201
|
Male-killing symbiont damages host's dosage-compensated sex chromosome to induce embryonic apoptosis. Nat Commun 2016; 7:12781. [PMID: 27650264 PMCID: PMC5036004 DOI: 10.1038/ncomms12781] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/01/2016] [Indexed: 12/02/2022] Open
Abstract
Some symbiotic bacteria are capable of interfering with host reproduction in selfish ways. How such bacteria can manipulate host's sex-related mechanisms is of fundamental interest encompassing cell, developmental and evolutionary biology. Here, we uncover the molecular and cellular mechanisms underlying Spiroplasma-induced embryonic male lethality in Drosophila melanogaster. Transcriptomic analysis reveals that many genes related to DNA damage and apoptosis are up-regulated specifically in infected male embryos. Detailed genetic and cytological analyses demonstrate that male-killing Spiroplasma causes DNA damage on the male X chromosome interacting with the male-specific lethal (MSL) complex. The damaged male X chromosome exhibits a chromatin bridge during mitosis, and bridge breakage triggers sex-specific abnormal apoptosis via p53-dependent pathways. Notably, the MSL complex is not only necessary but also sufficient for this cytotoxic process. These results highlight symbiont's sophisticated strategy to target host's sex chromosome and recruit host's molecular cascades toward massive apoptosis in a sex-specific manner. Symbiotic bacteria are able to interfere with host reproduction in ways that are detrimental to the host organism. Here the authors show that Spiroplasma induces DNA damage on the male X chromosome in Drosophila, causing sex-specific apoptosis.
Collapse
|
202
|
Noriyuki S, Suzuki-Ohno Y, Takakura KI. Variation of clutch size and trophic egg proportion in a ladybird with and without male-killing bacterial infection. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9861-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
203
|
Host and Parasite Evolution in a Tangled Bank. Trends Parasitol 2016; 32:863-873. [PMID: 27599631 DOI: 10.1016/j.pt.2016.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 01/29/2023]
Abstract
Most hosts and parasites exist in diverse communities wherein they interact with other species, spanning the parasite-mutualist continuum. These additional interactions have the potential to impose selection on hosts and parasites and influence the patterns and processes of their evolution. Yet, host-parasite interactions are almost exclusively studied in species pairs. A wave of new research has incorporated a multispecies community context, showing that additional ecological interactions can alter components of host and parasite fitness, as well as interaction specificity and virulence. Here, we synthesize these findings to assess the effects of increased species diversity on the patterns and processes of host and parasite evolution. We argue that our understanding of host-parasite interactions would benefit from a richer biotic perspective.
Collapse
|
204
|
Zaiss MM, Harris NL. Interactions between the intestinal microbiome and helminth parasites. Parasite Immunol 2016; 38:5-11. [PMID: 26345715 PMCID: PMC5019230 DOI: 10.1111/pim.12274] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/01/2015] [Indexed: 12/14/2022]
Abstract
Throughout evolution, both helminths and bacteria have inhabited our intestines. As intestinal helminths and bacteria inhabit the same environmental niche, it is likely that these organisms interact with, and impact on, each other. In addition, intestinal helminths are well known to alter intestinal physiology, permeability, mucous secretion and the production of antimicrobial peptides – all of which may impact on bacterial survival and spatial organization. Yet despite rapid advances in our understanding of host–intestinal bacteria interactions, the impact of helminths on this relationship has remained largely unexplored. Moreover, although intestinal helminths are generally accepted to possess potent immuno‐modulatory activity, it is unknown whether this capacity requires interactions with intestinal bacteria. We propose that this ‘ménage à trois’ situation is likely to have exerted a strong selective pressure on the development of our metabolic and immune systems. Whilst such pressures remain in developing countries, the eradication of helminths in industrialized countries has shifted this evolutionary balance, possibly underlying the increased development of chronic inflammatory diseases. Thus, helminth–bacteria interactions may represent a key determinant of healthy homoeostasis.
Collapse
Affiliation(s)
- M M Zaiss
- Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - N L Harris
- Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
205
|
Li H, Li T, Yao M, Li J, Zhang S, Wirth S, Cao W, Lin Q, Li X. Pika Gut May Select for Rare but Diverse Environmental Bacteria. Front Microbiol 2016; 7:1269. [PMID: 27582734 PMCID: PMC4987353 DOI: 10.3389/fmicb.2016.01269] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/02/2016] [Indexed: 02/01/2023] Open
Abstract
The composition of the mammalian gut bacterial communities can be influenced by the introduction of environmental bacteria in their respective habitats. However, there are no extensive studies examining the interactions between environmental bacteriome and gut bacteriome in wild mammals. Here, we explored the relationship between the gut bacterial communities of pika (Ochotona spp.) and the related environmental bacteria across host species and altitudinal sites using 16S rRNA gene sequencing. Plateau pikas (O. curzoniae) and Daurian pikas (O. daurica) were sampled at five different sites, and plant and soil samples were collected at each site as well. Our data indicated that Plateau pikas and Daurian pikas had distinct bacterial communities. The pika, plant and soil bacterial communities were also distinct. Very little overlap occurred in the pika core bacteria and the most abundant environmental bacteria. The shared OTUs between pikas and environments were present in the environment at relatively low abundance, whereas they were affiliated with diverse bacterial taxa. These results suggested that the pika gut may mainly select for low-abundance but diverse environmental bacteria in a host species-specific manner.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of SciencesSichuan, China; University of Chinese Academy of SciencesBeijing, China
