Biology, BP32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Djelila Hammoudi-Triki
- USTHB, Faculty of Biological Sciences, Laboratory of cellular and Molecular Biology, BP32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| |
Collapse
|
225
|
Tajhya RB, Hu X, Tanner MR, Huq R, Kongchan N, Neilson JR, Rodney GG, Horrigan FT, Timchenko LT, Beeton C. Functional KCa1.1 channels are crucial for regulating the proliferation, migration and differentiation of human primary skeletal myoblasts. Cell Death Dis 2016; 7:e2426. [PMID: 27763639 PMCID: PMC5133989 DOI: 10.1038/cddis.2016.324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 01/14/2023]
Abstract
Myoblasts are mononucleated precursors of myofibers; they persist in mature skeletal muscles for growth and regeneration post injury. During myotonic dystrophy type 1 (DM1), a complex autosomal-dominant neuromuscular disease, the differentiation of skeletal myoblasts into functional myotubes is impaired, resulting in muscle wasting and weakness. The mechanisms leading to this altered differentiation are not fully understood. Here, we demonstrate that the calcium- and voltage-dependent potassium channel, KCa1.1 (BK, Slo1, KCNMA1), regulates myoblast proliferation, migration, and fusion. We also show a loss of plasma membrane expression of the pore-forming α subunit of KCa1.1 in DM1 myoblasts. Inhibiting the function of KCa1.1 in healthy myoblasts induced an increase in cytosolic calcium levels and altered nuclear factor kappa B (NFκB) levels without affecting cell survival. In these normal cells, KCa1.1 block resulted in enhanced proliferation and decreased matrix metalloproteinase secretion, migration, and myotube fusion, phenotypes all observed in DM1 myoblasts and associated with disease pathogenesis. In contrast, introducing functional KCa1.1 α-subunits into DM1 myoblasts normalized their proliferation and rescued expression of the late myogenic marker Mef2. Our results identify KCa1.1 channels as crucial regulators of skeletal myogenesis and suggest these channels as novel therapeutic targets in DM1.
Collapse
Affiliation(s)
- Rajeev B Tajhya
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xueyou Hu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark R Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Redwan Huq
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Natee Kongchan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joel R Neilson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - George G Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Frank T Horrigan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lubov T Timchenko
- Department of Pediatrics Neurology, Cincinnati Children's Hospital, Cincinnati, OH 45219, USA
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA.,Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
226
|
Zhang W, Bei M. Kcnh2 and Kcnj8 interactively regulate skin wound healing and regeneration. Wound Repair Regen 2016. [PMID: 26220146 DOI: 10.1111/wrr.12347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies indicate that ion channels are mediators of bioelectricity promoting wound closure/regeneration in nonmammalian, lower vertebrate systems. The role of ion channels however in regeneration of wounds in mammalian systems that do not regenerate as adults is not yet defined. Using a mammalian model system that allows us to determine differentially expressed genes when skin regenerates and when skin does not regenerate after wound induction, we identified two potassium channels, kcnh2 and kcnj8, to be (1) differentially expressed between the two states and (2) highly expressed after wound induction at the nonregenerative state. We also found that kcnh2 small molecule inhibitor enhanced wound healing while kcnj8 small molecule inhibitor did not. In contrast, kcnj8 activator accelerated wound healing and even augmented the effect of kcnh2 inhibition. These results provide evidence for the first time that potassium channels may mediate skin wound healing and regeneration interactively.
Collapse
Affiliation(s)
- Wengeng Zhang
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Shriners Burns Hospital, Boston, Massachusetts
| | - Marianna Bei
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Shriners Burns Hospital, Boston, Massachusetts.,Center for Surgery, Innovation and Biotechnology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
227
|
Peruzzo R, Biasutto L, Szabò I, Leanza L. Impact of intracellular ion channels on cancer development and progression. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2016; 45:685-707. [PMID: 27289382 PMCID: PMC5045486 DOI: 10.1007/s00249-016-1143-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
Abstract
Cancer research is nowadays focused on the identification of possible new targets in order to try to develop new drugs for curing untreatable tumors. Ion channels have emerged as "oncogenic" proteins, since they have an aberrant expression in cancers compared to normal tissues and contribute to several hallmarks of cancer, such as metabolic re-programming, limitless proliferative potential, apoptosis-resistance, stimulation of neo-angiogenesis as well as cell migration and invasiveness. In recent years, not only the plasma membrane but also intracellular channels and transporters have arisen as oncological targets and were proposed to be associated with tumorigenesis. Therefore, the research is currently focusing on understanding the possible role of intracellular ion channels in cancer development and progression on one hand and, on the other, on developing new possible drugs able to modulate the expression and/or activity of these channels. In a few cases, the efficacy of channel-targeting drugs in reducing tumors has already been demonstrated in vivo in preclinical mouse models.
