201
|
Georgiadou D, Hearn A, Evnouchidou I, Chroni A, Leondiadis L, York IA, Rock KL, Stratikos E. Placental leucine aminopeptidase efficiently generates mature antigenic peptides in vitro but in patterns distinct from endoplasmic reticulum aminopeptidase 1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:1584-92. [PMID: 20592285 PMCID: PMC2910840 DOI: 10.4049/jimmunol.0902502] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
All three members of the oxytocinase subfamily of M1 aminopeptidases, endoplasmic reticulum aminopeptidase 1 (ERAP1), ERAP2, and placental leucine aminopeptidase (PLAP), also known as insulin-regulated aminopeptidase, have been implicated in the generation of MHC class I-presented peptides. ERAP1 and 2 trim peptides in the endoplasmic reticulum for direct presentation, whereas PLAP has been recently implicated in cross-presentation. The best characterized member of the family, ERAP1, has unique enzymatic properties that fit well with its role in Ag processing. ERAP1 can trim a large variety of long peptide sequences and efficiently accumulate mature antigenic epitopes of 8-9 aa long. In this study, we evaluate the ability of PLAP to process antigenic peptide precursors in vitro and compare it with ERAP1. We find that, similar to ERAP1, PLAP can trim a variety of long peptide sequences efficiently and, in most cases, accumulates appreciable amounts of correct length mature antigenic epitope. Again, similar to ERAP1, PLAP continued trimming some of the epitopes tested and accumulated smaller products effectively destroying the epitope. However, the intermediate accumulation properties of ERAP1 and PLAP are distinct and epitope dependent, suggesting that these two enzymes may impose different selective pressures on epitope generation. Overall, although PLAP has the necessary enzymatic properties to participate in generating or destroying MHC class I-presented peptides, its trimming behavior is distinct from that of ERAP1, something that supports a separate role for these two enzymes in Ag processing.
Collapse
Affiliation(s)
- Dimitra Georgiadou
- Protein Chemistry Laboratory, IRRP, National Centre for Scientific Research “Demokritos”, Athens 15310, Greece
| | - Arron Hearn
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Irini Evnouchidou
- Protein Chemistry Laboratory, IRRP, National Centre for Scientific Research “Demokritos”, Athens 15310, Greece
| | - Angeliki Chroni
- Institute of Biology, National Centre for Scientific Research “Demokritos”, Athens 15310, Greece
| | - Leondios Leondiadis
- Mass Spectrometry and Dioxin Analysis Laboratory, IRRP, National Centre for Scientific Research “Demokritos, Athens 15310, Greece
| | - Ian A. York
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA
| | - Kenneth L. Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Efstratios Stratikos
- Protein Chemistry Laboratory, IRRP, National Centre for Scientific Research “Demokritos”, Athens 15310, Greece
| |
Collapse
|
202
|
Abstract
Cross-priming is an important mechanism to activate cytotoxic T lymphocytes (CTLs) for immune defence against viruses and tumours. Although it was discovered more than 25 years ago, we have only recently gained insight into the underlying cellular and molecular mechanisms, and we are just beginning to understand its physiological importance in health and disease. Here we summarize current concepts on the cross-talk between the immune cells involved in CTL cross-priming and on its role in antimicrobial and antitumour defence, as well as in immune-mediated diseases.
Collapse
|
203
|
Yewdell JW. Designing CD8+ T cell vaccines: it's not rocket science (yet). Curr Opin Immunol 2010; 22:402-10. [PMID: 20447814 PMCID: PMC2908899 DOI: 10.1016/j.coi.2010.04.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 04/12/2010] [Indexed: 01/09/2023]
Abstract
CD8+ T cells play important roles in clearing viral infections and eradicating tumors. Designing vaccines that elicit effective CD8+ T cell responses requires a thorough knowledge of the pathways of antigen presentation in vivo. Here, I review recent progress in understanding the activation of naïve CD8+ T cells in vivo, with particular emphasis on cross-priming, the presentation of protein antigens acquired by dendritic cells from their environment. With the rapid advances in this area of research, the dawn of rational vaccine design is at hand.