| | - Tongtong Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan, China
| | - Minjie Yao
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan, China
| | - Jiabao Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan, China
| | - Shiheng Zhang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan, China
| | - Stephan Wirth
- Leibniz-Center for Agricultural Landscape Research (ZALF), Institute of Landscape Biogeochemistry Müncheberg, Germany
| | - Weidong Cao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural SciencesBeijing, China; Soil and Fertilizer Institute, Qinghai Academy of Agriculture and Forestry Sciences, Qinghai UniversityXining, China
| | - Qiang Lin
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan, China
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan, China
| |
Collapse
|
206
|
The Role of Lipid Competition for Endosymbiont-Mediated Protection against Parasitoid Wasps in Drosophila. mBio 2016; 7:mBio.01006-16. [PMID: 27406568 PMCID: PMC4958261 DOI: 10.1128/mbio.01006-16] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Insects commonly harbor facultative bacterial endosymbionts, such as Wolbachia and Spiroplasma species, that are vertically transmitted from mothers to their offspring. These endosymbiontic bacteria increase their propagation by manipulating host reproduction or by protecting their hosts against natural enemies. While an increasing number of studies have reported endosymbiont-mediated protection, little is known about the mechanisms underlying this protection. Here, we analyze the mechanisms underlying protection from parasitoid wasps in Drosophila melanogaster mediated by its facultative endosymbiont Spiroplasma poulsonii. Our results indicate that S. poulsonii exerts protection against two distantly related wasp species, Leptopilina boulardi and Asobara tabida. S. poulsonii-mediated protection against parasitoid wasps takes place at the pupal stage and is not associated with an increased cellular immune response. In this work, we provide three important observations that support the notion that S. poulsonii bacteria and wasp larvae compete for host lipids and that this competition underlies symbiont-mediated protection. First, lipid quantification shows that both S. poulsonii and parasitoid wasps deplete D. melanogaster hemolymph lipids. Second, the depletion of hemolymphatic lipids using the Lpp RNA interference (Lpp RNAi) construct reduces wasp success in larvae that are not infected with S. poulsonii and blocks S. poulsonii growth. Third, we show that the growth of S. poulsonii bacteria is not affected by the presence of the wasps, indicating that when S. poulsonii is present, larval wasps will develop in a lipid-depleted environment. We propose that competition for host lipids may be relevant to endosymbiont-mediated protection in other systems and could explain the broad spectrum of protection provided. Virtually all insects, including crop pests and disease vectors, harbor facultative bacterial endosymbionts. They are vertically transmitted from mothers to their offspring, and some protect their host against pathogens. Here, we studied the mechanism of protection against parasitoid wasps mediated by the Drosophila melanogaster endosymbiont Spiroplasma poulsonii. Using genetic manipulation of the host, we provide strong evidence supporting the hypothesis that competition for host lipids underlies S. poulsonii-mediated protection against parasitoid wasps. We propose that lipid competition-based protection may not be restricted to Spiroplasma bacteria but could also apply other endosymbionts, notably Wolbachia bacteria, which can suppress human disease-causing viruses in insect hosts.
Collapse
|
207
|
Rothacher L, Ferrer-Suay M, Vorburger C. Bacterial endosymbionts protect aphids in the field and alter parasitoid community composition. Ecology 2016; 97:1712-1723. [DOI: 10.1890/15-2022.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/03/2016] [Accepted: 02/15/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Lukas Rothacher
- Institute of Integrative Biology; ETH Zürich; Universitätsstrasse 16 Zürich 8092 Switzerland
- EAWAG; Swiss Federal Institute of Aquatic Science and Technology; Überlandstrasse 133 Dübendorf 8600 Switzerland
| | - Mar Ferrer-Suay
- Departament de Biologia Animal; Facultat de Biologia; Universitat de Barcelona; Avenida Diagonal 645 Barcelona 08028 Spain
| | - Christoph Vorburger
- Institute of Integrative Biology; ETH Zürich; Universitätsstrasse 16 Zürich 8092 Switzerland
- EAWAG; Swiss Federal Institute of Aquatic Science and Technology; Überlandstrasse 133 Dübendorf 8600 Switzerland
| |
Collapse
|
208
|
Yañez O, Gauthier L, Chantawannakul P, Neumann P. Endosymbiotic bacteria in honey bees: Arsenophonus spp. are not transmitted transovarially. FEMS Microbiol Lett 2016; 363:fnw147. [PMID: 27279628 PMCID: PMC4941583 DOI: 10.1093/femsle/fnw147] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2016] [Indexed: 12/12/2022] Open
Abstract
Intracellular endosymbiotic bacteria are common and can play a crucial role for insect pathology. Therefore, such bacteria could be a potential key to our understanding of major losses of Western honey bees (Apis mellifera) colonies. However, the transmission and potential effects of endosymbiotic bacteria in A. mellifera and other Apis spp. are poorly understood. Here, we explore the prevalence and transmission of the genera Arsenophonus, Wolbachia, Spiroplasma and Rickettsia in Apis spp. Colonies of A. mellifera (N = 33, with 20 eggs from worker brood cells and 100 adult workers each) as well as mated honey bee queens of A. cerana, A. dorsata and A. florea (N = 12 each) were screened using PCR. While Wolbachia, Spiroplasma and Rickettsia were not detected, Arsenophonus spp. were found in 24.2% of A. mellifera colonies and respective queens as well as in queens of A. dorsata (8.3%) and A. florea (8.3%), but not in A. cerana. The absence of Arsenophonus spp. from reproductive organs of A. mellifera queens and surface-sterilized eggs does not support transovarial vertical transmission. Instead, horizontal transmission is most likely. Arsenophonus endosymbiotic bacteria are not transmitted transovarially in honey bees.
