201
|
Abstract
Context: Articular cartilage possesses poor natural healing mechanisms, and a variety of non-cell-based and cell-based treatments aim to promote regeneration of hyaline cartilage. Data Sources: A review of the literature to December 2013 using PubMed with search criteria including the keywords stem cell, cell therapy, cell transplantation, cartilage, chondral, and chondrogenic. Study Selection: Forty-five articles were identified that employed local mesenchymal stem cell (MSC) therapy for joint disorders in humans. Nine comparative studies were identified, consisting of 3 randomized trials, 5 cohort studies, and 1 case-control study. Study Type: Clinical review. Level of Evidence: Level 4. Data Extraction: Studies were assessed for stem cell source, method of implantation, comparison groups, and concurrent surgical techniques. Results: Two studies comparing MSC treatment to autologous chondrocyte implantation found similar efficacy. Three studies reported clinical benefits with intra-articular MSC injection over non-MSC controls for cases undergoing debridement with or without marrow stimulation, although a randomized study found no significant clinical difference at 2-year follow-up but reported better 18-month magnetic resonance imaging and histologic scores in the MSC group. No human studies have compared intra-articular MSC therapy to non-MSC techniques for osteoarthritis in the absence of surgery. Conclusion: Mesenchymal stem cell–based therapies appear safe and effective for joint disorders in large animal preclinical models. Evidence for use in humans, particularly, comparison with more established treatments such as autologous chondrocyte implantation and microfracture, is limited.
Collapse
Affiliation(s)
| | - Daniel Bates
- Lakeside Sports Medicine Centre, Melbourne, Victoria, Australia
| | - Richard Boyd
- Monash Immunology and Stem Cell Laboratories (MISCL), Monash University, Clayton, Victoria, Australia
| | - David A Connell
- Faculty of Medicine, Nursing & Healthcare, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
202
|
Wolfstadt JI, Cole BJ, Ogilvie-Harris DJ, Viswanathan S, Chahal J. Current concepts: the role of mesenchymal stem cells in the management of knee osteoarthritis. Sports Health 2015; 7:38-44. [PMID: 25553211 PMCID: PMC4272690 DOI: 10.1177/1941738114529727] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Context: The number of adults with osteoarthritis in the United States is expected to nearly double from 21.4 million in 2005 to 41.1 million by 2030. As a result, medical costs and associated comorbidity will exponentially increase in the coming decades. In the past decade, mesenchymal stem cells (MSCs) have emerged as a novel treatment for degenerative joint disease. Evidence Acquisition: PubMed (from 1990 to 2013) was searched to identify relevant studies. Reference lists of included studies were also reviewed. Study Design: Clinical review. Level of Evidence: Level 3. Results: We identified 9 animal and 7 human studies investigating the use of MSCs in the treatment of osteoarthritis, with varying levels of support for this therapy. Conclusion: While MSCs have shown potential for improving function and decreasing inflammation in animal studies, translation to patients is still in question. There is a great deal of heterogeneity in treatment methods. Standardizing the manufacturing and characterization of MSCs will allow for better comparisons.
Collapse
Affiliation(s)
- Jesse I Wolfstadt
- University Health Network Arthritis Program, University of Toronto, Toronto, Ontario, Canada
| | - Brian J Cole
- Rush University Medical Centre, Chicago, Illinois
| | - Darrell J Ogilvie-Harris
- University Health Network Arthritis Program, University of Toronto, Toronto, Ontario, Canada ; University of Toronto Orthopaedic Sports Medicine Program, Women's College Hospital, Toronto, Ontario, Canada
| | - Sowmya Viswanathan
- Cell Therapy Program, University Health Network, Toronto, Ontario, Canada
| | - Jaskarndip Chahal
- University Health Network Arthritis Program, University of Toronto, Toronto, Ontario, Canada ; University of Toronto Orthopaedic Sports Medicine Program, Women's College Hospital, Toronto, Ontario, Canada
| |
Collapse
|
203
|
Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, Kim JE, Shim H, Shin JS, Shin IS, Ra JC, Oh S, Yoon KS. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells 2014; 32:1254-66. [PMID: 24449146 DOI: 10.1002/stem.1634] [Citation(s) in RCA: 606] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/26/2013] [Accepted: 11/16/2013] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are known to have a potential for articular cartilage regeneration. However, most studies focused on focal cartilage defect through surgical implantation. For the treatment of generalized cartilage loss in osteoarthritis, an alternative delivery strategy would be more appropriate. The purpose of this study was to assess the safety and efficacy of intra-articular injection of autologous adipose tissue derived MSCs (AD-MSCs) for knee osteoarthritis. We enrolled 18 patients with osteoarthritis of the knee and injected AD MSCs into the knee. The phase I study consists of three dose-escalation cohorts; the low-dose (1.0 × 10(7) cells), mid-dose (5.0 × 10(7)), and high-dose (1.0 × 10(8)) group with three patients each. The phase II included nine patients receiving the high-dose. The primary outcomes were the safety and the Western Ontario and McMaster Universities Osteoarthritis index (WOMAC) at 6 months. Secondary outcomes included clinical, radiological, arthroscopic, and histological evaluations. There was no treatment-related adverse event. The WOMAC score improved at 6 months after injection in the high-dose group. The size of cartilage defect decreased while the volume of cartilage increased in the medial femoral and tibial condyles of the high-dose group. Arthroscopy showed that the size of cartilage defect decreased in the medial femoral and medial tibial condyles of the high-dose group. Histology demonstrated thick, hyaline-like cartilage regeneration. These results showed that intra-articular injection of 1.0 × 10(8) AD MSCs into the osteoarthritic knee improved function and pain of the knee joint without causing adverse events, and reduced cartilage defects by regeneration of hyaline-like articular cartilage.
Collapse
Affiliation(s)
- Chris Hyunchul Jo
- Department of Orthopedic Surgery, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Delling U, Brehm W, Metzger M, Ludewig E, Winter K, Jülke H. In vivo tracking and fate of intra-articularly injected superparamagnetic iron oxide particle-labeled multipotent stromal cells in an ovine model of osteoarthritis. Cell Transplant 2014; 24:2379-90. [PMID: 25506789 DOI: 10.3727/096368914x685654] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this study, superparamagnetic iron oxide (SPIO) particle-labeled mesenchymal stromal cells (MSCs) were injected intra-articularly into osteoarthritic knee joints. Their fate and distribution were evaluated using magnetic resonance imaging (MRI) and macroscopic and histologic postmortem examination. Osteoarthritis was induced in 12 sheep by bilateral meniscectomy. After 6 weeks, one knee joint received 10 × 10(6) SPIO-labeled MSCs (Molday Ion Rhodamine B). Contralateral knees received a control injection of a) PBS, b) SPIO in PBS, c) 10 × 10(6) nonvital SPIO-labeled MSCs in PBS, or d) no injection. MR images were acquired immediately after injection and 1, 4, 8, and 12 weeks thereafter using a 0.5-T unit and a T2* sequence. Signal intensity of synovial fluid and synovial lining was assessed semiquantitatively using a scoring system. Viable SPIO-labeled MSCs produced a strong hypointense signal in the synovial fluid immediately after injection, but normal signal intensity of the synovial fluid was observed 1 week later. Synovial lining maintained its hypointensity throughout the study period. Nonvital SPIO-labeled MSCs induced hypointense signals of the synovial fluid; synovial lining appeared weak and inconsistently hypointense in the following weeks. Pure SPIO produced a strong hyperintense signal in the synovial fluid at the time of injection only. Histologically, in all knee joints receiving viable SPIO-labeled MSCs, SPIO particles were detected (Prussian blue) within the synovial lining, dorsal fat pad, and neomeniscus tissue, but not in osteochondral samples. Few SPIO particles were detected in joints injected with nonvital SPIO-labeled MSCs. Immunohistologically, no increased cell death (TUNEL) was observed in the area of detected SPIO particles, but we did observe potential chondrogenic cell differentiation (Safranin O or S100β). We conclude that viable SPIO-labeled MSCs remain detectable within the joint for 12 weeks and attach themselves to some but not all diseased joint structures.
