201
|
Veltsos P, Keller I, Nichols RA. Geographically localised bursts of ribosomal DNA mobility in the grasshopper Podisma pedestris. Heredity (Edinb) 2009; 103:54-61. [PMID: 19384343 DOI: 10.1038/hdy.2009.32] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We report extraordinary variation in the number and the chromosomal location of ribosomal DNA (rDNA) arrays within populations of the alpine grasshopper Podisma pedestris; even greater differences were found between populations. The sites were detected by in situ hybridisation of labelled rDNA to chromosomal preparations. The total number of rDNA sites in an individual varied from three to thirteen. In the most extreme case, individuals from populations only 10 km apart had no rDNA loci in common. A survey of the geographical distribution of this variation identified clusters of populations with relatively similar chromosomal distribution of rDNA loci. These clusters correspond to those identified earlier by analysis of rDNA sequences. To explain this geographical clustering, we reconstructed the post-glacial colonisation of the region by assuming that the species' distribution has ascended to its current altitudinal range as the climate warmed. The reconstruction suggests that each cluster is descended from a colonisation route up a different alpine valley. That history would imply rapid establishment of rDNA differences, conceivably during the last 10,000 years since the last glaciation. The proposal for rapid change is consistent with the extensive within-population variation, which indicates that the processes responsible for the change in rDNA's chromosomal location continue to occur at a higher rate. We discuss whether our reconstruction of colonisation routes implies movement of the hybrid zone, which would indicate that a neo-XY sex chromosome system has spread through extant populations.
Collapse
Affiliation(s)
- P Veltsos
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
| | | | | |
Collapse
|
202
|
James SA, O'Kelly MJ, Carter DM, Davey RP, van Oudenaarden A, Roberts IN. Repetitive sequence variation and dynamics in the ribosomal DNA array of Saccharomyces cerevisiae as revealed by whole-genome resequencing. Genome Res 2009; 19:626-35. [PMID: 19141593 PMCID: PMC2665781 DOI: 10.1101/gr.084517.108] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 12/23/2008] [Indexed: 11/24/2022]
Abstract
Ribosomal DNA (rDNA) plays a key role in ribosome biogenesis, encoding genes for the structural RNA components of this important cellular organelle. These genes are vital for efficient functioning of the cellular protein synthesis machinery and as such are highly conserved and normally present in high copy numbers. In the baker's yeast Saccharomyces cerevisiae, there are more than 100 rDNA repeats located at a single locus on chromosome XII. Stability and sequence homogeneity of the rDNA array is essential for function, and this is achieved primarily by the mechanism of gene conversion. Detecting variation within these arrays is extremely problematic due to their large size and repetitive structure. In an attempt to address this, we have analyzed over 35 Mbp of rDNA sequence obtained from whole-genome shotgun sequencing (WGSS) of 34 strains of S. cerevisiae. Contrary to expectation, we find significant rDNA sequence variation exists within individual genomes. Many of the detected polymorphisms are not fully resolved. For this type of sequence variation, we introduce the term partial single nucleotide polymorphism, or pSNP. Comparative analysis of the complete data set reveals that different S. cerevisiae genomes possess different patterns of rDNA polymorphism, with much of the variation located within the rapidly evolving nontranscribed intergenic spacer (IGS) region. Furthermore, we find that strains known to have either structured or mosaic/hybrid genomes can be distinguished from one another based on rDNA pSNP number, indicating that pSNP dynamics may provide a reliable new measure of genome origin and stability.
Collapse
Affiliation(s)
- Stephen A. James
- National Collection of Yeast Cultures, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | - Michael J.T. O'Kelly
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - David M. Carter
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, United Kingdom
| | - Robert P. Davey
- National Collection of Yeast Cultures, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | | | - Ian N. Roberts
- National Collection of Yeast Cultures, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| |
Collapse
|
203
|
O'Sullivan JM, Sontam DM, Grierson R, Jones B. Repeated elements coordinate the spatial organization of the yeast genome. Yeast 2009; 26:125-38. [PMID: 19235779 DOI: 10.1002/yea.1657] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The spatial organization of the chromosomes is crucial for gene expression and development. Inter- and intrachromosomal interactions form a crucial part of this epigenomic regulatory system. Here we use circular chromosome conformation capture-on-chip (4C) to identify interactions between repetitive and non-repetitive loci within the yeast genome. The interacting regions occur in non-randomly distributed clusters. Furthermore, the SIR2 histone deacetylase has opposing roles in the organization of the inter- or intrachromosomal interactions. These data establish a dynamic domain model for yeast genome organization. Moreover, they point to the repeated elements playing a central role in the dynamic organization of genome architecture.
Collapse
Affiliation(s)
- J M O'Sullivan
- Institute of Molecular Biosciences, Massey University, Albany, New Zealand.
| | | | | | | |
Collapse
|
204
|
Contrasting roles of checkpoint proteins as recombination modulators at Fob1-Ter complexes with or without fork arrest. EUKARYOTIC CELL 2009; 8:487-95. [PMID: 19234097 DOI: 10.1128/ec.00382-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The replication terminator protein Fob1 of Saccharomyces cerevisiae specifically interacts with two tandem Ter sites (replication fork barriers) located in the nontranscribed spacer of ribosomal DNA (rDNA) to cause polar fork arrest. The Fob1-Ter complex is multifunctional and controls other DNA transactions such as recombination by multiple mechanisms. Here, we report on the regulatory roles of the checkpoint proteins in the initiation and progression of recombination at Fob1-Ter complexes. The checkpoint adapter proteins Tof1 and Csm3 either positively or negatively controlled recombination depending on whether it was provoked by polar fork arrest or by transcription, respectively. The absolute requirements for these proteins for inducing recombination at an active replication terminus most likely masked their negative modulatory role at a later step of the process. Other checkpoint proteins of the checkpoint adapter/mediator class such as Mrc1 and Rad9, which channel signals from the sensor to the effector kinase, tended to suppress recombination at Fob1-Ter complexes regardless of how it was initiated. We have also discovered that the checkpoint sensor kinase Mec1 and the effector Rad53 were positive modulators of recombination initiated by transcription but had little effect on recombination at Ter. The work also showed that the two pathways were Rad52 dependent but Rad51 independent. Since Ter sites occur in the intergenic spacer of rDNA from yeast to humans, the mechanism is likely to be of widespread occurrence.
Collapse
|
205
|
Zhang Y, Sikes ML, Beyer AL, Schneider DA. The Paf1 complex is required for efficient transcription elongation by RNA polymerase I. Proc Natl Acad Sci U S A 2009; 106:2153-8. [PMID: 19164765 PMCID: PMC2650124 DOI: 10.1073/pnas.0812939106] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Indexed: 01/02/2023] Open
Abstract
Regulation of RNA polymerase I (Pol I) transcription is critical for controlling ribosome synthesis. Most previous investigations into Pol I transcription regulation have focused on transcription initiation. To date, the factors involved in the control of Pol I transcription elongation are poorly understood. The Paf1 complex (Paf1C) is a well-defined factor that influences polymerase II (Pol II) transcription elongation. We found that Paf1C associates with rDNA. Deletion of genes for Paf1C subunits (CDC73, CTR9, or PAF1) reduces the rRNA synthesis rate; however, there is no significant alteration of rDNA copy number or Pol I occupancy of the rDNA. Furthermore, EM analysis revealed a substantial increase in the frequency of large gaps between transcribing polymerases in ctr9Delta mutant cells compared with WT. Together, these data indicate that Paf1C promotes Pol I transcription through the rDNA by increasing the net rate of elongation. Thus, the multifunctional, conserved transcription factor Paf1C plays an important role in transcription elongation by Pol I in vivo.
Collapse
Affiliation(s)
- Yinfeng Zhang
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, AL 35294-0024; and
| | - Martha L. Sikes
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908-0734
| | - Ann L. Beyer
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908-0734
| | - David A. Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, AL 35294-0024; and
| |
Collapse
|
206
|
Redundant roles of Srs2 helicase and replication checkpoint in survival and rDNA maintenance in Schizosaccharomyces pombe. Mol Genet Genomics 2009; 281:497-509. [PMID: 19205745 DOI: 10.1007/s00438-009-0426-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 01/10/2009] [Indexed: 10/21/2022]
Abstract
Srs2 helicase is believed to function as an anti-recombinase by resolving inappropriate Rad51-DNA filament. We found synthetic lethality or poor growth of srs2 with rad3 or mrc1 in Schizosaccharomyces pombe. Lethality may result from a defect in non-checkpoint function of Rad3 or Mrc1 in the absence of Srs2, because srs2 rad9, srs2 chk1 cds1 or srs2 mrc1-14A (non-phosphorylatable mrc1 allele) did not show significant growth impairment. Notably, the inactivation of rhp51/RAD51 or rad22/RAD52 failed to rescue the growth, suggesting that events that impose lethality are independent of homologous recombination. Incubation of the conditional srs2 rad3 ( ts ) cells at restrictive temperature led not only to a viability decrease but also to a remarkable shortening of rDNA clusters (approximately 100 copies). As opposed to the growth defect, shortening of rDNA clusters was also observed in srs2 rad9, srs2 chk1 cds1 or srs2 mrc1-14A, indicating that proper replication checkpoint signaling is critical for rDNA maintenance. Activation of Chk1 in the unchallenged mrc1-14A srs2 cells implies a certain level of spontaneous fork damage that might be the cause for rDNA instability. The data suggest that redundant functions of Srs2 and checkpoint proteins are essential for two independent aspects of genome maintenance.
