201
|
Ohtani N, Takahashi A, Mann DJ, Hara E. Cellular senescence: a double-edged sword in the fight against cancer. Exp Dermatol 2012; 21 Suppl 1:1-4. [PMID: 22626462 DOI: 10.1111/j.1600-0625.2012.01493.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Over the last few decades, it has become apparent that oncogenic proliferative signals are coupled to a variety of growth inhibitory responses, such as the induction of apoptotic cell death or irreversible cell cycle arrest known as 'cellular senescence'. Thus, both apoptosis and cellular senescence are thought to act as important tumor suppression mechanisms. Unlike apoptotic cells, however, senescent cells remain viable for long periods of time and accumulate with increasing age in various organs and tissues. Moreover, recent studies reveal that although cellular senescence initially functions as a tumor suppressive process, it may eventually exhibit tumor-promoting effects. Therefore, it is conceivable that accumulation of senescent cells during the ageing process in vivo may contribute to the age-related increase in cancer incidence. In this review, we provide an update and perspective on recent advances made in understanding the deleterious side effects of cellular senescence.
Collapse
Affiliation(s)
- Naoko Ohtani
- Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | | | | |
Collapse
|
202
|
Pleiotropic cellular functions of PARP1 in longevity and aging: genome maintenance meets inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:321653. [PMID: 23050038 PMCID: PMC3459245 DOI: 10.1155/2012/321653] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/25/2012] [Indexed: 02/06/2023]
Abstract
Aging is a multifactorial process that depends on diverse molecular and cellular mechanisms, such as genome maintenance and inflammation. The nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1), which catalyzes the synthesis of the biopolymer poly(ADP-ribose), exhibits an essential role in both processes. On the one hand, PARP1 serves as a genomic caretaker as it participates in chromatin remodelling, DNA repair, telomere maintenance, resolution of replicative stress, and cell cycle control. On the other hand, PARP1 acts as a mediator of inflammation due to its function as a regulator of NF-κB and other transcription factors and its potential to induce cell death. Consequently, PARP1 represents an interesting player in several aging mechanisms and is discussed as a longevity assurance factor on the one hand and an aging-promoting factor on the other hand. Here, we review the molecular mechanisms underlying the various roles of PARP1 in longevity and aging with special emphasis on cellular studies and we briefly discuss the results in the context of in vivo studies in mice and humans.
Collapse
|
203
|
Yao H, Rahman I. Role of histone deacetylase 2 in epigenetics and cellular senescence: implications in lung inflammaging and COPD. Am J Physiol Lung Cell Mol Physiol 2012; 303:L557-66. [PMID: 22842217 DOI: 10.1152/ajplung.00175.2012] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Histone deacetylase 2 (HDAC2) is a class I histone deacetylase that regulates various cellular processes, such as cell cycle, senescence, proliferation, differentiation, development, apoptosis, and glucocorticoid function in inhibiting inflammatory response. HDAC2 has been shown to protect against DNA damage response and cellular senescence/premature aging via an epigenetic mechanism in response to oxidative stress. These phenomena are observed in patients with chronic obstructive pulmonary disease (COPD). HDAC2 is posttranslationally modified by oxidative/carbonyl stress imposed by cigarette smoke and oxidants, leading to its reduction via an ubiquitination-proteasome dependent degradation in lungs of patients with COPD. In this perspective, we have discussed the role of HDAC2 posttranslational modifications and its role in regulation of inflammation, histone/DNA epigenetic modifications, DNA damage response, and cellular senescence, particularly in inflammaging, and during the development of COPD. We have also discussed the potential directions for future translational research avenues in modulating lung inflammaging and cellular senescence based on epigenetic chromatin modifications in diseases associated with increased oxidative stress.
