201
|
Sreenivasulu N, Sopory SK, Kavi Kishor PB. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 2006; 388:1-13. [PMID: 17134853 DOI: 10.1016/j.gene.2006.10.009] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 10/08/2006] [Accepted: 10/12/2006] [Indexed: 01/01/2023]
Abstract
Environmental constraints that include abiotic stress factors such as salt, drought, cold and extreme temperatures severely limit crop productivity. Improvement of crop plants with traits that confer tolerance to these stresses was practiced using traditional and modern breeding methods. Molecular breeding and genetic engineering contributed substantially to our understanding of the complexity of stress response. Mechanisms that operate signal perception, transduction and downstream regulatory factors are now being examined and an understanding of cellular pathways involved in abiotic stress responses provide valuable information on such responses. This review presents genomic-assisted methods which have helped to reveal complex regulatory networks controlling abiotic stress tolerance mechanisms by high-throughput expression profiling and gene inactivation techniques. Further, an account of stress-inducible regulatory genes which have been transferred into crop plants to enhance stress tolerance is discussed as possible modes of integrating information gained from functional genomics into knowledge-based breeding programs. In addition, we envision an integrative genomic and breeding approach to reveal developmental programs that enhance yield stability and improve grain quality under unfavorable environmental conditions of abiotic stresses.
Collapse
Affiliation(s)
- N Sreenivasulu
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany.
| | | | | |
Collapse
|
202
|
Dong CH, Hu X, Tang W, Zheng X, Kim YS, Lee BH, Zhu JK. A putative Arabidopsis nucleoporin, AtNUP160, is critical for RNA export and required for plant tolerance to cold stress. Mol Cell Biol 2006; 26:9533-43. [PMID: 17030626 PMCID: PMC1698518 DOI: 10.1128/mcb.01063-06] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study the genetic control of plant responses to cold stress, Arabidopsis thaliana mutants were isolated by a screen for mutations that impair cold-induced transcription of the CBF3-LUC reporter gene. We report here the characterization and cloning of a mutated gene, atnup160-1, which causes reduced CBF3-LUC induction under cold stress. atnup160-1 mutant plants display altered cold-responsive gene expression and are sensitive to chilling stress and defective in acquired freezing tolerance. AtNUP160 was isolated through positional cloning and shown to encode a putative homolog of the animal nucleoporin Nup160. In addition to the impaired expression of CBF genes, microarray analysis revealed that a number of other genes important for plant cold tolerance were also affected in the mutants. The atnup160 mutants flower early and show retarded seedling growth, especially at low temperatures. AtNUP160 protein is localized at the nuclear rim, and poly(A)-mRNA in situ hybridization shows that mRNA export is defective in the atnup160-1 mutant plants. Our study suggests that Arabidopsis AtNUP160 is critical for the nucleocytoplasmic transport of mRNAs and that it plays important roles in plant growth and flowering time regulation and is required for cold stress tolerance.
Collapse
Affiliation(s)
- Chun-Hai Dong
- Institute for Integrative Genome Biology and Department of Botany and Plant Science, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | | | |
Collapse
|
203
|
Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 2006; 281:37636-45. [PMID: 17015446 DOI: 10.1074/jbc.m605895200] [Citation(s) in RCA: 537] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cold temperatures trigger the expression of the CBF family of transcription factors, which in turn activate many downstream genes that confer freezing tolerance to plants. It has been shown previously that the cold regulation of CBF3 involves an upstream bHLH-type transcription factor, ICE1. ICE1 binds to the Myc recognition sequences in the CBF3 promoter. Apart from Myc recognition sequences, CBF promoters also have Myb recognition sequences. We report here that the Arabidopsis MYB15 is involved in cold-regulation of CBF genes and in the development of freezing tolerance. The MYB15 gene transcript is up-regulated by cold stress. The MYB15 protein interacts with ICE1 and binds to Myb recognition sequences in the promoters of CBF genes. Overexpression of MYB15 results in reduced expression of CBF genes whereas its loss-of-function leads to increased expression of CBF genes in the cold. The myb15 mutant plants show increased tolerance to freezing stress whereas its overexpression reduces freezing tolerance. Our results suggest that MYB15 is part of a complex network of transcription factors controlling the expression of CBFs and other genes in response to cold stress.
Collapse
Affiliation(s)
- Manu Agarwal
- Institute for Integrative Genome Biology and Department of Botany & Plant Science, University of California, Riverside, California 92521, USA
| | | | | | | | | | | | | |
Collapse
|
204
|
Hannah MA, Wiese D, Freund S, Fiehn O, Heyer AG, Hincha DK. Natural genetic variation of freezing tolerance in Arabidopsis. PLANT PHYSIOLOGY 2006; 142:98-112. [PMID: 16844837 PMCID: PMC1557609 DOI: 10.1104/pp.106.081141] [Citation(s) in RCA: 272] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Low temperature is a primary determinant of plant growth and survival. Using accessions of Arabidopsis (Arabidopsis thaliana) originating from Scandinavia to the Cape Verde Islands, we show that freezing tolerance of natural accessions correlates with habitat winter temperatures, identifying low temperature as an important selective pressure for Arabidopsis. Combined metabolite and transcript profiling show that during cold exposure, global changes of transcripts, but not of metabolites, correlate with the ability of Arabidopsis to cold acclimate. There are, however, metabolites and transcripts, including several transcription factors, that correlate with freezing tolerance, indicating regulatory pathways that may be of primary importance for this trait. These data identify that enhanced freezing tolerance is associated with the down-regulation of photosynthesis and hormonal responses and the induction of flavonoid metabolism, provide evidence for naturally increased nonacclimated freezing tolerance due to the constitutive activation of the C-repeat binding factors pathway, and identify candidate transcriptional regulators that correlate with freezing tolerance.
Collapse
Affiliation(s)
- Matthew A Hannah
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14424 Potsdam, Germany
| | | | | | | | | | | |
Collapse
|
205
|
Benedict C, Geisler M, Trygg J, Huner N, Hurry V. Consensus by democracy. Using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in Arabidopsis. PLANT PHYSIOLOGY 2006; 141:1219-32. [PMID: 16896234 PMCID: PMC1533918 DOI: 10.1104/pp.106.083527] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The whole-genome response of Arabidopsis (Arabidopsis thaliana) exposed to different types and durations of abiotic stress has now been described by a wealth of publicly available microarray data. When combined with studies of how gene expression is affected in mutant and transgenic Arabidopsis with altered ability to transduce the low temperature signal, these data can be used to test the interactions between various low temperature-associated transcription factors and their regulons. We quantized a collection of Affymetrix microarray data so that each gene in a particular regulon could vote on whether a cis-element found in its promoter conferred induction (+1), repression (-1), or no transcriptional change (0) during cold stress. By statistically comparing these election results with the voting behavior of all genes on the same gene chip, we verified the bioactivity of novel cis-elements and defined whether they were inductive or repressive. Using in silico mutagenesis we identified functional binding consensus variants for the transcription factors studied. Our results suggest that the previously identified ICEr1 (induction of CBF expression region 1) consensus does not correlate with cold gene induction, while the ICEr3/ICEr4 consensuses identified using our algorithms are present in regulons of genes that were induced coordinate with observed ICE1 transcript accumulation and temporally preceding genes containing the dehydration response element. Statistical analysis of overlap and cis-element enrichment in the ICE1, CBF2, ZAT12, HOS9, and PHYA regulons enabled us to construct a regulatory network supported by multiple lines of evidence that can be used for future hypothesis testing.
Collapse
Affiliation(s)
- Catherine Benedict
- Umeå Plant Science Centre, Department of Plant Physiology , Umeå University, S-901 87 Umea, Sweden.
| | | | | | | | | |
Collapse
|
206
|
Sahi C, Singh A, Kumar K, Blumwald E, Grover A. Salt stress response in rice: genetics, molecular biology, and comparative genomics. Funct Integr Genomics 2006; 6:263-84. [PMID: 16819623 DOI: 10.1007/s10142-006-0032-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 04/19/2006] [Accepted: 04/23/2006] [Indexed: 01/27/2023]
Abstract
Significant progress has been made in unraveling the molecular biology of rice in the past two decades. Today, rice stands as a forerunner amongst the cereals in terms of details known on its genetics. Evidence show that salt tolerance in plants is a quantitative trait. Several traditional cultivars, landraces, and wild types of rice like Pokkali, CSR types, and Porteresia coarctata appear as promising materials for donation of requisite salt tolerance genes. A large number of quantitative trait loci (QTL) have been identified for salt tolerance in rice through generation of recombinant inbred lines and are being mapped using different types of DNA markers. Salt-tolerant transgenic rice plants have been produced using a host of different genes and transcript profiling by micro- and macroarray-based methods has opened the gates for the discovery of novel salt stress mechanisms in rice, and comparative genomics is turning out to be a critical input in this respect. In this paper, we present a comprehensive review of the genetic, molecular biology, and comparative genomics effort towards the generation of salt-tolerant rice. From the data on comprehensive transcript expression profiling of clones representing salt-stress-associated genes of rice, it is shown that transcriptional and translational machineries are important determinants in controlling salt stress response, and gene expression response in tolerant and susceptible rice plants differs mainly in quantitative terms.