Collapse
|
204
|
Prolonged antigen survival and cytosolic export in cross-presenting human gammadelta T cells. Proc Natl Acad Sci U S A 2010; 107:8730-5. [PMID: 20413723 DOI: 10.1073/pnas.1002769107] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human blood Vgamma9Vdelta2 T cells respond to signals from microbes and tumors and subsequently differentiate into professional antigen-presenting cells (gammadelta T-APCs) for induction of CD4(+) and CD8(+) T cell responses. gammadelta T-APCs readily take up and degrade exogenous soluble protein for peptide loading on MHC I, in a process termed antigen cross-presentation. The mechanisms underlying antigen cross-presentation are ill-defined, most notably in human dendritic cells (DCs), and no study has addressed this process in gammadelta T-APCs. Here we show that intracellular protein degradation and endosomal acidification were significantly delayed in gammadelta T-APCs compared with human monocyte-derived DCs (moDCs). Such conditions are known to favor antigen cross-presentation. In both gammadelta T-APCs and moDCs, internalized antigen was transported across insulin-regulated aminopeptidase (IRAP)-positive early and late endosomes; however, and in contrast to various human DC subsets, gammadelta T-APCs efficiently translocated soluble antigen into the cytosol for processing via the cytosolic proteasome-dependent cross-presentation pathway. Of note, gammadelta T-APCs cross-presented influenza antigen derived from virus-infected cells and from free virus particles. The robust cross-presentation capability appears to be a hallmark of gammadelta T-APCs and underscores their potential application in cellular immunotherapy.
Collapse
|
205
|
Jordens I, Molle D, Xiong W, Keller SR, McGraw TE. Insulin-regulated aminopeptidase is a key regulator of GLUT4 trafficking by controlling the sorting of GLUT4 from endosomes to specialized insulin-regulated vesicles. Mol Biol Cell 2010; 21:2034-44. [PMID: 20410133 PMCID: PMC2883947 DOI: 10.1091/mbc.e10-02-0158] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
IRAP is a key regulator of GLUT4 trafficking by controlling sorting from endosomes to specialized insulin-regulated vesicles. Insulin stimulates glucose uptake by regulating translocation of the GLUT4 glucose transporter from intracellular compartments to the plasma membrane. In the absence of insulin GLUT4 is actively sequestered away from the general endosomes into GLUT4-specialized compartments, thereby controlling the amount of GLUT4 at the plasma membrane. Here, we investigated the role of the aminopeptidase IRAP in GLUT4 trafficking. In unstimulated IRAP knockdown adipocytes, plasma membrane GLUT4 levels are elevated because of increased exocytosis, demonstrating an essential role of IRAP in GLUT4 retention. Current evidence supports the model that AS160 RabGAP, which is required for basal GLUT4 retention, is recruited to GLUT4 compartments via an interaction with IRAP. However, here we show that AS160 recruitment to GLUT4 compartments and AS160 regulation of GLUT4 trafficking were unaffected by IRAP knockdown. These results demonstrate that AS160 is recruited to membranes by an IRAP-independent mechanism. Consistent with a role independent of AS160, we showed that IRAP functions in GLUT4 sorting from endosomes to GLUT4-specialized compartments. This is revealed by the relocalization of GLUT4 to endosomes in IRAP knockdown cells. Although IRAP knockdown has profound effects on GLUT4 traffic, GLUT4 knockdown does not affect IRAP trafficking, demonstrating that IRAP traffics independent of GLUT4. In sum, we show that IRAP is both cargo and a key regulator of the insulin-regulated pathway.