Collapse
Affiliation(s)
- Uta Delling
- University of Leipzig, Faculty of Veterinary Medicine, Large Animal Clinic for Surgery, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
205
|
Current perspectives in mesenchymal stem cell therapies for osteoarthritis. Stem Cells Int 2014; 2014:194318. [PMID: 25548573 PMCID: PMC4274908 DOI: 10.1155/2014/194318] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease most commonly occurring in the ageing population. It is a slow progressive condition resulting in the destruction of hyaline cartilage followed by pain and reduced activity. Conventional treatments have little effects on the progression of the condition often leaving surgery as the last option. In the last 10 years tissue engineering utilising mesenchymal stem cells has been emerging as an alternative method for treating OA. Mesenchymal stem cells (MSCs) are multipotent progenitor cells found in various tissues, most commonly bone marrow and adipose tissue. MSCs are capable of differentiating into osteocytes, adipocytes, and chondrocytes. Autologous MSCs can be easily harvested and applied in treatment, but allogenic cells can also be employed. The early uses of MSCs focused on the implantations of cell rich matrixes during open surgeries, resulting in the formation of hyaline-like durable cartilage. More recently, the focus has completely shifted towards direct intra-articular injections where a great number of cells are suspended and injected into affected joints. In this review the history and early uses of MSCs in cartilage regeneration are reviewed and different approaches in current trends are explained and evaluated.
Collapse
|
206
|
Mamidi MK, Dutta S, Bhonde R, Das AK, Pal R. Allogeneic and autologous mode of stem cell transplantation in regenerative medicine: Which way to go? Med Hypotheses 2014; 83:787-91. [DOI: 10.1016/j.mehy.2014.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/14/2014] [Indexed: 01/08/2023]
|
207
|
Guo W, Imai S, Dubner R, Ren K. Multipotent stromal cells for arthritic joint pain therapy and beyond. Pain Manag 2014; 4:153-62. [PMID: 24641438 DOI: 10.2217/pmt.14.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multipotent stromal cells (MSCs) have been studied as a candidate for cell-based therapy for a variety of conditions including joint diseases. Clinical studies have used MSCs to treat arthritis and related joint diseases and generated encouraging results. There is improved joint cartilage tissues and functional activity, along with reduction of pain. MSCs may also possess intrinsic analgesic properties. Studies have shown MSC-induced pain relief in animal models and the opioids are involved in this effect. Beyond tissue repair, MSCs may not need to be grafted to the injury site to produce an effect. It is hypothesized that MSCs interact with the host immune cells and the relayed signal helps to produce and maintain a long-lasting therapeutic effect including pain relief.
Collapse
Affiliation(s)
- Wei Guo
- Department of Neural & Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
208
|
Uth K, Trifonov D. Stem cell application for osteoarthritis in the knee joint: A minireview. World J Stem Cells 2014; 6:629-636. [PMID: 25426260 PMCID: PMC4178263 DOI: 10.4252/wjsc.v6.i5.629] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 08/31/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
Knee osteoarthritis is a chronic, indolent disease that will affect an ever increasing number of patients, especially the elderly and the obese. It is characterized by degeneration of the cartilage substance inside the knee which leads to pain, stiffness and tenderness. By some estimations in 2030, only in the United States, this medical condition will burden 67 million people. While conventional treatments like physiotherapy or drugs offer temporary relief of clinical symptoms, restoration of normal cartilage function has been difficult to achieve. Moreover, in severe cases of knee osteoarthritis total knee replacement may be required. Total knee replacements come together with high effort and costs and are not always successful. The aim of this review is to outline the latest advances in stem cell therapy for knee osteoarthritis as well as highlight some of the advantages of stem cell therapy over traditional approaches aimed at restoration of cartilage function in the knee. In addition to the latest advances in the field, challenges associated with stem cell therapy regarding knee cartilage regeneration and chondrogenesis in vitro and in vivo are also outlined and analyzed. Furthermore, based on their critical assessment of the present academic literature the authors of this review share their vision about the future of stem cell applications in the treatment of knee osteoarthritis.
Collapse
|
209
|
Abstract
Modern medicine faces a growing crisis as demand for organ transplantations continues to far outstrip supply. By stimulating the body’s own repair mechanisms, regenerative medicine aims to reduce demand for organs, while the closely related field of tissue engineering promises to deliver “off-the-self” organs grown from patients’ own stem cells to improve supply. To deliver on these promises, we must have reliable means of generating complex tissues. Thus far, the majority of successful tissue engineering approaches have relied on macroporous scaffolds to provide cells with both mechanical support and differentiative cues. In order to engineer complex tissues, greater attention must be paid to nanoscale cues present in a cell’s microenvironment. As the extracellular matrix is capable of driving complexity during development, it must be understood and reproduced in order to recapitulate complexity in engineered tissues. This review will summarize current progress in engineering complex tissue through the integration of nanocomposites and biomimetic scaffolds.
Collapse
Affiliation(s)
- John W Cassidy
- Centre for Cell Engineering, University of Glasgow, Glasgow, UK. ; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
210
|
Abstract
Tears of the anterior cruciate ligament (ACL) are very frequent injuries, particularly in young and active people. Arthroscopic reconstruction using tendon auto- or allograft represents the gold-standard for the management of ACL tears. Interestingly, the ACL has the potential to heal upon intensive non-surgical rehabilitation procedures. Several biological factors influence this healing process as local intraligamentous cytokines and mainly cell repair mechanisms controlled by stem cells or progenitor cells. Understanding the mechanisms of this regeneration process and the cells involved may pave the way for novel, less invasive and biology-based strategies for ACL repair. This review aims to focus on the current knowledge on the mechanisms of ACL healing, the nature and potential of ligament derived stem/progenitor cells as well as on the potential and the limitations of using mesenchymal stem cells (MSCs) for treating injured ACL.
Collapse
|
211
|
Hegde V, Shonuga O, Ellis S, Fragomen A, Kennedy J, Kudryashov V, Lane JM. A prospective comparison of 3 approved systems for autologous bone marrow concentration demonstrated nonequivalency in progenitor cell number and concentration. J Orthop Trauma 2014; 28:591-8. [PMID: 24694554 DOI: 10.1097/bot.0000000000000113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To evaluate the efficacy of 3 commercially available systems: the Harvest SmartPReP 2 BMAC, Biomet BioCUE, and Arteriocyte Magellan systems. We compared the number and concentration of progenitor cells achieved both before and after centrifugation and the percentage of progenitor cells salvaged after centrifugation. METHODS Forty patients, mean age 47 ± 18 years (range: 18-92 years, 19 male/21 female) were prospectively consented for bilateral iliac crest aspiration. The first 20 aspirations compared the Harvest and Biomet systems, and based on those results, the second 20 compared the Harvest and Arteriocyte systems. One system was randomly assigned to each iliac crest. Each system's unique marrow acquisition process and centrifugation mechanism was followed. Samples for analysis were taken both immediately before the marrow was put into the centrifugation system (after acquisition), and after centrifugation. The number of progenitor cells in each sample was estimated by counting the connective tissue progenitors (CTPs). RESULTS The Harvest system achieved a significantly greater number and concentration of CTPs both before and after centrifugation when compared to the Biomet system. There was no difference in the percent yield of CTPs after centrifugation. There was no significant difference in the number and concentration of CTPs between the Harvest and Arteriocyte systems before centrifugation, but the Harvest system had a significantly greater number and concentration of CTPs after centrifugation. The Harvest system also had a significantly higher percent yield of CTPs after centrifugation compared with the Arteriocyte system. CONCLUSIONS The Harvest system resulted in a greater CTP number and concentration after centrifugation when compared with the Biomet and Arteriocyte systems and may thus provide increased osteogenic and chondrogenic capacity.
Collapse
Affiliation(s)
- Vishal Hegde
- *Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, CA; and †Metabolic Bone Disease Service; ‡Foot and Ankle Service, and §Limb Lengthening and Complex Reconstruction Service, Hospital for Special Surgery, New York, NY
| | | | | | | | | | | | | |
Collapse
|
212
|
Stuart MJ, Pattavilakom A. Clinically relevant aspects of stem cell technologies: current state of play. ANZ J Surg 2014; 85:615-9. [PMID: 25267417 DOI: 10.1111/ans.12864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2014] [Indexed: 01/22/2023]
Abstract
The emergence of stem cell technologies and their potential applications in regenerative medicine have generated immense interest by both the lay public and clinicians. Unproven and unregulated cell-based therapies are commercially available both in Australia and internationally, and reports of patient uptake (stem cell tourism) and associated morbidity are increasingly frequent. Clinicians in all fields will require an enhanced understanding of the basic science principles and current state of play in regenerative medicine in order to effectively counsel patients regarding these therapies in the setting of both commercial ventures and clinical trials. This review aims to concisely highlight the key clinically pertinent features of these trials and briefly discuss the specific therapeutic potential, mechanism of action and risks associated with these variables.