Collapse
|
207
|
Can an antagonist gene of unicellular organism cause chromosome instability in multicellular organisms? DNA Repair (Amst) 2009; 8:144-5. [PMID: 19056521 DOI: 10.1016/j.dnarep.2008.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 11/03/2008] [Accepted: 11/04/2008] [Indexed: 11/19/2022]
|
208
|
Dalgaard JZ, Eydmann T, Koulintchenko M, Sayrac S, Vengrova S, Yamada-Inagawa T. Random and site-specific replication termination. Methods Mol Biol 2009; 521:35-53. [PMID: 19563100 DOI: 10.1007/978-1-60327-815-7_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bi-directionality is a common feature observed for genomic replication for all three phylogenetic kingdoms: Eubacteria, Archaea, and Eukaryotes. A consequence of bi-directional replication, where the two replication forks initiated at an origin move away from each other, is that the replication termination will occur at positions away from the origin sequence(s). The replication termination processes are therefore physically and mechanistically dissociated from the replication initiation. The replication machinery is a highly processive complex that in short time copies huge numbers of bases while competing for the DNA substrate with histones, transcription factors, and other DNA-binding proteins. Importantly, the replication machinery generally wins out; meanwhile, when converging forks meet termination occurs, thus preventing over-replication and genetic instability. Very different scenarios for the replication termination processes have been described for the three phylogenetic kingdoms. In eubacterial genomes replication termination is site specific, while in archaea and eukaryotes termination is thought to occur randomly within zones where converging replication forks meet. However, a few site-specific replication barrier elements that mediate replication termination have been described in eukaryotes. This review gives an overview about what is known about replication termination, with a focus on these natural site-specific replication termination sites.
Collapse
|
209
|
Stockinger H, Walker C, Schüßler A. 'Glomus intraradices DAOM197198', a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. THE NEW PHYTOLOGIST 2009; 183:1176-1187. [PMID: 19496945 DOI: 10.1111/j.1469-8137.2009.02874.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Glomus intraradices-like fungi are the most intensely studied arbuscular mycorrhizal (AM) fungi. However, there are several AM fungi named as G. intraradices that may not be conspecific. Therefore, the hypothesis was tested that DAOM197198 and similar AM fungi, such as BEG195, correspond to the type of G. intraradices. The G. intraradices isotype material, a descendant (INVAM FL208) of the type culture, and a morphologically corresponding AM fungus (MUCL49410) isolated from the type locality were studied and compared with several cultures of DAOM197198 and BEG195. Phylogenetic analyses of the partial small subunit (SSU), complete internal transcribed spacer (ITS) and partial large subunit (LSU) nuclear rDNA regions revealed two clades, one including G. intraradices FL208 and MUCL49410, the other containing DAOM197198 and BEG195. The two clades were clearly separated by sequence analyses, despite the high intraspecific and intrasporal ITS region sequence divergence of up to > 23%. We conclude that the AM fungi with the identifiers DAOM197198 and BEG195 are not G. intraradices, but fall in a clade that contains the recently described species G. irregulare.
Collapse
Affiliation(s)
- Herbert Stockinger
- LMU Munich, Dept. Biology I, Genetics, Großhaderner Str. 4, D-82152 Planegg-Martinsried, Germany
| | - Christopher Walker
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Arthur Schüßler
- LMU Munich, Dept. Biology I, Genetics, Großhaderner Str. 4, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
210
|
The human papillomavirus type 8 E2 tethering protein targets the ribosomal DNA loci of host mitotic chromosomes. J Virol 2008; 83:640-50. [PMID: 19004936 DOI: 10.1128/jvi.01936-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For many papillomaviruses, the viral protein E2 tethers the viral genome to the host mitotic chromosomes to ensure persistent, long-term maintenance of the genome during cell division. Our previous studies of E2 proteins from different genera of papillomaviruses have shown that they bind to different regions of the host chromosomes during mitosis. For example, bovine papillomavirus type 1 (BPV-1) E2 binds to all chromosomes as small speckles in complex with the cellular protein Brd4. In contrast, the human papillomavirus type 8 (HPV-8) E2 protein binds as large speckles at the pericentromeric regions of chromosomes. Here we show that these speckles do not contain Brd4, and unlike that of BPV-1, the N-terminal Brd4-interacting domain of HPV-8 E2 is not required for chromosome binding. In contrast to BPV-1 E2, the HPV-8 E2 protein targets the short arms of acrocentric mitotic chromosomes. Furthermore, the E2 protein interacts with the repeated ribosomal DNA genes found in this location and colocalizes with UBF, the RNA polymerase I transcription factor. Therefore, HPV-8 E2 genome tethering occurs by a Brd4-independent mechanism through a novel interaction with specific regions of mitotic chromosomes. Thus, a wide range of viruses have adopted the strategy of linking their genomes to host chromosomes, but individual viruses use different chromosomal targets. Characterization of these targets will enable the development of antiviral therapies to eliminate the viral genomes from infected cells.
Collapse
|
211
|
Waples WG, Chahwan C, Ciechonska M, Lavoie BD. Putting the brake on FEAR: Tof2 promotes the biphasic release of Cdc14 phosphatase during mitotic exit. Mol Biol Cell 2008; 20:245-55. [PMID: 18923139 DOI: 10.1091/mbc.e08-08-0879] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The completion of chromosome segregation during anaphase requires the hypercondensation of the approximately 1-Mb rDNA array, a reaction dependent on condensin and Cdc14 phosphatase. Using systematic genetic screens, we identified 29 novel genetic interactions with budding yeast condensin. Of these, FOB1, CSM1, LRS4, and TOF2 were required for the mitotic condensation of the tandem rDNA array localized on chromosome XII. Interestingly, whereas Fob1 and the monopolin subunits Csm1 and Lrs4 function in rDNA condensation throughout M phase, Tof2 was only required during anaphase. We show that Tof2, which shares homology with the Cdc14 inhibitor Net1/Cfi1, interacts with Cdc14 phosphatase and its deletion suppresses defects in mitotic exit network (MEN) components. Consistent with these genetic data, the onset of Cdc14 release from the nucleolus was similar in TOF2 and tof2Delta cells; however, the magnitude of the release was dramatically increased in the absence of Tof2, even when the MEN pathway was compromised. These data support a model whereby Tof2 coordinates the biphasic release of Cdc14 during anaphase by restraining a population of Cdc14 in the nucleolus after activation of the Cdc14 early anaphase release (FEAR) network, for subsequent release by the MEN.
Collapse
Affiliation(s)
- William G Waples
- Department of Molecular Genetics, University of Toronto, ON, Canada
| | | | | | | |
Collapse
|
212
|
Cooperation of sumoylated chromosomal proteins in rDNA maintenance. PLoS Genet 2008; 4:e1000215. [PMID: 18846224 PMCID: PMC2563031 DOI: 10.1371/journal.pgen.1000215] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 09/03/2008] [Indexed: 11/19/2022] Open
Abstract
SUMO is a posttranslational modifier that can modulate protein activities, interactions, and localizations. As the GFP-Smt3p fusion protein has a preference for subnucleolar localization, especially when deconjugation is impaired, the nucleolar role of SUMO can be the key to its biological functions. Using conditional triple SUMO E3 mutants, we show that defects in sumoylation impair rDNA maintenance, i.e., the rDNA segregation is defective and the rDNA copy number decreases in these mutants. Upon characterization of sumoylated proteins involved in rDNA maintenance, we established that Top1p and Top2p, which are sumoylated by Siz1p/Siz2p, most likely collaborate with substrates of Mms21p to maintain rDNA integrity. Cohesin and condensin subunits, which both play important roles in rDNA stability and structures, are potential substrates of Mms21, as their sumoylation depends on Mms21p, but not Siz1p and Siz2p. In addition, binding of cohesin and condensin to rDNA is altered in the mms21-CH E3-deficient mutant. Disruption of the SUMO (small ubiquitin-like modifier) pathway by mutations is lethal in mammals and in budding yeast; however, the essential nature of its role remains unknown, mainly because only a small fraction of most substrate proteins is SUMO-modified. We argue that the clustering of SUMO modifications among subunits of multiprotein complexes or within biochemical pathways indicates that SUMO-modified fractions of target proteins may have specific cooperative activities, distinct from the functions of individual unmodified proteins. SUMO conjugation-mediated functions in nucleolar processes can potentially be examples of such specific cooperative pathways, as we show that SUMO conjugates have a strong preference for nucleolar localization in budding yeast. Moreover, we demonstrate that stable maintenance of the nucleolar DNA and nucleolus is dependent on the putative functional interaction between the sumoylation of topoisomerases I and II (by Siz1p/Siz2p) and substrates of Mms21p SUMO-conjugating activity.