Collapse
Affiliation(s)
| | - Lucia Biasutto
- CNR Institute of Neuroscience, Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padua, Padua, Italy
- CNR Institute of Neuroscience, Padua, Italy
| | - Luigi Leanza
- Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
228
|
Towler BP, Jones CI, Harper KL, Waldron JA, Newbury SF. A novel role for the 3'-5' exoribonuclease Dis3L2 in controlling cell proliferation and tissue growth. RNA Biol 2016; 13:1286-1299. [PMID: 27630034 PMCID: PMC5207379 DOI: 10.1080/15476286.2016.1232238] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In a complex organism, cell proliferation and apoptosis need to be precisely controlled in order for tissues to develop correctly. Excessive cell proliferation can lead to diseases such as cancer. We have shown that the exoribonuclease Dis3L2 is required for the correct regulation of proliferation in a natural tissue within the model organism Drosophila melanogaster. Dis3L2 is a member of a highly conserved family of exoribonucleases that degrade RNA in a 3′-5′ direction. We show that knockdown of dis3L2 in the Drosophila wing imaginal discs results in substantial wing overgrowth due to increased cellular proliferation rather than an increase in cell size. Imaginal discs are specified in the embryo before proliferating and differentiating to form the adult structures of the fly. Using RNA-seq we identified a small set of mRNAs that are sensitive to Dis3L2 activity. Of the mRNAs which increase in levels and are therefore potential targets of Dis3L2, we identified 2 that change at the post-transcriptional level but not at the transcriptional level, namely CG2678 (a transcription factor) and pyrexia (a TRP cation channel). We also demonstrate a compensatory effect between Dis3L2 and the 5′-3′ exoribonuclease Pacman demonstrating that these 2 exoribonucleases function to regulate opposing pathways within the developing tissue. This work provides the first description of the molecular and developmental consequences of Dis3L2 inactivation in a non-human animal model. The work is directly relevant to the understanding of human overgrowth syndromes such as Perlman syndrome.
Collapse
Affiliation(s)
- Benjamin P Towler
- a Brighton and Sussex Medical School, University of Sussex , Brighton , UK
| | | | - Kirsty L Harper
- a Brighton and Sussex Medical School, University of Sussex , Brighton , UK
| | - Joseph A Waldron
- a Brighton and Sussex Medical School, University of Sussex , Brighton , UK
| | - Sarah F Newbury
- a Brighton and Sussex Medical School, University of Sussex , Brighton , UK
| |
Collapse
|
229
|
Poulet C, Künzel S, Büttner E, Lindner D, Westermann D, Ravens U. Altered physiological functions and ion currents in atrial fibroblasts from patients with chronic atrial fibrillation. Physiol Rep 2016; 4:4/2/e12681. [PMID: 26811054 PMCID: PMC4760386 DOI: 10.14814/phy2.12681] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The contribution of human atrial fibroblasts to cardiac physiology and pathophysiology is poorly understood. Fibroblasts may contribute to arrhythmogenesis through fibrosis, or by directly altering electrical activity in cardiomyocytes. The objective of our study was to uncover phenotypic differences between cells from patients in sinus rhythm (SR) and chronic atrial fibrillation (AF), with special emphasis on electrophysiological properties. We isolated fibroblasts from human right atrial tissue for patch-clamp experiments, proliferation, migration, and differentiation assays, and gene expression profiling. In culture, proliferation and migration of AF fibroblasts were strongly impaired but differentiation into myofibroblasts was increased. This was associated with a higher number of AF fibroblasts expressing functional Nav1.5 channels. Strikingly Na(+) currents were considerably larger in AF cells. Blocking Na(+) channels in culture with tetrodotoxin did not affect proliferation, migration, or differentiation in neither SR nor AF cells. While freshly isolated fibroblasts showed mostly weak rectifier currents, fibroblasts in culture developed outward rectifier K(+) currents of similar amplitude between the SR and AF groups. Adding the K(+) channel blockers tetraethylammonium and 4-aminopyridin in culture reduced current amplitude and inhibited proliferation in the SR group only. Analysis of gene expression revealed significant differences between SR and AF in genes encoding for ion channels, collagen, growth factors, connexins, and cadherins. In conclusion, this study shows that under AF conditions atrial fibroblasts undergo phenotypic changes that are revealed in culture. Future experiments should be performed in situ to understand the nature of those changes and whether they affect cardiac electrical activity.
Collapse
Affiliation(s)
- Claire Poulet
- Department of Pharmacology and Toxicology, Medical Faculty Carl-Gustav-Carus, TU Dresden, Dresden, Germany
| | - Stephan Künzel
- Department of Pharmacology and Toxicology, Medical Faculty Carl-Gustav-Carus, TU Dresden, Dresden, Germany
| | - Edgar Büttner
- Department of Pharmacology and Toxicology, Medical Faculty Carl-Gustav-Carus, TU Dresden, Dresden, Germany
| | - Diana Lindner
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg, Germany
| | - Dirk Westermann
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg, Germany
| | - Ursula Ravens
- Department of Pharmacology and Toxicology, Medical Faculty Carl-Gustav-Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
230
|
Schroeder I. How to resolve microsecond current fluctuations in single ion channels: the power of beta distributions. Channels (Austin) 2016; 9:262-80. [PMID: 26368656 DOI: 10.1080/19336950.2015.1083660] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A main ingredient for the understanding of structure/function correlates of ion channels is the quantitative description of single-channel gating and conductance. However, a wealth of information provided from fast current fluctuations beyond the temporal resolution of the recording system is often ignored, even though it is close to the time window accessible to molecular dynamics simulations. This kind of current fluctuations provide a special technical challenge, because individual opening/closing or blocking/unblocking events cannot be resolved, and the resulting averaging over undetected events decreases the single-channel current. Here, I briefly summarize the history of fast-current fluctuation analysis and focus on the so-called "beta distributions." This tool exploits characteristics of current fluctuation-induced excess noise on the current amplitude histograms to reconstruct the true single-channel current and kinetic parameters. A guideline for the analysis and recent applications demonstrate that a construction of theoretical beta distributions by Markov Model simulations offers maximum flexibility as compared to analytical solutions.
Collapse
Affiliation(s)
- Indra Schroeder
- a Plant Membrane Biophysics, Technical University of Darmstadt ; Darmstadt , Germany
| |
Collapse
|
231
|
Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:89-144. [PMID: 28212804 DOI: 10.1016/bs.apha.2016.07.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+, and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. VSM cells express multiple isoforms of at least five classes of K+ channels that contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression, and function of large conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells.