Collapse
Affiliation(s)
- Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland Swiss Bee Research Centre, Agroscope, Bern, Switzerland
| | | | - Panuwan Chantawannakul
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland Swiss Bee Research Centre, Agroscope, Bern, Switzerland Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
209
|
Martinez AJ, Kim KL, Harmon JP, Oliver KM. Specificity of Multi-Modal Aphid Defenses against Two Rival Parasitoids. PLoS One 2016; 11:e0154670. [PMID: 27135743 PMCID: PMC4852904 DOI: 10.1371/journal.pone.0154670] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/18/2016] [Indexed: 12/02/2022] Open
Abstract
Insects are often attacked by multiple natural enemies, imposing dynamic selective pressures for the development and maintenance of enemy-specific resistance. Pea aphids (Acyrthosiphon pisum) have emerged as models for the study of variation in resistance against natural enemies, including parasitoid wasps. Internal defenses against their most common parasitoid wasp, Aphidius ervi, are sourced through two known mechanisms– 1) endogenously encoded resistance or 2) infection with the heritable bacterial symbiont, Hamiltonella defensa. Levels of resistance can range from nearly 0–100% against A. ervi but varies based on aphid genotype and the strain of toxin-encoding bacteriophage (called APSE) carried by Hamiltonella. Previously, other parasitoid wasps were found to commonly attack this host, but North American introductions of A. ervi have apparently displaced all other parasitoids except Praon pequodorum, a related aphidiine braconid wasp, which is still found attacking this host in natural populations. To explain P. pequodorum’s persistence, multiple studies have compared direct competition between both wasps, but have not examined specificity of host defenses as an indirectly mediating factor. Using an array of experimental aphid lines, we first examined whether aphid defenses varied in effectiveness toward either wasp species. Expectedly, both types of aphid defenses were effective against A. ervi, but unexpectedly, were completely ineffective against P. pequodorum. Further examination showed that P. pequodorum wasps suffered no consistent fitness costs from developing in even highly ‘resistant’ aphids. Comparison of both wasps’ egg-larval development revealed that P. pequodorum’s eggs have thicker chorions and hatch two days later than A. ervi’s, likely explaining their differing abilities to overcome aphid defenses. Overall, our results indicate that aphids resistant to A. ervi may serve as reservoirs for P. pequodorum, hence contributing to its persistence in field populations. We find that specificity of host defenses and defensive symbiont infections, may have important roles in influencing enemy compositions by indirectly mediating the interactions and abundance of rival natural enemies.
Collapse
Affiliation(s)
- Adam J. Martinez
- Department of Entomology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| | - Kyungsun L. Kim
- Department of Entomology, University of Georgia, Athens, Georgia, United States of America
| | - Jason P. Harmon
- Department of Entomology, North Dakota State University, Fargo, North Dakota, United States of America
| | - Kerry M. Oliver
- Department of Entomology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
210
|
Long-term ungulate exclusion reduces fungal symbiont prevalence in native grasslands. Oecologia 2016; 181:1151-61. [PMID: 27113054 DOI: 10.1007/s00442-016-3620-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 03/20/2016] [Indexed: 02/04/2023]
Abstract
When symbionts are inherited by offspring, they can have substantial ecological and evolutionary consequences because they occur in all host life stages. Although natural frequencies of inherited symbionts are commonly <100 %, few studies investigate the ecological drivers of variation in symbiont prevalence. In plants, inherited fungal endophytes can improve resistance to herbivory, growth under drought, and competitive ability. We evaluated whether native ungulate herbivory increased the prevalence of a fungal endophyte in the common, native bunchgrass, Festuca campestris (rough fescue, Poaceae). We used large-scale (1 ha) and long-term (7-10 year) fencing treatments to exclude native ungulates and recorded shifts in endophyte prevalence at the scale of plant populations and for individual plants. We characterized the fungal endophyte in F. campestris, Epichloë species FcaTG-1 (F. campestris taxonomic group 1) for the first time. Under ungulate exclusion, endophyte prevalence was 19 % lower in plant populations, 25 % lower within plant individuals, and 39 % lower in offspring (seeds) than in ungulate-exposed controls. Population-level endophyte frequencies were also negatively correlated with soil moisture across geographic sites. Observations of high within-plant variability in symbiont prevalence are novel for the Epichloë species, and contribute to a small, but growing, literature that documents phenotypic plasticity in plant-endophyte symbiota. Altogether, we show that native ungulates can be an important driver of symbiont prevalence in native plant populations, even in the absence of evidence for direct mechanisms of mammal deterrence. Understanding the ecological controls on symbiont prevalence could help to predict future shifts in grasslands that are dominated by Epichloë host plants.
Collapse
|
211
|
Segata N, Baldini F, Pompon J, Garrett WS, Truong DT, Dabiré RK, Diabaté A, Levashina EA, Catteruccia F. The reproductive tracts of two malaria vectors are populated by a core microbiome and by gender- and swarm-enriched microbial biomarkers. Sci Rep 2016; 6:24207. [PMID: 27086581 PMCID: PMC4834568 DOI: 10.1038/srep24207] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/23/2016] [Indexed: 01/22/2023] Open
Abstract
Microbes play key roles in shaping the physiology of insects and can influence behavior, reproduction and susceptibility to pathogens. In Sub-Saharan Africa, two major malaria vectors, Anopheles gambiae and An. coluzzii, breed in distinct larval habitats characterized by different microorganisms that might affect their adult physiology and possibly Plasmodium transmission. We analyzed the reproductive microbiomes of male and female An. gambiae and An. coluzzii couples collected from natural mating swarms in Burkina Faso. 16S rRNA sequencing on dissected tissues revealed that the reproductive tracts harbor a complex microbiome characterized by a large core group of bacteria shared by both species and all reproductive tissues. Interestingly, we detected a significant enrichment of several gender-associated microbial biomarkers in specific tissues, and surprisingly, similar classes of bacteria in males captured from one mating swarm, suggesting that these males originated from the same larval breeding site. Finally, we identified several endosymbiotic bacteria, including Spiroplasma, which have the ability to manipulate insect reproductive success. Our study provides a comprehensive analysis of the reproductive microbiome of important human disease vectors, and identifies a panel of core and endosymbiotic bacteria that can be potentially exploited to interfere with the transmission of malaria parasites by the Anopheles mosquito.