Collapse
Affiliation(s)
- Hongwei Yao
- Dept. of Environmental Medicine, Lung Biology and Disease Program, Univ. of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
204
|
McCool KW, Miyamoto S. DNA damage-dependent NF-κB activation: NEMO turns nuclear signaling inside out. Immunol Rev 2012; 246:311-26. [PMID: 22435563 DOI: 10.1111/j.1600-065x.2012.01101.x] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The dimeric transcription factor nuclear factor κB (NF-κB) functions broadly in coordinating cellular responses during inflammation and immune reactions, and its importance in the pathogenesis of cancer is increasingly recognized. Many of the signal transduction pathways that trigger activation of cytoplasmic NF-κB in response to a broad array of immune and inflammatory stimuli have been elaborated in great detail. NF-κB can also be activated by DNA damage, though relatively less is known about the signal transduction mechanisms that link DNA damage in the nucleus with activation of NF-κB in the cytoplasm. Here, we focus on the conserved signaling pathway that has emerged that promotes NF-κB activation following DNA damage. Post-translational modification of NF-κB essential modulator (NEMO) plays a central role in linking the cellular DNA damage response to NF-κB via the ataxia telangiectasia mutated (ATM) kinase. Accumulating evidence suggests that DNA damage-dependent NF-κB activation may play significant biological roles, particularly during lymphocyte differentiation and progression of human malignancies.
Collapse
Affiliation(s)
- Kevin W McCool
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | |
Collapse
|
205
|
Abstract
In recent years, many groups have detected biomarkers of cellular senescence in a plethora of neoplastic lesions, in model systems, and humans. Indeed, we have come to realize that oncogene-induced senescence (OIS) acts as a potent barrier to oncogenic transformation, operating alongside cell death programs. We have begun to uncover some of its underlying principles, but many fundamental questions remain. In this perspective, some of the 'knowns' and 'unknowns' of OIS are discussed, with a focus on melanomagenesis.
Collapse
Affiliation(s)
- Daniel S Peeper
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
206
|
Perspectives on translational and therapeutic aspects of SIRT1 in inflammaging and senescence. Biochem Pharmacol 2012; 84:1332-9. [PMID: 22796566 DOI: 10.1016/j.bcp.2012.06.031] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 02/08/2023]
Abstract
Sirtuin1 (SIRT1), a type III protein deacetylase, is considered as a novel anti-aging protein involved in regulation of cellular senescence/aging and inflammation. SIRT1 level and activity are decreased during lung inflammaging caused by oxidative stress. The mechanism of SIRT1-mediated protection against inflammaging is associated with the regulation of inflammation, premature senescence, telomere attrition, senescence associated secretory phenotype, and DNA damage response. A variety of dietary polyphenols and pharmacological activators are shown to regulate SIRT1 so as to intervene the progression of type 2 diabetes, cancer, cardiovascular diseases, and chronic obstructive pulmonary disease associated with inflammaging. However, recent studies have shown the non-specific regulation of SIRT1 by the aforementioned pharmacological activators and polyphenols. In this perspective, we have briefly discussed the role of SIRT1 in regulation of cellular senescence and its associated secretory phenotype, DNA damage response, particularly in lung inflammaging and during the development of chronic obstructive pulmonary diseases. We have also discussed the potential directions for future translational therapeutic avenues for SIRT1 in modulating lung inflammaging associated with senescence in chronic lung diseases associated with increased oxidative stress.