Collapse
|
232
|
Pharmacological targeting of ion channels for cancer therapy: In vivo evidences. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1385-97. [DOI: 10.1016/j.bbamcr.2015.11.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/29/2022]
|
233
|
Abstract
Activation of ion channels and pores are essential steps during regulated cell death. Channels and pores participate in execution of apoptosis, necroptosis and other forms of caspase-independent cell death. Within the program of regulated cell death, these channels are strategically located. Ion channels can shrink cells and drive them towards apoptosis, resulting in silent, i.e. immunologically unrecognized cell death. Alternatively, activation of channels can induce cell swelling, disintegration of the cell membrane, and highly immunogenic necrotic cell death. The underlying cell death pathways are not strictly separated as identical stimuli may induce cell shrinkage and apoptosis when applied at low strength, but may also cause cell swelling at pronounced stimulation, resulting in regulated necrosis. Nevertheless, the precise role of ion channels during regulated cell death is far from being understood, as identical channels may support regulated death in some cell types, but may cause cell proliferation, cancer development, and metastasis in others. Along this line, the phospholipid scramblase and Cl(-)/nonselective channel anoctamin 6 (ANO6) shows interesting features, as it participates in apoptotic cell death during lower levels of activation, thereby inducing cell shrinkage. At strong activation, e.g. by stimulation of purinergic P2Y7 receptors, it participates in pore formation, causes massive membrane blebbing, cell swelling, and membrane disintegration. The LRRC8 proteins deserve much attention as they were found to have a major role in volume regulation, apoptotic cell shrinkage and resistance towards anticancer drugs.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
234
|
Lee JH, Park JW, Byun JK, Kim HK, Ryu PD, Lee SY, Kim DY. Silencing of voltage-gated potassium channel KV9.3 inhibits proliferation in human colon and lung carcinoma cells. Oncotarget 2016; 6:8132-43. [PMID: 25924237 PMCID: PMC4480740 DOI: 10.18632/oncotarget.3517] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/03/2015] [Indexed: 01/12/2023] Open
Abstract
Voltage-gated potassium (Kv) channels are known to be involved in cancer development and cancer cell proliferation. KV9.3, an electronically silent subunit, forms heterotetramers with KV2.1 in excitable cells and modulates its electrophysiological properties. However, the role of KV9.3 alone in non-excitable cancer cells has not been studied. Here, we evaluated the effect of silencing KV9.3 on cancer cell proliferation in HCT15 colon carcinoma cells and A549 lung adenocarcinoma cells. We confirmed the expression of KV9.3 mRNA in HCT15 and A549 cells and showed that silencing KV9.3 using small interfering RNA caused G0/G1 cell cycle arrest and alterations in cell cycle regulatory proteins in both HCT15 and A549 cells without affecting apoptosis. Also, stable knockdown of KV9.3 expression using short-hairpin RNA inhibited tumor growth in SCID mouse xenograft model. Using a bioinformatics approach, we identified Sp1 binding sites in the promoter region of the gene encoding KV9.3. We further found that Sp1 bound to this region and showed that the Sp1 inhibitor, mithramycin A, induced a concentration-dependent decrease in KV9.3 expression. Taken together, these data suggest that knockdown of KV9.3 inhibits proliferation in colon carcinoma and lung adenocarcinoma cell lines and may be regulated by Sp1.
Collapse
Affiliation(s)
- Jeong-Ha Lee
- Laboratory of Veterinary Pathology, Seoul National University, Seoul, Korea
| | - Jun-Won Park
- Biomolecular Function Research Branch, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Jun Kyu Byun
- Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Hark Kyun Kim
- Biomolecular Function Research Branch, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Pan Dong Ryu
- Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - So Yeong Lee
- Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Dae-Yong Kim
- Laboratory of Veterinary Pathology, Seoul National University, Seoul, Korea
| |
Collapse
|
235
|
Fernández-Valle Á, Rodrigo JP, Rodríguez-Santamarta T, Villaronga MÁ, Álvarez-Teijeiro S, García-Pedrero JM, Suárez-Fernández L, Lequerica-Fernández P, de Vicente JC. HERG1 potassium channel expression in potentially malignant disorders of the oral mucosa and prognostic relevance in oral squamous cell carcinoma. Head Neck 2016; 38:1672-1678. [DOI: 10.1002/hed.24493] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/24/2016] [Accepted: 03/21/2016] [Indexed: 01/17/2023] Open
Affiliation(s)
- Álvaro Fernández-Valle
- Department of Oral and Maxillofacial Surgery; Hospital Universitario Central de Asturias (HUCA); Oviedo Asturias Spain
| | - Juan Pablo Rodrigo
- Department of Otolaryngology; Hospital Universitario Central de Asturias (HUCA); Oviedo Asturias Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA); Hospital Universitario Central de Asturias, Edificio Consultas Externas, Planta Baja Lab 2 ORL-IUOPA; Oviedo Asturias Spain
| | - Tania Rodríguez-Santamarta
- Department of Oral and Maxillofacial Surgery; Hospital Universitario Central de Asturias (HUCA); Oviedo Asturias Spain
| | - M. Ángeles Villaronga
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA); Hospital Universitario Central de Asturias, Edificio Consultas Externas, Planta Baja Lab 2 ORL-IUOPA; Oviedo Asturias Spain
| | - Saúl Álvarez-Teijeiro
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA); Hospital Universitario Central de Asturias, Edificio Consultas Externas, Planta Baja Lab 2 ORL-IUOPA; Oviedo Asturias Spain
| | - Juana M. García-Pedrero
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA); Hospital Universitario Central de Asturias, Edificio Consultas Externas, Planta Baja Lab 2 ORL-IUOPA; Oviedo Asturias Spain
| | - Laura Suárez-Fernández