Collapse
Affiliation(s)
- Nicola Segata
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Francesco Baldini
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, United Kingdom.,Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università degli Studi di Perugia, 06100 Italy
| | - Julien Pompon
- UPR9022 CNRS, U963 Inserm, Université de Strasbourg, 15 rue R. Descartes, 67084 Strasbourg, France.,MIVEGEC (Maladies Infectieuses et vecteurs: écologie, génétique, évolution et controle), UMR IRD-CNRS-UM1-UM2, 34394 Montpellier, France.,Programme in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.,Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School Boston, MA 02115, USA
| | - Duy Tin Truong
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Roch K Dabiré
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Elena A Levashina
- UPR9022 CNRS, U963 Inserm, Université de Strasbourg, 15 rue R. Descartes, 67084 Strasbourg, France.,Vector Biology Unit, Max-Planck Institute for Infection Biology, Chariteplatz 1, 10117 Berlin, Germany
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.,Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università degli Studi di Perugia, 06100 Italy
| |
Collapse
|
212
|
Ramanan D, Bowcutt R, Lee SC, Tang MS, Kurtz ZD, Ding Y, Honda K, Gause WC, Blaser MJ, Bonneau RA, Lim YAL, Loke P, Cadwell K. Helminth infection promotes colonization resistance via type 2 immunity. Science 2016; 352:608-12. [PMID: 27080105 DOI: 10.1126/science.aaf3229] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 03/21/2016] [Indexed: 12/13/2022]
Abstract
Increasing incidence of inflammatory bowel diseases, such as Crohn's disease, in developed nations is associated with changes to the microbial environment, such as decreased prevalence of helminth colonization and alterations to the gut microbiota. We find that helminth infection protects mice deficient in the Crohn's disease susceptibility gene Nod2 from intestinal abnormalities by inhibiting colonization by an inflammatory Bacteroides species. Resistance to Bacteroides colonization was dependent on type 2 immunity, which promoted the establishment of a protective microbiota enriched in Clostridiales. Additionally, we show that individuals from helminth-endemic regions harbor a similar protective microbiota and that deworming treatment reduced levels of Clostridiales and increased Bacteroidales. These results support a model of the hygiene hypothesis in which certain individuals are genetically susceptible to the consequences of a changing microbial environment.
Collapse
Affiliation(s)
- Deepshika Ramanan
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA. Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY 10016, USA
| | - Rowann Bowcutt
- Departments of Microbiology and Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Soo Ching Lee
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mei San Tang
- Departments of Microbiology and Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Zachary D Kurtz
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY 10016, USA. Departments of Microbiology and Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Yi Ding
- Department of Pathology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Kenya Honda
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan. Japan Agency for Medical Research and Development (AMED)-Core Research for Evolutional Science and Technology (CREST), Tokyo 100-0004, Japan
| | - William C Gause
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07101, USA
| | - Martin J Blaser
- Departments of Microbiology and Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Richard A Bonneau
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA. Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA. Simons Center for Data Analysis, Simons Foundation, New York, NY 10011, USA
| | - Yvonne A L Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - P'ng Loke
- Departments of Microbiology and Medicine, New York University School of Medicine, New York, NY 10016, USA.
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA. Departments of Microbiology and Medicine, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
213
|
McLean AHC, Godfray HCJ. Evidence for specificity in symbiont-conferred protection against parasitoids. Proc Biol Sci 2016; 282:rspb.2015.0977. [PMID: 26136451 DOI: 10.1098/rspb.2015.0977] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Many insects harbour facultative symbiotic bacteria, some of which have been shown to provide resistance against natural enemies. One of the best-known protective symbionts is Hamiltonella defensa, which in pea aphid (Acyrthosiphon pisum) confers resistance against attack by parasitoid wasps in the genus Aphidius (Braconidae).We asked (i) whether this symbiont also confers protection against a phylogenetically distant group of parasitoids (Aphelinidae) and (ii) whether there are consistent differences in the effects of bacteria found in pea aphid biotypes adapted to different host plants. We found that some H. defensa strains do provide protection against an aphelinid parasitoid Aphelinus abdominalis. Hamiltonella defensa from the Lotus biotype provided high resistance to A. abdominalis and moderate to low resistance to Aphidius ervi, while the reverse was seen from Medicago biotype isolates. Aphids from Ononis showed no evidence of symbiont-mediated protection against either wasp species and were relatively vulnerable to both. Our results may reflect the different selection pressures exerted by the parasitoid community on aphids feeding on different host plants, and could help explain the maintenance of genetic diversity in bacterial symbionts.
Collapse
|
214
|
Ford SA, King KC. Harnessing the Power of Defensive Microbes: Evolutionary Implications in Nature and Disease Control. PLoS Pathog 2016; 12:e1005465. [PMID: 27058881 PMCID: PMC4826280 DOI: 10.1371/journal.ppat.1005465] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Suzanne A. Ford
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (SAF); (KCK)
| | - Kayla C. King
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (SAF); (KCK)
| |
Collapse
|
215
|
Duron O, Cremaschi J, McCoy KD. The High Diversity and Global Distribution of the Intracellular Bacterium Rickettsiella in the Polar Seabird Tick Ixodes uriae. MICROBIAL ECOLOGY 2016; 71:761-70. [PMID: 26573831 DOI: 10.1007/s00248-015-0702-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/29/2015] [Indexed: 05/25/2023]
Abstract
Obligate intracellular bacteria of the Rickettsiella genus are emerging as both widespread and biologically diverse in arthropods. Some Rickettsiella strains are highly virulent entomopathogenic agents, whereas others are maternally inherited endosymbionts exerting very subtle manipulations on host phenotype to promote their own spread. Recently, a variety of Rickettsiella strains have been reported from ticks, but their biology is entirely unknown. In the present study, we examined the incidence and diversity of Rickettsiella in 11 geographically distinct populations of the polar seabird tick Ixodes uriae. We found Rickettsiella in most tick populations with a prevalence ranging from 3 to 24 %. 16S ribosomal RNA (rRNA) and GroEL gene sequences revealed an unexpected diversity of Rickettsiella, with 12 genetically distinct Rickettsiella strains present in populations of I. uriae. Phylogenetic investigations further revealed that these Rickettsiella strains do not cluster within a tick-specific clade but rather exhibit distinct evolutionary origins demonstrating frequent horizontal transfers between distantly related arthropod species. Tick rearing further showed that Rickettsiella are present in eggs laid by infected females with no evidence of abortive development. Using this data set, we discuss the potential biological significance of Rickettsiella in seabird ticks. Most notably, we suggest that these organisms may not be pathogenic forms but rather use more subtle adaptive strategies to persist within tick populations.