Collapse
Affiliation(s)
- Michael J Stuart
- Department of Neurosurgery, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | | |
Collapse
|
213
|
Bashir J, Sherman A, Lee H, Kaplan L, Hare JM. Mesenchymal stem cell therapies in the treatment of musculoskeletal diseases. PM R 2014; 6:61-9. [PMID: 24439148 DOI: 10.1016/j.pmrj.2013.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 05/01/2013] [Accepted: 05/03/2013] [Indexed: 12/17/2022]
Abstract
The application of regenerative strategies to musculoskeletal ailments offers extraordinary promise to transform management of the conditions of numerous patients. The use of cell-based therapies and adjunct strategies is under active investigation for injuries and illnesses affecting bones, joints, tendons, and skeletal muscle. Of particular interest to the field is the mesenchymal stem cell, an adult stem cell found in bone marrow and adipose tissue. This cell type can be expanded ex vivo, has allogeneic application, and has the capacity for engraftment and differentiation into mesodermal lineages. Also of major interest in the field is the use of platelet-rich plasma, a strategy to concentrate endogenous cytokines and growth factors with reparative potential. Here we review the biological basis, clinical studies, safety, and current state of mesenchymal stem cell and platelet-rich plasma therapies in the treatment of musculoskeletal disease.
Collapse
Affiliation(s)
- Jamil Bashir
- Department of Rehabilitation Medicine, University of Miami Miller School of Medicine, Miami, FL(∗)
| | - Andrew Sherman
- Department of Rehabilitation Medicine, University of Miami Miller School of Medicine, Miami, FL(†)
| | - Henry Lee
- Department of Rehabilitation Medicine, University of Miami Miller School of Medicine, Miami, FL(‡)
| | - Lee Kaplan
- Department of Orthopedics, University of Miami Miller School of Medicine, Miami, FL(§)
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136(¶).
| |
Collapse
|
214
|
Mauricio WE. Cirugía biológica pre protésica en artrosis temprana de rodilla. REVISTA MÉDICA CLÍNICA LAS CONDES 2014. [DOI: 10.1016/s0716-8640(14)70110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
215
|
Anderson JA, Little D, Toth AP, Moorman CT, Tucker BS, Ciccotti MG, Guilak F. Stem cell therapies for knee cartilage repair: the current status of preclinical and clinical studies. Am J Sports Med 2014; 42:2253-61. [PMID: 24220016 PMCID: PMC4019709 DOI: 10.1177/0363546513508744] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Articular cartilage damage of the knee is common, causing significant morbidity worldwide. Many adult tissues contain cells that are able to differentiate into multiple cell types, including chondrocytes. These stem cells have gained significant attention over the past decade and may become frontline management for cartilage defects in the very near future. PURPOSE The role of stem cells in the treatment of knee osteochondral defects was reviewed. Recent animal and clinical studies were reviewed to determine the benefits and potential outcomes of using stem cells for cartilage defects. STUDY DESIGN Literature review. METHODS A PubMed search was undertaken. The key phrase "stem cells and knee" was used. The search included reviews and original articles over an unlimited time period. From this search, articles outlining animal and clinical trials were selected. A search of current clinical trials in progress was performed on the clinicaltrials.gov website, and "stem cells and knee" was used as the search phrase. RESULTS Stem cells have been used in many recent in vitro and animal studies. A number of cell-based approaches for cartilage repair have progressed from preclinical animal studies into clinical trials. CONCLUSION The use of stem cells for the treatment of cartilage defects is increasing in animal and clinical studies. Methods of delivery of stem cells to the knee's cartilage vary from direct injection to implantation with scaffolds. While these approaches are highly promising, there is currently limited evidence of a direct clinical benefit, and further research is required to assess the overall outcome of stem cell therapies for knee cartilage repair.
Collapse
Affiliation(s)
- John A. Anderson
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina.
,Rothman Institute Cartilage Center, Rothman Institute, Philadelphia, Pennsylvania.
,Address correspondence to Rothman Institute Cartilage Center, 925 Chestnut Street, Philadelphia, PA 19107 ()
| | - Dianne Little
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina
| | - Alison P. Toth
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina
| | - Claude T. Moorman
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina
| | - Bradford S. Tucker
- Rothman Institute Cartilage Center, Rothman Institute, Philadelphia, Pennsylvania
| | - Michael G. Ciccotti
- Rothman Institute Cartilage Center, Rothman Institute, Philadelphia, Pennsylvania
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
216
|
Fahy N, Farrell E, Ritter T, Ryan AE, Murphy JM. Immune modulation to improve tissue engineering outcomes for cartilage repair in the osteoarthritic joint. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:55-66. [PMID: 24950588 DOI: 10.1089/ten.teb.2014.0098] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA), the most common form of arthritis, is a disabling degenerative joint disease affecting synovial joints and is associated with cartilage destruction, inflammation of the synovial membrane, and subchondral bone remodeling. Inflammation of the synovial membrane may arise secondary to degenerative processes in articular cartilage (AC), or may be a primary occurrence in OA pathogenesis. However, synovial inflammation plays a key role in the pathogenesis and disease progression of OA through the production of pro-inflammatory mediators, and is associated with cartilage destruction and pain. The triggers that initiate activation of the immune response in OA are unknown, but crosstalk between osteoarthritic chondrocytes, cartilage degradation products, and the synovium may act to perpetuate this response. Increasing evidence has emerged highlighting an important role for pro-inflammatory mediators and infiltrating inflammatory cell populations in the progression of the disease. Tissue engineering strategies hold great potential for the repair of damaged AC in an osteoarthritic joint. However, an in-depth understanding of how OA-associated inflammation impacts chondrocyte and progenitor cell behavior is required to achieve efficient cartilage regeneration in a catabolic osteoarthritic environment. In this review, we will discuss the role of inflammation in OA, and investigate novel immune modulation strategies that may prevent disease progression and facilitate successful cartilage regeneration for the treatment of OA.
Collapse
Affiliation(s)
- Niamh Fahy
- 1 Regenerative Medicine Institute, National University of Ireland Galway , Galway, Ireland
| | | | | | | | | |
Collapse
|
217
|
Baghaban Eslaminejad M, Malakooty Poor E. Mesenchymal stem cells as a potent cell source for articular cartilage regeneration. World J Stem Cells 2014; 6:344-354. [PMID: 25126383 PMCID: PMC4131275 DOI: 10.4252/wjsc.v6.i3.344] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/07/2013] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
Since articular cartilage possesses only a weak capacity for repair, its regeneration potential is considered one of the most important challenges for orthopedic surgeons. The treatment options, such as marrow stimulation techniques, fail to induce a repair tissue with the same functional and mechanical properties of native hyaline cartilage. Osteochondral transplantation is considered an effective treatment option but is associated with some disadvantages, including donor-site morbidity, tissue supply limitation, unsuitable mechanical properties and thickness of the obtained tissue. Although autologous chondrocyte implantation results in reasonable repair, it requires a two-step surgical procedure. Moreover, chondrocytes expanded in culture gradually undergo dedifferentiation, so lose morphological features and specialized functions. In the search for alternative cells, scientists have found mesenchymal stem cells (MSCs) to be an appropriate cellular material for articular cartilage repair. These cells were originally isolated from bone marrow samples and further investigations have revealed the presence of the cells in many other tissues. Furthermore, chondrogenic differentiation is an inherent property of MSCs noticed at the time of the cell discovery. MSCs are known to exhibit homing potential to the damaged site at which they differentiate into the tissue cells or secrete a wide spectrum of bioactive factors with regenerative properties. Moreover, these cells possess a considerable immunomodulatory potential that make them the general donor for therapeutic applications. All of these topics will be discussed in this review.