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA); Hospital Universitario Central de Asturias, Edificio Consultas Externas, Planta Baja Lab 2 ORL-IUOPA; Oviedo Asturias Spain
| | | | - Juan Carlos de Vicente
- Department of Oral and Maxillofacial Surgery; Hospital Universitario Central de Asturias (HUCA); Oviedo Asturias Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA); Hospital Universitario Central de Asturias, Edificio Consultas Externas, Planta Baja Lab 2 ORL-IUOPA; Oviedo Asturias Spain
| |
Collapse
|
236
|
Vaidyanathan R, Markandeya YS, Kamp TJ, Makielski JC, January CT, Eckhardt LL. IK1-enhanced human-induced pluripotent stem cell-derived cardiomyocytes: an improved cardiomyocyte model to investigate inherited arrhythmia syndromes. Am J Physiol Heart Circ Physiol 2016; 310:H1611-21. [PMID: 27059077 DOI: 10.1152/ajpheart.00481.2015] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 04/01/2016] [Indexed: 01/05/2023]
Abstract
Currently available induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) do not ideally model cellular mechanisms of human arrhythmic disease due to lack of a mature action potential (AP) phenotype. In this study, we create and characterize iPS-CMs with an electrically mature AP induced by potassium inward rectifier (IK1) enhancement. The advantages of IK1-enhanced iPS-CMs include the absence of spontaneous beating, stable resting membrane potentials at approximately -80 mV and capability for electrical pacing. Compared with unenhanced, IK1-enhanced iPS-CMs calcium transient amplitudes were larger (P < 0.05) with a typical staircase pattern. IK1-enhanced iPS-CMs demonstrated a twofold increase in cell size and membrane capacitance and increased DNA synthesis compared with control iPS-CMs (P < 0.05). Furthermore, IK1-enhanced iPS-CMs expressing the F97C-CAV3 long QT9 mutation compared with wild-type CAV3 demonstrated an increase in AP duration and late sodium current. IK1-enhanced iPS-CMs represent a more mature cardiomyocyte model to study arrhythmia mechanisms.
Collapse
Affiliation(s)
- Ravi Vaidyanathan
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin, Madison, Wisconsin
| | - Yogananda S Markandeya
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin, Madison, Wisconsin
| | - Timothy J Kamp
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin, Madison, Wisconsin
| | - Jonathan C Makielski
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin, Madison, Wisconsin
| | - Craig T January
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin, Madison, Wisconsin
| | - Lee L Eckhardt
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
237
|
Chan CK, Chan G, Awang K, Abdul Kadir H. Deoxyelephantopin from Elephantopus scaber Inhibits HCT116 Human Colorectal Carcinoma Cell Growth through Apoptosis and Cell Cycle Arrest. Molecules 2016; 21:385. [PMID: 27007366 PMCID: PMC6274388 DOI: 10.3390/molecules21030385] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 11/21/2022] Open
Abstract
Deoxyelephantopin (DET), one of the major sesquiterpene lactones derived from Elephantopus scaber was reported to possess numerous pharmacological functions. This study aimed to assess the apoptosis inducing effects and cell cycle arrest by DET followed by elucidation of the mechanisms underlying cell death in HCT116 cells. The anticancer activity of DET was evaluated by a MTT assay. Morphological and biochemical changes were detected by Hoescht 33342/PI and Annexin V/PI staining. The results revealed that DET and isodeoxyelephantopin (isoDET) could be isolated from the ethyl acetate fraction of E. scaber leaves via a bioassay-guided approach. DET induced significant dose- and time-dependent growth inhibition of HCT116 cells. Characteristics of apoptosis including nuclear morphological changes and externalization of phosphatidylserine were observed. DET also significantly resulted in the activation of caspase-3 and PARP cleavage. Additionally, DET induced cell cycle arrest at the S phase along with dose-dependent upregulation of p21 and phosphorylated p53 protein expression. DET dose-dependently downregulated cyclin D1, A2, B1, E2, CDK4 and CDK2 protein expression. In conclusion, our data showed that DET induced apoptosis and cell cycle arrest in HCT116 colorectal carcinoma, suggesting that DET has potential as an anticancer agent for colorectal carcinoma.
Collapse
Affiliation(s)
- Chim Kei Chan
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Gomathi Chan
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Khalijah Awang
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Habsah Abdul Kadir
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
238
|
Proapoptotic Role of Potassium Ions in Liver Cells. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1729135. [PMID: 27069917 PMCID: PMC4812196 DOI: 10.1155/2016/1729135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/29/2015] [Accepted: 02/07/2016] [Indexed: 11/18/2022]
Abstract
Potassium channels are transmembrane proteins that selectively promote the infiltration of potassium ions. The significance of these channels for tumor biology has become obvious. However, the effects of potassium ions on the tumor or normal cells have seldom been studied. To address this problem, we studied the biological effects of L02 and HepG2 cells with ectogenous potassium ions. Cell proliferation, cell cycle, and apoptosis rate were analyzed. Our results indicated that potassium ions inhibited proliferation of L02 and HepG2 cells and promoted their apoptosis. Potassium ions induced apoptosis through regulating Bcl-2 family members and depolarized the mitochondrial membrane, especially for HepG2 cell. These biological effects were associated with channel protein HERG. By facilitating expression of channel protein HERG, potassium ions may prevent it from being shunted to procancerous pathways by inducing apoptosis. These results demonstrated that potassium ions may be a key regulator of liver cell function. Thus, our findings suggest that potassium ions could inhibit tumorigenesis through inducing apoptosis of hepatoma cells by upregulating potassium ions transport channel proteins HERG and VDAC1.