Collapse
|
207
|
Ruan JW, Liao YC, Lua I, Li MH, Hsu CY, Chen JH. Human pituitary tumor-transforming gene 1 overexpression reinforces oncogene-induced senescence through CXCR2/p21 signaling in breast cancer cells. Breast Cancer Res 2012; 14:R106. [PMID: 22789011 PMCID: PMC3680924 DOI: 10.1186/bcr3226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/12/2012] [Indexed: 02/08/2023] Open
Abstract
Introduction hPTTG1 (human pituitary tumor-transforming gene 1) is an oncogene overexpressed in breast cancer and several other types of cancer. Increased hPTTG1 expression has been shown to be associated with poor patient outcomes in breast cancer. Although hPTTG1 overexpression plays important roles in promoting the proliferation, invasion, and metastasis of cancer cells, it also has been suggested to induce cellular senescence. Deciphering the mechanism by which hPTTG1 overexpression induces these contradictory actions in breast cancer cells is critical to our understanding of the role of hPTTG1 in breast cancer development. Methods MCF-10A and MCF-7 cells were used to identify the mechanism of hPTTG1-induced senescence. The interplay between hPTTG1 overexpression and chemokine C-X-C motif receptor 2 (CXCR2)/p21-dependent senescence in tumor growth and metastasis of MCF-7 cells was investigated by orthotopic transplantation of severe combined immunodeficiency (SCID) mice. Additionally, human invasive ductal carcinoma (IDC) tissue arrays were used to confirm the hPTTG1/CXCR2/p21 axis established in vitro. Results In this study, we investigated the mechanism of hPTTG1-induced senescence as well as its role in breast cancer progression and metastasis. Herein, we showed that hPTTG1 overexpression reinforced senescence through the CXCR2/p21 signaling. Furthermore, hPTTG1 overexpression activated NF-κB signaling to transactivate the expression of interleukin (IL)-8 and growth-regulated oncogene alpha (GROα) to execute CXCR2 signaling in MCF-7 cells. When CXCR2 expression was knocked down in hPTTG1-overexpressing MCF-7 cells, hPTTG1-induced senescence was abrogated by alleviating CXCR2-induced p21 expression. In a mouse model, CXCR2-mediated senescence limited hPTTG1-induced tumor growth and metastasis. Moreover, CXCR2 knockdown in hPTTG1-overexpressing MCF-7 tumors dramatically accelerated tumor growth and metastasis. Our in vitro and in vivo results demonstrated that hPTTG1 overexpression reinforces senescence through CXCR2 signaling, and the evasion of CXCR2/p21-dependent senescence was critical to hPTTG1 exerting its oncogenic potential. Interestingly, although CXCR2-dependent senescence restrained hPTTG1-induced tumor progression, when MCF-7 cells and hPTTG1-overexpressing MCF-7 cells were co-transplanted into the mammary fat pads of SCID mice, hPTTG1-overexpressing senescent cells created a metastasis-promoting microenvironment that promoted lung metastasis of the MCF-7 cells. Immunohistochemical analysis of human breast tumor samples also confirmed the importance of the hPTTG1/CXCR2 axis in promoting breast cancer metastasis. Conclusions Our findings provide novel molecular insights into hPTTG1-induced senescence and identify a novel mechanism by which hPTTG1 promotes metastasis by regulating the senescence-associated microenvironment.
Collapse
|
208
|
Bonet C, Giuliano S, Ohanna M, Bille K, Allegra M, Lacour JP, Bahadoran P, Rocchi S, Ballotti R, Bertolotto C. Aurora B is regulated by the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway and is a valuable potential target in melanoma cells. J Biol Chem 2012; 287:29887-98. [PMID: 22767597 DOI: 10.1074/jbc.m112.371682] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Metastatic melanoma is a deadly skin cancer and is resistant to almost all existing treatment. Vemurafenib, which targets the BRAFV600E mutation, is one of the drugs that improves patient outcome, but the patients next develop secondary resistance and a return to cancer. Thus, new therapeutic strategies are needed to treat melanomas and to increase the duration of v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitor response. The ERK pathway controls cell proliferation, and Aurora B plays a pivotal role in cell division. Here, we confirm that Aurora B is highly expressed in metastatic melanoma cells and that Aurora B inhibition triggers both senescence-like phenotypes and cell death in melanoma cells. Furthermore, we show that the BRAF/ERK axis controls Aurora B expression at the transcriptional level, likely through the transcription factor FOXM1. Our results provide insight into the mechanism of Aurora B regulation and the first molecular basis of Aurora B regulation in melanoma cells. The inhibition of Aurora B expression that we observed in vemurafenib-sensitive melanoma cells was rescued in cells resistant to this drug. Consistently, these latter cells remain sensitive to the effect of the Aurora B inhibitor. Noteworthy, wild-type BRAF melanoma cells are also sensitive to Aurora B inhibition. Collectively, our findings, showing that Aurora B is a potential target in melanoma cells, particularly in those vemurafenib-resistant, may open new avenues to improve the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Caroline Bonet