Collapse
|
213
|
Mayán-Santos MD, Martínez-Robles ML, Hernández P, Schvartzman JB, Krimer DB. A redundancy of processes that cause replication fork stalling enhances recombination at two distinct sites in yeast rDNA. Mol Microbiol 2008; 69:361-75. [PMID: 18485068 DOI: 10.1111/j.1365-2958.2008.06278.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
DNA recombination was investigated by monitoring integration at the rDNA of a circular minichromosome containing a 35S minigene and a replication fork barrier (RFB). The effects of replication fork stalling on integration were studied in wild-type, FOB1Delta, SIR2Delta and the double mutant FOB1DeltaSIR2Delta cells. The results obtained confirmed that Sir2p represses and replication fork stalling enhances integration of the minichromosome. This integration, however, only took place at two distinct sites: the RFB and the 3' end of the 35S gene. For integration to take place at the 35S gene, replication fork stalling must occur at the 3' end of the gene in both the minichromosome and the chromosomal repeats. Integration at the RFB, on the other hand, occurred readily in FOB1Delta cells, indicating that more than a single mechanism triggers homologous recombination at this site. Altogether, these observations strongly suggest that the main role for replication fork stalling at the rDNA locus is to promote homologous recombination rather than just to prevent head-on collision of transcription and replication as originally thought.
Collapse
Affiliation(s)
- M D Mayán-Santos
- Departamento de Biología Celular y del Desarrollo, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
214
|
French SL, Osheim YN, Schneider DA, Sikes ML, Fernandez CF, Copela LA, Misra VA, Nomura M, Wolin SL, Beyer AL. Visual analysis of the yeast 5S rRNA gene transcriptome: regulation and role of La protein. Mol Cell Biol 2008; 28:4576-87. [PMID: 18474615 PMCID: PMC2447126 DOI: 10.1128/mcb.00127-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 03/04/2008] [Accepted: 05/02/2008] [Indexed: 01/15/2023] Open
Abstract
5S rRNA genes from Saccharomyces cerevisiae were examined by Miller chromatin spreading, representing the first quantitative analysis of RNA polymerase III genes in situ by electron microscopy. These very short genes, approximately 132 nucleotides (nt), were engaged by one to three RNA polymerases. Analysis in different growth conditions and in strains with a fourfold range in gene copy number revealed regulation at two levels: number of active genes and polymerase loading per gene. Repressive growth conditions (presence of rapamycin or postexponential growth) led first to fewer active genes, followed by lower polymerase loading per active gene. The polymerase III elongation rate was estimated to be in the range of 60 to 75 nt/s, with a reinitiation interval of approximately 1.2 s. The yeast La protein, Lhp1, was associated with 5S genes. Its absence had no discernible effect on the amount or size of 5S RNA produced yet resulted in more polymerases per gene on average, consistent with a non-rate-limiting role for Lhp1 in a process such as polymerase release/recycling upon transcription termination.
Collapse
Affiliation(s)
- Sarah L French
- Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia 22908-0734, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Merz K, Hondele M, Goetze H, Gmelch K, Stoeckl U, Griesenbeck J. Actively transcribed rRNA genes in S. cerevisiae are organized in a specialized chromatin associated with the high-mobility group protein Hmo1 and are largely devoid of histone molecules. Genes Dev 2008; 22:1190-204. [PMID: 18451108 DOI: 10.1101/gad.466908] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Synthesis of ribosomal RNAs (rRNAs) is the major transcriptional event in proliferating cells. In eukaryotes, ribosomal DNA (rDNA) is transcribed by RNA polymerase I from a multicopy locus coexisting in at least two different chromatin states. This heterogeneity of rDNA chromatin has been an obstacle to defining its molecular composition. We developed an approach to analyze differential protein association with each of the two rDNA chromatin states in vivo in the yeast Saccharomyces cerevisiae. We demonstrate that actively transcribed rRNA genes are largely devoid of histone molecules, but instead associate with the high-mobility group protein Hmo1.
Collapse
Affiliation(s)
- Katharina Merz
- Universitaet Regensburg, Institut für Biochemie, Genetik und Mikrobiologie, 93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
216
|
Casper AM, Mieczkowski PA, Gawel M, Petes TD. Low levels of DNA polymerase alpha induce mitotic and meiotic instability in the ribosomal DNA gene cluster of Saccharomyces cerevisiae. PLoS Genet 2008; 4:e1000105. [PMID: 18584028 PMCID: PMC2430618 DOI: 10.1371/journal.pgen.1000105] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 05/22/2008] [Indexed: 11/25/2022] Open
Abstract
The ribosomal DNA (rDNA) genes of Saccharomyces cerevisiae are located in a tandem array of about 150 repeats. Using a diploid with markers flanking and within the rDNA array, we showed that low levels of DNA polymerase alpha elevate recombination between both homologues and sister chromatids, about five-fold in mitotic cells and 30-fold in meiotic cells. This stimulation is independent of Fob1p, a protein required for the programmed replication fork block (RFB) in the rDNA. We observed that the fob1 mutation alone significantly increased meiotic, but not mitotic, rDNA recombination, suggesting a meiosis-specific role for this protein. We found that meiotic cells with low polymerase alpha had decreased Sir2p binding and increased Spo11p-catalyzed double-strand DNA breaks in the rDNA. Furthermore, meiotic crossover interference in the rDNA is absent. These results suggest that the hyper-Rec phenotypes resulting from low levels of DNA polymerase alpha in mitosis and meiosis reflect two fundamentally different mechanisms: the increased mitotic recombination is likely due to increased double-strand DNA breaks (DSBs) resulting from Fob1p-independent stalled replication forks, whereas the hyper-Rec meiotic phenotype results from increased levels of Spo11-catalyzed DSBs in the rDNA. In many organisms, the genes that encode the ribosomal RNAs are present in multiple copies arranged in tandem. This unique section of the genome is under strict cellular control to minimize changes in the number of ribosomal DNA (rDNA) genes as a consequence of unequal crossover between repeats. In addition, the rate of unequal crossovers and gene conversion in the rDNA influence the level of sequence divergence between repeats. Crossovers can result from repair processes initiated at stalled replication forks, and in this study we investigated the effect of a low level of DNA polymerase on rDNA stability. We found that low levels of DNA polymerase modestly increase rDNA recombination in mitosis and strongly elevate rDNA recombination in meiosis. We suggest that in mitotic cells the increased recombination is likely due to increased double strand DNA breaks (DSBs) resulting from stalled replication forks. However, in meiotic cells, we found evidence that the high level of recombination results from increased levels of Spo11-catalyzed DSBs in the rDNA. Our results indicate that there are two fundamentally different mechanisms in mitosis and meiosis for the maintenance of rDNA stability.
Collapse
Affiliation(s)
- Anne M Casper
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America.
| | | | | | | |
Collapse
|
217
|
Kobayashi T. A new role of the rDNA and nucleolus in the nucleus--rDNA instability maintains genome integrity. Bioessays 2008; 30:267-72. [PMID: 18293366 DOI: 10.1002/bies.20723] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The nucleolus is a region of the nucleus with high protein density and it acts as a ribosome factory. The nucleolus contains a distinct region of the genome, the ribosomal RNA gene repeats (rDNA) that supply ribosomal RNA (rRNA) molecules. The rDNA is the most-abundant gene and occupies a large part of the genome, for example, there are thousands of rDNA copies in the genomes of plant cells. Therefore, it is natural to suppose that the condition of the rDNA, such as its stability, might affect cellular functions. Here I would like to propose a new model regarding the roles of the rDNA and nucleolus. The key point of this model is that they act to preserve genome stability and trigger aging.
Collapse
Affiliation(s)
- Takehiko Kobayashi
- National Institute of Genetics and The Graduate University for Advanced Studies, SOKENDAI, 1111 Yata, Mishima 411-8540 Japan.
| |
Collapse
|
218
|
Abstract
Papillomaviruses establish persistent infection in the dividing, basal epithelial cells of the host. The viral genome is maintained as a circular, double-stranded DNA, extrachromosomal element within these cells. Viral genome amplification occurs only when the epithelial cells differentiate and viral particles are shed in squames that are sloughed from the surface of the epithelium. There are three modes of replication in the papillomavirus life cycle. Upon entry, in the establishment phase, the viral genome is amplified to a low copy number. In the second maintenance phase, the genome replicates in dividing cells at a constant copy number, in synchrony with the cellular DNA. And finally, in the vegetative or productive phase, the viral DNA is amplified to a high copy number in differentiated cells and is destined to be packaged in viral capsids. This review discusses the cis elements and protein factors required for each stage of papillomavirus replication.
Collapse
Affiliation(s)
- Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
219
|
Ii M, Ii T, Brill SJ. Mus81 functions in the quality control of replication forks at the rDNA and is involved in the maintenance of rDNA repeat number in Saccharomyces cerevisiae. Mutat Res 2007; 625:1-19. [PMID: 17555773 PMCID: PMC2100401 DOI: 10.1016/j.mrfmmm.2007.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 04/25/2007] [Accepted: 04/26/2007] [Indexed: 11/25/2022]
Abstract
Previous studies in yeast have suggested that the SGS1 DNA helicase or the Mus81-Mms4 structure-specific endonuclease is required to suppress the accumulation of lethal recombination intermediates during DNA replication. However, the structure of these intermediates and their mechanism of the suppression are unknown. To examine this reaction, we have isolated and characterized a temperature-sensitive (ts) allele of MUS81. At the non-permissive temperature, sgs1Deltamus81(ts) cells arrest at G(2)/M phase after going through S-phase. Bulk DNA replication appears complete but is defective since the Rad53 checkpoint kinase is strongly phosphorylated under these conditions. In addition, the induction of Rad53 hyper-phosphorylation by MMS was deficient at permissive temperature. Analysis of rDNA replication intermediates at the non-permissive temperature revealed elevated pausing of replication forks at the RFB in the sgs1Deltamus81(ts) mutant and a novel linear structure that was dependent on RAD52. Pulsed-field gel electrophoresis of the mus81Delta mutant revealed an expansion of the rDNA locus depending on RAD52, in addition to fragmentation of Chr XII in the sgs1Deltamus81(ts) mutant at permissive temperature. This is the first evidence that Mus81 functions in quality control of replication forks and that it is involved in the maintenance of rDNA repeats in vivo.