Collapse
|
239
|
Cervera J, Alcaraz A, Mafe S. Bioelectrical Signals and Ion Channels in the Modeling of Multicellular Patterns and Cancer Biophysics. Sci Rep 2016; 6:20403. [PMID: 26841954 PMCID: PMC4740742 DOI: 10.1038/srep20403] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/06/2016] [Indexed: 01/08/2023] Open
Abstract
Bioelectrical signals and ion channels are central to spatial patterns in cell ensembles, a problem of fundamental interest in positional information and cancer processes. We propose a model for electrically connected cells based on simple biological concepts: i) the membrane potential of a single cell characterizes its electrical state; ii) the long-range electrical coupling of the multicellular ensemble is realized by a network of gap junction channels between neighboring cells; and iii) the spatial distribution of an external biochemical agent can modify the conductances of the ion channels in a cell membrane and the multicellular electrical state. We focus on electrical effects in small multicellular ensembles, ignoring slow diffusional processes. The spatio-temporal patterns obtained for the local map of cell electric potentials illustrate the normalization of regions with abnormal cell electrical states. The effects of intercellular coupling and blocking of specific channels on the electrical patterns are described. These patterns can regulate the electrically-induced redistribution of charged nanoparticles over small regions of a model tissue. The inclusion of bioelectrical signals provides new insights for the modeling of cancer biophysics because collective multicellular states show electrical coupling mechanisms that are not readily deduced from biochemical descriptions at the individual cell level.
Collapse
Affiliation(s)
- Javier Cervera
- Dept. de Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| | - Antonio Alcaraz
- Dept. de Física, Laboratori de Biofísica Molecular, Universitat “Jaume I”, E-12080 Castelló, Spain
| | - Salvador Mafe
- Dept. de Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
240
|
Bocksteins E. Kv5, Kv6, Kv8, and Kv9 subunits: No simple silent bystanders. J Gen Physiol 2016; 147:105-25. [PMID: 26755771 PMCID: PMC4727947 DOI: 10.1085/jgp.201511507] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/11/2015] [Indexed: 12/19/2022] Open
Abstract
Members of the electrically silent voltage-gated K(+) (Kv) subfamilies (Kv5, Kv6, Kv8, and Kv9, collectively identified as electrically silent voltage-gated K(+) channel [KvS] subunits) do not form functional homotetrameric channels but assemble with Kv2 subunits into heterotetrameric Kv2/KvS channels with unique biophysical properties. Unlike the ubiquitously expressed Kv2 subunits, KvS subunits show a more restricted expression. This raises the possibility that Kv2/KvS heterotetramers have tissue-specific functions, making them potential targets for the development of novel therapeutic strategies. Here, I provide an overview of the expression of KvS subunits in different tissues and discuss their proposed role in various physiological and pathophysiological processes. This overview demonstrates the importance of KvS subunits and Kv2/KvS heterotetramers in vivo and the importance of considering KvS subunits and Kv2/KvS heterotetramers in the development of novel treatments.
Collapse
Affiliation(s)
- Elke Bocksteins
- Laboratory for Molecular Biophysics, Physiology, and Pharmacology, Department for Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
241
|
Wang J, Zeng L, Tan B, Li G, Huang B, Xiong X, Li F, Kong X, Liu G, Yin Y. Developmental changes in intercellular junctions and Kv channels in the intestine of piglets during the suckling and post-weaning periods. J Anim Sci Biotechnol 2016; 7:4. [PMID: 26819706 PMCID: PMC4729073 DOI: 10.1186/s40104-016-0063-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/17/2016] [Indexed: 01/06/2023] Open
Abstract
Background The intestinal epithelium is an important barrier that depends on a complex mixture of proteins and these proteins comprise different intercellular junctions. The purpose of this study was to investigate the postnatal and developmental changes in morphology, intercellular junctions and voltage-gated potassium (Kv) channels in the intestine of piglets during the suckling and post-weaning periods. Results Samples of the small intestine were obtained from 1-, 7-, 14-, and 21-d-old suckling piglets and piglets on d 1, 3, 5, and 7 after weaning at 14 d of age. The results showed that the percentage of proliferating cell nuclear antigen (PCNA)-positive cells and alkaline phosphatase (AKP) activity, as well as the abundances of E-cadherin, occludin, and Kv1.5 mRNA and claudin-1, claudin-3, and occludin protein in the jejunum were increased from d 1 to d 21 during the suckling period (P < 0.05). Weaning induced decreases in the percentage of PCNA-positive cells, AKP activity and the abundances of E-cadherin, occludin and zonula occludens (ZO)-1 mRNA or protein in the jejunum on d 1, 3 and 5 post-weaning (P < 0.05). There were lower abundances of E-cadherin, occludin and ZO-1 mRNA as well as claudin-1, claudin-3 and ZO-1 protein in the jejunum of weanling piglets than in 21-d-old suckling piglets (P < 0.05). The abundances of E-cadherin, occludin, ZO-1 and integrin mRNA were positively related to the percentage of PCNA-positive cells. Conclusion Weaning at 14 d of age induced damage to the intestinal morphology and barrier. While there was an adaptive restoration on d 7 post-weaning, the measured values did not return to the pre-weaning levels, which reflected the impairment of intercellular junctions and Kv channels.