Collapse
Affiliation(s)
- Ingrid Jordens
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
206
|
Amigorena S, Savina A. Intracellular mechanisms of antigen cross presentation in dendritic cells. Curr Opin Immunol 2010; 22:109-17. [PMID: 20171863 DOI: 10.1016/j.coi.2010.01.022] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/27/2010] [Accepted: 01/27/2010] [Indexed: 10/19/2022]
Abstract
The induction of most CD8+ T cell responses by dendritic cells (DCs) requires the presentation of peptides from internalized antigen by class I MHC molecules. Increasing number of reports have shown that cross presentation is involved in transplant rejection, in immune responses to viral infections, in certain autoimmune diseases and cancer. The precise role of cross presentation in the initiation of immune responses in vivo, however, remains a matter of debate. This ongoing controversy is, at least in part, due to a lack of understanding of the molecular machinery that determine cross presentation pathways in terms of cell biology. The present review aims to summarize recent insights and advances that help enlighten the intracellular steps of antigen cross presentation in DCs.
Collapse
Affiliation(s)
- Sebastian Amigorena
- INSERM U932, Institut Curie, Immunity and Cancer Laboratory, F-75245 Paris Cedex 05, France.
| | | |
Collapse
|
207
|
Giodini A, Albert ML. A whodunit: an appointment with death. Curr Opin Immunol 2010; 22:94-108. [DOI: 10.1016/j.coi.2010.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/27/2010] [Accepted: 01/28/2010] [Indexed: 01/09/2023]
|
208
|
Rock KL, Farfán-Arribas DJ, Shen L. Proteases in MHC class I presentation and cross-presentation. THE JOURNAL OF IMMUNOLOGY 2010; 184:9-15. [PMID: 20028659 DOI: 10.4049/jimmunol.0903399] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cells that have mutated their genes or are virally infected are a potential threat to a host. Consequently, the immune system has evolved mechanisms for CD8 T lymphocytes to identify such cells and eliminate them. The generation of CD8 T cell responses occurs in two phases, both of which critically involve the process of Ag presentation. In the first phase, sentinel cells gather Ags present in tissues and then present them to naive CD8 T cells in ways that stimulate their maturation into effectors. In the second phase, these effector cells seek out and eliminate the pathological cells. The abnormal cells are identified through their presentation of immunogenic Ags that they are producing. The Ag presentation mechanisms used by the sentinel cells can be different from those in other cells. This article will review these mechanisms with a focus in each case on how antigenic peptides are generated for presentation.
Collapse
Affiliation(s)
- Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | |
Collapse
|
209
|
Bird PI, Trapani JA, Villadangos JA. Endolysosomal proteases and their inhibitors in immunity. Nat Rev Immunol 2009; 9:871-82. [PMID: 19935806 DOI: 10.1038/nri2671] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cellular endolysosomal compartment is dynamic, complex and incompletely understood. Its organelles and constituents vary between different cell types, but endolysosomal proteases are key components of this compartment in all cells. In immune cells, these proteases function in pathogen recognition and elimination, signal processing and cell homeostasis, and they are regulated by dedicated inhibitors. Pathogens can produce analogous proteases to subvert the host immune response. The balance in activity between a protease and its inhibitor can tune the immune response or cause damage as a result of mislocalized proteolysis. In this Review, we highlight recent developments in this area and emphasize the importance of studying the role of endolysosomal proteases, and their natural inhibitors, in the initiation and regulation of immune responses.
