201
|
Skøt L, Sanderson R, Thomas A, Skøt K, Thorogood D, Latypova G, Asp T, Armstead I. Allelic variation in the perennial ryegrass FLOWERING LOCUS T gene is associated with changes in flowering time across a range of populations. PLANT PHYSIOLOGY 2011; 155:1013-22. [PMID: 21115808 PMCID: PMC3032449 DOI: 10.1104/pp.110.169870] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 11/24/2010] [Indexed: 05/18/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) FLOWERING LOCUS T (FT) gene and its orthologs in other plant species (e.g. rice [Oryza sativa] OsFTL2/Hd3a) have an established role in the photoperiodic induction of flowering response. The genomic and phenotypic variations associated with the perennial ryegrass (Lolium perenne) ortholog of FT, designated LpFT3, was assessed in a diverse collection of nine European germplasm populations, which together constituted an association panel of 864 plants. Sequencing and genotyping of a series of amplicons derived from the nine populations, containing the complete exon and intron sequences as well as 5' and 3' noncoding sequences of LpFT3, identified a total of seven haplotypes. Genotyping assays designed to detect the genomic variation showed that three haplotypes were present in approximately equal proportions and represented 84% of the total, with a fourth representing a further 11%. Of the three major haplotypes, two were predicted to code for identical protein products and the third contained two amino acid substitutions. Association analysis using either a mixed model with a relationship matrix to correct for population structure and relatedness or structured association with further correction using genomic control indicated significant associations between LpFT3 and variation in flowering time. These associations were corroborated in a validation population segregating for the same major alleles. The most "diagnostic" region of genomic variation was situated 5' of the coding sequence. Analysis of this region identified that the interhaplotype variation was closely associated with sequence motifs that were apparently conserved in the 5' region of orthologs of LpFT3 from other plant species. These may represent cis-regulatory elements involved in influencing the expression of this gene.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ian Armstead
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion SY23 3EB, United Kingdom (L.S., R.S., A.T., K.S., D.T., G.L., I.A.); Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark (T.A.)
| |
Collapse
|
202
|
Drobyazina PE, Khavkin EE. The structure of two CONSTANS-LIKE1 genes in potato and its wild relatives. Gene 2011; 471:37-44. [DOI: 10.1016/j.gene.2010.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/03/2010] [Accepted: 10/05/2010] [Indexed: 11/25/2022]
|
203
|
Zanetti ME, Blanco FA, Beker MP, Battaglia M, Aguilar OM. A C subunit of the plant nuclear factor NF-Y required for rhizobial infection and nodule development affects partner selection in the common bean-Rhizobium etli symbiosis. THE PLANT CELL 2010; 22:4142-57. [PMID: 21139064 PMCID: PMC3027164 DOI: 10.1105/tpc.110.079137] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/03/2010] [Accepted: 11/12/2010] [Indexed: 05/20/2023]
Abstract
Legume plants are able to interact symbiotically with soil bacteria to form nitrogen-fixing root nodules. Although specific recognition between rhizobia and legume species has been extensively characterized, plant molecular determinants that govern the preferential colonization by different strains within a single rhizobium species have received little attention. We found that the C subunit of the heterotrimeric nuclear factor NF-Y from common bean (Phaseolus vulgaris) NF-YC1 plays a key role in the improved nodulation seen by more efficient strains of rhizobia. Reduction of NF-YC1 transcript levels by RNA interference (RNAi) in Agrobacterium rhizogenes-induced hairy roots leads to the arrest of nodule development and defects in the infection process with either high or low efficiency strains. Induction of three G2/M transition cell cycle genes in response to rhizobia was impaired or attenuated in NF-YC1 RNAi roots, suggesting that this transcription factor might promote nodule development by activating cortical cell divisions. Furthermore, overexpression of this gene has a positive impact on nodulation efficiency and selection of Rhizobium etli strains that are naturally less efficient and bad competitors. Our findings suggest that this transcription factor might be part of a mechanism that links nodule organogenesis with an early molecular dialogue that selectively discriminates between high- and low-quality symbiotic partners, which holds important implications for optimizing legume performance.
