201
|
Uram JD, Ke K, Hunt AJ, Mayer M. Submicrometer pore-based characterization and quantification of antibody-virus interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2006; 2:967-72. [PMID: 17193151 DOI: 10.1002/smll.200600006] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Jeffrey D Uram
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2099, USA
| | | | | | | |
Collapse
|
202
|
Elliot LN, Lloyd AR, Ziegler JB, Ffrench RA. Protective immunity against hepatitis C virus infection. Immunol Cell Biol 2006; 84:239-49. [PMID: 16509830 DOI: 10.1111/j.1440-1711.2006.01427.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is increasing evidence that a small percentage of individuals exposed to the hepatitis C virus have the capacity to generate a strong cellular immune response against the virus and avoid persistent infection, and perhaps do so repeatedly after re-exposure. This article reviews the evidence that the responses identified in this unique group of individuals represent the protective immunity that will need to be elicited by hepatitis C virus vaccines.
Collapse
Affiliation(s)
- Lisa N Elliot
- School of Women's and Children's Health, The University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
203
|
Li M, Cuff CF, Pestka JJ. T-2 toxin impairment of enteric reovirus clearance in the mouse associated with suppressed immunoglobulin and IFN-gamma responses. Toxicol Appl Pharmacol 2006; 214:318-25. [PMID: 16504231 PMCID: PMC7125810 DOI: 10.1016/j.taap.2006.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 01/19/2006] [Accepted: 01/20/2006] [Indexed: 12/25/2022]
Abstract
Trichothecenes are exquisitely toxic to the gastrointestinal (GI) tract and leukocytes and thus are likely to impair gut immunity. The purpose of this research was to test the hypothesis that the Type A trichothecene T-2 toxin interferes with the gut mucosal immune response to enteric reovirus infection. Mice were exposed i.p. first to 1.75 mg/kg bw T-2 and then 2 h later with 3 × 107 plaque-forming units of reovirus serotype 1, strain Lang (T1/L). As compared to vehicle-treated control, T-2-treated mice had dramatically elevated intestinal plaque-forming viral titers after 5 days and failed to completely clear the virus from intestine by 10 days. Levels of reovirus λ2 core spike (L2 gene) RNA in feces in T-2-treated mice were significantly higher at 1, 3, 5, and 7 days than controls. T-2 potentiated L2 mRNA expression in a dose-dependent manner with as little as 50 μg/kg of the toxin having a potentiative effect. T-2 exposure transiently suppressed induction of reovirus-specific IgA in feces (6 and 8 days) as well as specific IgA and IgG2a in serum (5 days). This suppression corresponded to decreased secretion of reovirus-specific IgA and IgG2a in Peyer's patch (PP) and lamina propria fragment cultures prepared 5 days after infection. T-2 suppressed IFN-γ responses in PP to reovirus at 3 and 7 days as compared to infected controls whereas IL-2 mRNA concentrations were unaffected. PP IL-6 mRNA levels were increased 2-fold 2 h after T-2 treatment, but no differences between infected T-2-exposed and infected vehicle-treated mice were detectable over the next 7 days. Overall, the results suggest that T-2 toxin increased both the extent of GI tract reovirus infection and fecal shedding which corresponded to both suppressed immunoglobulin and IFN-γ responses.
Collapse
Affiliation(s)
- Maoxiang Li
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Christopher F. Cuff
- Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - James J. Pestka
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Corresponding author. 234 G.M. Trout Building, Michigan State University, East Lansing, MI 48824-1224. Fax: +1 517 353 8963.
| |
Collapse
|
204
|
Pierson TC, Sánchez MD, Puffer BA, Ahmed AA, Geiss BJ, Valentine LE, Altamura LA, Diamond MS, Doms RW. A rapid and quantitative assay for measuring antibody-mediated neutralization of West Nile virus infection. Virology 2005; 346:53-65. [PMID: 16325883 DOI: 10.1016/j.virol.2005.10.030] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 08/10/2005] [Accepted: 10/05/2005] [Indexed: 12/21/2022]
Abstract
West Nile virus (WNV) is a neurotropic flavivirus within the Japanese encephalitis antigenic complex that is responsible for causing West Nile encephalitis in humans. The surface of WNV virions is covered by a highly ordered icosahedral array of envelope proteins that is responsible for mediating attachment and fusion with target cells. These envelope proteins are also primary targets for the generation of neutralizing antibodies in vivo. In this study, we describe a novel approach for measuring antibody-mediated neutralization of WNV infection using virus-like particles that measure infection as a function of reporter gene expression. These reporter virus particles (RVPs) are produced by complementation of a sub-genomic replicon with WNV structural proteins provided in trans using conventional DNA expression vectors. The precision and accuracy of this approach stem from an ability to measure the outcome of the interaction between antibody and viral antigens under conditions that satisfy the assumptions of the law of mass action as applied to virus neutralization. In addition to its quantitative strengths, this approach allows the production of WNV RVPs bearing the prM-E proteins of different WNV strains and mutants, offering considerable flexibility for the study of the humoral immune response to WNV in vitro. WNV RVPs are capable of only a single round of infection, can be used under BSL-2 conditions, and offer a rapid and quantitative approach for detecting virus entry and its inhibition by neutralizing antibody.