Collapse
Affiliation(s)
- Jing Wang
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China ; University of the Chinese Academy of Sciences, Beijing, 10008 China
| | - Liming Zeng
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China ; Science College of Jiangxi Agricultural University, Nanchang, Jiangxi 330045 China
| | - Bie Tan
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China ; Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Collaborative Innovation Center of Animal Production Safety, Changsha, Hunan 410000 China
| | - Guangran Li
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China ; University of the Chinese Academy of Sciences, Beijing, 10008 China
| | - Bo Huang
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China ; University of the Chinese Academy of Sciences, Beijing, 10008 China
| | - Xia Xiong
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China
| | - Fengna Li
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China
| | - Xiangfeng Kong
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China
| | - Gang Liu
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China
| | - Yulong Yin
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China
| |
Collapse
|
242
|
Kv10.1 K+ channel: from physiology to cancer. Pflugers Arch 2016; 468:751-62. [DOI: 10.1007/s00424-015-1784-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/11/2015] [Accepted: 12/27/2015] [Indexed: 12/18/2022]
|
243
|
Pedersen SF, Okada Y, Nilius B. Biophysics and Physiology of the Volume-Regulated Anion Channel (VRAC)/Volume-Sensitive Outwardly Rectifying Anion Channel (VSOR). Pflugers Arch 2016; 468:371-83. [DOI: 10.1007/s00424-015-1781-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 01/25/2023]
|
244
|
Abdulkareem ZA, Gee JMW, Cox CD, Wann KT. Knockdown of the small conductance Ca(2+) -activated K(+) channels is potently cytotoxic in breast cancer cell lines. Br J Pharmacol 2016; 173:177-90. [PMID: 26454020 PMCID: PMC4737296 DOI: 10.1111/bph.13357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/27/2015] [Accepted: 09/24/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Small conductance calcium-activated potassium (KCa 2.x) channels have a widely accepted canonical function in regulating cellular excitability. In this study, we address a potential non-canonical function of KCa 2.x channels in breast cancer cell survival, using in vitro models. EXPERIMENTAL APPROACH The expression of all KCa 2.x channel isoforms was initially probed using RT-PCR, Western blotting and microarray analysis in five widely studied breast cancer cell lines. In order to assess the effect of pharmacological blockade and siRNA-mediated knockdown of KCa 2.x channels on these cell lines, we utilized MTS proliferation assays and also followed the corresponding expression of apoptotic markers. KEY RESULTS All of the breast cancer cell lines, regardless of their lineage or endocrine responsiveness, were highly sensitive to KCa 2.x channel blockade. UCL1684 caused cytotoxicity, with LD50 values in the low nanomolar range, in all cell lines. The role of KCa 2.x channels was confirmed using pharmacological inhibition and siRNA-mediated knockdown. This reduced cell viability and also reduced expression of Bcl-2 but increased expression of active caspase-7 and caspase-9. Complementary to these results, a variety of cell lines can be protected from apoptosis induced by staurosporine using the KCa 2.x channel activator CyPPA. CONCLUSIONS AND IMPLICATIONS In addition to a well-established role for KCa 2.x channels in migration, blockade of these channels was potently cytotoxic in breast cancer cell lines, pointing to modulation of KCa 2.x channels as a potential therapeutic approach to breast cancer.
Collapse
Affiliation(s)
| | - Julia MW Gee
- School of Pharmacy and Pharmaceutical SciencesCardiff UniversityCardiffCF10 3NBUK
| | - Charles D Cox
- Victor Chang Cardiac Research InstituteDarlinghurstNSW2010Australia
| | - Kenneth T Wann
- School of Pharmacy and Pharmaceutical SciencesCardiff UniversityCardiffCF10 3NBUK
| |
Collapse
|
245
|
Yin MZ, Park SW, Kang TW, Kim KS, Yoo HY, Lee J, Hah JH, Sung MH, Kim SJ. Activation of K(+) channel by 1-EBIO rescues the head and neck squamous cell carcinoma cells from Ca(2+) ionophore-induced cell death. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 20:25-33. [PMID: 26807020 PMCID: PMC4722188 DOI: 10.4196/kjpp.2016.20.1.25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 12/11/2022]
Abstract
Ion channels in carcinoma and their roles in cell proliferation are drawing attention. Intracellular Ca2+ ([Ca2+]i)-dependent signaling affects the fate of cancer cells. Here we investigate the role of Ca2+-activated K+ channel (SK4) in head and neck squamous cell carcinoma cells (HNSCCs) of different cell lines; SNU-1076, OSC-19 and HN5. Treatment with 1 µM ionomycin induced cell death in all the three cell lines. Whole-cell patch clamp study suggested common expressions of Ca2+-activated Cl- channels (Ano-1) and Ca2+-activated nonselective cation channels (CAN). 1-EBIO, an activator of SK4, induced outward K+ current (ISK4) in SNU-1076 and OSC-19. In HN5, ISK4 was not observed or negligible. The 1-EBIO-induced current was abolished by TRAM-34, a selective SK4 blocker. Interestingly, the ionomycin-induced cell death was effectively prevented by 1-EBIO in SNU-1076 and OSC-19, and the rescue effect was annihilated by combined TRAM-34. Consistent with the lower level of ISK4, the rescue by 1-EBIO was least effective in HN5. The results newly demonstrate the role of SK4 in the fate of HNSCCs under the Ca2+ overloaded condition. Pharmacological modulation of SK4 might provide an intriguing novel tool for the anti-cancer strategy in HNSCC.