Collapse
Affiliation(s)
- Chandan Sahi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | | | | | | | | |
Collapse
|
207
|
Lee BH, Kapoor A, Zhu J, Zhu JK. STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. THE PLANT CELL 2006; 18:1736-49. [PMID: 16751345 PMCID: PMC1488911 DOI: 10.1105/tpc.106.042184] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In plants, many gene transcripts are very unstable, which is important for the tight control of their temporal and spatial expression patterns. To identify cellular factors controlling the stability of unstable mRNAs in plants, we used luciferase imaging in Arabidopsis thaliana to isolate a recessive mutant, stabilized1-1 (sta1-1), with enhanced stability of the normally unstable luciferase transcript. The sta1-1 mutation also causes the stabilization of some endogenous gene transcripts and has a range of developmental and stress response phenotypes. STA1 encodes a nuclear protein similar to the human U5 small ribonucleoprotein-associated 102-kD protein and to the yeast pre-mRNA splicing factors Prp1p and Prp6p. STA1 expression is upregulated by cold stress, and the sta1-1 mutant is defective in the splicing of the cold-induced COR15A gene. Our results show that STA1 is a pre-mRNA splicing factor required not only for splicing but also for the turnover of unstable transcripts and that it has an important role in plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Byeong-ha Lee
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
208
|
Zeng LR, Vega-Sánchez ME, Zhu T, Wang GL. Ubiquitination-mediated protein degradation and modification: an emerging theme in plant-microbe interactions. Cell Res 2006; 16:413-26. [PMID: 16699537 DOI: 10.1038/sj.cr.7310053] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Post-translational modification is central to protein stability and to the modulation of protein activity. Various types of protein modification, such as phosphorylation, methylation, acetylation, myristoylation, glycosylation, and ubiquitination, have been reported. Among them, ubiquitination distinguishes itself from others in that most of the ubiquitinated proteins are targeted to the 26S proteasome for degradation. The ubiquitin/26S proteasome system constitutes the major protein degradation pathway in the cell. In recent years, the importance of the ubiquitination machinery in the control of numerous eukaryotic cellular functions has been increasingly appreciated. Increasing number of E3 ubiquitin ligases and their substrates, including a variety of essential cellular regulators have been identified. Studies in the past several years have revealed that the ubiquitination system is important for a broad range of plant developmental processes and responses to abiotic and biotic stresses. This review discusses recent advances in the functional analysis of ubiquitination-associated proteins from plants and pathogens that play important roles in plant-microbe interactions.
Collapse
Affiliation(s)
- Li-Rong Zeng
- Department of Plant Pathology and Plant Molecular Biology and Biotechnology Program, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
209
|
Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci U S A 2006; 103:8281-6. [PMID: 16702557 PMCID: PMC1472463 DOI: 10.1073/pnas.0602874103] [Citation(s) in RCA: 447] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant responses to cold stress are mediated by a transcriptional cascade, in which the transcription factor ICE1 and possibly related proteins activate the expression of C-repeat (CRT)-binding factors (CBFs), leading to the transcription of downstream effector genes. The variant RING finger protein high expression of osmotically responsive gene (HOS)1 was identified genetically as a negative regulator of cold responses. We present evidence here that HOS1 is an E3 ligase required for the ubiquitination of ICE1. HOS1 physically interacts with ICE1 and mediates the ubiquitination of ICE1 both in vitro and in vivo. We found that cold induces the degradation of ICE1 in plants, and this degradation requires HOS1. Consistent with enhanced cold-responsive gene expression in loss-of-function hos1 mutant plants, overexpression of HOS1 represses the expression of CBFs and their downstream genes and confers increased sensitivity to freezing stress. Our results indicate that cold stress responses in Arabidopsis are attenuated by a ubiquitination/proteasome pathway in which HOS1 mediates the degradation of the ICE1 protein.
Collapse
Affiliation(s)
- Chun-Hai Dong
- *Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521; and
| | - Manu Agarwal
- *Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521; and
| | - Yiyue Zhang
- Institute of Genetics and Development, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- Institute of Genetics and Development, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Kang Zhu
- *Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
210
|
Sheldon CC, Finnegan EJ, Dennis ES, Peacock WJ. Quantitative effects of vernalization on FLC and SOC1 expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:871-83. [PMID: 16507079 DOI: 10.1111/j.1365-313x.2006.02652.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Prolonged exposure to cold results in early flowering in Arabidopsis winter annual ecotypes, with longer exposures resulting in a greater promotion of flowering than shorter exposures. The promotion of flowering is mediated through an epigenetic down-regulation of the floral repressor FLOWERING LOCUS C (FLC). We present results that provide an insight into the quantitative regulation of FLC by vernalization. Analysis of the effect of seed or plant cold treatment on FLC expression indicates that the time-dependent nature of vernalization on FLC expression is mediated through the extent of the initial repression of FLC and not by affecting the ability to maintain the repressed state. In the over-expression mutant flc-11, the time-dependent repression of FLC correlates with the proportional deacetylation of histone H3. Our results indicate that sequences within intron 1 and the activities of both VERNALIZATION1 (VRN1) and VERNALIZATION2 (VRN2) are required for efficient establishment of FLC repression; however, VRN1 and VRN2 are not required for maintenance of the repressed state during growth after the cold exposure. SUPPRESSOR OF OVER-EXPRESSION OF CO 1 (SOC1), a downstream target of FLC, is quantitatively induced by vernalization in a reciprocal manner to FLC. In addition, we show that SOC1 undergoes an acute induction by both short and long cold exposures.
Collapse
Affiliation(s)
- Candice C Sheldon
- Commonwealth Scientific and Industrial Research Organization, Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.
| | | | | | | |
Collapse
|
211
|
Zhao TJ, Sun S, Liu Y, Liu JM, Liu Q, Yan YB, Zhou HM. Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and trans-inactive DRE binding factors in Brassica napus. J Biol Chem 2006; 281:10752-9. [PMID: 16497677 DOI: 10.1074/jbc.m510535200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DREB1/C-repeat binding factor (CBF) is a plant-specific family of transcription factors and plays a crucial role in freeze tolerance. In the present work, two groups of drought-responsive element binding factor (DREB)-like genes were isolated from Brassica napus, named Group I and Group II. The two groups of genes were both induced by low temperature, but the expression of Group I preceded that of Group II. The Group I DREBs could specifically bind with the DRE cis-acting element and activate the expression of downstream genes, but Group II factors were trans-inactive although they still had the ability to bind with DRE, which was confirmed by electrophoretic mobility shift assay. Fluorescence quenching assays indicated that the DRE binding ability of the two groups was similar. Co-expression of Group II could depress the trans-activation activity of Group I DREB in a concentration-dependent manner. These results strongly suggested that the trans-active Group I DREBs were expressed at the early stage of cold stress to open the DRE-mediated signaling pathway in cold stress, whereas the trans-inactive Group II DREBs were expressed at the later stage to close the signal pathway in a competitive manner. The results herein provide a new insight into the regulation mechanisms of the DRE-mediated signaling pathway in response to cold stress.
Collapse
Affiliation(s)
- Tong-Jin Zhao
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
212
|
Chinnusamy V, Zhu J, Zhu JK. Gene regulation during cold acclimation in plants. PHYSIOLOGIA PLANTARUM 2006; 126:52-61. [PMID: 0 DOI: 10.1111/j.1399-3054.2006.00596.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
213
|
Koiwa H, Bressan RA, Hasegawa PM. Identification of plant stress-responsive determinants in Arabidopsis by large-scale forward genetic screens. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:1119-28. [PMID: 16513815 DOI: 10.1093/jxb/erj093] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
All plants sense and adapt to adverse environmental conditions, however, crop plants exhibit less genetic diversity for abiotic stress tolerance than do wild relatives indicating that a genetic basis exists for stress adaptability. Model plant genetic systems and the plethora of molecular genetic resources that are currently available are greatly enhancing our ability to identify abiotic stress-responsive genetic determinants. Forward genetic screens of T-DNA mutagenized Arabidopsis thaliana populations in the genetic background of ecotypes C24(RD29a-LUC) and Col-0 gl1 sos3-1 were carried out to begin an exhaustive search for such determinants. The C24(RD29a-LUC) screens identified mutants with altered salt/osmotic stress sensitivity or mutants with altered expression of the salt/osmotic/cold/ABA-responsive RD29a gene. Also, mutations that alter the NaCl sensitivity of sos3-1 were screened for potential genetic suppressors or enhancers of salt-stress responses mediated by SOS3. In total, more than 250 000 independent insertion lines were screened and greater than 200 individual mutants that exhibited altered stress/ABA responses were recovered. Although several of these mutants have been reported, most have not yet been studied in detail. Notable examples include novel alleles of SOS1 and mutations to genes encoding the STT3a subunit of the oligosaccharyltransferase, syntaxin, RNA polymerase II CTD phosphatases, transcription factors, ABA biosynthetic enzyme, Na+ transporter HKT1, and SUMO E3 ligase. The stress-specific phenotypes of mutations to genes that are involved in many basic cellular functions provide indication of the wide range of control mechanisms in cellular homeostasis that are involved in stress adaptation.