Collapse
|
218
|
Wang Y, Yuan M, Guo QY, Lu SB, Peng J. Mesenchymal Stem Cells for Treating Articular Cartilage Defects and Osteoarthritis. Cell Transplant 2014; 24:1661-78. [PMID: 25197793 DOI: 10.3727/096368914x683485] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Articular cartilage damage and osteoarthritis are the most common joint diseases. Joints are prone to damage caused by sports injuries or aging, and such damage regularly progresses to more serious joint disorders, including osteoarthritis, which is a degenerative disease characterized by the thinning and eventual wearing out of articular cartilage, ultimately leading to joint destruction. Osteoarthritis affects millions of people worldwide. Current approaches to repair of articular cartilage damage include mosaicplasty, microfracture, and injection of autologous chondrocytes. These treatments relieve pain and improve joint function, but the long-term results are unsatisfactory. The long-term success of cartilage repair depends on development of regenerative methodologies that restore articular cartilage to a near-native state. Two promising approaches are (i) implantation of engineered constructs of mesenchymal stem cell (MSC)-seeded scaffolds, and (ii) delivery of an appropriate population of MSCs by direct intra-articular injection. MSCs may be used as trophic producers of bioactive factors initiating regenerative activities in a defective joint. Current challenges in MSC therapy are the need to overcome current limitations in cartilage cell purity and to in vitro engineer tissue structures exhibiting the required biomechanical properties. This review outlines the current status of MSCs used in cartilage tissue engineering and in cell therapy seeking to repair articular cartilage defects and related problems. MSC-based technologies show promise when used to repair cartilage defects in joints.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | | | | | | | | |
Collapse
|
219
|
Treatment of knee osteoarthritis with autologous mesenchymal stem cells: two-year follow-up results. Transplantation 2014; 97:e66-8. [PMID: 24887752 DOI: 10.1097/tp.0000000000000167] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
220
|
Carstairs A, Genever P. Stem cell treatment for musculoskeletal disease. Curr Opin Pharmacol 2014; 16:1-6. [DOI: 10.1016/j.coph.2014.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/27/2014] [Accepted: 01/27/2014] [Indexed: 01/22/2023]
|
221
|
Wang W, Cao W. Treatment of osteoarthritis with mesenchymal stem cells. SCIENCE CHINA-LIFE SCIENCES 2014; 57:586-95. [PMID: 24849513 DOI: 10.1007/s11427-014-4673-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 04/03/2014] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is one of the most prevalent joint diseases with prominent symptoms affecting the daily life of millions of middle aged and elderly people. Despite this, there are no successful medical interventions that can prevent the progressive destruction of OA joints. The onset of pathological changes in OA is associated with deviant activity of mesenchymal stem cells (MSCs), the multipotent precursors of connective tissue cells that reside in joints. Current therapies for OA have resulted in poor clinical outcomes without repairing the damaged cartilage. Intra-articular delivery of culture-expanded MSCs has opened new avenues of OA treatment. Pre-clinical and clinical trials demonstrated the feasibility, safety, and efficacy of MSC therapy. The Wnt/β-catenin, bone morphogenetic protein 2, Indian hedgehog, and Mitogen-activated protein kinase signaling pathways have been demonstrated to be involved in OA and the mechanism of action of MSC therapies.
Collapse
Affiliation(s)
- Wen Wang
- Cellular Biomedicine Group, Palo Alto, CA, 94301, USA
| | | |
Collapse
|
222
|
Roubille C, Pelletier JP, Martel-Pelletier J. New and emerging treatments for osteoarthritis management: will the dream come true with personalized medicine? Expert Opin Pharmacother 2014; 14:2059-77. [PMID: 24044485 DOI: 10.1517/14656566.2013.825606] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Osteoarthritis (OA) is a dynamic process involving the main tissues of the joint for which a global approach should be considered. No disease-modifying OA drug (DMOAD) has yet been approved. New therapeutic strategies are needed that would be cost effective by reducing the need for pharmacological interventions and surgical management while targeting specific pathways leading to OA. The treatment landscape of OA is about to change based on new agents having shown some structural effects and emerging therapies with DMOAD effects. AREAS COVERED In this review based on a Medline (via PubMed) search, promising new and emerging therapies with a potential structural effect (DMOAD) will be discussed including growth factors, platelet-rich plasma, autologous stem cells, bone remodeling modulators, cytokine inhibition, gene therapy, and RNA interference. EXPERT OPINION DMOAD development should focus on targeting some phenotypes of OA patients evidenced with sensitive techniques such as magnetic resonance imaging, as a single treatment will unlikely be appropriate for all OA patients. This will allow the development of DMOADs based on personalized medicine. An exciting new era in DMOAD development is within reach, provided future clinical trials are sufficiently powered, systematically designed, use the appropriate evaluation tools, and target the appropriate categories of OA patients.
Collapse
Affiliation(s)
- Camille Roubille
- University of Montreal Hospital Research Centre (CRCHUM), Osteoarthritis Research Unit , 1560 Sherbrooke Street East, Montreal, Quebec , Canada
| | | | | |
Collapse
|
223
|
Orth P, Rey-Rico A, Venkatesan JK, Madry H, Cucchiarini M. Current perspectives in stem cell research for knee cartilage repair. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2014; 7:1-17. [PMID: 24520197 PMCID: PMC3897321 DOI: 10.2147/sccaa.s42880] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protocols based on the delivery of stem cells are currently applied in patients, showing encouraging results for the treatment of articular cartilage lesions (focal defects, osteoarthritis). Yet, restoration of a fully functional cartilage surface (native structural organization and mechanical functions) especially in the knee joint has not been reported to date, showing the need for improved designs of clinical trials. Various sources of progenitor cells are now available, originating from adult tissues but also from embryonic or reprogrammed tissues, most of which have already been evaluated for their chondrogenic potential in culture and for their reparative properties in vivo upon implantation in relevant animal models of cartilage lesions. Nevertheless, particular attention will be needed regarding their safe clinical use and their potential to form a cartilaginous repair tissue of proper quality and functionality in the patient. Possible improvements may reside in the use of biological supplements in accordance with regulations, while some challenges remain in establishing standardized, effective procedures in the clinics.
Collapse
Affiliation(s)
- Patrick Orth
- Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany
| | - Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Henning Madry
- Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany ; Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
224
|
Kim JD, Lee GW, Jung GH, Kim CK, Kim T, Park JH, Cha SS, You YB. Clinical outcome of autologous bone marrow aspirates concentrate (BMAC) injection in degenerative arthritis of the knee. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2014; 24:1505-11. [PMID: 24398701 DOI: 10.1007/s00590-013-1393-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/16/2013] [Indexed: 12/12/2022]
Abstract
PURPOSE As a treatment method of degenerative arthritis of knee, this study evaluated the clinical efficacy of the intra-articular injection of autologous bone marrow aspirates concentrate (BMAC) with adipose tissue. MATERIALS AND METHODS Between April 2011 and May 2012, 41 patients (75 knees) who were diagnosed as a degenerative knee arthritis and underwent the BMAC injection with adipose tissue were included in this study. Mean age was 60.7 years old (ranged 53-80). Kellgren-Lawrence grade was used for assessing radiologic degree of osteoarthritis; there were each 12, 24, 33, and 6 cases of grade I, II, III, and IV. At preoperative and postoperative 3, 6, and 12 months, pain score using visual analogue scale (VAS) and functional scales were used for evaluation. RESULTS After the procedure, mean VAS score was decreased from 7.0 preoperatively to 4.1, 3.5, and 3.3 postoperatively 3, 6, and 12 months. And functional scores were also improved; International Knee Documentation Committee score (from 37.7 preoperatively to 59.3, 66.3, 69.3 postoperatively), SF-36 health score (from 31.5 to 43.5, 45.6, 47.7), knee and osteoarthritis outcome score (from 43.1 to 64.9, 68.5, 70.6), Lysholm Knee Questionnaire (from 37.3 to 65.4, 68.6, 71.0) were all increased after the procedure. When classified according to K-L grade, the improvement of VAS score in grade IV group was 8.2 preoperatively to 5.5, 5.3, and 5.7 postoperatively, which was significantly poorer than those of grade I-III groups. In the knee functional scales, similar pattern was checked. CONCLUSIONS BMAC injection significantly improved both knee pain and functions in the patients with degenerative arthritis of knee. Also, the injection would be more effective in early to moderate phases.
Collapse
Affiliation(s)
- Jae-Do Kim
- Department of Orthopaedic Surgery, Kosin University Gospel Hospital, 34 Am-nam Dong, Seo Gu, Pusan, 602-030, Republic of Korea,
| | | | | | | | | | | | | | | |
Collapse
|
225
|
Abstract
Diarthrodial joints are well suited to intra-articular injection, and the local delivery of therapeutics in this fashion brings several potential advantages to the treatment of a wide range of arthropathies. Possible benefits over systemic delivery include increased bioavailability, reduced systemic exposure, fewer adverse events, and lower total drug costs. Nevertheless, intra-articular therapy is challenging because of the rapid egress of injected materials from the joint space; this elimination is true of both small molecules, which exit via synovial capillaries, and of macromolecules, which are cleared by the lymphatic system. In general, soluble materials have an intra-articular dwell time measured only in hours. Corticosteroids and hyaluronate preparations constitute the mainstay of FDA-approved intra-articular therapeutics. Recombinant proteins, autologous blood products and analgesics have also found clinical use via intra-articular delivery. Several alternative approaches, such as local delivery of cell and gene therapy, as well as the use of microparticles, liposomes, and modified drugs, are in various stages of preclinical development.