Collapse
Affiliation(s)
- Miki Ii
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, United States.
| | | | | |
Collapse
|
220
|
Torres-Rosell J, Sunjevaric I, De Piccoli G, Sacher M, Eckert-Boulet N, Reid R, Jentsch S, Rothstein R, Aragón L, Lisby M. The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat Cell Biol 2007; 9:923-31. [PMID: 17643116 DOI: 10.1038/ncb1619] [Citation(s) in RCA: 316] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 06/28/2007] [Indexed: 01/25/2023]
Abstract
Homologous recombination (HR) is crucial for maintaining genome integrity by repairing DNA double-strand breaks (DSBs) and rescuing collapsed replication forks. In contrast, uncontrolled HR can lead to chromosome translocations, loss of heterozygosity, and deletion of repetitive sequences. Controlled HR is particularly important for the preservation of repetitive sequences of the ribosomal gene (rDNA) cluster. Here we show that recombinational repair of a DSB in rDNA in Saccharomyces cerevisiae involves the transient relocalization of the lesion to associate with the recombination machinery at an extranucleolar site. The nucleolar exclusion of Rad52 recombination foci entails Mre11 and Smc5-Smc6 complexes and depends on Rad52 SUMO (small ubiquitin-related modifier) modification. Remarkably, mutations that abrogate these activities result in the formation of Rad52 foci within the nucleolus and cause rDNA hyperrecombination and the excision of extrachromosomal rDNA circles. Our study also suggests a key role of sumoylation for nucleolar dynamics, perhaps in the compartmentalization of nuclear activities.
Collapse
Affiliation(s)
- Jordi Torres-Rosell
- Cell Cycle Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Johzuka K, Horiuchi T. RNA polymerase I transcription obstructs condensin association with 35S rRNA coding regions and can cause contraction of long repeat in Saccharomyces cerevisiae. Genes Cells 2007; 12:759-71. [PMID: 17573776 DOI: 10.1111/j.1365-2443.2007.01085.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In many eukaryotic cells, the ribosomal RNA gene (rDNA) is composed of a highly repetitive structure. Previously, we reported the isolation of condensin mutants of Saccharomyces cerevisiae that were defective in carrying long rDNA repeat due to the loss of the replication fork barrier (RFB) protein Fob1p; thus the repeat in the mutants were dramatically contracted. The reintroduction of the FOB1 gene suppressed the contraction of the repeat. It was found that condensin mainly localized at the RFB site in a FOB1-dependent fashion. Here, we show that RNA polymerase I transcription interferes with condensin association with 35S rRNA coding regions in fob1 cells and causes dramatic contraction of rDNA repeat in the fob1 condensin double mutant. Inactivation of RNA polymerase I suppresses the dramatic contraction of the rDNA repeat in the fob1 condensin double mutant. These results suggest that association of condensin with the RFB site outside the active transcription region avoids the dramatic contraction of the rDNA repeat. We also found that the stimulation of RNA polymerase II transcription within the rDNA repeat decreased condensin association with actively transcribed regions. Thus, a characteristic of condensin is that its association with the chromatin is interfered by transcription.
Collapse
Affiliation(s)
- Katsuki Johzuka
- Laboratory of Genome Dynamics, National Institute for Basic Biology, and School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, 444-8585, Japan
| | | |
Collapse
|
222
|
Torres-Rosell J, De Piccoli G, Aragón L. Can eukaryotic cells monitor the presence of unreplicated DNA? Cell Div 2007; 2:19. [PMID: 17623079 PMCID: PMC1976610 DOI: 10.1186/1747-1028-2-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 07/10/2007] [Indexed: 11/24/2022] Open
Abstract
Completion of DNA replication before mitosis is essential for genome stability and cell viability. Cellular controls called checkpoints act as surveillance mechanisms capable of detecting errors and blocking cell cycle progression to allow time for those errors to be corrected. An important question in the cell cycle field is whether eukaryotic cells possess mechanisms that monitor ongoing DNA replication and make sure that all chromosomes are fully replicated before entering mitosis, that is whether a replication-completion checkpoint exists. From recent studies with smc5-smc6 mutants it appears that yeast cells can enter anaphase without noticing that replication in the ribosomal DNA array was unfinished. smc5-smc6 mutants are proficient in all known cellular checkpoints, namely the S phase checkpoint, DNA-damage checkpoint, and spindle checkpoint, thus suggesting that none of these checkpoints can monitor the presence of unreplicated segments or the unhindered progression of forks in rDNA. Therefore, these results strongly suggest that normal yeast cells do not contain a DNA replication-completion checkpoint.
Collapse
Affiliation(s)
- Jordi Torres-Rosell
- Dept. Ciències Mèdiques Bàsiques, IRBLLEIDA, Universitat de Lleida, Montserrat Roig 2, 25008 Lleida, Spain
| | - Giacomo De Piccoli
- Cell Cycle Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Luis Aragón
- Cell Cycle Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
223
|
Abstract
Accurate and complete replication of the genome in every cell division is a prerequisite of genomic stability. Thus, both prokaryotic and eukaryotic replication forks are extremely precise and robust molecular machines that have evolved to be up to the task. However, it has recently become clear that the replication fork is more of a hurdler than a runner: it must overcome various obstacles present on its way. Such obstacles can be called natural impediments to DNA replication, as opposed to external and genetic factors. Natural impediments to DNA replication are particular DNA binding proteins, unusual secondary structures in DNA, and transcription complexes that occasionally (in eukaryotes) or constantly (in prokaryotes) operate on replicating templates. This review describes the mechanisms and consequences of replication stalling at various natural impediments, with an emphasis on the role of replication stalling in genomic instability.
Collapse
Affiliation(s)
- Ekaterina V. Mirkin
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Sergei M. Mirkin
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607
- Corresponding author. Present address: Department of Biology, Tufts University, Medford, MA 02155. Phone: (617) 627-4794. Fax: (617) 627-3805. E-mail:
| |
Collapse
|
224
|
Labib K, Hodgson B. Replication fork barriers: pausing for a break or stalling for time? EMBO Rep 2007; 8:346-53. [PMID: 17401409 PMCID: PMC1852754 DOI: 10.1038/sj.embor.7400940] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 01/30/2007] [Indexed: 11/09/2022] Open
Abstract
Defects in chromosome replication can lead to translocations that are thought to result from recombination events at stalled DNA replication forks. The progression of forks is controlled by an essential DNA helicase, which unwinds the parental duplex and can stall on encountering tight protein-DNA complexes. Such pause sites are hotspots for recombination and it has been proposed that stalled replisomes disassemble, leading to fork collapse. However, in both prokaryotes and eukaryotes it now seems that paused forks are surprisingly stable, so that DNA synthesis can resume without recombination if the barrier protein is removed. Recombination at stalled forks might require other events that occur after pausing, or might be dependent on features of the surrounding DNA sequence. These findings have important implications for our understanding of the regulation of genome stability in eukaryotic cells, in which pausing of forks is mediated by specific proteins that are associated with the replicative helicase.
Collapse
Affiliation(s)
- Karim Labib
- Cancer Research UK, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK.
| | | |
Collapse
|
225
|
Jones HS, Kawauchi J, Braglia P, Alen CM, Kent NA, Proudfoot NJ. RNA polymerase I in yeast transcribes dynamic nucleosomal rDNA. Nat Struct Mol Biol 2007; 14:123-30. [PMID: 17259992 PMCID: PMC6941936 DOI: 10.1038/nsmb1199] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 01/02/2007] [Indexed: 11/09/2022]
Abstract
RNA polymerase (Pol) I-transcribed ribosomal genes of budding yeast exist as a tandem array (about 150 repeats) with transcription units separated by spacer sequences. Half of these rDNAs are inactivated by repressive chromatin structure, whereas the rest exist in an open conformation transcribed by closely spaced Pol I elongation complexes. Whereas previous studies have suggested that active rDNA is devoid of nucleosomal structure, we demonstrate that active rDNA has nucleosomal structure, according to chromatin immunoprecipitation and biochemical fractionation. Using a yeast strain with reduced numbers of all actively transcribed rDNA repeats, we show that rDNA exists in a dynamic chromatin structure of unphased nucleosomes. Furthermore, it is associated with chromatin-remodeling enzymes Chd1p, Isw1p and Isw2p, whose inactivation causes defects in transcription termination. We suggest that Pol I transcription, like that of Pol II, may be modulated by specific chromatin structures.