Collapse
Affiliation(s)
- Olivier Duron
- Laboratoire MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (UMR5290)-Université de Montpellier-Institut pour la Recherche et le Développement (UR 224), Montpellier, France.
| | - Julie Cremaschi
- Laboratoire MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (UMR5290)-Université de Montpellier-Institut pour la Recherche et le Développement (UR 224), Montpellier, France
| | - Karen D McCoy
- Laboratoire MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (UMR5290)-Université de Montpellier-Institut pour la Recherche et le Développement (UR 224), Montpellier, France
| |
Collapse
|
216
|
Dittmer J, Lesobre J, Moumen B, Bouchon D. Host origin and tissue microhabitat shaping the microbiota of the terrestrial isopod Armadillidium vulgare. FEMS Microbiol Ecol 2016; 92:fiw063. [PMID: 27004796 DOI: 10.1093/femsec/fiw063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2016] [Indexed: 11/14/2022] Open
Abstract
We present the first in-depth investigation of the host-associated microbiota of the terrestrial isopod crustacean Armadillidium vulgare. This species is an important decomposer of organic matter in terrestrial ecosystems and a major model organism for arthropod-Wolbachia symbioses due to its well-characterized association with feminizing Wolbachia 16S rRNA gene pyrotags were used to characterize its bacterial microbiota at multiple levels: (i) in individuals from laboratory lineages and field populations and (ii) in various host tissues. This integrative approach allowed us to reveal an unexpectedly high bacterial diversity, placing this species in the same league as termites in terms of symbiotic diversity. Interestingly, both animal groups belong to the same ecological guild in terrestrial ecosystems. While Wolbachia represented the predominant taxon in infected individuals, it was not the only major player. Together, the most abundant taxa represented a large scope of symbiotic interactions, including bacterial pathogens, a reproductive parasite (Wolbachia) and potential nutritional symbionts. Furthermore, we demonstrate that individuals from different populations harboured distinct bacterial communities, indicating a strong link between the host-associated microbiota and environmental bacteria, possibly due to terrestrial isopod nutritional ecology. Overall, this work highlights the need for more studies of host-microbiota interactions and bacterial diversity in non-insect arthropods.
Collapse
Affiliation(s)
- Jessica Dittmer
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, 5 rue Albert Turpain, TSA 51106, 86073 Poitiers, France
| | - Jérôme Lesobre
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, 5 rue Albert Turpain, TSA 51106, 86073 Poitiers, France
| | - Bouziane Moumen
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, 5 rue Albert Turpain, TSA 51106, 86073 Poitiers, France
| | - Didier Bouchon
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, 5 rue Albert Turpain, TSA 51106, 86073 Poitiers, France
| |
Collapse
|
217
|
Hill T, Schlötterer C, Betancourt AJ. Hybrid Dysgenesis in Drosophila simulans Associated with a Rapid Invasion of the P-Element. PLoS Genet 2016; 12:e1005920. [PMID: 26982327 PMCID: PMC4794157 DOI: 10.1371/journal.pgen.1005920] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/14/2016] [Indexed: 11/22/2022] Open
Abstract
In a classic example of the invasion of a species by a selfish genetic element, the P-element was horizontally transferred from a distantly related species into Drosophila melanogaster. Despite causing ‘hybrid dysgenesis’, a syndrome of abnormal phenotypes that include sterility, the P-element spread globally in the course of a few decades in D. melanogaster. Until recently, its sister species, including D. simulans, remained P-element free. Here, we find a hybrid dysgenesis-like phenotype in the offspring of crosses between D. simulans strains collected in different years; a survey of 181 strains shows that around 20% of strains induce hybrid dysgenesis. Using genomic and transcriptomic data, we show that this dysgenesis-inducing phenotype is associated with the invasion of the P-element. To characterize this invasion temporally and geographically, we survey 631 D. simulans strains collected on three continents and over 27 years for the presence of the P-element. We find that the D. simulans P-element invasion occurred rapidly and nearly simultaneously in the regions surveyed, with strains containing P-elements being rare in 2006 and common by 2014. Importantly, as evidenced by their resistance to the hybrid dysgenesis phenotype, strains collected from the latter phase of this invasion have adapted to suppress the worst effects of the P-element. Some genes perform necessary organismal functions, others hijack the cellular machinery to replicate themselves, potentially harming the host in the process. These ‘selfish genes’ can spread through genomes and species; as a result, eukaryotic genomes are typically saddled with large amounts of parasitic DNA. Here, we chronicle the surprisingly rapid global spread of a selfish transposable element through a close relative of the genetic model, Drosophila melanogaster. We see that, as it spreads, the transposable element is associated with damaging effects, including sterility, but that the flies quickly adapt to the negative consequences of the transposable element.