Collapse
Affiliation(s)
- Christopher H Evans
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, RN-115, Boston, MA 02215, USA
| | - Virginia B Kraus
- Duke University Medical Center, Department of Medicine, Box 3416, Durham, NC 27710, USA
| | - Lori A Setton
- Department of Biomedical Engineering, Duke University, Room 136 Hudson Hall, Box 90281, Durham, NC 27708, USA
| |
Collapse
|
226
|
Fierabracci A, Del Fattore A, Luciano R, Muraca M, Teti A, Muraca M. Recent advances in mesenchymal stem cell immunomodulation: the role of microvesicles. Cell Transplant 2013; 24:133-49. [PMID: 24268069 DOI: 10.3727/096368913x675728] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells are the most widely used cell phenotype for therapeutic applications, the main reasons being their well-established abilities to promote regeneration of injured tissues and to modulate immune responses. Efficacy was reported in the treatment of several animal models of inflammatory and autoimmune diseases and, in clinical settings, for the management of disorders such as GVHD, systemic lupus erythematosus, multiple sclerosis, and inflammatory bowel disease. The effects of mesenchymal stem cells are believed to be largely mediated by paracrine signals, and several secreted molecules have been identified as contributors to the net biological effect. Recently, it has been recognized that bioactive molecules can be shuttled from cell to cell packed in microvesicles, tiny portions of cytoplasm surrounded by a membrane. Coding and noncoding RNAs are also carried in such microvesicles, transferring relevant biological activity to target cells. Several reports indicate that the regenerative effect of mesenchymal stem cells can be reproduced by microvesicles isolated from their culture medium. More recent evidence suggests that the immunomodulatory effects of mesenchymal stem cells are also at least partially mediated by secreted microvesicles. These findings allow better understanding of the mechanisms involved in cell-to-cell interaction and may have interesting implications for the development of novel therapeutic tools in place of the parent cells.
Collapse
|
227
|
Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med 2013; 45:e54. [PMID: 24232253 PMCID: PMC3849579 DOI: 10.1038/emm.2013.94] [Citation(s) in RCA: 849] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/22/2013] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are partially defined by their ability to differentiate into tissues including bone, cartilage and adipose in vitro, but it is their trophic, paracrine and immunomodulatory functions that may have the greatest therapeutic impact in vivo. Unlike pharmaceutical treatments that deliver a single agent at a specific dose, MSCs are site regulated and secrete bioactive factors and signals at variable concentrations in response to local microenvironmental cues. Significant progress has been made in understanding the biochemical and metabolic mechanisms and feedback associated with MSC response. The anti-inflammatory and immunomodulatory capacity of MSC may be paramount in the restoration of localized or systemic conditions for normal healing and tissue regeneration. Allogeneic MSC treatments, categorized as a drug by regulatory agencies, have been widely pursued, but new studies demonstrate the efficacy of autologous MSC therapies, even for individuals affected by a disease state. Safety and regulatory concerns surrounding allogeneic cell preparations make autologous and minimally manipulated cell therapies an attractive option for many regenerative, anti-inflammatory and autoimmune applications.
Collapse
|
228
|
Mesenchymal Stromal Cells: Updates and Therapeutic Outlook in Rheumatic Diseases. J Clin Med 2013; 2:201-13. [PMID: 26237144 PMCID: PMC4470144 DOI: 10.3390/jcm2040201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/10/2013] [Accepted: 09/27/2013] [Indexed: 12/29/2022] Open
Abstract
Multipotent mesenchymal stromal cells or mesenchymal stem cells (MSCs) are adult stem cells exhibiting functional properties that have opened the way for cell-based clinical therapies. MSCs have been reported to exhibit immunosuppressive as well as healing properties, improving angiogenesis and preventing apoptosis or fibrosis through the secretion of paracrine mediators. This review summarizes recent progress on the clinical application of stem cells therapy in some inflammatory and degenerative rheumatic diseases. To date, most of the available data have been obtained in preclinical models and clinical efficacy needs to be evaluated through controlled randomized double-blind trials.
Collapse
|
229
|
Hagmann S, Gotterbarm T, Müller T, Baesig AM, Gantz S, Dreher T, Kämmerer PW, Frank S, Zeifang F, Moradi B. The influence of bone marrow- and synovium-derived mesenchymal stromal cells from osteoarthritis patients on regulatory T cells in co-culture. Clin Exp Immunol 2013; 173:454-62. [PMID: 23607395 DOI: 10.1111/cei.12122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2013] [Indexed: 12/13/2022] Open
Abstract
There is increasing evidence that inflammation in the synovium plays a major role in the progression of osteoarthritis (OA). However, the immunogenic properties of mesenchymal stromal cells (MSCs), which are considered to regulate immunity in various diseases, remain largely unknown in OA. The purpose of this study was to determine the influence of MSCs from OA patients on regulatory T cells (Tregs ) in an allogeneic co-culture model. Bone marrow (BM) and synovial membrane (SM) were harvested from hip joints of OA patients and co-cultured with lymphocytes enriched in CD4(+) CD25(+) CD127(-) regulatory T cells (Treg (+) LC) from healthy donors. Treg proportions and MSC markers were assessed by flow cytometry. Cytokine levels were assessed after 2 and 5 days of co-cultivation. Additionally, Treg (+) LC cultures were analysed in the presence of interleukin (IL)-6 and MSC-supernatant complemented medium. B-MSCs and S-MSCs were able to retain the Treg proportion compared to lymphocyte monocultures. T cell-MSC co-cultures showed a significant increase of IL-6 compared to MSC cultures. S-MSCs produced higher amounts of IL-6 compared to B-MSCs, both in single and T cell co-cultures. The effect of retaining the Treg percentage could be reproduced partially by IL-6 addition to the medium, but could only be observed fully when using MSC culture supernatants. Our data demonstrate that retaining the Treg phenotype in MSC-T cell co-cultures can be mediated by MSC derived from OA patients. IL-6 plays an important role in mediating these processes. To our knowledge, this study is the first describing the interaction of MSCs from OA patients and Tregs in an allogeneic co-culture model.
Collapse
Affiliation(s)
- S Hagmann
- Department of Orthopedic Surgery and Traumatology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Sharma RR, Pollock K, Hubel A, McKenna D. Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion 2013; 54:1418-37. [PMID: 24898458 DOI: 10.1111/trf.12421] [Citation(s) in RCA: 291] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 08/05/2013] [Accepted: 08/09/2013] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) have recently generated great interest in the fields of regenerative medicine and immunotherapy due to their unique biologic properties. In this review we attempt to provide an overview of the current clinical status of MSC therapy, primarily focusing on immunomodulatory and regenerative or tissue repair applications of MSCs. In addition, current manufacturing is reviewed with attention to variation in practices (e.g., starting material, approach to culture and product testing). There is considerable variation among the 218 clinical trials assessed here; variations include proposed mechanisms of action, optimal dosing strategy, and route of administration. To ensure the greatest likelihood of success in clinical trials as the field progresses, attention must be given to the optimization of MSC culture.
Collapse
Affiliation(s)
- Ratti Ram Sharma
- Department of Transfusion Medicine, Post graduate Institute of Medical Education and Research, Chandīgarh, India
| | | | | | | |
Collapse
|
231
|
Peeters CMM, Leijs MJC, Reijman M, van Osch GJVM, Bos PK. Safety of intra-articular cell-therapy with culture-expanded stem cells in humans: a systematic literature review. Osteoarthritis Cartilage 2013; 21:1465-73. [PMID: 23831631 DOI: 10.1016/j.joca.2013.06.025] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/20/2013] [Accepted: 06/25/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND An important goal of stem cell research in orthopaedics is to develop clinically relevant techniques that could be applied to heal cartilage or joint pathology. Stem cell treatment in orthopaedics for joint pathology is promising since these cells have the ability to modulate different processes in the various tissues of the joint simultaneously. The non life-threatening nature of musculoskeletal system disorders makes safety of stem cell therapy a necessary prerequisite. OBJECTIVE To systematically review the literature and provide an overview of reported adverse events (AEs) of intra-articular treatment with culture-expanded stem cells in humans. DESIGN A systematic literature search was performed in Pubmed, EMBASE, Web of Science and CINAHL in February 2013. AEs were reported into three categories: local/systemic, serious adverse event or AE (SAE/AE), related/unrelated. RESULTS 3039 Potentially eligible articles were identified of which eventually eight fulfilled our inclusion criteria. In total, 844 procedures with a mean follow-up of 21 months were analysed. Autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) were used for cartilage repair and osteoarthritis treatment in all included studies. Four SAEs were reported by the authors. One infection following bone marrow aspiration (BMA) was reported as probably related and resolved with antibiotics. One pulmonary embolism occurred 2 weeks after BMA and was reported as possibly related. Two tumours, both not at the site of injection, were reported as unrelated. Twenty-two other cases of possible procedure-related and seven of possible stem cell-product related adverse events (AEs) were documented. The main AEs related to the procedure were increased pain/swelling and dehydration after BMA. Increased pain and swelling was the only AE reported as related to the stem cell-product. CONCLUSIONS Based on current literature review we conclude that application of cultured stem cells in joints appears to be safe. We believe that with continuous caution for potential side effects, it is reasonable to continue with the development of articular stem cell therapies.