Collapse
|
204
|
Cohen D, Bogeat-Triboulot MB, Tisserant E, Balzergue S, Martin-Magniette ML, Lelandais G, Ningre N, Renou JP, Tamby JP, Le Thiec D, Hummel I. Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes. BMC Genomics 2010; 11:630. [PMID: 21073700 PMCID: PMC3091765 DOI: 10.1186/1471-2164-11-630] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 11/12/2010] [Indexed: 12/18/2022] Open
Abstract
Background Comparative genomics has emerged as a promising means of unravelling the molecular networks underlying complex traits such as drought tolerance. Here we assess the genotype-dependent component of the drought-induced transcriptome response in two poplar genotypes differing in drought tolerance. Drought-induced responses were analysed in leaves and root apices and were compared with available transcriptome data from other Populus species. Results Using a multi-species designed microarray, a genomic DNA-based selection of probesets provided an unambiguous between-genotype comparison. Analyses of functional group enrichment enabled the extraction of processes physiologically relevant to drought response. The drought-driven changes in gene expression occurring in root apices were consistent across treatments and genotypes. For mature leaves, the transcriptome response varied weakly but in accordance with the duration of water deficit. A differential clustering algorithm revealed similar and divergent gene co-expression patterns among the two genotypes. Since moderate stress levels induced similar physiological responses in both genotypes, the genotype-dependent transcriptional responses could be considered as intrinsic divergences in genome functioning. Our meta-analysis detected several candidate genes and processes that are differentially regulated in root and leaf, potentially under developmental control, and preferentially involved in early and long-term responses to drought. Conclusions In poplar, the well-known drought-induced activation of sensing and signalling cascades was specific to the early response in leaves but was found to be general in root apices. Comparing our results to what is known in arabidopsis, we found that transcriptional remodelling included signalling and a response to energy deficit in roots in parallel with transcriptional indices of hampered assimilation in leaves, particularly in the drought-sensitive poplar genotype.
Collapse
Affiliation(s)
- David Cohen
- INRA, Nancy Université, UMR1137 Ecologie et Ecophysiologie Forestières, IFR 110 EFABA, F-54280 Champenoux, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Dhondt S, Coppens F, De Winter F, Swarup K, Merks RM, Inzé D, Bennett MJ, Beemster GT. SHORT-ROOT and SCARECROW regulate leaf growth in Arabidopsis by stimulating S-phase progression of the cell cycle. PLANT PHYSIOLOGY 2010; 154:1183-95. [PMID: 20739610 PMCID: PMC2971598 DOI: 10.1104/pp.110.158857] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 08/21/2010] [Indexed: 05/20/2023]
Abstract
SHORT-ROOT (SHR) and SCARECROW (SCR) are required for stem cell maintenance in the Arabidopsis (Arabidopsis thaliana) root meristem, ensuring its indeterminate growth. Mutation of SHR and SCR genes results in disorganization of the quiescent center and loss of stem cell activity, resulting in the cessation of root growth. This paper reports on the role of SHR and SCR in the development of leaves, which, in contrast to the root, have a determinate growth pattern and lack a persistent stem cell niche. Our results demonstrate that inhibition of leaf growth in shr and scr mutants is not a secondary effect of the compromised root development but is caused by an effect on cell division in the leaves: a reduced cell division rate and early exit of the proliferation phase. Consistent with the observed cell division phenotype, the expression of SHR and SCR genes in leaves is closely associated with cell division activity in most cell types. The increased cell cycle duration is due to a prolonged S-phase duration, which is mediated by up-regulation of cell cycle inhibitors known to restrain the activity of the transcription factor, E2Fa. Therefore, we conclude that, in contrast to their specific roles in cortex/endodermis differentiation and stem cell maintenance in the root, SHR and SCR primarily function as general regulators of cell proliferation in leaves.