Collapse
Affiliation(s)
- Tom Hill
- Institut für Populationsgenetik, Vetmeduni Vienna, Austria
| | | | | |
Collapse
|
218
|
Mateos M, Winter L, Winter C, Higareda-Alvear VM, Martinez-Romero E, Xie J. Independent origins of resistance or susceptibility of parasitic wasps to a defensive symbiont. Ecol Evol 2016; 6:2679-87. [PMID: 27066241 PMCID: PMC4798148 DOI: 10.1002/ece3.2085] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/10/2016] [Accepted: 02/22/2016] [Indexed: 01/06/2023] Open
Abstract
Insect microbe associations are diverse, widespread, and influential. Among the fitness effects of microbes on their hosts, defense against natural enemies is increasingly recognized as ubiquitous, particularly among those associations involving heritable, yet facultative, bacteria. Protective mutualisms generate complex ecological and coevolutionary dynamics that are only beginning to be elucidated. These depend in part on the degree to which symbiont‐mediated protection exhibits specificity to one or more members of the natural enemy community. Recent findings in a well‐studied defensive mutualism system (i.e., aphids, bacteria, parasitoid wasps) reveal repeated instances of evolution of susceptibility or resistance to defensive bacteria by parasitoids. This study searched for similar patterns in an emerging model system for defensive mutualisms: the interaction of Drosophila, bacteria in the genus Spiroplasma, and wasps that parasitize larval stages of Drosophila. Previous work indicated that three divergent species of parasitic wasps are strongly inhibited by the presence of Spiroplasma in three divergent species of Drosophila, including D. melanogaster. The results of this study uncovered two additional wasp species that are susceptible to Spiroplasma and two that are unaffected by Spiroplasma, implying at least two instances of loss or gain of susceptibility to Spiroplasma among larval parasitoids of Drosophila.
Collapse
Affiliation(s)
- Mariana Mateos
- Department of Wildlife and Fisheries Sciences Texas A&M University College Station Texas
| | - Lauryn Winter
- Department of Wildlife and Fisheries Sciences Texas A&M University College Station Texas
| | - Caitlyn Winter
- Department of Wildlife and Fisheries Sciences Texas A&M University College Station Texas
| | | | | | - Jialei Xie
- Department of Wildlife and Fisheries Sciences Texas A&M University College Station Texas
| |
Collapse
|
219
|
King KC, Brockhurst MA, Vasieva O, Paterson S, Betts A, Ford SA, Frost CL, Horsburgh MJ, Haldenby S, Hurst GD. Rapid evolution of microbe-mediated protection against pathogens in a worm host. ISME JOURNAL 2016; 10:1915-24. [PMID: 26978164 PMCID: PMC5029159 DOI: 10.1038/ismej.2015.259] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 12/16/2022]
Abstract
Microbes can defend their host against virulent infections, but direct evidence for the adaptive origin of microbe-mediated protection is lacking. Using experimental evolution of a novel, tripartite interaction, we demonstrate that mildly pathogenic bacteria (Enterococcus faecalis) living in worms (Caenorhabditis elegans) rapidly evolved to defend their animal hosts against infection by a more virulent pathogen (Staphylococcus aureus), crossing the parasitism–mutualism continuum. Host protection evolved in all six, independently selected populations in response to within-host bacterial interactions and without direct selection for host health. Microbe-mediated protection was also effective against a broad spectrum of pathogenic S. aureus isolates. Genomic analysis implied that the mechanistic basis for E. faecalis-mediated protection was through increased production of antimicrobial superoxide, which was confirmed by biochemical assays. Our results indicate that microbes living within a host may make the evolutionary transition to mutualism in response to pathogen attack, and that microbiome evolution warrants consideration as a driver of infection outcome.
Collapse
Affiliation(s)
- Kayla C King
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Zoology, University of Oxford, Oxford, UK
| | | | - Olga Vasieva
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Alex Betts
- Department of Zoology, University of Oxford, Oxford, UK
| | | | - Crystal L Frost
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | - Sam Haldenby
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Gregory Dd Hurst
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
220
|
Beemelmanns C, Guo H, Rischer M, Poulsen M. Natural products from microbes associated with insects. Beilstein J Org Chem 2016; 12:314-27. [PMID: 26977191 PMCID: PMC4778507 DOI: 10.3762/bjoc.12.34] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/02/2016] [Indexed: 12/11/2022] Open
Abstract
Here we review discoveries of secondary metabolites from microbes associated with insects. We mainly focus on natural products, where the ecological role has been at least partially elucidated, and/or the pharmaceutical properties evaluated, and on compounds with unique structural features. We demonstrate that the exploration of specific microbial–host interactions, in combination with multidisciplinary dereplication processes, has emerged as a successful strategy to identify novel chemical entities and to shed light on the ecology and evolution of defensive associations.
Collapse
Affiliation(s)
- Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology e.V., Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Huijuan Guo
- Leibniz Institute for Natural Product Research and Infection Biology e.V., Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Maja Rischer
- Leibniz Institute for Natural Product Research and Infection Biology e.V., Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Michael Poulsen
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, Building 3, 1st floor, 2100 Copenhagen East, Denmark
| |
Collapse
|
221
|
Shokal U, Yadav S, Atri J, Accetta J, Kenney E, Banks K, Katakam A, Jaenike J, Eleftherianos I. Effects of co-occurring Wolbachia and Spiroplasma endosymbionts on the Drosophila immune response against insect pathogenic and non-pathogenic bacteria. BMC Microbiol 2016; 16:16. [PMID: 26862076 PMCID: PMC4746768 DOI: 10.1186/s12866-016-0634-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 02/02/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Symbiotic interactions between microbes and animals are common in nature. Symbiotic organisms are particularly common in insects and, in some cases, they may protect their hosts from pathogenic infections. Wolbachia and Spiroplasma endosymbionts naturally inhabit various insects including Drosophila melanogaster fruit flies. Therefore, this symbiotic association is considered an excellent model to investigate whether endosymbiotic bacteria participate in host immune processes against certain pathogens. Here we have investigated whether the presence of Wolbachia alone or together with Spiroplasma endosymbionts in D. melanogaster adult flies affects the immune response against the virulent insect pathogen Photorhabdus luminescens and against non-pathogenic Escherichia coli bacteria. RESULTS We found that D. melanogaster flies carrying no endosymbionts, those carrying both Wolbachia and Spiroplasma, and those containing Wolbachia only had similar survival rates after infection with P. luminescens or Escherichia coli bacteria. However, flies carrying both endosymbionts or Wolbachia only contained higher numbers of E. coli cells at early time-points post infection than flies without endosymbiotic bacteria. Interestingly, flies containing Wolbachia only had lower titers of this endosymbiont upon infection with the pathogen P. luminescens than uninfected flies of the same strain. We further found that the presence of Wolbachia and Spiroplasma in D. melanogaster up-regulated certain immune-related genes upon infection with P. luminescens or E. coli bacteria, but it failed to alter the phagocytic ability of the flies toward E. coli inactive bioparticles. CONCLUSION Our results suggest that the presence of Wolbachia and Spiroplasma in D. melanogaster can modulate immune signaling against infection by certain insect pathogenic and non-pathogenic bacteria. Results from such studies are important for understanding the molecular basis of the interactions between endosymbiotic bacteria of insects and exogenous microbes.