Collapse
Affiliation(s)
- Hisashi Koiwa
- Department of Horticultural Science and Vegetable and Fruit Improvement Center, 2133 Texas A&M University, College Station, TX 77843-2133, USA.
| | | | | |
Collapse
|
214
|
Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. ANNUAL REVIEW OF PLANT BIOLOGY 2006; 57:781-803. [PMID: 16669782 DOI: 10.1146/annurev.arplant.57.032905.105444] [Citation(s) in RCA: 1635] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant growth and productivity are greatly affected by environmental stresses such as drought, high salinity, and low temperature. Expression of a variety of genes is induced by these stresses in various plants. The products of these genes function not only in stress tolerance but also in stress response. In the signal transduction network from perception of stress signals to stress-responsive gene expression, various transcription factors and cis-acting elements in the stress-responsive promoters function for plant adaptation to environmental stresses. Recent progress has been made in analyzing the complex cascades of gene expression in drought and cold stress responses, especially in identifying specificity and cross talk in stress signaling. In this review article, we highlight transcriptional regulation of gene expression in response to drought and cold stresses, with particular emphasis on the role of transcription factors and cis-acting elements in stress-inducible promoters.
Collapse
Affiliation(s)
- Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan.
| | | |
Collapse
|
215
|
Mahajan S, Tuteja N. Cold, salinity and drought stresses: An overview. Arch Biochem Biophys 2005; 444:139-58. [PMID: 16309626 DOI: 10.1016/j.abb.2005.10.018] [Citation(s) in RCA: 1008] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 10/14/2005] [Accepted: 10/16/2005] [Indexed: 11/24/2022]
Abstract
World population is increasing at an alarming rate and is expected to reach about six billion by the end of year 2050. On the other hand food productivity is decreasing due to the effect of various abiotic stresses; therefore minimizing these losses is a major area of concern for all nations to cope with the increasing food requirements. Cold, salinity and drought are among the major stresses, which adversely affect plants growth and productivity; hence it is important to develop stress tolerant crops. In general, low temperature mainly results in mechanical constraint, whereas salinity and drought exerts its malicious effect mainly by disrupting the ionic and osmotic equilibrium of the cell. It is now well known that the stress signal is first perceived at the membrane level by the receptors and then transduced in the cell to switch on the stress responsive genes for mediating stress tolerance. Understanding the mechanism of stress tolerance along with a plethora of genes involved in stress signaling network is important for crop improvement. Recently, some genes of calcium-signaling and nucleic acid pathways have been reported to be up-regulated in response to both cold and salinity stresses indicating the presence of cross talk between these pathways. In this review we have emphasized on various aspects of cold, salinity and drought stresses. Various factors pertaining to cold acclimation, promoter elements, and role of transcription factors in stress signaling pathway have been described. The role of calcium as an important signaling molecule in response to various stress signals has also been covered. In each of these stresses we have tried to address the issues, which significantly affect the gene expression in relation to plant physiology.
Collapse
Affiliation(s)
- Shilpi Mahajan
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | |
Collapse
|
216
|
Alonso-Blanco C, Gomez-Mena C, Llorente F, Koornneef M, Salinas J, Martínez-Zapater JM. Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis. PLANT PHYSIOLOGY 2005; 139:1304-12. [PMID: 16244146 PMCID: PMC1283767 DOI: 10.1104/pp.105.068510] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Natural variation for freezing tolerance is a major component of adaptation and geographic distribution of plant species. However, little is known about the genes and molecular mechanisms that determine its naturally occurring diversity. We have analyzed the intraspecific freezing tolerance variation existent between two geographically distant accessions of Arabidopsis (Arabidopsis thaliana), Cape Verde Islands (Cvi) and Landsberg erecta (Ler). They differed in their freezing tolerance before and after cold acclimation, as well as in the cold acclimation response in relation to photoperiod conditions. Using a quantitative genetic approach, we found that freezing tolerance differences after cold acclimation were determined by seven quantitative trait loci (QTL), named FREEZING TOLERANCE QTL 1 (FTQ1) to FTQ7. FTQ4 was the QTL with the largest effect detected in two photoperiod conditions, while five other FTQ loci behaved as photoperiod dependent. FTQ4 colocated with the tandem repeated genes C-REPEAT BINDING FACTOR 1 (CBF1), CBF2, and CBF3, which encode transcriptional activators involved in the cold acclimation response. The low freezing tolerance of FTQ4-Cvi alleles was associated with a deletion of the promoter region of Cvi CBF2, and with low RNA expression of CBF2 and of several CBF target genes. Genetic complementation of FTQ4-Cvi plants with a CBF2-Ler transgene suggests that such CBF2 allelic variation is the cause of CBF2 misexpression and the molecular basis of FTQ4.
Collapse
Affiliation(s)
- Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología , Cantoblanco, 28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
217
|
Hannah MA, Heyer AG, Hincha DK. A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet 2005; 1:e26. [PMID: 16121258 PMCID: PMC1189076 DOI: 10.1371/journal.pgen.0010026] [Citation(s) in RCA: 292] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 07/08/2005] [Indexed: 11/19/2022] Open
Abstract
Many temperate plant species such as Arabidopsis thaliana are able to increase their freezing tolerance when exposed to low, nonfreezing temperatures in a process called cold acclimation. This process is accompanied by complex changes in gene expression. Previous studies have investigated these changes but have mainly focused on individual or small groups of genes. We present a comprehensive statistical analysis of the genome-wide changes of gene expression in response to 14 d of cold acclimation in Arabidopsis, and provide a large-scale validation of these data by comparing datasets obtained for the Affymetrix ATH1 Genechip and MWG 50-mer oligonucleotide whole-genome microarrays. We combine these datasets with existing published and publicly available data investigating Arabidopsis gene expression in response to low temperature. All data are integrated into a database detailing the cold responsiveness of 22,043 genes as a function of time of exposure at low temperature. We concentrate our functional analysis on global changes marking relevant pathways or functional groups of genes. These analyses provide a statistical basis for many previously reported changes, identify so far unreported changes, and show which processes predominate during different times of cold acclimation. This approach offers the fullest characterization of global changes in gene expression in response to low temperature available to date. Freezing tolerance is an important determinant of geographical distribution of plant species, and freezing damage in crop plants leads to severe losses in agriculture. Many temperate plants increase their freezing tolerance during exposure to low, but nonfreezing temperatures, a process known as cold acclimation. Freezing tolerance and cold acclimation are complex, quantitative genetic traits. The number and functional roles of the responsible genes are not known for any plant species. Using the model plant Arabidopsis thaliana, which is moderately freezing tolerant and able to cold acclimate, the global regulation of gene expression during exposure to 4 °C for 14 d was analyzed by microarray hybridization. For validation of gene expression data, triplicate biological samples were hybridized to two different oligonucleotide arrays. Results from the two platforms showed good agreement, indicating the reliability of the measurements. The authors combined their data with all publicly available data on cold-regulated gene expression in A. thaliana to compile a database detailing the cold responsiveness of 22,043 genes as a function of exposure time. In addition, thorough statistical analysis was used to identify metabolic pathways and physiological processes that are predominantly involved in the plant cold-acclimation process.
Collapse
Affiliation(s)
- Matthew A Hannah
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
- *To whom correspondence should be addressed. E-mail:
| | - Arnd G Heyer
- Biologisches Institut, Abteilung Botanik, Universität Stuttgart, Stuttgart, Germany
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| |
Collapse
|
218
|
Choi G, Kim JI, Hong SW, Shin B, Choi G, Blakeslee JJ, Murphy AS, Seo YW, Kim K, Koh EJ, Song PS, Lee H. A Possible Role for NDPK2 in the Regulation of Auxin-mediated Responses for Plant Growth and Development. ACTA ACUST UNITED AC 2005; 46:1246-54. [PMID: 15927941 DOI: 10.1093/pcp/pci133] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Auxin plays many crucial roles in the course of plant growth and development, such as hook opening, leaf expansion and inhibition of mesocotyl elongation. Although its mechanism of action has not been clarified at the molecular level, recent studies have indicated that auxin triggers the induction of a number of genes known as primary auxin-responsive genes. Hence, the identification of the regulatory components in auxin-mediated cellular responses would help to elucidate the mechanism of the action of this hormone in plant growth and development. NDPK2 encodes a nucleoside diphosphate kinase 2 (NDPK2) in Arabidopsis. We aim to elucidate the possible role of NDPK2 in auxin-related cellular processes, in view of the finding that a ndpk2 mutant displays developmental defects associated with auxin. Interestingly, the ndpk2 mutant exhibits defects in cotyledon development and increased sensitivity to an inhibitor of polar auxin transport (naphthylphthalamic acid; NPA). Consistent with this phenotype, the transcript levels of specific auxin-responsive genes were reduced in the ndpk2 mutant plants treated with auxin. The amount of auxin transported from the shoot apex to the shoot/root transition zone of ndpk2 mutant plants was increased, compared with that in the wild-type plants. These results collectively suggest that NDPK2 appears to participate in auxin-regulated processes, partly through the modulation of auxin transport.