Collapse
Affiliation(s)
| | | | | | | | | | - Dirk Inzé
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Ghent, Belgium (S.D, F.C., F.D.W., R.M.H.M., D.I., G.T.S.B.); Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium (S.D, F.C., F.D.W., R.M.H.M., D.I., G.T.S.B.); School of Biosciences and Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (K.S., M.J.B.); Netherlands Consortium for Systems Biology, 1090 6B Amsterdam, The Netherlands (R.M.H.M.); CWI, 1090 6B Amsterdam, The Netherlands (R.M.H.M.); Department of Biology, University of Antwerp, 2020 Antwerp, Belgium (G.T.S.B.)
| | | | | |
Collapse
|
206
|
Kumimoto RW, Zhang Y, Siefers N, Holt BF. NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANS-mediated, photoperiod-dependent flowering in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:379-91. [PMID: 20487380 DOI: 10.1111/j.1365-313x.2010.04247.x] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
NF-Y transcription factors represent a complex of three proteins called NF-YA, NF-YB and NF-YC. Each protein is highly conserved in eukaryotes, and in the plant lineage has undergone numerous rounds of duplication. Individual NF-Y are emerging as important regulators of several essential plant processes, including embryogenesis, drought resistance, maintenance of meristems in nitrogen-fixing nodules and photoperiod-dependent flowering time. Building on the recent finding that NF-YB2 and NF-YB3 have overlapping functionality in Arabidopsis photoperiod-dependent flowering (Kumimoto et al., 2008), we have identified three NF-YC (NF-YC3, NF-YC4, and NF-YC9) that are also required for flowering, and physically interact in vivo with both NF-YB2 and NF-YB3. Furthermore, NF-YC3, NF-YC4 and NF-YC9 can physically interact with full-length CONSTANS (CO), and are genetically required for CO-mediated floral promotion. Collectively, the present data greatly strengthens and extends the argument that CO utilizes NF-Y transcription factor complexes for the activation of FLOWERING LOCUS T (FT) during photoperiod-dependent floral initiation.
Collapse
Affiliation(s)
- Roderick W Kumimoto
- Department of Botany and Microbiology, University of Oklahoma, 770 Van Vleet Oval, Norman, OK 73019, USA
| | | | | | | |
Collapse
|
207
|
Liu JX, Howell SH. bZIP28 and NF-Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes in Arabidopsis. THE PLANT CELL 2010; 22:782-96. [PMID: 20207753 PMCID: PMC2861475 DOI: 10.1105/tpc.109.072173] [Citation(s) in RCA: 330] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 12/24/2009] [Accepted: 02/16/2010] [Indexed: 05/18/2023]
Abstract
Stress agents known to elicit the unfolded protein response in Arabidopsis thaliana upregulate the expression of a constellation of genes dependent on the membrane-associated basic domain/leucine zipper (bZIP) transcription factor, bZIP28. Among the stress-activated genes, a consensus promoter sequence corresponding to the endoplasmic reticulum (ER) stress-responsive element I (ERSE-I), CCAAT-N10-CACG, was identified. Disruption of either the CCAAT or CACG subelement in ERSE-I resulted in reduction of the transcriptional response to ER stress. bZIP28 forms homo- and heterodimers with other bZIP TF family members (in subgroup D) and interacts with CCAAT box binding factors, heterotrimeric factors composed of NF-Y subunits. Arabidopsis encodes 36 NF-Y subunits, and it was found that subunits NF-YB3 and -YC2 interact with bZIP28 and NF-YA4, respectively, in a yeast three-hybrid system. A transcriptional complex containing bZIP28 and the above-mentioned three NF-Y subunits was assembled in vitro on DNA containing ERSE-I. bZIP28, on its own, binds to the CACG subelement in ERSE-I to form a smaller complex I, and in combination with the NF-Y subunits above, bZIP28 assembles into a larger transcriptional complex (complex II). bZIP28 was shown to interact with NF-Y subunits in vivo in bimolecular fluorescence complementation analyses and in coimmunoprecipitation assays. Treatment of seedlings with ER stress agents led to the upregulation of NF-YC2 and the relocation of NF-YB3 from the cytoplasm to the nucleus. Thus, in response to ER stress, bZIP28 is mobilized by proteolysis and recruits NF-Y subunits to form a transcriptional complex that upregulates the expression of ER stress-induced genes.