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Equipe 1, Biologie et Pathologies des Mélanocytes de la Pigmentation Cutanée au Mélanome, Nice F-06204, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Jin L, Zhang Y, Li H, Yao L, Fu D, Yao X, Xu LX, Hu X, Hu G. Differential secretome analysis reveals CST6 as a suppressor of breast cancer bone metastasis. Cell Res 2012; 22:1356-73. [PMID: 22688893 DOI: 10.1038/cr.2012.90] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bone metastasis is a frequent complication of breast cancer and a common cause of morbidity and mortality from the disease. During metastasis secreted proteins play crucial roles in the interactions between cancer cells and host stroma. To characterize the secreted proteins that are associated with breast cancer bone metastasis, we preformed a label-free proteomic analysis to compare the secretomes of four MDA-MB-231 (MDA231) derivative cell lines with varied capacities of bone metastasis. A total of 128 proteins were found to be consistently up-/down-regulated in the conditioned medium of bone-tropic cancer cells. The enriched molecular functions of the altered proteins included receptor binding and peptidase inhibition. Through additional transcriptomic analyses of breast cancer cells, we selected cystatin E/M (CST6), a cysteine protease inhibitor down-regulated in bone-metastatic cells, for further functional studies. Our results showed that CST6 suppressed the proliferation, colony formation, migration and invasion of breast cancer cells. The suppressive function against cancer cell motility was carried out by cancer cell-derived soluble CST6. More importantly, ectopic expression of CST6 in cancer cells rescued mice from overt osteolytic metastasis and deaths in the animal study, while CST6 knockdown markedly enhanced cancer cell bone metastasis and shortened animal survival. Overall, our study provided a systemic secretome analysis of breast cancer bone tropism and established secreted CST6 as a bona fide suppressor of breast cancer osteolytic metastasis.
Collapse
Affiliation(s)
- Lei Jin
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Rd, Shanghai 200025, China
| | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Sun Y, Nelson PS. Molecular pathways: involving microenvironment damage responses in cancer therapy resistance. Clin Cancer Res 2012; 18:4019-25. [PMID: 22619305 DOI: 10.1158/1078-0432.ccr-11-0768] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The armamentarium of therapeutics used to treat cancer patients relies heavily on ionizing radiation and chemotherapeutic drugs that severely damage DNA. Tumor cells' responses to such treatments are heavily influenced by their environment: Physical contacts with structural elements such as the extracellular matrix, associations with resident and transitory benign cells such as fibroblasts and leukocytes, and interactions with numerous soluble endocrine and paracrine-acting factors all modulate tumor-cell behavior. Of importance, this complex tumor microenvironment is not static and dynamically responds to a variety of stimuli. Here, we describe emerging data indicating that genotoxic cancer treatments activate highly conserved damage response programs in benign constituents of the tumor microenvironment. These damage signals, transmitted via master regulators such as NF-κB, culminate in a powerful and diverse secretory program that generates a proangiogenic, proinflammatory microenvironment. Constituents of this program include interleukin (IL)-6, IL-8, hepatocyte growth factor, amphiregulin, matrix metalloproteinases, and other factors that have been shown to promote adverse tumor-cell phenotypes, such as enhanced resistance to treatment and rapid tumor repopulation. A detailed understanding of these survival signals induced in the context of genotoxic stress provides a platform for developing combinatorial treatment strategies that take into account malignant cells, the tumor microenvironment, and the dynamics exerted by the treatment itself.