Collapse
Affiliation(s)
- Goh Choi
- Kumho Life and Environmental Science Laboratory (KLESL), 1 Oryoung-dong Buk-gu, Gwangju, 500-712 Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. THE PLANT CELL 2005; 17:2384-96. [PMID: 15994908 PMCID: PMC1182496 DOI: 10.1105/tpc.105.033043] [Citation(s) in RCA: 355] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The phytohormone abscisic acid (ABA) modulates the expression of many genes important to plant growth and development and to stress adaptation. In this study, we found that an APETALA2/EREBP-type transcription factor, AtERF7, plays an important role in ABA responses. AtERF7 interacts with the protein kinase PKS3, which has been shown to be a global regulator of ABA responses. AtERF7 binds to the GCC box and acts as a repressor of gene transcription. AtERF7 interacts with the Arabidopsis thaliana homolog of a human global corepressor of transcription, AtSin3, which in turn may interact with HDA19, a histone deacetylase. The transcriptional repression activity of AtERF7 is enhanced by HDA19 and AtSin3. Arabidopsis plants overexpressing AtERF7 show reduced sensitivity of guard cells to ABA and increased transpirational water loss. By contrast, AtERF7 and AtSin3 RNA interference lines show increased sensitivity to ABA during germination. Together, our results suggest that AtERF7 plays an important role in ABA responses and may be part of a transcriptional repressor complex and be regulated by PKS3.
Collapse
Affiliation(s)
- Chun-Peng Song
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721
- Laboratory of Plant Stress Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Manu Agarwal
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Masaru Ohta
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Yan Guo
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Ursula Halfter
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Pengcheng Wang
- Laboratory of Plant Stress Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Jian-Kang Zhu
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521
- To whom correspondence should be addressed. E-mail ; fax 951-827-7115
| |
Collapse
|
220
|
Zhu J, Verslues PE, Zheng X, Lee BH, Zhan X, Manabe Y, Sokolchik I, Zhu Y, Dong CH, Zhu JK, Hasegawa PM, Bressan RA. HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc Natl Acad Sci U S A 2005; 102:9966-71. [PMID: 15994234 PMCID: PMC1175003 DOI: 10.1073/pnas.0503960102] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2005] [Indexed: 11/18/2022] Open
Abstract
We report the identification and characterization of an Arabidopsis mutant, hos10-1 (for high expression of osmotically responsive genes), in which the expression of RD29A and other stress-responsive genes is activated to higher levels or more rapidly activated than in wild-type by low temperature, exogenous abscisic acid (ABA), or salt stress (NaCl). The hos10-1 plants are extremely sensitive to freezing temperatures, completely unable to acclimate to the cold, and are hypersensitive to NaCl. Induction of NCED3 (the gene that encodes the rate-limiting enzyme in ABA biosynthesis) by polyethylene glycol-mediated dehydration and ABA accumulation are reduced by this mutation. Detached shoots from the mutant plants display an increased transpiration rate compared with wild-type plants. The hos10-1 plants exhibit several developmental alterations, such as reduced size, early flowering, and reduced fertility. The HOS10 gene encodes a putative R2R3-type MYB transcription factor that is localized to the nucleus. Together, these results indicate that HOS10 is an important coordinating factor for responses to abiotic stress and for growth and development.
Collapse
Affiliation(s)
- Jianhua Zhu
- Department of Horticulture, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Zhu Y, Zhao HF, Ren GD, Yu XF, Cao SQ, Kuai BK. Characterization of a novel developmentally retarded mutant (drm1) associated with the autonomous flowering pathway in Arabidopsis. Cell Res 2005; 15:133-40. [PMID: 15740643 DOI: 10.1038/sj.cr.7290278] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A developmentally retarded mutant (drm1) was identified from ethyl methanesulfonate (EMS)-mutagenized M2 seeds in Columbia (Col-0) genetic background. The drm1 flowers 109 d after sowing, with a whole life cycle of about 160 d. It also shows a pleiotropic phenotype, e.g., slow germination and lower germination rate, lower growth rate, curling leaves and abnormal floral organs. The drm1 mutation was a single recessive nuclear mutation, which was mapped to the bottom of chromosome 5 and located within a region of 20-30 kb around MXK3.1. There have been no mutants with similar phenotypes reported in the literature, suggesting that DRM1 is a novel flowering promoting locus. The findings that the drm1 flowered lately under all photoperiod conditions and its late flowering phenotype was significantly restored by vernalization treatment suggest that the drm1 is a typical late flowering mutant and most likely associated with the autonomous flowering pathway. The conclusion was further confirmed by the revelation that the transcript level of FLC was constantly upregulated in the drm1 at all the developmental phases examined, except for a very early stage. Moreover, the transcript levels of two other important repressors, EMF and TFL1, were also upregulated in the drm1, implying that the two repressors, along with FLC, seems to act in parallel pathways in the drm1 to regulate flowering as well as other aspects of floral development in a negatively additive way. This helps to explain why the drm1 exhibits a much more severe late-flowering phenotype than most late-flowering mutants reported. It also implies that the DRM1 might act upstream of these repressors.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Biochemistry, Ministry of Education Key laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
222
|
Tang M, Lü S, Jing Y, Zhou X, Sun J, Shen S. Isolation and identification of a cold-inducible gene encoding a putative DRE-binding transcription factor from Festuca arundinacea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:233-9. [PMID: 15854831 DOI: 10.1016/j.plaphy.2005.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Accepted: 01/26/2005] [Indexed: 05/02/2023]
Abstract
A new DRE-binding protein gene FaDREB1 encoded for an AP2/ERFBP-type transcription factor was isolated by RACE-PCR from Festuca arundinacea Schreb seedlings. Its cDNA was sequenced with 988 bp, from which a protein with 216 amino acid residues was deduced with a predicted molecular mass of 23.479 kDa and a pI of 4.70. A search of the Protein Blast data revealed that this protein can be classified as a typical member of the AP2/EREBP family of DNA-binding proteins. The tissue organ-specific expression pattern of the FaDREB1 gene showed that its transcripts were abundant in leaves and leaf sheaths, and scarce in roots. Southern blot analysis indicated that it is a multiple-copy gene. Its mRNA accumulation profiles made clear that its expression was strongly induced by cold treatment, weakly induced by drought and salt stress, but did not respond to ABA treatment. It was concluded that the protein FaDREB1 may be involved in the process of plant response to cold stress through an ABA-independent pathway.
Collapse
Affiliation(s)
- Mingjuan Tang
- Key Laboratory of Plant Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | |
Collapse
|
223
|
Lin SI, Wang JG, Poon SY, Su CL, Wang SS, Chiou TJ. Differential regulation of FLOWERING LOCUS C expression by vernalization in cabbage and Arabidopsis. PLANT PHYSIOLOGY 2005; 137:1037-48. [PMID: 15734903 PMCID: PMC1065404 DOI: 10.1104/pp.104.058974] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2004] [Revised: 12/27/2004] [Accepted: 12/27/2004] [Indexed: 05/18/2023]
Abstract
Vernalization is required to induce flowering in cabbage (Brassica oleracea var Capitata L.). Since FLOWERING LOCUS C (FLC) was identified as a major repressor of flowering in the vernalization pathway in Arabidopsis (Arabidopsis thaliana), two homologs of AtFLC, BoFLC3-2 and BoFLC4-1, were isolated from cabbage to investigate the molecular mechanism of vernalization in cabbage flowering. In addition to the sequence homology, the genomic organization of cabbage FLC is similar to that of AtFLC, except that BoFLC has a relatively smaller intron 1 compared to that of AtFLC. A vernalization-mediated decrease in FLC transcript level was correlated with an increase in FT transcript level in the apex of cabbage. This observation is in agreement with the down-regulation of FT by FLC in Arabidopsis. Yet, unlike that in Arabidopsis, the accumulation of cabbage FLC transcript decreased after cold treatment of leafy plants but not imbibed seeds, which is consistent with the promotion of cabbage flowering by vernalizing adult plants rather than seeds. To further dissect the different regulation of FLC expression between seed-vernalization-responsive species (e.g. Arabidopsis) and plant-vernalization-responsive species (e.g. cabbage), the pBoFLC4-1BoFLC4-1GUS construct was introduced into Arabidopsis to examine its vernalization response. Down-regulation of the BoFLC4-1GUS construct by seed vernalization was unstable and incomplete; in addition, the expression of BoFLC4-1GUS was not suppressed by vernalization of transgenic rosette-stage Arabidopsis plants. We propose a hypothesis to illustrate the distinct mechanism by which vernalization regulates the expression of FLC in cabbage and Arabidopsis.