Collapse
Affiliation(s)
- Theodore C Pierson
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Scallan CD, Jiang H, Liu T, Patarroyo-White S, Sommer JM, Zhou S, Couto LB, Pierce GF. Human immunoglobulin inhibits liver transduction by AAV vectors at low AAV2 neutralizing titers in SCID mice. Blood 2005; 107:1810-7. [PMID: 16249376 DOI: 10.1182/blood-2005-08-3229] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long-term cures of hemophilia B have been achieved using AAV2 delivering the factor IX gene to the liver of adeno-associated virus (AAV)-naive hemophilic animals. However, the clinical success of this approach requires overcoming pre-existing AAV neutralizing antibodies prevalent in humans. To better define the inhibition of neutralizing antibodies on AAV2-mediated liver transduction, we developed an in vivo passive immunity model. SCID mice were first reconstituted to a defined neutralizing titer with pooled plasma-derived human immunoglobulin. AAV2-FIX vectors then were administered to the liver, and the transduction efficiency was measured by plasma FIX levels. Unexpectedly, AAV2 neutralizing titers lower than 1:10 were sufficient to neutralize 4 to 20 x 10(12) vg/kg of AAV2 vectors in vivo, a capacity that was underestimated by in vitro neutralizing assays. We also evaluated strategies to evade neutralization, including the use of alternative delivery routes, infusion parameters, empty capsids, and alternative AAV serotypes 6 and 8. The results indicate that low AAV2 neutralizing titers can be inhibitory to the tested human and primate AAV vectors delivered into the circulatory system. Therefore, novel nonprimate AAV vectors or compartmentalized delivery may offer more consistent therapeutic effects in the presence of pre-existing AAV neutralizing antibodies.
Collapse
|
206
|
Sánchez MD, Pierson TC, McAllister D, Hanna SL, Puffer BA, Valentine LE, Murtadha MM, Hoxie JA, Doms RW. Characterization of neutralizing antibodies to West Nile virus. Virology 2005; 336:70-82. [PMID: 15866072 DOI: 10.1016/j.virol.2005.02.020] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 01/30/2005] [Accepted: 02/24/2005] [Indexed: 11/30/2022]
Abstract
We produced nine monoclonal antibodies (MAbs) directed against the West Nile virus E glycoprotein using three different immunization strategies: inactivated virus, naked DNA, and recombinant protein. Most of the MAbs bound to conformation dependent epitopes in domain III of the E protein. Four of the MAbs neutralized WNV infection and bound to the same region of domain III with high affinity. The neutralizing MAbs were obtained from mice immunized with inactivated virus alone or in combination with a DNA plasmid. In contrast, MAbs obtained by immunization with a soluble version of the E glycoprotein did not exhibit neutralizing activity. These non-neutralizing antibodies were cross-reactive with several other flaviviruses, including Saint Louis encephalitis, Japanese encephalitis, Yellow Fever and Powassan viruses. Interestingly, some non-neutralizing MAbs bound with high affinity to domains I or III, indicating that both affinity and the precise epitope recognized by an antibody are important determinants of WNV neutralization.