Collapse
Affiliation(s)
- Yu Sun
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 91809, USA
| | | |
Collapse
|
211
|
Is the induction of tumor cell senescence the key to a good irradiated tumor vaccine? Mol Ther 2012; 20:884-6. [PMID: 22549805 DOI: 10.1038/mt.2012.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
212
|
Luo X, Kraus WL. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 2012; 26:417-32. [PMID: 22391446 DOI: 10.1101/gad.183509.111] [Citation(s) in RCA: 586] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cellular stress responses are mediated through a series of regulatory processes that occur at the genomic, transcriptional, post-transcriptional, translational, and post-translational levels. These responses require a complex network of sensors and effectors from multiple signaling pathways, including the abundant and ubiquitous nuclear enzyme poly(ADP-ribose) (PAR) polymerase-1 (PARP-1). PARP-1 functions at the center of cellular stress responses, where it processes diverse signals and, in response, directs cells to specific fates (e.g., DNA repair vs. cell death) based on the type and strength of the stress stimulus. Many of PARP-1's functions in stress response pathways are mediated by its regulated synthesis of PAR, a negatively charged polymer, using NAD(+) as a donor of ADP-ribose units. Thus, PARP-1's functions are intimately tied to nuclear NAD(+) metabolism and the broader metabolic profile of the cell. Recent studies in cell and animal models have highlighted the roles of PARP-1 and PAR in the response to a wide variety of extrinsic and intrinsic stress signals, including those initiated by oxidative, nitrosative, genotoxic, oncogenic, thermal, inflammatory, and metabolic stresses. These responses underlie pathological conditions, including cancer, inflammation-related diseases, and metabolic dysregulation. The development of PARP inhibitors is being pursued as a therapeutic approach to these conditions. In this review, we highlight the newest findings about PARP-1's role in stress responses in the context of the historical data.
Collapse
Affiliation(s)
- Xin Luo
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
213
|
Abstract
Cellular senescence is a program of irreversible cell cycle arrest that cells undergo in response to a variety of intrinsic and extrinsic stimuli including progressive shortening of telomeres, changes in telomeric structure or other forms of genotoxic and non-genotoxic stress. The role of nuclear factor-κB in cellular senescence is controversial, as it has been associated with both proliferation and tumour progression, and also with growth arrest and ageing. This research perspective focuses on the evidence for a functional relationship between NF-κB and senescence, and how disruption of the NF-κB pathway can lead to its bypass.
Collapse
Affiliation(s)
- Simon Vaughan
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | | |
Collapse
|
214
|
Radiation-inducible immunotherapy for cancer: senescent tumor cells as a cancer vaccine. Mol Ther 2012; 20:1046-55. [PMID: 22334019 DOI: 10.1038/mt.2012.19] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Radiotherapy offers an effective treatment for advanced cancer but local and distant failures remain a significant challenge. Here, we treated melanoma and pancreatic carcinoma in syngeneic mice with ionizing radiation (IR) combined with the poly(ADP-ribose) polymerase inhibitor (PARPi) veliparib to inhibit DNA repair and promote accelerated senescence. Based on prior work implicating cytotoxic T lymphocytes (CTLs) as key mediators of radiation effects, we discovered that senescent tumor cells induced by radiation and veliparib express immunostimulatory cytokines to activate CTLs that mediate an effective antitumor response. When these senescent tumor cells were injected into tumor-bearing mice, an antitumor CTL response was induced which potentiated the effects of radiation, resulting in elimination of established tumors. Applied to human cancers, radiation-inducible immunotherapy may enhance radiotherapy responses to prevent local recurrence and distant metastasis.