Collapse
Affiliation(s)
- Ming Zhe Yin
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seok-Woo Park
- Department of Otolaryngology, Seoul National University Hospital, Seoul 03080, Korea.; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Tae Wook Kang
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Kyung Soo Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hae Young Yoo
- Chung-Ang University Red Cross College of Nursing, Seoul 06974, Korea
| | - Junho Lee
- Department of Otolaryngology, Seoul National University Hospital, Seoul 03080, Korea
| | - J Hun Hah
- Department of Otolaryngology, Seoul National University Hospital, Seoul 03080, Korea.; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Myung Hun Sung
- Department of Otolaryngology, Seoul National University Hospital, Seoul 03080, Korea.; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
246
|
Sui Y, Wu F, Lv J, Li H, Li X, Du Z, Sun M, Zheng Y, Yang L, Zhong L, Zhang X, Zhang G. Identification of the Novel TMEM16A Inhibitor Dehydroandrographolide and Its Anticancer Activity on SW620 Cells. PLoS One 2015; 10:e0144715. [PMID: 26657333 PMCID: PMC4686118 DOI: 10.1371/journal.pone.0144715] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/23/2015] [Indexed: 11/18/2022] Open
Abstract
TMEM16A, a calcium-activated chloride channel (CaCC), is highly amplified and expressed in human cancers and is involved in the growth and metastasis of some malignancies. Inhibition of TMEM16A represents a novel pharmaceutical approach for the treatment of cancers and metastases. The purpose of this study is to identify a new TMEM16A inhibitor, investigate the effects of this inhibitor on the proliferation and metastasis of TMEM16A-amplified SW620 cells, and to elucidate the underlying molecular mechanism in vitro. We identified a novel small-molecule TMEM16A inhibitor dehydroandrographolide (DP). By using patch clamp electrophysiology, we showed that DP inhibited TMEM16A chloride currents in Fisher rat thyroid (FRT) cells that were transfected stably with human TMEM16A and in TMEM16A-overexpressed SW620 cells but did not alter cystic fibrosis transmembrane conductance regulator (CFTR) chloride currents. Further functional studies showed that DP suppressed the proliferation of SW620 cells in a dose- and time-dependent manner using MTT assays. Moreover, DP significantly inhibited migration and invasion of SW620 cells as detected by wound-healing and transwell assays. Further mechanistic study demonstrated that knockdown of human TMEM16A decreased the inhibitory effect of DP on the proliferation of SW620 cells and that TMEM16A-dependent cells (SW620 and HCT116) were more sensitive to DP than TMEM16A-independent cells (SW480 and HCT8). In addition, we found that treatment of SW620 cells with DP led to a decrease in TMEM16A protein levels but had no effect on TMEM16A mRNA levels. The current work reveals that DP, a novel TMEM16A inhibitor, exerts its anticancer activity on SW620 cells partly through a TMEM16A-dependent mechanism, which may introduce a new targeting approach for an antitumour therapy in TMEM16A-amplified cancers.
Collapse
Affiliation(s)
- Yujie Sui
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Fei Wu
- Department of Gynecology and Obstetrics, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Junfeng Lv
- Department of Radiology, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Hongxia Li
- Department of Dermatology, Jilin University Bethune First Hospital, Changchun, P. R. China
| | - Xin Li
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Zhenwu Du
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Meiyan Sun
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Yuhao Zheng
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Longfei Yang
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Lili Zhong
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Xingyi Zhang
- Department of Thoracic Surgery, Jilin University Bethune Second Hospital, Changchun, P. R. China
- * E-mail: (XYZ), (GZZ)
| | - Guizhen Zhang
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
- * E-mail: (XYZ), (GZZ)
| |
Collapse
|
247
|
Jiménez-Pérez L, Cidad P, Álvarez-Miguel I, Santos-Hipólito A, Torres-Merino R, Alonso E, de la Fuente MÁ, López-López JR, Pérez-García MT. Molecular Determinants of Kv1.3 Potassium Channels-induced Proliferation. J Biol Chem 2015; 291:3569-80. [PMID: 26655221 DOI: 10.1074/jbc.m115.678995] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Indexed: 11/06/2022] Open
Abstract
Changes in voltage-dependent potassium channels (Kv channels) associate to proliferation in many cell types, including transfected HEK293 cells. In this system Kv1.5 overexpression decreases proliferation, whereas Kv1.3 expression increases it independently of K(+) fluxes. To identify Kv1.3 domains involved in a proliferation-associated signaling mechanism(s), we constructed chimeric Kv1.3-Kv1.5 channels and point-mutant Kv1.3 channels, which were expressed as GFP- or cherry-fusion proteins. We studied their trafficking and functional expression, combining immunocytochemical and electrophysiological methods, and their impact on cell proliferation. We found that the C terminus is necessary for Kv1.3-induced proliferation. We distinguished two residues (Tyr-447 and Ser-459) whose mutation to alanine abolished proliferation. The insertion into Kv1.5 of a sequence comprising these two residues increased proliferation rate. Moreover, Kv1.3 voltage-dependent transitions from closed to open conformation induced MEK-ERK1/2-dependent Tyr-447 phosphorylation. We conclude that the mechanisms for Kv1.3-induced proliferation involve the accessibility of key docking sites at the C terminus. For one of these sites (Tyr-447) we demonstrated the contribution of MEK/ERK-dependent phosphorylation, which is regulated by voltage-induced conformational changes.