Collapse
Affiliation(s)
- Melissa D Sánchez
- Department of Microbiology, University of Pennsylvania, 225 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Burrer R, Haessig-Einius S, Aubertin AM, Moog C. Neutralizing as well as non-neutralizing polyclonal immunoglobulin (Ig)G from infected patients capture HIV-1 via antibodies directed against the principal immunodominant domain of gp41. Virology 2005; 333:102-13. [PMID: 15708596 DOI: 10.1016/j.virol.2004.12.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Accepted: 12/31/2004] [Indexed: 10/25/2022]
Abstract
We analyzed the factors influencing the binding of polyclonal immunoglobulin (Ig)G from HIV-infected patients to primary isolates (PI) in capture assays and a potential correlation between this binding and neutralization. The fixation of antibodies (Abs) to viral particles was measured by quantifying the capture of 4 PI by purified IgG immobilized onto a plate or by analyzing the capture of IgG-virus complexes formed in solution. We found that the capture of virus and the formation of immune complexes is mainly achieved by Abs directed against the principal immunodominant domain (PID) of gp41. We have further compared the binding measured by these two methods and the neutralizing activity of our polyclonal IgG and found no correlation. Thus, capture assays, including the immune complex capture assay that is more representative of "physiological" conditions, cannot be used as surrogate method for the investigation of the neutralizing activity of Abs.
Collapse
Affiliation(s)
- Renaud Burrer
- EA3770, Institut de Virologie, Université Louis Pasteur, 67000 Strasbourg, France
| | | | | | | |
Collapse
|
208
|
Abstract
The third variable region, V3, of the gp120 surface envelope glycoprotein is an approximately 35-residue-long, frequently glycosylated, highly variable, disulfide-bonded structure that has a major influence on HIV-1 tropism. Thus the sequence of V3, directly or indirectly, can determine which coreceptor (CCR5 or CXCR4) is used to trigger the fusion potential of the Env complex, and hence which cells the virus can infect. V3 also influences HIV-1's sensitivity to, and ability to escape from, entry inhibitors that are being developed as antiviral drugs. For some strains, V3 is a prominent target for HIV-1 neutralizing antibodies (NAbs); indeed, for many years it was considered to be the "principal neutralization determinant" (PND). Some efforts to use V3 as a vaccine target continue to this day, despite disappointing progress over more than a decade. Recent findings on the structure, function, antigenicity, and immunogenicity of V3 cast new doubts on the value of this vaccine approach. Here, we review recent advances in the understanding of V3 as a determinant of viral tropism, and discuss how this new knowledge may inform the development of HIV-1 drugs and vaccines.
Collapse
Affiliation(s)
- Oliver Hartley
- Department of Structural Biology and Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | | | | | | |
Collapse
|
209
|
|
210
|
Balasuriya UBR, MacLachlan NJ. The immune response to equine arteritis virus: potential lessons for other arteriviruses. Vet Immunol Immunopathol 2004; 102:107-29. [PMID: 15507299 DOI: 10.1016/j.vetimm.2004.09.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The members of the family Arteriviridae, genus Arterivirus, include equine arteritis virus (EAV), porcine reproductive and respiratory syndrome virus (PRRSV), lactate dehydrogenase-elevating virus (LDV) of mice, and simian hemorrhagic fever virus (SHFV). PRRSV is the newest member of the family (first isolated in North America and Europe in the early 1990s), whereas the other three viruses were recognized earlier (EAV in 1953, LDV in 1960, and SHFV in 1964). Although arterivirus infections are strictly species-specific, the causative agents share many biological and molecular properties, including their virion morphology, replication strategy, unique properties of their structural proteins, and their ability to establish distinctive persistent infections in their natural hosts. The arteriviruses are each antigenically distinct and cause different disease syndromes in their natural hosts. Similarly, the mechanism(s) responsible for the prolonged and/or persistent infections that characterize infections with each arterivirus in their natural hosts are remarkably different. The objective of this review is to compare and contrast the immune response to EAV with that to the other three arteriviruses, and emphasize the potential relevance of apparent similarities and differences in the neutralization characteristics of each virus.