Collapse
Affiliation(s)
- Shu-I Lin
- Institute of BioAgricultural Sciences, Academia Sinica, Taipei 115, Taiwan R.O.C
| | | | | | | | | | | |
Collapse
|
224
|
Gong Z, Dong CH, Lee H, Zhu J, Xiong L, Gong D, Stevenson B, Zhu JK. A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. THE PLANT CELL 2005; 17:256-67. [PMID: 15598798 PMCID: PMC544503 DOI: 10.1105/tpc.104.027557] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 10/10/2004] [Indexed: 05/18/2023]
Abstract
An Arabidopsis thaliana mutant, cryophyte, was isolated and found to have an enhanced cold stress-induction of the master regulator of cold tolerance, C-repeat binding factor 2 (CBF2), and its downstream target genes. The mutant is more tolerant to chilling and freezing stresses but is more sensitive to heat stress. Under warm but not cold growth temperatures, the mutant has a reduced stature and flowers earlier. Under long day conditions, flowering of the mutant is insensitive to vernalization. The mutant is also hypersensitive to the phytohormone abscisic acid. The mutation was found in a DEAD box RNA helicase gene that is identical to the previously identified low expression of osmotically responsive genes 4 (LOS4) locus, which was defined by the los4-1 mutation that reduces cold regulation of CBFs and their target genes and renders Arabidopsis plants chilling sensitive. We show evidence suggesting that the CRYOPHYTE/LOS4 protein may be enriched in the nuclear rim. In situ poly(A) hybridization indicates that the export of poly(A)+ RNAs is blocked in the cryophyte/los4-2 mutant at warm or high temperatures but not at low temperatures, whereas the los4-1 mutation weakens mRNA export at both low and warm temperatures. These results demonstrate an important role of the CRYOPHYTE/LOS4 RNA helicase in mRNA export, plant development, and stress responses.
Collapse
Affiliation(s)
- Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | | | |
Collapse
|
225
|
Stone SL, Hauksdóttir H, Troy A, Herschleb J, Kraft E, Callis J. Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. PLANT PHYSIOLOGY 2005; 137:13-30. [PMID: 15644464 PMCID: PMC548835 DOI: 10.1104/pp.104.052423] [Citation(s) in RCA: 430] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 11/02/2004] [Accepted: 11/10/2004] [Indexed: 05/17/2023]
Abstract
Approximately 5% of the Arabidopsis (Arabidopsis thaliana) proteome is predicted to be involved in the ubiquitination/26S proteasome pathway. The majority of these predicted proteins have identity to conserved domains found in E3 ligases, of which there are multiple types. The RING-type E3 is characterized by the presence of a cysteine-rich domain that coordinates two zinc atoms. Database searches followed by extensive manual curation identified 469 predicted Arabidopsis RING domain-containing proteins. In addition to the two canonical RING types (C3H2C3 or C3HC4), additional types of modified RING domains, named RING-v, RING-D, RING-S/T, RING-G, and RING-C2, were identified. The modified RINGs differ in either the spacing between metal ligands or have substitutions at one or more of the metal ligand positions. The majority of the canonical and modified RING domain-containing proteins analyzed were active in in vitro ubiquitination assays, catalyzing polyubiquitination with the E2 AtUBC8. To help identity regions of the proteins that may interact with substrates, domain analyses of the amino acids outside the RING domain classified RING proteins into 30 different groups. Several characterized protein-protein interaction domains were identified, as well as additional conserved domains not described previously. The two largest classes of RING proteins contain either no identifiable domain or a transmembrane domain. The presence of such a large and diverse number of RING domain-containing proteins that function as ubiquitin E3 ligases suggests that target-specific proteolysis by these E3 ligases is a complex and important part of cellular regulation in Arabidopsis.
Collapse
Affiliation(s)
- Sophia L Stone
- Section of Molecular and Cellular Biology, Division of Biological Sciences , University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
226
|
|
227
|
Frank W, Ratnadewi D, Reski R. Physcomitrella patens is highly tolerant against drought, salt and osmotic stress. PLANTA 2005; 220:384-94. [PMID: 15322883 DOI: 10.1007/s00425-004-1351-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Accepted: 06/29/2004] [Indexed: 05/03/2023]
Abstract
In order to determine the degree of tolerance of the moss Physcomitrella patens to different abiotic stress conditions, we examined its tolerance against salt, osmotic and dehydration stress. Compared to other plants like Arabidopsis thaliana, P. patens exhibits a high degree of abiotic stress tolerance, making it a valuable source for the identification of genes effecting the stress adaptation. Plants that had been treated with NaCl tolerated concentrations up to 350 mM. Treatments with sorbitol revealed that plants are able to survive concentrations up to 500 mM. Furthermore, plants that had lost 92% water on a fresh-weight basis were able to recover successfully. For molecular analyses, a P. patens expressed sequence tag (EST) database was searched for cDNA sequences showing homology to stress-associated genes of seed plants and bacteria. 45 novel P. patens genes were identified and subjected to cDNA macroarray analyses to define their expression pattern in response to water deficit. Among the selected cDNAs, we were able to identify a set of genes that is specifically up-regulated upon dehydration. These genes encode proteins exerting their function in maintaining the integrity of the plant cell as well as proteins that are known to be members of signaling networks. The identified genes will serve as molecular markers and potential targets for future functional analyses.
Collapse
Affiliation(s)
- Wolfgang Frank
- Plant Biotechnology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany.
| | | | | |
Collapse
|
228
|
Sung S, Amasino RM. Remembering winter: toward a molecular understanding of vernalization. ANNUAL REVIEW OF PLANT BIOLOGY 2005; 56:491-508. [PMID: 15862105 DOI: 10.1146/annurev.arplant.56.032604.144307] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Exposure to the prolonged cold of winter is an important environmental cue that favors flowering in the spring in many types of plants. The process by which exposure to cold promotes flowering is known as vernalization. In Arabidopsis and certain cereals, the block to flowering in plants that have not been vernalized is due to the expression of flowering repressors. The promotion of flowering is due to the cold-mediated suppression of these repressors. Recent work has demonstrated that covalent modifications of histones in the chromatin of target loci are part of the molecular mechanism by which certain repressors are silenced during vernalization.
Collapse
Affiliation(s)
- Sibum Sung
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
229
|
Xiong L, Lee H, Huang R, Zhu JK. A single amino acid substitution in the Arabidopsis FIERY1/HOS2 protein confers cold signaling specificity and lithium tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:536-545. [PMID: 15500469 DOI: 10.1111/j.1365-313x.2004.02225.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Low temperature induces the expression of many plant genes through undefined signaling pathways. To gain insight into cold signal transduction mechanisms, we isolated Arabidopsis mutants that exhibited altered regulation of low temperature-induced gene expression. One such mutant, hos2, was shown previously to have an enhanced induction of stress-responsive genes by cold, whereas the expression of these genes under osmotic stress or the phytohormone absciscic acid (ABA) treatments was not affected. Here we further define the targets of HOS2 by examining the regulation of upstream cold-specific CBF transcription factor genes. It was found that the transcript levels of CBF2 and CBF3 were significantly higher in hos2 mutant plants than in the wild type under cold treatments, suggesting that HOS2 may act upstream of CBFs. The HOS2 gene was cloned using a map-based strategy. Surprisingly, HOS2 is identical to the FIERY1 gene that we had described previously. FIERY1 is a general negative regulator that controls cold, osmotic stress, and ABA signal transduction and possesses inositol polyphosphate 1-phosphatase activity. The hos2 mutation rendered the HOS2/FIERY1 recombinant protein completely inactive in the cold but did not substantially affect its activity at warm temperatures. Interestingly, the hos2 mutant protein is extremely tolerant to Li+. This study provides a unique example of a single amino acid substitution in a critical regulator that can lead to conditional changes in protein functions and distinct plant phenotypes. The results reinforce the notion that phosphoinositols are important second messengers in cold signal transduction, and shed light on how the diversity of plant tolerance to cold and other abiotic stresses may evolve due to variations in a common molecular switch.
Collapse
Affiliation(s)
- Liming Xiong
- Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
230
|
Wang X, Liu L, Liu S, Sun X, Deng Z, Pi Y, Sun X, Tang K. Isolation and Molecular Characterization of a New CRT Binding Factor Gene from Capsella bursa-pastoris. BMB Rep 2004; 37:538-45. [PMID: 15479616 DOI: 10.5483/bmbrep.2004.37.5.538] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new CRT binding factor (CBF) gene designated Cbcbf25 was cloned from Capsella bursa-pastoris, a wild grass, by the rapid amplification of cDNA ends (RACE). The full-length cDNA of Cbcbf25 was 898 bp with a 669 bp open reading frame (ORF) encoding a putative DRE/CRT (LTRE)-binding protein of 223 amino acids. The predicted CbCBF25 protein contained a potential nuclear localization signal (NLS) in its N-terminal region followed by an AP2 DNA-binding motif and a possible acidic activation domain in the C-terminal region. Bioinformatic analysis revealed that Cbcbf25 has a high level of similarity with other CBF genes like cbf1, cbf2, and cbf3 from Arabidopsis thaliana, and Bncbf5, Bncbf7, Bncbf16, and Bncbf17 from Brassica napus. A cold acclimation assay showed that Cbcbf25 was expressed immediately after cold triggering, but this expression was transient, suggesting that it concerns cold acclimation. Our study implies that Cbcbf25 is an analogue of other CBF genes and may participate in cold-response, by for example, controlling the expression of cold-regulated genes or increasing the freezing tolerance of plants.