Collapse
|
215
|
Blagosklonny MV. Molecular damage in cancer: an argument for mTOR-driven aging. Aging (Albany NY) 2011; 3:1130-41. [PMID: 22246147 PMCID: PMC3273893 DOI: 10.18632/aging.100422] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 12/31/2011] [Indexed: 12/12/2022]
Abstract
Despite common belief, accumulation of molecular damage does not play a key role in aging. Still, cancer (an age-related disease) is initiated by molecular damage. Cancer and aging share a lot in common including the activation of the TOR pathway. But the role of molecular damage distinguishes cancer and aging. Furthermore, an analysis of the role of both damage and aging in cancer argues against "a decline, caused by accumulation of molecular damage" as a cause of aging. I also discuss how random molecular damage, via rounds of multiplication and selection, brings about non-random hallmarks of cancer.
Collapse
Affiliation(s)
- Mikhail V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
216
|
Simboeck E, Ribeiro JD, Teichmann S, Di Croce L. Epigenetics and senescence: Learning from the INK4-ARF locus. Biochem Pharmacol 2011; 82:1361-70. [DOI: 10.1016/j.bcp.2011.07.084] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/14/2011] [Accepted: 07/15/2011] [Indexed: 11/30/2022]
|
217
|
Sen T, Sen N, Huang Y, Sinha D, Luo ZG, Ratovitski EA, Sidransky D. Tumor protein p63/nuclear factor κB feedback loop in regulation of cell death. J Biol Chem 2011; 286:43204-13. [PMID: 22020940 DOI: 10.1074/jbc.m111.257105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor protein (TP)-p53 family members often play proapoptotic roles, whereas nuclear factor κB (NF-κB) functions as a proapoptotic and antiapoptotic regulator depending on the cellular environment. We previously showed that the NF-κB activation leads to the reduction of the TP63 isoform, ΔNp63α, thereby rendering the cells susceptible to cell death upon DNA damage. However, the functional relationship between TP63 isotypes and NF-κB is poorly understood. Here, we report that the TAp63 regulates NF-κB transcription and protein stability subsequently leading to the cell death phenotype. We found that TAp63α induced the expression of the p65 subunit of NF-κB (RELA) and target genes involved in cell cycle arrest or apoptosis, thereby triggering cell death pathways in MCF10A cells. RELA was shown to concomitantly modulate specific cell survival pathways, making it indispensable for the TAp63α-dependent regulation of cell death. We showed that TAp63α and RELA formed protein complexes resulted in their mutual stabilization and inhibition of the RELA ubiquitination. Finally, we showed that TAp63α directly induced RelA transcription by binding to and activating of its promoter and, in turn, leading to activation of the NF-κB-dependent cell death genes. Overall, our data defined the regulatory feedback loop between TAp63α and NF-κB involved in the activation of cell death process of cancer cells.
Collapse
Affiliation(s)
- Tanusree Sen
- Departments of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | |
Collapse
|
218
|
Opposing roles of NF-κB in anti-cancer treatment outcome unveiled by cross-species investigations. Genes Dev 2011; 25:2137-46. [PMID: 21979374 DOI: 10.1101/gad.17620611] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In malignancies, enhanced nuclear factor-κB (NF-κB) activity is largely viewed as an oncogenic property that also confers resistance to chemotherapy. Recently, NF-κB has been postulated to participate in a senescence-associated and possibly senescence-reinforcing cytokine response, thereby suggesting a tumor-restraining role for NF-κB. Using a mouse lymphoma model and analyzing transcriptome and clinical data from lymphoma patients, we show here that therapy-induced senescence presents with and depends on active NF-κB signaling, whereas NF-κB simultaneously promotes resistance to apoptosis. Further characterization and genetic engineering of primary mouse lymphomas according to distinct NF-κB-related oncogenic networks reminiscent of diffuse large B-cell lymphoma (DLBCL) subtypes guided us to identify Bcl2-overexpressing germinal center B-cell-like (GCB) DLBCL as a clinically relevant subgroup with significantly superior outcome when NF-κB is hyperactive. Our data illustrate the power of cross-species investigations to functionally test genetic mechanisms in transgenic mouse tumors that recapitulate distinct features of the corresponding human entity, and to ultimately use the mouse model-derived genetic information to redefine novel, clinically relevant patient subcohorts.
Collapse
|