Collapse
Affiliation(s)
- Udeni B R Balasuriya
- Equine Viral Disease Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
211
|
Helander A, Miller CL, Myers KS, Neutra MR, Nibert ML. Protective immunoglobulin A and G antibodies bind to overlapping intersubunit epitopes in the head domain of type 1 reovirus adhesin sigma1. J Virol 2004; 78:10695-705. [PMID: 15367636 PMCID: PMC516417 DOI: 10.1128/jvi.78.19.10695-10705.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonfusogenic mammalian orthoreovirus (reovirus) is an enteric pathogen of mice and a useful model for studies of how an enteric virus crosses the mucosal barrier of its host and is subject to control by the mucosal immune system. We recently generated and characterized a new murine immunoglobulin A (IgA)-class monoclonal antibody (MAb), 1E1, that binds to the adhesin fiber, sigma1, of reovirus type 1 Lang (T1L) and thereby neutralizes the infectivity of that strain in cell culture. 1E1 is produced in hybridoma cultures as a mixture of monomers, dimers, and higher polymers and is protective against peroral challenges with T1L either when the MAb is passively administered or when it is secreted into the intestines of mice bearing subcutaneous hybridoma tumors. In the present study, selection and analysis of mutants resistant to neutralization by 1E1 identified the region of T1L sigma1 to which the MAb binds. The region bound by a previously characterized type 1 sigma1-specific neutralizing IgG MAb, 5C6, was identified in the same way. Each of the 15 mutants isolated and analyzed was found to be much less sensitive to neutralization by either 1E1 or 5C6, suggesting the two MAbs bind to largely overlapping regions of sigma1. The tested mutants retained the capacity to recognize specific glycoconjugate receptors on rabbit M cells and cultured epithelial cells, even though viral binding to epithelial cells was inhibited by both MAbs. S1 sequence determinations for 12 of the mutants identified sigma1 mutations at four positions between residues 415 and 447, which contribute to forming the receptor-binding head domain. When aligned with the sigma1 sequence of reovirus type 3 Dearing (T3D) and mapped onto the previously reported crystal structure of the T3D sigma1 trimer, the four positions cluster on the side of the sigma1 head, across the interface between two subunits. Three such interface-spanning epitopes are thus present per sigma1 trimer and require the intact quaternary structure of the head domain for MAb binding. Identification of these intersubunit epitopes on sigma1 opens the way for further studies of the mechanisms of antibody-based neutralization and protection with type 1 reoviruses.
Collapse
Affiliation(s)
- Anna Helander
- GI Cell Biology Laboratory, Children's Hospital, Department of Pediatrics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
212
|
Harada S, Yusa K, Maeda Y. Heterogeneity of envelope molecules shown by different sensitivities to anti-V3 neutralizing antibody and CXCR4 antagonist regulates the formation of multiple-site binding of HIV-1. Microbiol Immunol 2004; 48:357-65. [PMID: 15107547 DOI: 10.1111/j.1348-0421.2004.tb03517.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increased temperature enhances the infectivity of human immunodeficiency virus type 1 (HIV-1), and this enhancement is inhibited by anti-CXCR4 peptide T140, implying that multiple-site binding is required to proceed to infection. Here, we tested whether the augmented infectivity induced by increased temperature could account for the heterogeneity of envelope molecules in the effectiveness of anti-V3 neutralization and anti-CXCR4 blocking. Pseudoviruses with the X4 envelope which were infectious at room temperature (RT) were more resistant to both anti-V3 neutralizing antibody 0.5beta and T140 than viruses infectious at 37 C and 40 C. Viruses infectious to cells treated with T140 were also resistant to 0.5beta. Based on the hypothesis that the HIV-1 viruses were carrying heterogeneity of functional and nonfunctional gp120 and required the formation of sufficient multiple-site binding of functional gp120 with receptors to proceed to infection, viruses with many functional gp120 which were infectious at RT and infectious to cells with reduced numbers of CXCR4 by T140 treatment were resistant to 0.5beta. Although viruses with many functional gp120 are a minority (less than 5%) of the infectious HIV-1 fraction, they are regarded as able to escape from neutralizing antibodies and coreceptor antagonists.
Collapse
Affiliation(s)
- Shinji Harada
- Department of Medical Virology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | | | | |
Collapse
|
213
|
Abstract
Research groups worldwide are trying to make immunogens intended to elicit neutralizing antibody responses as part of a prophylactic vaccine to counter the spread of HIV-1. The relative merits of different designs can only be gauged properly through comparative studies, and particularly by evaluating human or animal antisera under identical, or comparable, conditions. Hence there is a need for assay standardization and for the creation of a centralized testing facility that could distribute consensus protocols and reagents.
Collapse
Affiliation(s)
- John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA.