Collapse
|
208
|
TaNF-YC11, one of the light-upregulated NF-YC members in Triticum aestivum, is co-regulated with photosynthesis-related genes. Funct Integr Genomics 2010; 10:265-76. [PMID: 20111976 DOI: 10.1007/s10142-010-0158-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 12/27/2009] [Accepted: 01/01/2010] [Indexed: 10/19/2022]
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor complex. Each of the NF-Y subunits (NF-YA, NF-YB and NF-YC) in plants is encoded by multiple genes. Quantitative RT-PCR analysis revealed that five wheat NF-YC members (TaNF-YC5, 8, 9, 11 and 12) were upregulated by light in both the leaf and seedling shoot. Co-expression analysis of Affymetrix wheat genome array datasets revealed that transcript levels of a large number of genes were consistently correlated with those of the TaNF-YC11 and TaNF-YC8 genes in three to four separate Affymetrix array datasets. TaNF-YC11-correlated transcripts were significantly enriched with the Gene Ontology term photosynthesis. Sequence analysis in the promoters of TaNF-YC11-correlated genes revealed the presence of putative NF-Y complex binding sites (CCAAT motifs). Quantitative RT-PCR analysis of a subset of potential TaNF-YC11 target genes showed that ten out of the 13 genes were also light-upregulated in both the leaf and seedling shoot and had significantly correlated expression profiles with TaNF-YC11. The potential target genes for TaNF-YC11 include subunit members from all four thylakoid membrane-bound complexes required for the conversion of solar energy into chemical energy and rate-limiting enzymes in the Calvin cycle. These data indicate that TaNF-YC11 is potentially involved in regulation of photosynthesis-related genes.
Collapse
|
209
|
Ceribelli M, Benatti P, Imbriano C, Mantovani R. NF-YC complexity is generated by dual promoters and alternative splicing. J Biol Chem 2009; 284:34189-200. [PMID: 19690168 DOI: 10.1074/jbc.m109.008417] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CCAAT box is a DNA element present in the majority of human promoters, bound by the trimeric NF-Y, composed of NF-YA, NF-YB, and NF-YC subunits. We describe and characterize novel isoforms of one of the two histone-like subunits, NF-YC. The locus generates a minimum of four splicing products, mainly located within the Q-rich activation domain. The abundance of each isoform is cell-dependent; only one major NF-YC isoform is present in a given cell type. The 37- and 50-kDa isoforms are mutually exclusive, and preferential pairings with NF-YA isoforms possess different transcriptional activities, with specific combinations being more active on selected promoters. The transcriptional regulation of the NF-YC locus is also complex, and mRNAs arise from the two promoters P1 and P2. Transient transfections, chromatin immunoprecipitations, and reverse transcription-PCRs indicate that P1 has a robust housekeeping activity; P2 possesses a lower basal activity, but it is induced in response to DNA damage in a p53-dependent way. Alternative promoter usage directly affects NF-YC splicing, with the 50-kDa transcript being excluded from P2. Specific functional inactivation of the 37-kDa isoform affects the basal levels of G(1)/S blocking and pro-apoptotic genes but not G(2)/M promoters. In summary, our data highlight an unexpected degree of complexity and regulation of the NF-YC gene, demonstrating the existence of a discrete cohort of NF-Y trimer subtypes resulting from the functional diversification of Q-rich transactivating subunits and a specific role of the 37-kDa isoform in suppression of the DNA damage-response under growing conditions.
Collapse
Affiliation(s)
- Michele Ceribelli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | |
Collapse
|