Collapse
Affiliation(s)
- Xinglong Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Morgan-Tan International Center for Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Zhu J, Shi H, Lee BH, Damsz B, Cheng S, Stirm V, Zhu JK, Hasegawa PM, Bressan RA. An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci U S A 2004; 101:9873-8. [PMID: 15205481 PMCID: PMC470766 DOI: 10.1073/pnas.0403166101] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate essential components mediating stress signaling in plants, we initiated a large-scale stress response screen using Arabidopsis plants carrying the firefly luciferase reporter gene under the control of the stress-responsive RD29A promoter. Here we report the identification and characterization of a mutant, hos9-1 (for high expression of osmotically responsive genes), in which the reporter construct was hyperactivated by low temperature, but not by abscisic acid or salinity stress. The mutants grow more slowly, and flower later, than do wild-type plants and are more sensitive to freezing, both before and after acclimation, than the wild-type plants. The HOS9 gene encodes a putative homeodomain transcription factor that is localized to the nucleus. HOS9 is constitutively expressed and not further induced by cold stress. Cold treatment increased the level of transcripts of the endogenous RD29A, and some other stress-responsive genes, to a higher level in hos9-1 than in wild-type plants. However, the C repeat/dehydration responsive element-binding factor (CBF) transcription factor genes that mediate a part of cold acclimation in Arabidopsis did not have their response to cold altered by the hos9-1 mutation. Correspondingly, microarray analysis showed that none of the genes affected by the hos9-1 mutation are controlled by the CBF family. Together, these results suggest that HOS9 is important for plant growth and development, and for a part of freezing tolerance, by affecting the activity of genes independent of the CBF pathway.
Collapse
Affiliation(s)
- Jianhua Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Zhang JZ, Creelman RA, Zhu JK. From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. PLANT PHYSIOLOGY 2004; 135:615-21. [PMID: 15173567 PMCID: PMC514097 DOI: 10.1104/pp.104.040295] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 02/26/2004] [Accepted: 03/01/2004] [Indexed: 05/18/2023]
Affiliation(s)
- James Z Zhang
- Mendel Biotechnology, Hayward, California 94545, USA.
| | | | | |
Collapse
|
233
|
Abstract
In plants, successful sexual reproduction and the ensuing development of seeds and fruits depend on flowering at the right time. This involves coordinating flowering with the appropriate season and with the developmental history of the plant. Genetic and molecular analysis in the small cruciform weed, Arabidopsis, has revealed distinct but linked pathways that are responsible for detecting the major seasonal cues of day length and cold temperature, as well as other local environmental and internal signals. The balance of signals from these pathways is integrated by a common set of genes to determine when flowering occurs. Excitingly, it has been discovered that many of these same genes regulate flowering in other plants, such as rice. This review focuses on recent advances in how three of the signalling pathways (the day-length, vernalisation and autonomous pathways) function to control flowering.
Collapse
Affiliation(s)
- Jo Putterill
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | | | | |
Collapse
|
234
|
Novillo F, Alonso JM, Ecker JR, Salinas J. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci U S A 2004; 101:3985-90. [PMID: 15004278 PMCID: PMC374356 DOI: 10.1073/pnas.0303029101] [Citation(s) in RCA: 338] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Indexed: 11/18/2022] Open
Abstract
CBF/DREB1 (C-repeat-binding factor/dehydration responsive element-binding factor 1) genes encode a small family of transcriptional activators that have been described as playing an important role in freezing tolerance and cold acclimation in Arabidopsis. To specify this role, we used a reverse genetic approach and identified a mutant, cbf2, in which the CBF2/DREB1C gene was disrupted. Here, we show that cbf2 plants have higher capacity to tolerate freezing than WT ones before and after cold acclimation and are more tolerant to dehydration and salt stress. All these phenotypes correlate with a stronger and more sustained expression of CBF/DREB1-regulated genes, which results from an increased expression of CBF1/DREB1B and CBF3/DREB1A in the mutant. In addition, we show that the expression of CBF1/DREB1B and CBF3/DREB1A in response to low temperature precedes that of CBF2/DREB1C. These results indicate that CBF2/DREB1C negatively regulates CBF1/DREB1B and CBF3/DREB1A, ensuring that their expression is transient and tightly controlled, which, in turn, guarantees the proper induction of downstream genes and the accurate development of Arabidopsis tolerance to freezing and related stresses.
Collapse
Affiliation(s)
- Fernando Novillo
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Carretera de la Coruña, Kilómetro 7, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
235
|
Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI. Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. THE PLANT CELL 2004; 16:596-615. [PMID: 14973164 PMCID: PMC385275 DOI: 10.1105/tpc.019000] [Citation(s) in RCA: 397] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Accepted: 12/24/2003] [Indexed: 05/17/2023]
Abstract
Oligomer-based DNA Affymetrix GeneChips representing about one-third of Arabidopsis (Arabidopsis thaliana) genes were used to profile global gene expression in a single cell type, guard cells, identifying 1309 guard cell-expressed genes. Highly pure preparations of guard cells and mesophyll cells were isolated in the presence of transcription inhibitors that prevented induction of stress-inducible genes during cell isolation procedures. Guard cell expression profiles were compared with those of mesophyll cells, resulting in identification of 64 transcripts expressed preferentially in guard cells. Many large gene families and gene duplications are known to exist in the Arabidopsis genome, giving rise to redundancies that greatly hamper conventional genetic and functional genomic analyses. The presented genomic scale analysis identifies redundant expression of specific isoforms belonging to large gene families at the single cell level, which provides a powerful tool for functional genomic characterization of the many signaling pathways that function in guard cells. Reverse transcription-PCR of 29 genes confirmed the reliability of GeneChip results. Statistical analyses of promoter regions of abscisic acid (ABA)-regulated genes reveal an overrepresented ABA responsive motif, which is the known ABA response element. Interestingly, expression profiling reveals ABA modulation of many known guard cell ABA signaling components at the transcript level. We further identified a highly ABA-induced protein phosphatase 2C transcript, AtP2C-HA, in guard cells. A T-DNA disruption mutation in AtP2C-HA confers ABA-hypersensitive regulation of stomatal closing and seed germination. The presented data provide a basis for cell type-specific genomic scale analyses of gene function.
Collapse
Affiliation(s)
- Nathalie Leonhardt
- Cell and Developmental Biology Section, Division of Biological Sciences, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0116, USA
| | | | | | | | | | | |
Collapse
|
236
|
Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI. Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. THE PLANT CELL 2004; 16:596-615. [PMID: 14973164 DOI: 10.1105/tpc.019000.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Oligomer-based DNA Affymetrix GeneChips representing about one-third of Arabidopsis (Arabidopsis thaliana) genes were used to profile global gene expression in a single cell type, guard cells, identifying 1309 guard cell-expressed genes. Highly pure preparations of guard cells and mesophyll cells were isolated in the presence of transcription inhibitors that prevented induction of stress-inducible genes during cell isolation procedures. Guard cell expression profiles were compared with those of mesophyll cells, resulting in identification of 64 transcripts expressed preferentially in guard cells. Many large gene families and gene duplications are known to exist in the Arabidopsis genome, giving rise to redundancies that greatly hamper conventional genetic and functional genomic analyses. The presented genomic scale analysis identifies redundant expression of specific isoforms belonging to large gene families at the single cell level, which provides a powerful tool for functional genomic characterization of the many signaling pathways that function in guard cells. Reverse transcription-PCR of 29 genes confirmed the reliability of GeneChip results. Statistical analyses of promoter regions of abscisic acid (ABA)-regulated genes reveal an overrepresented ABA responsive motif, which is the known ABA response element. Interestingly, expression profiling reveals ABA modulation of many known guard cell ABA signaling components at the transcript level. We further identified a highly ABA-induced protein phosphatase 2C transcript, AtP2C-HA, in guard cells. A T-DNA disruption mutation in AtP2C-HA confers ABA-hypersensitive regulation of stomatal closing and seed germination. The presented data provide a basis for cell type-specific genomic scale analyses of gene function.