Collapse
Affiliation(s)
- C M M Peeters
- Department of Orthopaedics, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
232
|
Abstract
PURPOSE OF REVIEW To review new data on pharmacologic treatment of osteoarthritis for the years 2011-2012. RECENT FINDINGS Duloxetine was approved for the treatment of chronic knee pain due to osteoarthritis and has been conditionally recommended by the American College of Rheumatology. Strontium ranelate was found to significantly decrease the rate of decline in joint space width as well as improve pain scores compared with placebo in a large multicenter study in patients with symptomatic knee osteoarthritis. Nerve growth factor (NGF) monoclonal antibody therapy has shown much promise with regard to improvement in pain; however, clinical development studies were stopped out of concern for adverse events in 2010. After a review by the Food and Drug Administration, this hold may be lifted and further studies may resume in 2013. The biologic agents interleukin-1 receptor antagonist and antitumor necrosis factor antibodies have not been shown to be efficacious nor to alter the course of osteoarthritis. Much research surrounding intra-articular injections of platelet-rich plasma (PRP) has not produced clear evidence that this therapy is efficacious in osteoarthritis. There are presently studies using mesenchymal stem cell therapy for osteoarthritis. SUMMARY Duloxetine, strontium ranelate, and NGF antibodies are promising therapies for symptomatic osteoarthritis. At this time, MSCs and PRP require more investigation.
Collapse
|
233
|
Hauser RA, Orlofsky A. Regenerative injection therapy with whole bone marrow aspirate for degenerative joint disease: a case series. CLINICAL MEDICINE INSIGHTS-ARTHRITIS AND MUSCULOSKELETAL DISORDERS 2013; 6:65-72. [PMID: 24046512 PMCID: PMC3771705 DOI: 10.4137/cmamd.s10951] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Regenerative therapeutic strategies for joint diseases usually employ either enriched concentrates of bone marrow-derived stem cells, chondrogenic preparations such as platelet-rich plasma, or irritant solutions such as hyperosmotic dextrose. In this case series, we describe our experience with a simple, cost-effective regenerative treatment using direct injection of unfractionated whole bone marrow (WBM) into osteoarthritic joints in combination with hyperosmotic dextrose. Seven patients with hip, knee or ankle osteoarthritis (OA) received two to seven treatments over a period of two to twelve months. Patient-reported assessments were collected in interviews and by questionnaire. All patients reported improvements with respect to pain, as well as gains in functionality and quality of life. Three patients, including two whose progress under other therapy had plateaued or reversed, achieved complete or near-complete symptomatic relief, and two additional patients achieved resumption of vigorous exercise. These preliminary findings suggest that OA treatment with WBM injection merits further investigation.
Collapse
Affiliation(s)
- Ross A Hauser
- Caring Medical Rehabilitation Services Oak Park, IL, USA
| | | |
Collapse
|
234
|
Sampson S, Botto-van Bemden A, Aufiero D. Autologous bone marrow concentrate: review and application of a novel intra-articular orthobiologic for cartilage disease. PHYSICIAN SPORTSMED 2013; 41:7-18. [PMID: 24113698 DOI: 10.3810/psm.2013.09.2022] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Younger adults, aged < 65 years, increasingly present to their physicians with advanced cartilage disease or post-traumatic osteoarthritis. A number of treatments exist for lessening patient pain and improving patient function. However, many patients are becoming aware of the potential of regenerative therapies and are now seeking solutions to the impaired biology underlying their conditions rather than addressing only their symptoms. Patients do not want to merely lessen their symptoms temporarily with a surgical procedure that replaces damaged tissue, but instead seek correction and repair of the underlying biology to regenerate damaged tissue and alleviate their symptoms altogether. Current therapies for patients with cartilage disease or osteoarthritis range from non-surgical intra-articular injections with biologics, such as hyaluronic acid (HA), to total joint arthroplasty for advanced stages of disease. Total joint arthroplasty is a successful procedure for patients aged > 65 years; however, the limited long-term durability of implanted prostheses decreases the preference of using such methods in more active patients aged < 65 years. The potential of cell-based orthobiologic injection therapies (pertaining to therapeutic injectables that aim to restore the biologic environment and/or structural components of diseased or damaged musculoskeletal tissue) is of tremendous interest for younger, more active patients, and is even more appealing in that such therapy can be delivered at point-of-care in the clinic during an office visit. Notably, the exponential rate of progress in biotechnology has allowed for immediate application of myriad novel therapies prior to clear evidence of benefit from randomized clinical trials. Orthobiologic intra-articular injection therapies include HA and platelet-rich plasma (PRP). We report on current, available findings for a third-generation intra-articular orthobiologic injectable therapy for cartilage disease, bone marrow concentrate (BMC). Bone marrow concentrate contains mesenchymal stem cells (MSCs), hematopoetic stem cells, platelets (containing growth factors), and cytokines. The anti-inflammatory and immunomodulatory properties of bone marrow stem cells (BMSCs) can facilitate regeneration of tissue. Additionally, BMSCs enhance the quality of cartilage repair by increasing aggrecan content and tissue firmness. Following bone marrow aspiration (BMA), BMC is easily prepared using centrifugation, and is available for a same-day procedure with minimal manipulation of cells, thus complying with US Food and Drug Association (FDA) restrictions. To date, there are no published randomized controlled trials on the efficacy of use of autologous BMC intra-articular injections performed as a same-day in-office procedure for treating patients with cartilage disease; however, several publications have reported the ease of use of this method, its strong safety profile, and the fundamental science suggesting great therapeutic potential.
Collapse
Affiliation(s)
- Steven Sampson
- Clinical Instructor of Medicine, David Geffen School of Medicine at UCLA; Clinical Assistant Professor, Western University of Health Sciences; Adjunct Assistant Professor, Touro University; Founder, The Orthohealing Center and The Orthobiologic Institute (TOBI), Los Angeles, CA.
| | | | | |
Collapse
|
235
|
Chen L, Huang H, Sharma HS, Zuo H, Sanberg PR. Cell transplantation as a pain therapy targets both analgesia and neural repair. Cell Transplant 2013; 22 Suppl 1:S11-9. [PMID: 23992823 DOI: 10.3727/096368913x672091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cell transplantation is a potentially powerful approach for the alleviation of chronic pain. The strategy of cell transplantation for the treatment of pain is focused on cell-based analgesia and neural repair. (1) Adrenal medullary chromaffin cells and the PC12 cell line have been used to treat cancer pain and neuropathic pain in both animal models and human cases. As biological or living minipumps, these cells produce and secrete pain-reducing neuroactive substances if administered directly into the spinal subarachnoid space. (2) Cell implantation for pain neurorestorative therapy is a new concept and an emerging research field for pain control along with neural repair. Possible neurorestorative mechanisms include neuroprotective, neurotrophic, neuroreparative, neuroregenerative, neuromodulation, or neuroconstructive interventions, as well as immunomodulation and enhancing the microcirculation. These factors may ultimately restore the damaged or irritated condition of the lesioned nerves. The growing preclinical and clinical data show that neural stem/progenitor cells, olfactory ensheathing cells, mesenchymal stromal cells, and CD34(+) cells have the capacity to manage intractable pain and improve neurological functions. Cell delivery routes include local, intrathecal, or intravascular implants. Although these strategies are still in their infancy phase for pain neurorestoratology, cell-based therapies could open up new avenues for the relief of pain. In this review, these aspects are critically analyzed based on our own investigations. This manuscript is published as part of the International Association of Neurorestoratology (IANR) supplement issue of Cell Transplantation.
Collapse
|
236
|
Abstract
BACKGROUND Osteoarthritis is the most prevalent joint disease and a frequent cause of joint pain, functional loss, and disability. Osteoarthritis often becomes chronic, and conventional treatments have demonstrated only modest clinical benefits without lesion reversal. Cell-based therapies have shown encouraging results in both animal studies and a few human case reports. We designed a pilot study to assess the feasibility and safety of osteoarthritis treatment with mesenchymal stromal cells (MSCs) in humans and to obtain early efficacy information for this treatment. METHODS Twelve patients with chronic knee pain unresponsive to conservative treatments and radiologic evidence of osteoarthritis were treated with autologous expanded bone marrow MSCs by intra-articular injection (40×10 cells). Clinical outcomes were followed for 1 year and included evaluations of pain, disability, and quality of life. Articular cartilage quality was assessed by quantitative magnetic resonance imaging T2 mapping. RESULTS Feasibility and safety were confirmed, and strong indications of clinical efficacy were identified. Patients exhibited rapid and progressive improvement of algofunctional indices that approached 65% to 78% by 1 year. This outcome compares favorably with the results of conventional treatments. Additionally, quantification of cartilage quality by T2 relaxation measurements demonstrated a highly significant decrease of poor cartilage areas (on average, 27%), with improvement of cartilage quality in 11 of the 12 patients. CONCLUSIONS MSC therapy may be a valid alternative treatment for chronic knee osteoarthritis. The intervention is simple, does not require hospitalization or surgery, provides pain relief, and significantly improves cartilage quality.