Collapse
Affiliation(s)
- Upasana Shokal
- Insect Infection and Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, 5675 Science and Engineering Hall, 800 22nd Street NW, Washington, D.C. 20052, USA.
| | - Shruti Yadav
- Insect Infection and Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, 5675 Science and Engineering Hall, 800 22nd Street NW, Washington, D.C. 20052, USA.
| | - Jaishri Atri
- Insect Infection and Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, 5675 Science and Engineering Hall, 800 22nd Street NW, Washington, D.C. 20052, USA.
| | - Julia Accetta
- Insect Infection and Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, 5675 Science and Engineering Hall, 800 22nd Street NW, Washington, D.C. 20052, USA.
| | - Eric Kenney
- Insect Infection and Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, 5675 Science and Engineering Hall, 800 22nd Street NW, Washington, D.C. 20052, USA.
| | - Katherine Banks
- Insect Infection and Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, 5675 Science and Engineering Hall, 800 22nd Street NW, Washington, D.C. 20052, USA.
| | - Akash Katakam
- Insect Infection and Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, 5675 Science and Engineering Hall, 800 22nd Street NW, Washington, D.C. 20052, USA.
| | - John Jaenike
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
| | - Ioannis Eleftherianos
- Insect Infection and Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, 5675 Science and Engineering Hall, 800 22nd Street NW, Washington, D.C. 20052, USA.
| |
Collapse
|
222
|
Correa CC, Ballard JWO. Wolbachia Associations with Insects: Winning or Losing Against a Master Manipulator. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2015.00153] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
223
|
Lu HL, St. Leger R. Insect Immunity to Entomopathogenic Fungi. GENETICS AND MOLECULAR BIOLOGY OF ENTOMOPATHOGENIC FUNGI 2016; 94:251-85. [DOI: 10.1016/bs.adgen.2015.11.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
224
|
Abstract
Vertically transmitted symbionts that protect their hosts against parasites and pathogens are well known from insects, yet the underlying mechanisms of symbiont-mediated defense are largely unclear. A striking example of an ecologically important defensive symbiosis involves the woodland fly Drosophila neotestacea, which is protected by the bacterial endosymbiont Spiroplasma when parasitized by the nematode Howardula aoronymphium. The benefit of this defense strategy has led to the rapid spread of Spiroplasma throughout the range of D. neotestacea, although the molecular basis for this protection has been unresolved. Here, we show that Spiroplasma encodes a ribosome-inactivating protein (RIP) related to Shiga-like toxins from enterohemorrhagic Escherichia coli and that Howardula ribosomal RNA (rRNA) is depurinated during Spiroplasma-mediated protection of D. neotestacea. First, we show that recombinant Spiroplasma RIP catalyzes depurination of 28S rRNAs in a cell-free assay, as well as Howardula rRNA in vitro at the canonical RIP target site within the α-sarcin/ricin loop (SRL) of 28S rRNA. We then show that Howardula parasites in Spiroplasma-infected flies show a strong signal of rRNA depurination consistent with RIP-dependent modification and large decreases in the proportion of 28S rRNA intact at the α-sarcin/ricin loop. Notably, host 28S rRNA is largely unaffected, suggesting targeted specificity. Collectively, our study identifies a novel RIP in an insect defensive symbiont and suggests an underlying RIP-dependent mechanism in Spiroplasma-mediated defense.
Collapse
|
225
|
Braquart-Varnier C, Altinli M, Pigeault R, Chevalier FD, Grève P, Bouchon D, Sicard M. The Mutualistic Side of Wolbachia-Isopod Interactions: Wolbachia Mediated Protection Against Pathogenic Intracellular Bacteria. Front Microbiol 2015; 6:1388. [PMID: 26733946 PMCID: PMC4679875 DOI: 10.3389/fmicb.2015.01388] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/23/2015] [Indexed: 12/31/2022] Open
Abstract
Wolbachia is a vertically transmitted endosymbiont whose radiative success is mainly related to various host reproductive manipulations that led to consider this symbiont as a conflictual reproductive parasite. However, lately, some Wolbachia have been shown to act as beneficial symbionts by protecting hosts against a broad range of parasites. Still, this protection has been mostly demonstrated in artificial Wolbachia-host associations between partners that did not co-evolved together. Here, we tested in two terrestrial isopod species Armadillidium vulgare and Porcellio dilatatus whether resident Wolbachia (native or non-native) could confer protection during infections with Listeria ivanovii and Salmonella typhimurium and also during a transinfection with a Wolbachia strain that kills the recipient host (i.e., wVulC in P. dilatatus). Survival analyses showed that (i) A. vulgare lines hosting their native Wolbachia (wVulC) always exhibited higher survival than asymbiotic ones when infected with pathogenic bacteria (ii) P. dilatatus lines hosting their native wDil Wolbachia strain survived the S. typhimurium infection better, while lines hosting non-native wCon Wolbachia strain survived the L. ivanovii and also the transinfection with wVulC from A. vulgare better. By studying L. ivanovii and S. typhimurium loads in the hemolymph of the different host-Wolbachia systems, we showed that (i) the difference in survival between lines after L. ivanovii infections were not linked to the difference between their pathogenic bacterial loads, and (ii) the difference in survival after S. typhimurium infections corresponds to lower loads of pathogenic bacteria. Overall, our results demonstrate a beneficial effect of Wolbachia on survival of terrestrial isopods when infected with pathogenic intracellular bacteria. This protective effect may rely on different mechanisms depending on the resident symbiont and the invasive bacteria interacting together within the hosts.