Collapse
Affiliation(s)
- Nathalie Leonhardt
- Cell and Developmental Biology Section, Division of Biological Sciences, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0116, USA
| | | | | | | | | | | |
Collapse
|
237
|
Sung S, Amasino RM. Vernalization and epigenetics: how plants remember winter. CURRENT OPINION IN PLANT BIOLOGY 2004; 7:4-10. [PMID: 14732435 DOI: 10.1016/j.pbi.2003.11.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
One of the remarkable aspects of the promotion of flowering by vernalization is that plants have evolved the ability to measure a complete winter season of cold and to 'remember' this prior cold exposure in the spring. Recent work in Arabidopsis demonstrates the molecular basis of this memory of winter: vernalization causes changes in the chromatin structure of a flowering repressor gene, FLOWERING LOCUS C (FLC), that switch this gene into a repressed state that is mitotically stable. A key component of the vernalization pathway, VERNALIZATION INSENSITIVE3 (VIN3), which is a PHD-domain-containing protein, is induced only after a prolonged period of cold. VIN3 is involved in initiating the modification of FLC chromatin structure. The stable silencing of FLC also requires the DNA-binding protein VERNALIZATION1 (VRN1) and the polycomb-group protein VRN2.
Collapse
Affiliation(s)
- Sibum Sung
- Department of Biochemistry, University of Wisconsin-Madison, 53706, USA.
| | | |
Collapse
|
238
|
Abstract
Much of plant physiology, growth, and development is controlled by the selective removal of short-lived regulatory proteins. One important proteolytic pathway involves the small protein ubiquitin (Ub) and the 26S proteasome, a 2-MDa protease complex. In this pathway, Ub is attached to proteins destined for degradation; the resulting Ub-protein conjugates are then recognized and catabolized by the 26S proteasome. This review describes our current understanding of the pathway in plants at the biochemical, genomic, and genetic levels, using Arabidopsis thaliana as the model. Collectively, these analyses show that the Ub/26S proteasome pathway is one of the most elaborate regulatory mechanisms in plants. The genome of Arabidopsis encodes more than 1400 (or >5% of the proteome) pathway components that can be connected to almost all aspects of its biology. Most pathway components participate in the Ub-ligation reactions that choose with exquisite specificity which proteins should be ubiquitinated. What remains to be determined is the identity of the targets, which may number in the thousands in plants.
Collapse
Affiliation(s)
- Jan Smalle
- Department of Genetics, 445 Henry Mall, University of Wisconsin-Madison, Madison, Wisconsin 53706-1574, USA
| | | |
Collapse
|
239
|
Abstract
Vernalization is the process whereby the floral transition is promoted through exposure of plants to long periods of cold temperature or winter. A requirement for vernalization aligns flowering with the seasons to ensure that their reproductive phase occurs in favorable conditions. The mitotic stability of vernalization, suggestive of an epigenetic mechanism, has intrigued researchers for many years. Genetic analysis of the vernalization requirement in Arabidopsis has identified key floral repressor genes, FRI and FLC. The action of these floral repressors is antagonized by vernalization and the activity of a set of genes grouped into the autonomous floral pathway. Analysis of the vernalization pathway has defined a series of epigenetic regulators crucial for "cellular-memory" of the cold signal, whereas the autonomous pathway appears to function in part through posttranscriptional mechanisms. The mechanism of the vernalization requirement, which is now being explored in a range of plant species, should uncover the evolutionary origins of this key agronomic trait.
Collapse
Affiliation(s)
- Ian R Henderson
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, United Kingdom.
| | | | | |
Collapse
|
240
|
Catala R, Santos E, Alonso JM, Ecker JR, Martinez-Zapater JM, Salinas J. Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. THE PLANT CELL 2003; 15:2940-51. [PMID: 14630965 PMCID: PMC282833 DOI: 10.1105/tpc.015248] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 09/09/2003] [Indexed: 05/17/2023]
Abstract
Transient increases in cytosolic free calcium concentration ([Ca2+]cyt) are essential for plant responses to a variety of environmental stimuli, including low temperature. Subsequent reestablishment of [Ca2+]cyt to resting levels by Ca2+ pumps and antiporters is required for the correct transduction of the signal [corrected]. C-repeat binding factor/dehydration responsive element binding factor 1 (Ca2+/H+) antiporters is required for the correct transduction of the signal. We have isolated a cDNA from Arabidopsis that corresponds to a new cold-inducible gene, rare cold inducible4 (RCI4), which was identical to calcium exchanger 1 (CAX1), a gene that encodes a vacuolar Ca2+/H+ antiporter involved in the regulation of intracellular Ca2+ levels. The expression of CAX1 was induced in response to low temperature through an abscisic acid-independent pathway. To determine the function of CAX1 in Arabidopsis stress tolerance, we identified two T-DNA insertion mutants, cax1-3 and cax1-4, that display reduced tonoplast Ca2+/H+ antiport activity. The mutants showed no significant differences with respect to the wild type when analyzed for dehydration, high-salt, chilling, or constitutive freezing tolerance. However, they exhibited increased freezing tolerance after cold acclimation, demonstrating that CAX1 plays an important role in this adaptive response. This phenotype correlates with the enhanced expression of CBF/DREB1 genes and their corresponding targets in response to low temperature. Our results indicate that CAX1 ensures the accurate development of the cold-acclimation response in Arabidopsis by controlling the induction of CBF/DREB1 and downstream genes.
Collapse
Affiliation(s)
- Rafael Catala
- Departamento de Biotecnología, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
241
|
Merkle T. Nucleo-cytoplasmic partitioning of proteins in plants: implications for the regulation of environmental and developmental signalling. Curr Genet 2003; 44:231-60. [PMID: 14523572 DOI: 10.1007/s00294-003-0444-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Revised: 08/21/2003] [Accepted: 09/01/2003] [Indexed: 12/21/2022]
Abstract
Considerable progress has been made in the past few years in characterising Arabidopsis nuclear transport receptors and in elucidating plant signal transduction pathways that employ nucleo-cytoplasmic partitioning of a member of the signal transduction chain. This review briefly introduces the major principles of nuclear transport of macromolecules across the nuclear envelope and the proteins involved, as they have been described in vertebrates and yeast. Proteins of the plant nuclear transport machinery that have been identified to date are discussed, the focus being on Importin beta-like nuclear transport receptors. Finally, the importance of nucleo-cytoplasmic partitioning as a regulatory tool for signalling is highlighted, and different plant signal transduction pathways that make use of this regulatory potential are presented.
Collapse
Affiliation(s)
- Thomas Merkle
- Institute of Biology II, Cell Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| |
Collapse
|
242
|
Zarka DG, Vogel JT, Cook D, Thomashow MF. Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. PLANT PHYSIOLOGY 2003; 133:910-8. [PMID: 14500791 PMCID: PMC219064 DOI: 10.1104/pp.103.027169] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The Arabidopsis CBF1, 2, and 3 genes (also known as DREB1b, c, and a, respectively) encode transcriptional activators that have a central role in cold tolerance. CBF1-3 are rapidly induced upon exposing plants to low temperature, followed by expression of CBF-targeted genes, the CBF regulon, resulting in an increase in plant freezing tolerance. At present, little is known about the cold-sensing mechanism that controls CBF expression. Results presented here indicate that this mechanism does not require a cold shock to bring about the accumulation of CBF transcripts, but instead, absolute temperature is monitored with a greater degree of input, i.e. lower temperature, resulting in a greater output, i.e. higher levels of CBF transcripts. Temperature-shift experiments also indicate that the cold-sensing mechanism becomes desensitized to a given low temperature, such as 4 degrees C, and that resensitization to that temperature requires between 8 and 24 h at warm temperature. Gene fusion experiments identified a 125-bp section of the CBF2 promoter that is sufficient to impart cold-responsive gene expression. Mutational analysis of this cold-responsive region identified two promoter segments that work in concert to impart robust cold-regulated gene expression. These sequences, designated ICEr1 and ICEr2 (induction of CBF expression region 1 or 2), were also shown to stimulate transcription in response to mechanical agitation and the protein synthesis inhibitor, cycloheximide.
Collapse
Affiliation(s)
- Daniel G Zarka
- MSU Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
243
|
Zarka DG, Vogel JT, Cook D, Thomashow MF. Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. PLANT PHYSIOLOGY 2003; 133:910-918. [PMID: 14500791 DOI: 10.1104/pp.103.027169.of] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Arabidopsis CBF1, 2, and 3 genes (also known as DREB1b, c, and a, respectively) encode transcriptional activators that have a central role in cold tolerance. CBF1-3 are rapidly induced upon exposing plants to low temperature, followed by expression of CBF-targeted genes, the CBF regulon, resulting in an increase in plant freezing tolerance. At present, little is known about the cold-sensing mechanism that controls CBF expression. Results presented here indicate that this mechanism does not require a cold shock to bring about the accumulation of CBF transcripts, but instead, absolute temperature is monitored with a greater degree of input, i.e. lower temperature, resulting in a greater output, i.e. higher levels of CBF transcripts. Temperature-shift experiments also indicate that the cold-sensing mechanism becomes desensitized to a given low temperature, such as 4 degrees C, and that resensitization to that temperature requires between 8 and 24 h at warm temperature. Gene fusion experiments identified a 125-bp section of the CBF2 promoter that is sufficient to impart cold-responsive gene expression. Mutational analysis of this cold-responsive region identified two promoter segments that work in concert to impart robust cold-regulated gene expression. These sequences, designated ICEr1 and ICEr2 (induction of CBF expression region 1 or 2), were also shown to stimulate transcription in response to mechanical agitation and the protein synthesis inhibitor, cycloheximide.