Collapse
Affiliation(s)
- Hannah S Jones
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | | | | | |
Collapse
|
226
|
Osiewacz HD, Scheckhuber CQ. Impact of ROS on ageing of two fungal model systems: Saccharomyces cerevisiae and Podospora anserina. Free Radic Res 2007; 40:1350-8. [PMID: 17090424 DOI: 10.1080/10715760600921153] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
To provide a foundation for the development of effective interventions to counteract various age-related diseases in humans, ageing processes have been extensively studied in various model organisms and systems. However, the mechanisms underlying ageing are still not unravelled in detail in any system including rather simple organisms. In this article, we review some of the molecular mechanisms that were found to affect ageing in two fungal models, the unicellular ascomycete Saccharomyces cerevisiae and the filamentous ascomycete Podospora anserina. A selection of issues like retrograde response, genomic instability, caloric restriction, mtDNA reorganisation and apoptosis is presented and discussed with special emphasis on the role reactive oxygen species (ROS) play in these diverse molecular pathways.
Collapse
Affiliation(s)
- Heinz D Osiewacz
- Institute of Molecular Biosciences, Molecular Developmental Biology, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | | |
Collapse
|
227
|
Kobayashi T. Strategies to maintain the stability of the ribosomal RNA gene repeats--collaboration of recombination, cohesion, and condensation. Genes Genet Syst 2007; 81:155-61. [PMID: 16905869 DOI: 10.1266/ggs.81.155] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ribosomal RNA gene repeats (rDNA) are one of the most characteristic regions in eukaryotic chromosomes. The repeats consist of more than 100 tandem units occupying large part of the chromosome in most of organisms. Cells are known to deal with this "unusual domain" in a unique manner. In this review, I will summarize work on rDNA repeat maintenance, focusing mainly on work done by our group, and show that the maintenance mechanism operates by a collaboration of recombination, sister-chromatid cohesion, and chromatin condensation.
Collapse
Affiliation(s)
- Takehiko Kobayashi
- National Institute for Basic Biology and The Graduate University for Advanced Studies SOKENDAI, School of Life Science, Okazaki, Japan.
| |
Collapse
|
228
|
Tsang CK, Li H, Zheng XFS. Nutrient starvation promotes condensin loading to maintain rDNA stability. EMBO J 2007; 26:448-58. [PMID: 17203076 PMCID: PMC1783468 DOI: 10.1038/sj.emboj.7601488] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 11/14/2006] [Indexed: 12/17/2022] Open
Abstract
Nutrient starvation or rapamycin treatment, through inhibition of target of rapamycin, causes condensation of ribosomal DNA (rDNA) array and nucleolar contraction in budding yeast. Here we report that under such conditions, condensin is rapidly relocated into the nucleolus and loaded to rDNA tandem repeats, which is required for rDNA condensation. Rpd3-dependent histone deacetylation is necessary and sufficient for condensin's relocalization and loading to rDNA array, suggesting that histone modification plays a regulatory role for condensin targeting. Rapamycin independently, yet coordinately, inhibits rDNA transcription and promotes condensin loading to rDNA array. Unexpectedly, we found that inhibition of rDNA transcription in the absence of condensin loading leads to rDNA instability. Our data suggest that enrichment of condensin prevents rDNA instability during nutrient starvation. Together, these observations unravel a novel role for condensin in the maintenance of regional genomic stability.
Collapse
Affiliation(s)
- Chi Kwan Tsang
- Department of Pharmacology, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Hong Li
- Department of Pharmacology, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - XF Steven Zheng
- Department of Pharmacology, Robert Wood Johnson Medical School, Piscataway, NJ, USA
- Department of Pharmacology, Robert Wood Johnson Medical School, Staged Research Building, Room 142, 675 Hoes Lane, Piscataway, NJ 08854, USA. Tel.: +1 732 235 2894; Fax: +1 732 235 2875; E-mail:
| |
Collapse
|
229
|
Ganley ARD, Kobayashi T. Highly efficient concerted evolution in the ribosomal DNA repeats: total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Res 2007; 17:184-91. [PMID: 17200233 PMCID: PMC1781350 DOI: 10.1101/gr.5457707] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Repeat families within genomes are often maintained with similar sequences. Traditionally, this has been explained by concerted evolution, where repeats in an array evolve "in concert" with the same sequence via continual turnover of repeats by recombination. Another form of evolution, birth-and-death evolution, can also explain this pattern, although in this case selection is the critical force maintaining the repeats. The level of intragenomic variation is the key difference between these two forms of evolution. The prohibitive size and repetitive nature of large repeat arrays have made determination of the absolute level of intragenomic repeat variability difficult, thus there is little evidence to support concerted evolution over birth-and-death evolution for many large repeat arrays. Here we use whole-genome shotgun sequence data from the genome projects of five fungal species to reveal absolute levels of sequence variation within the ribosomal RNA gene repeats (rDNA). The level of sequence variation is remarkably low. Furthermore, the polymorphisms that are detected are not functionally constrained and seem to exist beneath the level of selection. These results suggest the rDNA is evolving via concerted evolution. Comparisons with a repeat array undergoing birth-and-death evolution provide a clear contrast in the level of repeat array variation between these two forms of evolution, confirming that the rDNA indeed does evolve via concerted evolution. These low levels of intra-genomic variation are consistent with a model of concerted evolution in which homogenization is very rapid and efficiently maintains highly similar repeat arrays.
Collapse
|
230
|
Abstract
Ribosomal RNA transcription was one of the first model systems for molecular characterization of a transcription regulatory mechanism and certainly one of the best studied in the widest range of organisms. In multicellular organisms, however, the issue of cell-type-specific regulation of rRNA transcription has not been well addressed. Here I propose that a systematic study of cell-type-specific regulation of rRNA transcription may reveal new regulatory mechanisms that have not been previously realized. Specifically, issues concerning the cell-type-specific requirement for rRNA production, the universality of Pol I transcription complex and the division of rDNA into regulatory subdomains are discussed.
Collapse
Affiliation(s)
- Hung Tseng
- Department of Dermatology, Department of Cell and Developmental Biology, Center for Research on Reproduction and Women's Health, University of Pennsylvania, CRB Room 242B, 415 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
231
|
Schmidt KH, Kolodner RD. Suppression of spontaneous genome rearrangements in yeast DNA helicase mutants. Proc Natl Acad Sci U S A 2006; 103:18196-201. [PMID: 17114288 PMCID: PMC1838729 DOI: 10.1073/pnas.0608566103] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Saccharomyces cerevisiae mutants lacking two of the three DNA helicases Sgs1, Srs2, and Rrm3 exhibit slow growth that is suppressed by disrupting homologous recombination. Cells lacking Sgs1 and Rrm3 accumulate gross-chromosomal rearrangements (GCRs) that are suppressed by the DNA damage checkpoint and by homologous recombination-defective mutations. In contrast, rrm3, srs2, and srs2 rrm3 mutants have wild-type GCR rates. GCR types in helicase double mutants include telomere additions, translocations, and broken DNAs healed by a complex process of hairpin-mediated inversion. Spontaneous activation of the Rad53 checkpoint kinase in the rrm3 mutant depends on the Mec3/Rad24 DNA damage sensors and results from activation of the Mec1/Rad9-dependent DNA damage response rather than the Mrc1-dependent replication stress response. Moreover, helicase double mutants accumulate Rad51-dependent Ddc2 foci, indicating the presence of recombination intermediates that are sensed by checkpoints. These findings demonstrate that different nonreplicative helicases function at the interface between replication and repair to maintain genome integrity.
Collapse
Affiliation(s)
- Kristina H. Schmidt
- *Ludwig Institute for Cancer Research and
- Division of Cell Biology, Microbiology, and Molecular Biology, Department of Biology, University of South Florida, Tampa, FL 33620
- To whom correspondence may be sent at the † address. E-mail:
| | - Richard D. Kolodner
- *Ludwig Institute for Cancer Research and
- Departments of Medicine and Cellular and Molecular Medicine and Cancer Center, University of California at San Diego, La Jolla, CA 92093; and
- To whom correspondence may be addressed. E-mail:
| |
Collapse
|
232
|
Ide S, Watanabe K, Watanabe H, Shirahige K, Kobayashi T, Maki H. Abnormality in initiation program of DNA replication is monitored by the highly repetitive rRNA gene array on chromosome XII in budding yeast. Mol Cell Biol 2006; 27:568-78. [PMID: 17101800 PMCID: PMC1800804 DOI: 10.1128/mcb.00731-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have shown previously that perturbation of origin firing in chromosome replication causes DNA lesions and triggers DNA damage checkpoint control, which ensures genomic integrity by stopping cell cycle progression until the lesions are repaired or by inducing cell death if they are not properly repaired. This was based on the observation that the temperature-sensitive phenotype of orc1-4 and orc2-1 mutants required a programmed action of the RAD9-dependent DNA damage checkpoint. Here, we report that DNA lesions in the orc mutants are induced much more quickly and frequently within the rRNA gene (rDNA) locus than at other chromosomal loci upon temperature shift. orc mutant cells with greatly reduced rDNA copy numbers regained the ability to grow at restrictive temperatures, and the checkpoint response after the temperature shift became weak in these cells. In orc2-1 cells, completion of chromosomal duplication was delayed specifically on chromosome XII, where the rDNA array is located, and the delay was partially suppressed when the rDNA copy number was reduced. These results suggest that the rDNA locus primarily signals abnormalities in the initiation program to the DNA damage checkpoint and that the rDNA copy number modulates the sensitivity of this monitoring function.