| | | |
Collapse
|
214
|
Klasse PJ, Moore JP. Is there enough gp120 in the body fluids of HIV-1-infected individuals to have biologically significant effects? Virology 2004; 323:1-8. [PMID: 15165814 DOI: 10.1016/j.virol.2004.03.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 02/17/2004] [Accepted: 03/02/2004] [Indexed: 02/04/2023]
Affiliation(s)
- P J Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York 10021, USA
| | | |
Collapse
|
215
|
Dialyna IA, Graham D, Rezaee R, Blue CE, Stavrianeas NG, Neisters HGM, Spandidos DA, Blackbourn DJ. Anti-HHV-8/KSHV antibodies in infected individuals inhibit infection in vitro. AIDS 2004; 18:1263-70. [PMID: 15362658 DOI: 10.1097/00002030-200406180-00004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To detect human herpesvirus (HHV)-8/Kaposi's sarcoma-associated herpesvirus (KSHV) neutralizing antibodies (nAb). DESIGN Antibodies capable of inhibiting HHV-8 infection were measured by infecting transformed dermal microvascular endothelial cells (tDMVEC) with HHV-8 that had been pre-incubated with serum from HHV-8-seropositive or -seronegative subjects. The level of infection was quantified 48 h later. METHODS HHV-8 was prepared from JSC-1 primary effusion lymphoma cells; the titre of enveloped virions was determined by electron microscopy. Virus was incubated with serum samples for 60 min before inoculating tDMVEC. The level of infection was quantified by indirect immunofluorescence assay, staining for HHV-8 latency-associated nuclear antigen (LANA)-1. Inhibition of infection was determined by comparing the level of infection obtained with HHV-8-seropositive subject serum with the level obtained by incubation with seronegative serum. RESULTS Up to 61% of cells were infected with HHV-8 in the absence of human serum; this level was not affected by pre-incubating the virus with HHV-8-seronegative serum. At dilutions of 1:10 and 1:50, HHV-8-seropositive sera significantly inhibited infection compared to seronegative controls (P = 0.036 for both serum dilutions, Mann-Whitney). The endpoint of inhibition was 1:100, when the serum of one of five subjects inhibited virus infection. At 1:500 dilution, there was no difference in the level of infection after virus incubation with seropositive or seronegative sera (P = 0.578). Depletion of antibody from serum with protein A reversed the inhibitory effect, confirming it was antibody-mediated. CONCLUSIONS This study is the first to identify HHV-8 antibodies in infected subjects that reduce in vitro infectivity of the virus.
Collapse
Affiliation(s)
- Ioanna A Dialyna
- Division of Virology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | | | |
Collapse
|
216
|
Abstract
Development of a safe and preventive HIV-1 vaccine is a high priority. Recent advances in HIV vaccine development include an improved understanding of HIV envelope structure, development of techniques that enable a detailed analysis of vaccine-induced immune responses in humans, expansion of the pipeline of promising candidate vaccines, and completion of the first vaccine efficacy trials. A common feature of several preventive vaccine strategies in early clinical trials is their ability to attenuate clinical disease rather than completely prevent HIV infection in nonhuman primates. One or more candidate vaccines will likely advance into efficacy trials within the next few years, while efforts to identify new designs that induce broadly neutralizing antibodies continue with incremental success.
Collapse
Affiliation(s)
- M Patricia D'Souza
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 6700B Rockledge Drive, Room 5127, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
217
|
Wilson DP, McElwain DLS. A model of neutralization of Chlamydia trachomatis based on antibody and host cell aggregation on the elementary body surface. J Theor Biol 2004; 226:321-30. [PMID: 14643646 DOI: 10.1016/j.jtbi.2003.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Humoral immunity is that aspect of specific immunity that is mediated by B lymphocytes and involves the neutralizing of pathogens by means of antibodies attaching to the pathogen's binding sites. Antibodies bind to and block ligand sites on the pathogen which prevents these sites from attaching to target cell receptors and so cell entry is inhibited. Many studies investigate the role of humoral immunity for protection against chlamydial challenge and they have shown that neutralization of the chlamydial body requires a large number of attached antibodies. Steric hindrance greatly influences the number of available sites that may be bound, reducing relative occupancy well below 100%. We model steric effects of antibody Fab fragment attachment indicating that they must be taken into consideration to accurately model valency, the number of available binding sites. We derive a partial differential equation for the number of antibody Fabs and host cell receptors that are aggregated to extracellular chlamydial elementary bodies. We consider steric effects in describing the size distribution of aggregates. Our theory is in good agreement with Monte Carlo simulations of binding. We use our theoretical prediction for the valency in a model for the in-host population dynamics of a chlamydial infection and we fit our model to experimental data.