Collapse
|
237
|
Filardo G, Madry H, Jelic M, Roffi A, Cucchiarini M, Kon E. Mesenchymal stem cells for the treatment of cartilage lesions: from preclinical findings to clinical application in orthopaedics. Knee Surg Sports Traumatol Arthrosc 2013; 21:1717-29. [PMID: 23306713 DOI: 10.1007/s00167-012-2329-3] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/26/2012] [Indexed: 02/08/2023]
Abstract
PURPOSE The aim of this systematic review is to examine the available clinical evidence in the literature to support mesenchymal stem cell (MSC) treatment strategies in orthopaedics for cartilage defect regeneration. METHODS The research was performed on the PubMed database considering the English literature from 2002 and using the following key words: cartilage, cartilage repair, mesenchymal stem cells, MSCs, bone marrow concentrate (BMC), bone marrow-derived mesenchymal stem cells, bone marrow stromal cells, adipose-derived mesenchymal stem cells, and synovial-derived mesenchymal stem cells. RESULTS The systematic research showed an increasing number of published studies on this topic over time and identified 72 preclinical papers and 18 clinical trials. Among the 18 clinical trials identified focusing on cartilage regeneration, none were randomized, five were comparative, six were case series, and seven were case reports; two concerned the use of adipose-derived MSCs, five the use of BMC, and 11 the use of bone marrow-derived MSCs, with preliminary interesting findings ranging from focal chondral defects to articular osteoarthritis degeneration. CONCLUSIONS Despite the growing interest in this biological approach for cartilage regeneration, knowledge on this topic is still preliminary, as shown by the prevalence of preclinical studies and the presence of low-quality clinical studies. Many aspects have to be optimized, and randomized controlled trials are needed to support the potential of this biological treatment for cartilage repair and to evaluate advantages and disadvantages with respect to the available treatments. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Giuseppe Filardo
- Biomechanics Laboratory, III Clinic, Rizzoli Orthopaedic Institute, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
238
|
Abstract
Arthritis is one of the most frequent musculoskeletal problems, causing pain, disability, and a significant economic burden. In this article, we discuss current nonsurgical injectable treatment options as well as future trends for cartilage lesions and early arthritis of the knee. We cover some potential treatments for knee osteoarthritis, including stem cell and gene therapies.
Collapse
|
239
|
The Necessity of a Systematic Approach for the Use of MSCs in the Clinical Setting. Stem Cells Int 2013; 2013:892340. [PMID: 23864866 PMCID: PMC3705875 DOI: 10.1155/2013/892340] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 05/26/2013] [Accepted: 06/05/2013] [Indexed: 12/16/2022] Open
Abstract
Cell therapy has emerged as a potential therapeutic strategy in regenerative disease. Among different cell types, mesenchymal stem/stromal cells have been wildly studied in vitro, in vivo in animal models and even used in clinical trials. However, while clinical applications continue to increase markedly, the understanding of their physiological properties and interactions raises many questions and drives the necessity of more caution and supervised strategy in their use.
Collapse
|
240
|
Diao HJ, Yeung CW, Yan CH, Chan GCF, Chan BP. Bidirectional and mutually beneficial interactions between human mesenchymal stem cells and osteoarthritic chondrocytes in micromass co-cultures. Regen Med 2013; 8:257-69. [DOI: 10.2217/rme.13.22] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aim: Mesenchymal stem cell (MSC)-based therapy presents a promising approach for treating osteoarthritis (OA). However, the molecular interactions between MSCs and OA chondrocytes (OACs) are not known. This study aims to investigate the bidirectional interactions between human MSCs (hMSCs) and human OACs (hOACs) in a 3D co-culture system. Materials & methods: hMSC–collagen microspheres were cultured in hOAC-conditioned medium or co-cultured with hOAC–collagen microspheres. Growth characteristics, glycosaminoglycan (GAG) production, gene expression of major OA-associated chondrogenic markers, including SOX9, COL2A1, ACAN and MMP13, were investigated in both cell types. Results: Both the conditioned medium and the co-culture induced MSC chondrogenesis with enhanced GAG production, SOX9 gene and protein expression, and gene expression of ACAN and COL2A1. Meanwhile, the co-culture also induced hOACs to partially resume the lost chondrogenic phenotype as shown by reduced proliferation, enhanced GAG production when hMSCs were chondrogenically predifferentiated, and reduced MMP13 gene expression. Conclusion: This work suggests that 3D co-culture of hMSCs and hOACs is mutually beneficial to each other, suggesting the potential therapeutic effect of delivering hMSC in scaffolds directly to OA defects.
Collapse
Affiliation(s)
- Hua Jia Diao
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Chui Wai Yeung
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Chun Hoi Yan
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Godfrey CF Chan
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Barbara P Chan
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China.
| |
Collapse
|
241
|
Kaitainen S, Mähönen AJ, Lappalainen R, Kröger H, J Lammi M, Qu C. TiO
2
coating promotes human mesenchymal stem cell proliferation without the loss of their capacity for chondrogenic differentiation. Biofabrication 2013; 5:025009. [DOI: 10.1088/1758-5082/5/2/025009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
242
|
Selleri S, Dieng MM, Nicoletti S, Louis I, Beausejour C, Le Deist F, Haddad E. Cord-blood-derived mesenchymal stromal cells downmodulate CD4+ T-cell activation by inducing IL-10-producing Th1 cells. Stem Cells Dev 2013; 22:1063-75. [PMID: 23167734 PMCID: PMC3608091 DOI: 10.1089/scd.2012.0315] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 11/19/2012] [Indexed: 12/14/2022] Open
Abstract
The mechanisms by which mesenchymal stromal cells (MSCs) induce immunomodulation are still poorly understood. In the current work, we show by a combination of polymerase chain reaction (PCR) array, flow cytometry, and multiplex cytokine data analysis that during the inhibition of an alloantigen-driven CD4+ T-cell response, MSCs induce a fraction of CD4+ T-cells to coexpress interferon-γ (IFNγ) and interleukin-10 (IL-10). This CD4+ IFNγ+ IL-10+ cell population shares properties with recently described T-cells originating from switched Th1 cells that start producing IL-10 and acquire a regulatory function. Here we report that IL-10-producing Th1 cells accumulated with time during T-cell stimulation in the presence of MSCs. Moreover, MSCs caused stimulated T-cells to downregulate the IFNγ receptor (IFNγR) without affecting IL-10 receptor expression. Further, the inhibitory effect of MSCs could be reversed by an anti-IFNγR-blocking antibody, indicating that IFNγ is one of the major players in MSC-induced T-cell suppression. Stimulated (and, to a lesser extent, resting) CD4+ T-cells treated with MSCs were able to inhibit the proliferation of autologous CD4+ T-cells, demonstrating their acquired regulatory properties. Altogether, our results suggest that the generation of IL-10-producing Th1 cells is one of the mechanisms by which MSCs can downmodulate an immune response.
Collapse
Affiliation(s)
- Silvia Selleri
- CHU Sainte-Justine Research Center, Montréal, Quebec, Canada
- Department of Pediatrics, Université de Montréal, Montréal, Quebec, Canada
| | | | - Simon Nicoletti
- CHU Sainte-Justine Research Center, Montréal, Quebec, Canada
- Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Isabelle Louis
- CHU Sainte-Justine Research Center, Montréal, Quebec, Canada
| | - Christian Beausejour
- CHU Sainte-Justine Research Center, Montréal, Quebec, Canada
- Department of Pharmacology, Université de Montréal, Montréal, Quebec, Canada
| | - Françoise Le Deist
- CHU Sainte-Justine Research Center, Montréal, Quebec, Canada
- Department of Pediatrics, Université de Montréal, Montréal, Quebec, Canada
- Department of Microbiology and Immunology, Université de Montréal, Montréal, Quebec, Canada
| | - Elie Haddad
- CHU Sainte-Justine Research Center, Montréal, Quebec, Canada
- Department of Pediatrics, Université de Montréal, Montréal, Quebec, Canada
- Department of Microbiology and Immunology, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
243
|
Functional articular cartilage repair: here, near, or is the best approach not yet clear? Nat Rev Rheumatol 2013; 9:277-90. [DOI: 10.1038/nrrheum.2013.29] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
244
|
|
245
|
Muhammad H, Schminke B, Miosge N. Current concepts in stem cell therapy for articular cartilage repair. Expert Opin Biol Ther 2013; 13:541-8. [PMID: 23320740 DOI: 10.1517/14712598.2013.758707] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Hyaline articular cartilage is the connective tissue responsible for frictionless joint movement. Its degeneration ultimately results in complete loss of joint function in the late stages of osteoarthritis. Intrinsic repair is compromised, and cartilage tissue regeneration is difficult. However, new options are available to repair cartilage tissue by applying ESCs, MSCs and CPCs. AREAS COVERED In this review, the authors shed light on the different concepts currently under investigation for cartilage repair. EXPERT OPINION So far, there is no way to derive a chondrogenic lineage from stem cells that forms functional hyaline cartilage tissue in vivo. One alternative might be to enhance the chondrogenic potential of repair cells, which are already present in diseased cartilage tissue. CPCs found in diseased cartilage tissue in situ are biologically driven toward the osteochondrogenic lineage and can be directed toward chondrogenesis at least in vitro.