Collapse
Affiliation(s)
- Satoru Ide
- Department of Molecular Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama-cho 8916-5, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | |
Collapse
|
233
|
Wang BD, Butylin P, Strunnikov A. Condensin function in mitotic nucleolar segregation is regulated by rDNA transcription. Cell Cycle 2006; 5:2260-7. [PMID: 16969110 PMCID: PMC3225123 DOI: 10.4161/cc.5.19.3292] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chromosome condensation is established and maintained by the condensin complex. The mechanisms governing loading of condensin onto specific chromosomal sites remain unknown. To elucidate the molecular pathways that determine condensin binding to the nucleolar organizer, a key condensin binding site, we analyzed the properties of condensin-bound sites within the rDNA repeat in budding yeast and demonstrated that the bulk of mitotic condensin binding to rDNA is reduced or eliminated when Pol I transcription is elevated. Conversely, when Pol I transcription is repressed either by rapamycin treatment or by promoter shut-off, condensin binding to rDNA is increased. This novel potential role for constitutive and/or periodic repression of Pol I transcription in rDNA condensin loading is an important factor in determining the segregation proficiency of NOR-containing chromosomes.
Collapse
Affiliation(s)
- Bi-Dar Wang
- NICHD; Laboratory of Gene Regulation and Development; Bethesda, Maryland USA
| | - Pavel Butylin
- NICHD; Laboratory of Gene Regulation and Development; Bethesda, Maryland USA
| | | |
Collapse
|
234
|
Payne BTI, van Knippenberg IC, Bell H, Filipe SR, Sherratt DJ, McGlynn P. Replication fork blockage by transcription factor-DNA complexes in Escherichia coli. Nucleic Acids Res 2006; 34:5194-202. [PMID: 17000639 PMCID: PMC1636447 DOI: 10.1093/nar/gkl682] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 09/05/2006] [Indexed: 11/13/2022] Open
Abstract
All organisms require mechanisms that resuscitate replication forks when they break down, reflecting the complex intracellular environments within which DNA replication occurs. Here we show that as few as three lac repressor-operator complexes block Escherichia coli replication forks in vitro regardless of the topological state of the DNA. Blockage with tandem repressor-operator complexes was also observed in vivo, demonstrating that replisomes have a limited ability to translocate through high affinity protein-DNA complexes. However, cells could tolerate tandem repressor-bound operators within the chromosome that were sufficient to block all forks in vitro. This discrepancy between in vitro and in vivo observations was at least partly explained by the ability of RecA, RecBCD and RecG to abrogate the effects of repressor-operator complexes on cell viability. However, neither RuvABC nor RecF were needed for normal cell growth in the face of such complexes. Holliday junction resolution by RuvABC and facilitated loading of RecA by RecF were not therefore critical for tolerance of protein-DNA blocks. We conclude that there is a trade-off between efficient genome duplication and other aspects of DNA metabolism such as transcriptional control, and that recombination enzymes, either directly or indirectly, provide the means to tolerate such conflicts.
Collapse
Affiliation(s)
- Bryony T. I. Payne
- School of Medical Sciences, Institute of Medical Sciences, University of AberdeenForesterhill, Aberdeen AB25 2ZD, UK
- Department of Biochemistry, University of OxfordSouth Parks Road, Oxford OX1 3QU, UK
| | - Ingeborg C. van Knippenberg
- School of Medical Sciences, Institute of Medical Sciences, University of AberdeenForesterhill, Aberdeen AB25 2ZD, UK
- Department of Biochemistry, University of OxfordSouth Parks Road, Oxford OX1 3QU, UK
| | - Hazel Bell
- School of Medical Sciences, Institute of Medical Sciences, University of AberdeenForesterhill, Aberdeen AB25 2ZD, UK
- Department of Biochemistry, University of OxfordSouth Parks Road, Oxford OX1 3QU, UK
| | - Sergio R. Filipe
- Department of Biochemistry, University of OxfordSouth Parks Road, Oxford OX1 3QU, UK
| | - David J. Sherratt
- Department of Biochemistry, University of OxfordSouth Parks Road, Oxford OX1 3QU, UK
| | - Peter McGlynn
- To whom correspondence should be addressed. Tel: +44 0 1224 555183; Fax: +44 0 1224 555844;
| |
Collapse
|
235
|
Grenetier S, Bouchoux C, Goguel V. CTD kinase I is required for the integrity of the rDNA tandem array. Nucleic Acids Res 2006; 34:4996-5006. [PMID: 16984969 PMCID: PMC1635248 DOI: 10.1093/nar/gkl493] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 06/09/2006] [Accepted: 06/27/2006] [Indexed: 11/12/2022] Open
Abstract
The genomic stability of the rDNA tandem array is tightly controlled to allow sequence homogenization and to prevent deleterious rearrangements. In this report, we show that the absence of the yeast CTD kinase I (CTDK-I) complex in null mutant strains leads to a decrease in the number of tandem rDNA repeats. Reintroduction of the missing gene induces an increase of rDNA repeats to reach a copy number similar to that of the original strain. Interestingly, while expansion is dependent on Fob1, a protein required for replication fork blocking activity in rDNA, contraction occurs in the absence of Fob1. Furthermore, silencing of class II genes at the rDNA, a process connected to rDNA stability, is not affected. Ctk1, the kinase subunit of the CTDK-I complex is involved in various steps of mRNA synthesis. In addition, we have recently shown that Ctk1 is also implicated in rRNA synthesis. The results suggest that the RNA polymerase I transcription defect occurring in a ctk1 mutant strain causes rDNA contraction.
Collapse
Affiliation(s)
- Sabrina Grenetier
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay91191 Gif/Yvette, France
| | - Céline Bouchoux
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay91191 Gif/Yvette, France
| | - Valérie Goguel
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay91191 Gif/Yvette, France
| |
Collapse
|
236
|
Oakes ML, Johzuka K, Vu L, Eliason K, Nomura M. Expression of rRNA genes and nucleolus formation at ectopic chromosomal sites in the yeast Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:6223-38. [PMID: 16880531 PMCID: PMC1592796 DOI: 10.1128/mcb.02324-05] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We constructed yeast strains in which rRNA gene repeats are integrated at ectopic sites in the presence or absence of the native nucleolus. At all three ectopic sites analyzed, near centromere CEN5, near the telomere of chromosome VI-R, and in middle of chromosome V-R (mid-V-R), a functional nucleolus was formed, and no difference in the expression of rRNA genes was observed. When two ribosomal DNA (rDNA) arrays are present, one native and the other ectopic, there is codominance in polymerase I (Pol I) transcription. We also examined the expression of a single rDNA repeat integrated into ectopic loci in strains with or without the native RDN1 locus. In a strain with reduced rRNA gene copies at RDN1 (approximately 40 copies), the expression of a single rRNA gene copy near the telomere was significantly reduced relative to the other ectopic sites, suggesting a less-efficient recruitment of the Pol I machinery from the RDN1 locus. In addition, we found a single rRNA gene at mid-V-R was as active as that within the 40-copy RDN1. Combined with the results of activity analysis of a single versus two tandem copies at CEN5, we conclude that tandem repetition is not required for efficient rRNA gene transcription.
Collapse
Affiliation(s)
- Melanie L Oakes
- Department of Biological Chemistry, University of California at Irvine, 240D Medical Sciences I, Irvine, CA 92697-1700, USA
| | | | | | | | | |
Collapse
|
237
|
Krings G, Bastia D. Molecular architecture of a eukaryotic DNA replication terminus-terminator protein complex. Mol Cell Biol 2006; 26:8061-74. [PMID: 16940176 PMCID: PMC1636744 DOI: 10.1128/mcb.01102-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
DNA replication forks pause at programmed fork barriers within nontranscribed regions of the ribosomal DNA (rDNA) genes of many eukaryotes to coordinate and regulate replication, transcription, and recombination. The mechanism of eukaryotic fork arrest remains unknown. In Schizosaccharomyces pombe, the promiscuous DNA binding protein Sap1 not only causes polar fork arrest at the rDNA fork barrier Ter1 but also regulates mat1 imprinting at SAS1 without fork pausing. Towards an understanding of eukaryotic fork arrest, we probed the interactions of Sap1 with Ter1 as contrasted with SAS1. The Sap1 dimer bound Ter1 with high affinity at one face of the DNA, contacting successive major grooves. The complex displayed translational symmetry. In contrast, Sap1 subunits approached SAS1 from opposite helical faces, forming a low-affinity complex with mirror image rotational symmetry. The alternate symmetries were reflected in distinct Sap1-induced helical distortions. Importantly, modulating protein-DNA interactions of the fork-proximal Sap1 subunit with the nonnatural binding site DR2 affected blocking efficiency without changes in binding affinity or binding mode but with alterations in Sap1-induced DNA distortion. The results reveal that Sap1-DNA affinity alone is insufficient to account for fork arrest and suggest that Sap1 binding-induced structural changes may result in formation of a competent fork-blocking complex.