Collapse
Affiliation(s)
- D P Wilson
- School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia.
| | | |
Collapse
|
218
|
Bose B, Chugh DA, Kala M, Acharya SK, Khanna N, Sinha S. Characterization and molecular modeling of a highly stable anti-Hepatitis B surface antigen scFv. Mol Immunol 2003; 40:617-31. [PMID: 14597165 DOI: 10.1016/j.molimm.2003.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We raised a mouse monoclonal antibody (5S) against the 'a' epitope of the Hepatitis B surface antigen (HBsAg) by selecting for binding of the hybridoma supernatant in conditions that usually destabilize protein-protein interactions. This antibody, which was protective in an in vitro assay, had a high affinity with a relative dissociation constant in the nanomolar range. It also displayed stable binding to antigen in conditions that usually destabilize antigen-antibody interactions, like 30% DMSO, 8 M urea, 4 M NaCl, 1 M guanidium HCl and extremes of pH. The variable regions of the antibody were cloned and expressed as an single chain variable fragment (scFv) (A5). A5 had a relative affinity comparable to the mouse monoclonal and showed antigen binding in presence of 20% DMSO, 8 M urea and 3 M NaCl. It bound the antigen in the pH range of 6-8, though its tolerance for guanidium HCl was reduced. Sequence analysis demonstrated a significant increase in the frequency of somatic replacement mutations in CDRs over framework regions in the light but not in the heavy chain. A comparison of the molecular models of the variable regions of the 5S antibody and its germ-line precursor revealed that critical mutations in the heavy and light chains interface resulted in better inter-chain packing and in the movement of CDR H3 and CDR L1 from their germline positions, which may be important for better antigen binding. In addition to providing a reagent for neutralizing for the virus, such an antibody provides a model for the evolution of stable high affinity interaction during antibody maturation.
Collapse
Affiliation(s)
- Biplab Bose
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, PIN-110029, India
| | | | | | | | | | | |
Collapse
|
219
|
Polack FP, Hoffman SJ, Crujeiras G, Griffin DE. A role for nonprotective complement-fixing antibodies with low avidity for measles virus in atypical measles. Nat Med 2003; 9:1209-13. [PMID: 12925847 DOI: 10.1038/nm918] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2003] [Accepted: 07/12/2003] [Indexed: 11/08/2022]
Abstract
In the 1960s, a formalin-inactivated measles vaccine (FIMV) predisposed recipients to atypical measles, an immune complex-mediated disease. To identify characteristics of the immune priming that leads to atypical measles, responses of monkeys to FIMV were compared with responses to live attenuated virus (LAV) and hemagglutinin (H-DNA) vaccines that do not prime for atypical measles. Antibodies induced by FIMV were transient and avidity did not mature. Antibodies induced by LAV and H-DNA vaccines were sustained and avidity matured over time. After challenge with measles virus, FIMV and H-DNA recipients developed high titers of complement-fixing antibodies. In FIMV recipients, the antibodies were of low avidity, whereas in H-DNA vaccine recipients, the antibodies were of high avidity. Neutralizing capacity in B958 cells correlated with avidity. Only FIMV recipients had immune complex deposition. Failure of FIMV to induce affinity maturation results in anamnestic production of nonprotective, complement-fixing antibodies, immune complex deposition and atypical measles.
Collapse
Affiliation(s)
- Fernando P Polack
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
220
|
Herrera C, Spenlehauer C, Fung MS, Burton DR, Beddows S, Moore JP. Nonneutralizing antibodies to the CD4-binding site on the gp120 subunit of human immunodeficiency virus type 1 do not interfere with the activity of a neutralizing antibody against the same site. J Virol 2003; 77:1084-91. [PMID: 12502824 PMCID: PMC140834 DOI: 10.1128/jvi.77.2.1084-1091.2003] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have investigated whether nonneutralizing monoclonal antibodies (MAbs) to the gp120 subunit of the envelope glycoprotein (Env) complex of human immunodeficiency virus type 1 (HIV-1) can interfere with HIV-1 neutralization by another anti-gp120 MAb. We used neutralizing (b12) and nonneutralizing (205-42-15, 204-43-1, 205-46-9) MAbs to the epitope cluster overlapping the CD4-binding site (CD4BS) on gp120. All the MAbs, neutralizing or otherwise, cross-competed for binding to monomeric gp120, indicating the close topological proximity of their epitopes. However, the nonneutralizing CD4BS MAbs did not interfere with the neutralization activity of MAb b12. In contrast, in a binding assay using oligomeric Env expressed on the surface of Env-transfected cells, the nonneutralizing MAbs did partially compete with b12 for Env binding. The surface of Env-transfected cells contains two categories of binding site for CD4BS MAbs. One type of site is recognized by both b12 and nonneutralizing CD4BS MAbs; the other is recognized by only b12. Binding assays for Env-gp120 interactions based on the use of monomeric gp120 or Env-transfected cells do not predict the outcome of HIV-1 neutralization assays, and they should therefore be used only with caution when gauging the properties of anti-Env MAbs.
Collapse
Affiliation(s)
- Carolina Herrera
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|