Collapse
Affiliation(s)
- Laura Jiménez-Pérez
- From the Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | - Pilar Cidad
- From the Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | - Inés Álvarez-Miguel
- From the Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | - Alba Santos-Hipólito
- From the Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | - Rebeca Torres-Merino
- From the Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | - Esperanza Alonso
- From the Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | - Miguel Ángel de la Fuente
- From the Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | - José Ramón López-López
- From the Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | - M Teresa Pérez-García
- From the Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| |
Collapse
|
248
|
Pérez-Verdaguer M, Capera J, Serrano-Novillo C, Estadella I, Sastre D, Felipe A. The voltage-gated potassium channel Kv1.3 is a promising multitherapeutic target against human pathologies. Expert Opin Ther Targets 2015; 20:577-91. [DOI: 10.1517/14728222.2016.1112792] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
249
|
Ryland KE, Hawkins AG, Weisenberger DJ, Punj V, Borinstein SC, Laird PW, Martens JR, Lawlor ER. Promoter Methylation Analysis Reveals That KCNA5 Ion Channel Silencing Supports Ewing Sarcoma Cell Proliferation. Mol Cancer Res 2015; 14:26-34. [PMID: 26573141 DOI: 10.1158/1541-7786.mcr-15-0343] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/04/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED Polycomb proteins are essential regulators of gene expression in stem cells and development. They function to reversibly repress gene transcription via posttranslational modification of histones and chromatin compaction. In many human cancers, genes that are repressed by polycomb in stem cells are subject to more stable silencing via DNA methylation of promoter CpG islands. Ewing sarcoma is an aggressive bone and soft-tissue tumor that is characterized by overexpression of polycomb proteins. This study investigates the DNA methylation status of polycomb target gene promoters in Ewing sarcoma tumors and cell lines and observes that the promoters of differentiation genes are frequent targets of CpG-island DNA methylation. In addition, the promoters of ion channel genes are highly differentially methylated in Ewing sarcoma compared with nonmalignant adult tissues. Ion channels regulate a variety of biologic processes, including proliferation, and dysfunction of these channels contributes to tumor pathogenesis. In particular, reduced expression of the voltage-gated Kv1.5 channel has been implicated in tumor progression. These data show that DNA methylation of the KCNA5 promoter contributes to stable epigenetic silencing of the Kv1.5 channel. This epigenetic repression is reversed by exposure to the DNA methylation inhibitor decitabine, which inhibits Ewing sarcoma cell proliferation through mechanisms that include restoration of the Kv1.5 channel function. IMPLICATIONS This study demonstrates that promoters of ion channels are aberrantly methylated in Ewing sarcoma and that epigenetic silencing of KCNA5 contributes to tumor cell proliferation, thus providing further evidence of the importance of ion channel dysregulation to tumorigenesis.
Collapse
Affiliation(s)
- Katherine E Ryland
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan. Translational Oncology Program, University of Michigan, Ann Arbor, Michigan. Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Allegra G Hawkins
- Translational Oncology Program, University of Michigan, Ann Arbor, Michigan. Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California. Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Vasu Punj
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | - Peter W Laird
- Van Andel Research Institute, Grand Rapids, Michigan
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida
| | - Elizabeth R Lawlor
- Translational Oncology Program, University of Michigan, Ann Arbor, Michigan. Department of Pediatrics, University of Michigan, Ann Arbor, Michigan. Department of Pathology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
250
|
Casella-Martins A, Ayres LR, Burin SM, Morais FR, Pereira JC, Faccioli LH, Sampaio SV, Arantes EC, Castro FA, Pereira-Crott LS. Immunomodulatory activity of Tityus serrulatus scorpion venom on human T lymphocytes. J Venom Anim Toxins Incl Trop Dis 2015; 21:46. [PMID: 26566386 PMCID: PMC4642687 DOI: 10.1186/s40409-015-0046-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 11/05/2015] [Indexed: 01/17/2023] Open
Abstract
Background Tityus serrulatus scorpion venom (TsV) contains toxins that act on K+ and Na+ channels and account for the venom’s toxic effects. TsV can activate murine peritoneal macrophages, but its effects on human lymphocytes have been poorly investigated. Considering that lymphocytes may play an important role in envenomation, we assessed whether TsV affects the expression of phenotypic (CD3, CD4, and CD8) and activation (CD69, CD25, and HLA-DR) markers, cell proliferation, and cytokine production in peripheral blood mononuclear cells. Methods Cytotoxicity of TsV was evaluated via the MTT assay. Cell proliferation, expression of phenotypic and activation markers, and release of cytokines were assessed using flow cytometry, after treatment with non-cytotoxic concentrations of TsV. The combined use of carboxyfluorescein diacetate succinimidyl ester and monoclonal antibodies against phenotypic and activation markers enabled us to simultaneously assess cell proliferation extent and cell activation status, and to discriminate among cell subpopulations. Results TsV at concentrations of 25 to 100 μg/mL were not cytotoxic towards peripheral blood mononuclear cells. TsV did not induce significant changes in lymphocyte subpopulations or in the expression of activation markers on CD4+ and CD8+ T cells. TsV inhibited the phytohemagglutinin-stimulated lymphocyte proliferation, particularly in the CD8+ CD25+ T lymphocyte subset. TsV alone, at 50 and 100 μg/mL, did not induce peripheral blood mononuclear cell proliferation, but elicited the production and release of IL-6, a proinflammatory cytokine that plays an important role in innate and adaptive immune responses. Conclusions TsV is a potential source of molecules with immunomodulatory action on human T lymphocytes. Electronic supplementary material The online version of this article (doi:10.1186/s40409-015-0046-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Casella-Martins
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Lorena R Ayres
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil ; Department of Pharmaceutical Sciences, Federal University of Espírito Santo, Vitória, ES Brazil
| | - Sandra M Burin
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Fabiana R Morais
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Juliana C Pereira
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Lucia H Faccioli
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Suely V Sampaio
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Eliane C Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Fabiola A Castro
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Luciana S Pereira-Crott
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| |
Collapse
|