Collapse
Affiliation(s)
- Gregor Krings
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
238
|
Tomson BN, D'Amours D, Adamson BS, Aragon L, Amon A. Ribosomal DNA transcription-dependent processes interfere with chromosome segregation. Mol Cell Biol 2006; 26:6239-47. [PMID: 16880532 PMCID: PMC1592809 DOI: 10.1128/mcb.00693-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 05/26/2006] [Indexed: 11/20/2022] Open
Abstract
The ribosomal DNA (rDNA) is a specialized genomic region not only owing to its function as the nucleolar organizing region (NOR) but also because it is repetitive in nature and, at least in budding yeast, silenced for polymerase II (Pol II)-mediated transcription. Furthermore, cohesin-independent linkages hold the sister chromatids together at the rDNA loci, and their resolution requires the activity of the conserved protein phosphatase Cdc14. Here we show that rRNA transcription-dependent processes establish linkages at the rDNA, which affect segregation of this locus. Inactivation of Cfi1/Net1, a protein required for efficient rRNA transcription, or elimination of Pol I activity, which drives rRNA transcription, diminishes the need for CDC14 in rDNA segregation. Our results identify Pol I transcription-dependent processes as a novel means of establishing linkages between chromosomes.
Collapse
Affiliation(s)
- Brett N Tomson
- Center for Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, E17-233, 40 Ames Street, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
239
|
Johzuka K, Terasawa M, Ogawa H, Ogawa T, Horiuchi T. Condensin loaded onto the replication fork barrier site in the rRNA gene repeats during S phase in a FOB1-dependent fashion to prevent contraction of a long repetitive array in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:2226-36. [PMID: 16507999 PMCID: PMC1430289 DOI: 10.1128/mcb.26.6.2226-2236.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An average of 200 copies of the rRNA gene (rDNA) is clustered in a long tandem array in Saccharomyces cerevisiae. FOB1 is known to be required for expansion/contraction of the repeats by stimulating recombination, thereby contributing to the maintenance of the average copy number. In Deltafob1 cells, the repeats are still maintained without any fluctuation in the copy number, suggesting that another, unknown system acts to prevent repeat contraction. Here, we show that condensin acts together with FOB1 in a functionally complemented fashion to maintain the long tandem repeats. Six condensin mutants possessing severely contracted rDNA repeats were isolated in Deltafob1 cells but not in FOB1+ cells. We also found that the condensin complex associated with the nontranscribed spacer region of rDNA with a major peak coincided with the replication fork barrier (RFB) site in a FOB1-dependent fashion. Surprisingly, condensin association with the RFB site was established during S phase and was maintained until anaphase. These results indicate that FOB1 plays a novel role in preventing repeat contraction by regulating condensin association and suggest a link between replication termination and chromosome condensation and segregation.
Collapse
Affiliation(s)
- Katsuki Johzuka
- Laboratory of Genome Dynamics, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
| | | | | | | | | |
Collapse
|
240
|
Machín F, Torres-Rosell J, De Piccoli G, Carballo JA, Cha RS, Jarmuz A, Aragón L. Transcription of ribosomal genes can cause nondisjunction. J Cell Biol 2006; 173:893-903. [PMID: 16769819 PMCID: PMC2063915 DOI: 10.1083/jcb.200511129] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 05/16/2006] [Indexed: 11/25/2022] Open
Abstract
Mitotic disjunction of the repetitive ribosomal DNA (rDNA) involves specialized segregation mechanisms dependent on the conserved phosphatase Cdc14. The reason behind this requirement is unknown. We show that rDNA segregation requires Cdc14 partly because of its physical length but most importantly because a fraction of ribosomal RNA (rRNA) genes are transcribed at very high rates. We show that cells cannot segregate rDNA without Cdc14 unless they undergo genetic rearrangements that reduce rDNA copy number. We then demonstrate that cells with normal length rDNA arrays can segregate rDNA in the absence of Cdc14 as long as rRNA genes are not transcribed. In addition, our study uncovers an unexpected role for the replication barrier protein Fob1 in rDNA segregation that is independent of Cdc14. These findings demonstrate that highly transcribed loci can cause chromosome nondisjunction.
Collapse
Affiliation(s)
- Felix Machín
- Cell Cycle Group, Medical Research Council Clinical Sciences Centre, Imperial College London, London W12 0NN, England, UK
| | | | | | | | | | | | | |
Collapse
|
241
|
Blake D, Luke B, Kanellis P, Jorgensen P, Goh T, Penfold S, Breitkreutz BJ, Durocher D, Peter M, Tyers M. The F-box protein Dia2 overcomes replication impedance to promote genome stability in Saccharomyces cerevisiae. Genetics 2006; 174:1709-27. [PMID: 16751663 PMCID: PMC1698614 DOI: 10.1534/genetics.106.057836] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The maintenance of DNA replication fork stability under conditions of DNA damage and at natural replication pause sites is essential for genome stability. Here, we describe a novel role for the F-box protein Dia2 in promoting genome stability in the budding yeast Saccharomyces cerevisiae. Like most other F-box proteins, Dia2 forms a Skp1-Cdc53/Cullin-F-box (SCF) E3 ubiquitin-ligase complex. Systematic analysis of genetic interactions between dia2Delta and approximately 4400 viable gene deletion mutants revealed synthetic lethal/synthetic sick interactions with a broad spectrum of DNA replication, recombination, checkpoint, and chromatin-remodeling pathways. dia2Delta strains exhibit constitutive activation of the checkpoint kinase Rad53 and elevated counts of endogenous DNA repair foci and are unable to overcome MMS-induced replicative stress. Notably, dia2Delta strains display a high rate of gross chromosomal rearrangements (GCRs) that involve the rDNA locus and an increase in extrachromosomal rDNA circle (ERC) formation, consistent with an observed enrichment of Dia2 in the nucleolus. These results suggest that Dia2 is essential for stable passage of replication forks through regions of damaged DNA and natural fragile regions, particularly the replication fork barrier (RFB) of rDNA repeat loci. We propose that the SCFDia2 ubiquitin ligase serves to modify or degrade protein substrates that would otherwise impede the replication fork in problematic regions of the genome.
Collapse
Affiliation(s)
- Deborah Blake
- Department of Medical Genetics and Microbiology, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Kim YH, Ishikawa D, Ha HP, Sugiyama M, Kaneko Y, Harashima S. Chromosome XII context is important for rDNA function in yeast. Nucleic Acids Res 2006; 34:2914-24. [PMID: 16738130 PMCID: PMC1474064 DOI: 10.1093/nar/gkl293] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Revised: 09/02/2005] [Accepted: 04/06/2006] [Indexed: 11/13/2022] Open
Abstract
The rDNA cluster in Saccharomyces cerevisiae is located 450 kb from the left end and 610 kb from the right end of chromosome XII and consists of approximately 150 tandemly repeated copies of a 9.1 kb rDNA unit. To explore the biological significance of this specific chromosomal context, chromosome XII was split at both sides of the rDNA cluster and strains harboring deleted variants of chromosome XII consisting of 450 kb, 1500 kb (rDNA cluster only) and 610 kb were created. In the strain harboring the 1500 kb variant of chromosome XII consisting solely of rDNA, the size of the rDNA cluster was found to decrease as a result of a decrease in rDNA copy number. The frequency of silencing of URA3 inserted within the rDNA locus was found to be greater than in a wild-type strain. The localization and morphology of the nucleolus was also affected such that a single and occasionally (6-12% frequency) two foci for Nop1p and a rounded nucleolus were observed, whereas a typical crescent-shaped nucleolar structure was seen in the wild-type strain. Notably, strains harboring the 450 kb chromosome XII variant and/or the 1500 kb variant consisting solely of rDNA had shorter life spans than wild type and also accumulated extrachromosomal rDNA circles. These observations suggest that the context of chromosome XII plays an important role in maintaining a constant rDNA copy number and in physiological processes related to rDNA function in S.cerevisiae.
Collapse
Affiliation(s)
- Yeon-Hee Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Ishikawa
- Department of Biotechnology, Graduate School of Engineering, Osaka University2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ho Phu Ha
- Department of Biotechnology, Graduate School of Engineering, Osaka University2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Minetaka Sugiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshinobu Kaneko
- Department of Biotechnology, Graduate School of Engineering, Osaka University2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Harashima
- Department of Biotechnology, Graduate School of Engineering, Osaka University2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
243
|
Coulon S, Noguchi E, Noguchi C, Du LL, Nakamura TM, Russell P. Rad22Rad52-dependent repair of ribosomal DNA repeats cleaved by Slx1-Slx4 endonuclease. Mol Biol Cell 2006; 17:2081-90. [PMID: 16467377 PMCID: PMC1415312 DOI: 10.1091/mbc.e05-11-1006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Slx1 and Slx4 are subunits of a structure-specific DNA endonuclease that is found in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other eukaryotic species. It is thought to initiate recombination events or process recombination structures that occur during the replication of the tandem repeats of the ribosomal DNA (rDNA) locus. Here, we present evidence that fission yeast Slx1-Slx4 initiates homologous recombination events in the rDNA repeats that are processed by a mechanism that requires Rad22 (Rad52 homologue) but not Rhp51 (Rad51 homologue). Slx1 is required to generate approximately 50% of the spontaneous Rad22 DNA repair foci that occur in cycling cells. Most of these foci colocalize with the nucleolus, which contains the rDNA repeats. The increased fork pausing at the replication fork barriers in the rDNA repeats in a strain that lacks Rqh1 DNA helicase is further increased by expression of a dominant negative form of Slx1. These data suggest that Slx1-Slx4 cleaves paused replication forks in the rDNA, leading to Rad22-dependent homologous recombination that is used to maintain rDNA copy number.