Collapse
Affiliation(s)
- Phillip I Bird
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| | | | | |
Collapse
|
210
|
Different cross-presentation pathways in steady-state and inflammatory dendritic cells. Proc Natl Acad Sci U S A 2009; 106:20377-81. [PMID: 19918052 DOI: 10.1073/pnas.0910295106] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Presentation of exogenous antigens on MHC class I molecules, termed cross-presentation, is essential for the induction of CD8 T-cell responses and is carried out by specialized dendritic cell (DC) subsets. The mechanisms involved remain unclear. It has been proposed that antigens could be transported by endocytic receptors, such as the mannose receptor (MR) in the case of soluble ovalbumin, into early endosomes in which the cross-presentation machinery would be recruited. In these endosomal compartments, peptides would be trimmed by the aminopeptidase IRAP before loading onto MHC class I molecules. Here, we have investigated the contribution of this pathway to cross-presentation by steady-state CD8(+) DC and inflammatory monocyte-derived DC (moDC) generated in vivo. We demonstrate that IRAP and MR are dispensable for cross-presentation by CD8(+) DC and for cross-priming. Moreover, we could not find any evidence for diversion of endocytosed antigen into IRAP-containing endosomes in these cells. However, cross-presentation was impaired in moDC deficient in IRAP or MR, confirming the role of these two molecules in inflammatory DC. These results demonstrate that the mechanisms responsible for cross-priming by steady-state and inflammatory DC are different, which has important implications for vaccine design.
Collapse
|
211
|
Abstract
Genome-wide association studies have identified multiple genetic polymorphisms associated with schizophrenia. These polymorphisms conform to a polygenic disease model in which multiple alleles cumulatively increase the risk of developing disease. Two genes linked to schizophrenia, DTNBP1 and MUTED, encode proteins that belong to the endosome-localized Biogenesis of Lysosome-related Organelles Complex-1 (BLOC-1). BLOC-1 plays a key role in endosomal trafficking and as such has been found to regulate cell-surface abundance of the D2 dopamine receptor, the biogenesis and fusion of synaptic vesicles, and neurite outgrowth. These functions are pertinent to both neurodevelopment and synaptic transmission, processes tightly regulated by selective cell-surface delivery of membrane proteins to and from endosomes. We propose that cellular processes, such as endosomal trafficking, act as convergence points in which multiple small effects from polygenic genetic polymorphisms accumulate to promote the development of schizophrenia.
Collapse
Affiliation(s)
- Pearl V. Ryder
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, GA 30322
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA 30322
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322
| |
Collapse
|
212
|
Numaguchi Y, Ishii M, Kubota R, Morita Y, Yamamoto K, Matsushita T, Okumura K, Murohara T. Ablation of angiotensin IV receptor attenuates hypofibrinolysis via PAI-1 downregulation and reduces occlusive arterial thrombosis. Arterioscler Thromb Vasc Biol 2009; 29:2102-8. [PMID: 19745198 DOI: 10.1161/atvbaha.109.195057] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Reduced fibrinolytic activity is associated with adverse cardiovascular events. Although insulin-regulated aminopeptidase (IRAP) was recently identified as the angiotensin (Ang) IV receptor (AT4R), the impact of AngIV-AT4R signaling distal to AngII on the activation of type-1 plasminogen activator inhibitor (PAI-1) in the fibrinolytic process and subsequent formation of thrombosis remains unclarified. METHODS AND RESULTS To determine whether AngIV would inhibit fibrinolysis via PAI-1 activation and promote thrombosis, we evaluated the degree of fibrinolysis in thrombosis models and investigated the roles of AT4R after vascular injury using IRAP knockout mice (IRAP(-/-)). In endothelial cells from control mice (WT; C57Bl6/J), both AngII and AngIV treatments increased PAI-1 mRNA expression in a dose-dependent manner, whereas the response was blunted in endothelial cells from IRAP(-/-) mice. FeCl(3)-induced thrombosis was suppressed in the carotid arteries of IRAP(-/-) mice when compared with WT mice. Similarly, in a model of carotid artery ligation and cuff placement, IRAP(-/-) mice demonstrated accelerated fibrinolysis 7 days after surgery and reduced occlusive thrombosis with negative remodeling at 28 days. CONCLUSIONS AngIV-AT4R signaling has a key role in fibrinolysis and the subsequent formation of arterial thrombosis after vascular injury. AT4R may be a novel therapeutic target against cardiovascular disease.
Collapse
Affiliation(s)
- Yasushi Numaguchi
- Department of Medical Science of Proteases, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | | | | | | | |
Collapse
|