Collapse
Affiliation(s)
- Daniel G Zarka
- MSU Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
244
|
Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. CURRENT OPINION IN PLANT BIOLOGY 2003; 6:410-7. [PMID: 12972040 DOI: 10.1016/s1369-5266(03)00092-x] [Citation(s) in RCA: 955] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Molecular and genomic studies have shown that several genes with various functions are induced by drought and cold stresses, and that various transcription factors are involved in the regulation of stress-inducible genes. The products of stress-inducible genes function not only in stress tolerance but also in stress response. Genetic studies have identified many factors that modify the regulation of stress responses. Recent progress has been made in analyzing the complex cascades of gene expression in drought and cold stress responses, especially in identifying specificity and crosstalk in stress signaling.
Collapse
Affiliation(s)
- Kazuo Shinozaki
- Laboratory of Plant Molecular Biology, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba 305-0074, Japan.
| | | | | |
Collapse
|
245
|
Hare PD, Seo HS, Yang JY, Chua NH. Modulation of sensitivity and selectivity in plant signaling by proteasomal destabilization. CURRENT OPINION IN PLANT BIOLOGY 2003; 6:453-62. [PMID: 12972046 DOI: 10.1016/s1369-5266(03)00080-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The ubiquitin (Ub) system of intracellular protein degradation regulates the abundance of numerous proteins that control plant growth and development. Recent advances have begun to illustrate how environmental and endogenous signals affect plant responses through Ub-related proteolysis, the importance of combinatorial control in regulated protein destruction and how multiprotein complexes confer sensitivity and selectivity to ubiquitination. Further insight into the cell biology of Ub-chain assembly and proteasomal degradation, as well as into the relationship between proteolysis and other regulatory modifications, will be essential for understanding the mechanistic basis of the integration of diverse plant signals.
Collapse
Affiliation(s)
- Peter D Hare
- The Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10021-6399, USA
| | | | | | | |
Collapse
|
246
|
Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 2003; 22:2623-33. [PMID: 12773379 PMCID: PMC156772 DOI: 10.1093/emboj/cdg277] [Citation(s) in RCA: 1156] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reactive oxygen species (ROS) have been proposed to function as second messengers in abscisic acid (ABA) signaling in guard cells. However, the question whether ROS production is indeed required for ABA signal transduction in vivo has not yet been addressed, and the molecular mechanisms mediating ROS production during ABA signaling remain unknown. Here, we report identification of two partially redundant Arabidopsis guard cell-expressed NADPH oxidase catalytic subunit genes, AtrbohD and AtrbohF, in which gene disruption impairs ABA signaling. atrbohD/F double mutations impair ABA-induced stomatal closing, ABA promotion of ROS production, ABA-induced cytosolic Ca(2+) increases and ABA- activation of plasma membrane Ca(2+)-permeable channels in guard cells. Exogenous H(2)O(2) rescues both Ca(2+) channel activation and stomatal closing in atrbohD/F. ABA inhibition of seed germination and root elongation are impaired in atrbohD/F, suggesting more general roles for ROS and NADPH oxidases in ABA signaling. These data provide direct molecular genetic and cell biological evidence that ROS are rate-limiting second messengers in ABA signaling, and that the AtrbohD and AtrbohF NADPH oxidases function in guard cell ABA signal transduction.
Collapse
Affiliation(s)
- June M Kwak
- Cell and Developmental Biology Section, Division of Biological Sciences and Center for Molecular Genetics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Gazzani S, Gendall AR, Lister C, Dean C. Analysis of the molecular basis of flowering time variation in Arabidopsis accessions. PLANT PHYSIOLOGY 2003; 132:1107-14. [PMID: 12805638 PMCID: PMC167048 DOI: 10.1104/pp.103.021212] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Revised: 02/24/2003] [Accepted: 03/28/2003] [Indexed: 05/17/2023]
Abstract
Allelic variation at the FRI (FRIGIDA) and FLC (FLOWERING LOCUS C) loci are major determinants of flowering time in Arabidopsis accessions. Dominant alleles of FRI confer a vernalization requirement causing plants to overwinter vegetatively. Many early flowering accessions carry loss-of-function fri alleles containing one of two deletions. However, some accessions categorized as early flowering types do not carry these deletion alleles. We have analyzed the molecular basis of earliness in five of these accessions: Cvi, Shakhdara, Wil-2, Kondara, and Kz-9. The Cvi FRI allele carries a number of nucleotide differences, one of which causes an in-frame stop codon in the first exon. The other four accessions contain nucleotide differences that only result in amino acid substitutions. Preliminary genetic analysis was consistent with Cvi carrying a nonfunctional FRI allele; Wil-2 carrying either a defective FRI or a dominant suppressor of FRI function; and Shakhdara, Kondara, and Kz-9 carrying a functional FRI allele with earliness being caused by allelic variation at other loci including FLC. Allelic variation at FLC was also investigated in a range of accessions. A novel nonautonomous Mutator-like transposon was found in the weak FLC allele in Landsberg erecta, positioned in the first intron, a region required for normal FLC regulation. This transposon was not present in FLC alleles of most other accessions including Shakhdara, Kondara, or Kz-9. Thus, variation in Arabidopsis flowering time has arisen through the generation of nonfunctional or weak FRI and FLC alleles.
Collapse
Affiliation(s)
- Silvia Gazzani
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, United Kingdom
| | | | | | | |
Collapse
|
248
|
Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 2003. [PMID: 12672693 DOI: 10.1101/gad.1077503.crt] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
Cold temperatures trigger the expression of the CBF family of transcription factors, which in turn activate many downstream genes that confer chilling and freezing tolerance to plants. We report here the identification of ICE1 (inducer of CBF expression 1), an upstream transcription factor that regulates the transcription of CBF genes in the cold. An Arabidopsis ice1 mutant was isolated in a screen for mutations that impair cold-induced transcription of a CBF3 promoter-luciferase reporter gene. The ice1 mutation blocks the expression of CBF3 and decreases the expression of many genes downstream of CBFs, which leads to a significant reduction in plant chilling and freezing tolerance. ICE1 encodes a MYC-like bHLH transcriptional activator. ICE1 binds specifically to the MYC recognition sequences in the CBF3 promoter. ICE1 is expressed constitutively, and its overexpression in wild-type plants enhances the expression of the CBF regulon in the cold and improves freezing tolerance of the transgenic plants.
Collapse
|
249
|
Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 2003; 17:1043-54. [PMID: 12672693 PMCID: PMC196034 DOI: 10.1101/gad.1077503] [Citation(s) in RCA: 1010] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Accepted: 02/14/2003] [Indexed: 11/25/2022]
Abstract
Cold temperatures trigger the expression of the CBF family of transcription factors, which in turn activate many downstream genes that confer chilling and freezing tolerance to plants. We report here the identification of ICE1 (inducer of CBF expression 1), an upstream transcription factor that regulates the transcription of CBF genes in the cold. An Arabidopsis ice1 mutant was isolated in a screen for mutations that impair cold-induced transcription of a CBF3 promoter-luciferase reporter gene. The ice1 mutation blocks the expression of CBF3 and decreases the expression of many genes downstream of CBFs, which leads to a significant reduction in plant chilling and freezing tolerance. ICE1 encodes a MYC-like bHLH transcriptional activator. ICE1 binds specifically to the MYC recognition sequences in the CBF3 promoter. ICE1 is expressed constitutively, and its overexpression in wild-type plants enhances the expression of the CBF regulon in the cold and improves freezing tolerance of the transgenic plants.
Collapse
|
250
|
Sung DY, Kaplan F, Lee KJ, Guy CL. Acquired tolerance to temperature extremes. TRENDS IN PLANT SCIENCE 2003; 8:179-87. [PMID: 12711230 DOI: 10.1016/s1360-1385(03)00047-5] [Citation(s) in RCA: 269] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Acquired tolerance to temperature stresses is a major protective mechanism. Recent advances have revealed key components of stress signal transduction pathways that trigger enhanced tolerance, and several determinants of acquired tolerance have been identified. Although high and low temperature stresses impose different metabolic and physical challenges, acquired tolerance appears to involve general as well as stress-specific components. Transcriptome studies and other genomic-scale approaches have accelerated the pace of gene discovery, and will be invaluable in efforts to integrate all the different protective and repair mechanisms that function in concert to confer acquired tolerance.
Collapse
Affiliation(s)
- Dong-Yul Sung
- Plant Molecular and Cellular Biology Program, Department of Environmental Horticulture, University of Florida, Gainesville 32611-0670, USA
| | | | | | | |
Collapse
|