Collapse
Affiliation(s)
- Stéphane Coulon
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
244
|
Abstract
Yeast has essentially two lifespans: a replicative lifespan (the number of daughters produced by each dividing mother cell) and a chronological lifespan (the capacity of stationary (G0) cultures to maintain viability over time). There is a tendency now to label every investigation that addresses these lifespans as ageing research. It is, though, analyses of the longest lifespans that will be most informative about the determinants of longevity and yield results most relevant to ageing in more complex systems. This review addresses these issues and describes the ongoing studies that are now attempting to address ageing in yeast cells of maximal replicative or chronological longevity.
Collapse
Affiliation(s)
- Peter W Piper
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
245
|
Mejía-Ramírez E, Sánchez-Gorostiaga A, Krimer DB, Schvartzman JB, Hernández P. The mating type switch-activating protein Sap1 Is required for replication fork arrest at the rRNA genes of fission yeast. Mol Cell Biol 2005; 25:8755-61. [PMID: 16166653 PMCID: PMC1265749 DOI: 10.1128/mcb.25.19.8755-8761.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Schizosaccharomyces pombe rRNA genes contain three replication fork barriers (RFB1-3) located in the nontranscribed spacer. RFB2 and RFB3 require binding of the transcription terminator factor Reb1p to two identical recognition sequences that colocalize with these barriers. RFB1, which is the strongest of the three barriers, functions in a Reb1p-independent manner, and cognate DNA-binding proteins for this barrier have not been identified yet. Here we functionally define RFB1 within a 78-bp sequence located near the 3' end of the rRNA coding region. A protein that specifically binds to this sequence was purified by affinity chromatography and identified as Sap1p by mass spectrometry. Specific binding to RFB1 was confirmed by using Sap1p expressed in Escherichia coli. Sap1p is essential for viability and is required for efficient mating-type switching. Mutations in RFB1 that precluded formation of the Sap1p-RFB1 complex systematically abolished replication barrier function, indicating that Sap1p is required for replication fork blockage at RFB1.
Collapse
Affiliation(s)
- Eva Mejía-Ramírez
- Departamento de Biología Celular y del Desarrollo, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
246
|
Di Felice F, Cioci F, Camilloni G. FOB1 affects DNA topoisomerase I in vivo cleavages in the enhancer region of the Saccharomyces cerevisiae ribosomal DNA locus. Nucleic Acids Res 2005; 33:6327-37. [PMID: 16269824 PMCID: PMC1277812 DOI: 10.1093/nar/gki950] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In Saccharomyces cerevisiae the FOB1 gene affects replication fork blocking activity at the replication fork block (RFB) sequences and promotes recombination events within the rDNA cluster. Using in vivo footprinting assays we mapped two in vivo Fob1p-binding sites, RFB1 and RFB3, located in the rDNA enhancer region and coincident with those previously reported to be in vitro binding sites. We previously provided evidences that DNA topoisomerase I is able to cleave two sites within this region. The results reported in this paper, indicate that the DNA topoisomerase I cleavage specific activity at the enhancer region is affected by the presence of Fob1p and independent of replication and transcription activities. We thus hypothesize that the binding to DNA of Fob1p itself may be the cause of the DNA topoisomerase I activity in the rDNA enhancer.
Collapse
Affiliation(s)
- Francesca Di Felice
- Dipartimento di Genetica e Biologia Molecolare, Università di Roma ‘La Sapienza’Rome, Italy
| | - Francesco Cioci
- Dipartimento di Genetica e Biologia Molecolare, Università di Roma ‘La Sapienza’Rome, Italy
| | - Giorgio Camilloni
- Dipartimento di Genetica e Biologia Molecolare, Università di Roma ‘La Sapienza’Rome, Italy
- Istituto di Biologia e Patologia Molecolari, CNRRome, Italy
- To whom correspondence should be addressed. Tel: +390649912808; Fax: +390649912500;
| |
Collapse
|
247
|
Krings G, Bastia D. Sap1p binds to Ter1 at the ribosomal DNA of Schizosaccharomyces pombe and causes polar replication fork arrest. J Biol Chem 2005; 280:39135-42. [PMID: 16195226 DOI: 10.1074/jbc.m508996200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic DNA replication forks stall at natural replication fork barriers or Ter sites located within the ribosomal DNA (rDNA) intergenic spacer regions during unperturbed DNA replication. The rDNA intergenic spacer of the fission yeast Schizosaccharomyces pombe contains four polar or orientation-specific fork barriers, Ter1-3 and RFP4. Whereas the transcription terminator Reb1p binds Ter2 and Ter3 to arrest replication, the factor(s) responsible for fork arrest at Ter1 and RFP4 remain unknown. Using linker scanning mutagenesis, we have narrowed down minimal Ter1 to 21 bp. Sequence analysis revealed the presence of a consensus binding motif for the essential switch-activating and genome-stabilizing protein Sap1p within this region. Recombinant Sap1p bound Ter1 with high specificity, and endogenous Ter1 binding activity contained Sap1p and comigrated with the Sap1p-Ter1 complex. Circular permutation analysis suggested that Sap1p bends Ter1 and SAS1 upon binding. Targeted mutational analysis revealed that Ter1 mutations, which prevent Sap1p binding in vitro, are defective for replication fork arrest in vivo, whereas mutations that do not affect Sap1p binding remain competent to arrest replication. The results confirm the hypothesis that the chromatin organizer Sap1p binds site-specifically to genomic regions other than SAS1 and support the notion that Sap1p binds the rDNA fork barrier Ter1 to cause polar replication fork arrest at this site but not at SAS1.
Collapse
Affiliation(s)
- Gregor Krings
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | |
Collapse
|
248
|
Diaz MR, Fell JW. Use of a suspension array for rapid identification of the varieties and genotypes of the Cryptococcus neoformans species complex. J Clin Microbiol 2005; 43:3662-72. [PMID: 16081894 PMCID: PMC1233893 DOI: 10.1128/jcm.43.8.3662-3672.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cryptococcus neoformans is an encapsulated fungal pathogen known to cause severe disease in immunocompromised patients. The disease, cryptococcosis, is mostly acquired by inhalation and can result in a chronic meningoencephalitis, which can be fatal. Here, we describe a molecular method to identify the varieties and genotypic groups within the C. neoformans species complex from culture-based assays. The method employs a novel flow cytometer with a dual laser system that allows the simultaneous detection of different target sequences in a multiplex and high-throughput format. The assay uses a liquid suspension hybridization format with specific oligonucleotide probes that are covalently bound to the surface of fluorescent color-coded microspheres. Biotinylated target amplicons, which hybridized to their complementary probe sequences, are quantified by the addition of the conjugate, streptavidin R-phycoerythrin. In this study we developed and validated eight probes derived from sequence analysis of the intergenic spacer region of the rRNA gene region. The assay proved to be specific and sensitive, allowed discrimination of a 1-bp mismatch with no apparent cross-reactivity, and detected 10(1) to 10(3) genome copies. The described protocol, which can be used directly with yeast cells or isolated DNA, can be undertaken in less than 1 h following PCR amplification and permits identification of species in a multiplex format. In addition to a multiplex capability, the assay allows the simultaneous detection of target sequences in a single reaction. The accuracy, speed, flexibility, and sensitivity of this technology are a few of the advantages that will make this assay useful for the diagnosis of human cryptococcal infections and other pathogenic diseases.
Collapse
Affiliation(s)
- Mara R Diaz
- Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA.
| | | |
Collapse
|
249
|
Kobayashi T, Ganley ARD. Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science 2005; 309:1581-4. [PMID: 16141077 DOI: 10.1126/science.1116102] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Organisms maintain ribosomal RNA gene repeats (rDNA) at stable copy numbers by recombination; the loss of repeats results in gene amplification. Here we report a mechanism of amplification regulation. We show that amplification is dependent on transcription from a noncoding bidirectional promoter (E-pro) within the rDNA spacer. E-pro transcription stimulates the dissociation of cohesin, a DNA binding protein complex that suppresses sister-chromatid-based changes in rDNA copy number. This transcription is regulated by the silencing gene, SIR2, and by copy number. Transcription-induced cohesin dissociation may be a general mechanism of recombination regulation.
Collapse
Affiliation(s)
- Takehiko Kobayashi
- National Institute for Basic Biology, SOKENDAI, School of Life Science, 38 Nishigonaka, Myodaijicho, Okazaki, 444-8585 Japan.
| | | |
Collapse
|
250
|
Lamming DW, Latorre-Esteves M, Medvedik O, Wong SN, Tsang FA, Wang C, Lin SJ, Sinclair DA. HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 2005; 309:1861-4. [PMID: 16051752 DOI: 10.1126/science.1113611] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Calorie restriction (CR) extends the life span of numerous species, from yeast to rodents. Yeast Sir2 is a nicotinamide adenine dinucleotide (NAD+-dependent histone deacetylase that has been proposed to mediate the effects of CR. However, this hypothesis has been challenged by the observation that CR can extend yeast life span in the absence of Sir2. Here, we show that Sir2-independent life-span extension is mediated by Hst2, a Sir2 homolog that promotes the stability of repetitive ribosomal DNA, the same mechanism by which Sir2 extends life span. These findings demonstrate that the maintenance of DNA stability is critical for yeast life-span extension by CR and suggest that, in higher organisms, multiple members of the Sir2 family may regulate life span in response to diet.
Collapse
Affiliation(s)
- Dudley W Lamming
- Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|