Collapse
Affiliation(s)
- Hayat Muhammad
- Georg August University, Tissue Regeneration Work Group, Department of Prosthodontics, Goettingen, Germany
| | | | | |
Collapse
|
246
|
Transplantation of Nonexpanded Adipose Stromal Vascular Fraction and Platelet-Rich Plasma for Articular Cartilage Injury Treatment in Mice Model. J Med Eng 2013; 2013:832396. [PMID: 27006923 PMCID: PMC4782730 DOI: 10.1155/2013/832396] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/25/2012] [Indexed: 01/08/2023] Open
Abstract
Stromal vascular fraction (SVF) combined with platelet-rich plasma (PRP) is commonly used in preclinical and clinical osteoarthritis as well as articular cartilage injury treatment. However, this therapy has not carefully evaluated the safety and the efficacy. This research aims to assess the safety and the efficacy of SVF combined with PRP transplantation. Ten samples of SVFs and PRPs from donors were used in this research. About safety, we evaluate the expression of some genes related to tumor formation such as Oct-4, Nanog, SSEA3, and SSEA4 by RT-PCR, flow cytometry, and tumor formation when injected in NOD/SCID mice. About efficacy, SVF was injected with PRP into murine joint that caused joint failure. The results showed that SVFs are negative with Oct-4, Nanog, SSEA-3, and SSEA-4, as well as they cannot cause tumors in mice. SVFs combined with PRP can improve the joint regeneration in mice. These results proved that SVFs combined with PRP transplantation is a promising therapy for articular cartilage injury treatment.
Collapse
|
247
|
Frenette PS, Pinho S, Lucas D, Scheiermann C. Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu Rev Immunol 2013; 31:285-316. [PMID: 23298209 DOI: 10.1146/annurev-immunol-032712-095919] [Citation(s) in RCA: 340] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mesenchymal stem cells (MSCs) are self-renewing precursor cells that can differentiate into bone, fat, cartilage, and stromal cells of the bone marrow. Recent studies suggest that MSCs themselves are critical for forming a niche that maintains hematopoietic stem cells (HSCs). The ease by which human MSC-like and stromal progenitor cells can be isolated from the bone marrow and other tissues has led to the rapid development of clinical investigations exploring their anti-inflammatory properties, tissue preservation capabilities, and regenerative potential. However, the identity of genuine MSCs and their specific contributions to these various beneficial effects have remained enigmatic. In this article, we examine the definition of MSCs and discuss the importance of rigorously characterizing their stem cell activity. We review their role and that of other putative niche constituents in the regulation of bone marrow HSCs. Additionally, how MSCs and their stromal progeny alter immune function is discussed, as well as potential therapeutic implications.
Collapse
Affiliation(s)
- Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | |
Collapse
|
248
|
Peng Y, Huang S, Cheng B, Nie X, Enhe J, Feng C, Fu X. Mesenchymal stem cells: a revolution in therapeutic strategies of age-related diseases. Ageing Res Rev 2013; 12:103-15. [PMID: 22569401 DOI: 10.1016/j.arr.2012.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/11/2012] [Accepted: 04/23/2012] [Indexed: 02/06/2023]
Abstract
The great evolutionary biologist Theodosius Dobzhansky once said: "Nothing in biology makes sense except in the light of evolution". Aging is a complex biological phenomenon and the factors governing the process of aging and age-related diseases are only beginning to be understood, oxidative stress, telomere shortening in DNA components and genetic changes were shown to be the mainly regulating mechanisms during the recent decades. Although a considerable amount of both animal and clinical data that demonstrate the extensive and safe use of mesenchymal stromal cells (MSCs) is available, the precise summarization and identification of MSCs in age-related diseases remains a challenge. Along this line, this review discussed several typical age-related diseases for which MSCs have been proved to confer protection and put forward a hypothesis for the association among MSCs and age-related diseases from an evolutionary perspective. Above all, we hope further and more research efforts could be aroused to elucidate the role and mechanisms that MSCs involved in the age-related diseases.
Collapse
|
249
|
Elsler S, Schetting S, Schmitt G, Kohn D, Madry H, Cucchiarini M. Effective, safe nonviral gene transfer to preserve the chondrogenic differentiation potential of human mesenchymal stem cells. J Gene Med 2012; 14:501-11. [PMID: 22711470 DOI: 10.1002/jgm.2644] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Genetic modification of mesenchymal stem cells (MSCs) comprises a promising tool to generate cell- and gene-based platforms for regenerative approaches of articular cartilage repair. In the present study, we systematically screened a panel of 15 nonviral compounds for their ability to promote safe, efficient and durable gene expression in human bone marrow-derived MSCs (hMSCS) without impeding their commitment towards chondrogenic differentiation. METHODS Primary hMSCs were transfected with plasmid vectors carrying sequences for the Photinus pyralis luciferase Escherichia coli β-galactosidase, or human insulin-like growth factor I via 15 nonviral formulations. Transgene expression and transfection efficiencies were monitored for each component in parallel with the effects on cell viability and cytotoxicity. Upon optimization, the most promising reagent was then evaluated for a possible influence on the chondrogenic potential of hMSCs. RESULTS Among all formulations tested, GeneJammer® gave the best results for transgene expression and transfection efficacy (25-14% from days 2-21 in monolayer cultures and 35% in 21-day aggregate cultures), allowing for high levels of viability (92-94%) and modest cytotoxicity (< 12%). Most notably, the application of this reagent did not affect the potential of the cells for chondrogenic differentiation when maintained in long-term (21 days) three-dimensional (aggregate) cultures. CONCLUSIONS The data indicate that safe, efficient transgene expression can be achieved in hMSCs over time using the nonviral GeneJammer® compound, showing promise for future therapeutic settings aiming to treat human articular cartilage disorders.
Collapse
Affiliation(s)
- Sebastian Elsler
- Center of Experimental Orthopaedics, Saarland University Medical Center, Saarland University, Homburg/Saar, Germany
| | | | | | | | | | | |
Collapse
|
250
|
Faghihi F, Baghaban Eslaminejad M, Nekookar A, Najar M, Salekdeh GH. The effect of purmorphamine and sirolimus on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Biomed Pharmacother 2012; 67:31-8. [PMID: 23228449 DOI: 10.1016/j.biopha.2012.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 10/23/2012] [Indexed: 11/18/2022] Open
Abstract
Small molecules have been introduced as less expensive biologically active compounds that can regulate different developmental phenomena. Purmorphamine and sirolimus are two small molecules that, according to some studies, possess certain osteomodulatory effects. This study was set out to highlight the appropriate dose and response time of these small molecules on enhancement of osteogenesis in human bone marrow-derived mesenchymal stem cells from early to mid and late stages of differentiation. Alkaline phosphatase activity, matrix mineralization and expression of osteoblast genes were quantitatively assessed in vitro. For the in vivo study, we transplanted stem cell-based constructs subcutaneously into rats, and treated them daily with the most promising doses of the small molecule. The constructs were analyzed by real-time PCR and histological staining. Our results showed that Sirolimus reduced osteogenic differentiation of mesenchymal stem cells by decreasing alkaline phosphatase activity at dose of 100nM after 14 days and mineralization of the matrix at 14 and 21 days post-induction. Purmorphamine induced up-regulation of alkaline phosphatase activity and expression of RUNX-2 at day 14. Up-regulation of osteocalcin was detected at the 3 and 5μM doses of purmorphamine on day 14 post-induction. Matrix mineralization remained unchanged in the presence or absence of purmorphamine. This dose of small molecule also accelerated expression of Alkaline phosphatase transcripts in vivo. In conclusion, sirolimus had an inhibitory effect on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells; while purmorphamine, particularly at a dose of 3μM, showed a promotive effect in vitro and in vivo.
Collapse
Affiliation(s)
- F Faghihi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | | | | | | |
Collapse
|