Collapse
Affiliation(s)
- Christine Braquart-Varnier
- Laboratoire Écologie et Biologie des Interactions - Equipe Écologie, Évolution, Symbiose - UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Mine Altinli
- Institut des Sciences de l'Évolution, CNRS-Université de Montpellier-IRD (UMR 5554) Montpellier, France
| | - Romain Pigeault
- IRD 224-Université de Montpellier, Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle, Équipe Interaction Parasitaires et Adaptation Montpellier, France
| | | | - Pierre Grève
- Laboratoire Écologie et Biologie des Interactions - Equipe Écologie, Évolution, Symbiose - UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Didier Bouchon
- Laboratoire Écologie et Biologie des Interactions - Equipe Écologie, Évolution, Symbiose - UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Mathieu Sicard
- Institut des Sciences de l'Évolution, CNRS-Université de Montpellier-IRD (UMR 5554) Montpellier, France
| |
Collapse
|
226
|
Abstract
With the increasing appreciation for the crucial roles that microbial symbionts play in the development and fitness of plant and animal hosts, there has been a recent push to interpret evolution through the lens of the "hologenome"--the collective genomic content of a host and its microbiome. But how symbionts evolve and, particularly, whether they undergo natural selection to benefit hosts are complex issues that are associated with several misconceptions about evolutionary processes in host-associated microbial communities. Microorganisms can have intimate, ancient, and/or mutualistic associations with hosts without having undergone natural selection to benefit hosts. Likewise, observing host-specific microbial community composition or greater community similarity among more closely related hosts does not imply that symbionts have coevolved with hosts, let alone that they have evolved for the benefit of the host. Although selection at the level of the symbiotic community, or hologenome, occurs in some cases, it should not be accepted as the null hypothesis for explaining features of host-symbiont associations.
Collapse
|
227
|
Affiliation(s)
- John Jaenike
- Department of Biology University of Rochester Rochester NY14620 USA
| |
Collapse
|
228
|
Łukasik P, Guo H, van Asch M, Henry LM, Godfray HCJ, Ferrari J. Horizontal transfer of facultative endosymbionts is limited by host relatedness. Evolution 2015; 69:2757-66. [DOI: 10.1111/evo.12767] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 07/31/2015] [Accepted: 08/14/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Piotr Łukasik
- Department of Zoology; University of Oxford; South Parks Road Oxford OX1 3PS United Kingdom
| | - Huifang Guo
- Department of Zoology; University of Oxford; South Parks Road Oxford OX1 3PS United Kingdom
- Institute of Plant Protection; Jiangsu Academy of Agricultural Sciences; Zhongling Street Nanjing 210014 China
| | - Margriet van Asch
- Department of Zoology; University of Oxford; South Parks Road Oxford OX1 3PS United Kingdom
| | - Lee M. Henry
- Department of Zoology; University of Oxford; South Parks Road Oxford OX1 3PS United Kingdom
| | - H. Charles J. Godfray
- Department of Zoology; University of Oxford; South Parks Road Oxford OX1 3PS United Kingdom
| | - Julia Ferrari
- Department of Zoology; University of Oxford; South Parks Road Oxford OX1 3PS United Kingdom
- Department of Biology; University of York; York YO10 5DD United Kingdom
| |
Collapse
|
229
|
Cass BN, Himler AG, Bondy EC, Bergen JE, Fung SK, Kelly SE, Hunter MS. Conditional fitness benefits of the Rickettsia bacterial symbiont in an insect pest. Oecologia 2015; 180:169-79. [PMID: 26376661 DOI: 10.1007/s00442-015-3436-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/25/2015] [Indexed: 11/25/2022]
Abstract
Inherited bacterial symbionts are common in arthropods and can have strong effects on the biology of their hosts. These effects are often mediated by host ecology. The Rickettsia symbiont can provide strong fitness benefits to its insect host, Bemisia tabaci, under laboratory and field conditions. However, the frequency of the symbiont is heterogeneous among field collection sites across the USA, suggesting that the benefits of the symbiont are contingent on additional factors. In two whitefly genetic lines collected from the same location, we tested the effect of Rickettsia on whitefly survival after heat shock, on whitefly competitiveness at different temperatures, and on whitefly competitiveness at different starting frequencies of Rickettsia. Rickettsia did not provide protection against heat shock nor affect the competitiveness of whiteflies at different temperatures or starting frequencies. However, there was a strong interaction between Rickettsia infection and whitefly genetic line. Performance measures indicated that Rickettsia was associated with significant female bias in both whitefly genetic lines, but in the second whitefly genetic line it conferred no significant fitness benefits nor conferred any competitive advantage to its host over uninfected whiteflies in population cages. These results help to explain other reports of variation in the phenotype of the symbiosis. Furthermore, they demonstrate the complex nature of these close symbiotic associations and the need to consider these interactions in the context of host population structure.
Collapse
Affiliation(s)
- Bodil N Cass
- Graduate Interdisciplinary Program in Entomology and Insect Science, University of Arizona, 410 Forbes, Tucson, AZ, 85721, USA
| | - Anna G Himler
- Department of Entomology, University of Arizona, 410 Forbes, Tucson, AZ, 85721, USA
- Department of Biology, The College of Idaho, 2112 Cleveland Blvd., Box 44, Caldwell, ID, 83605, USA
| | - Elizabeth C Bondy
- Department of Entomology, University of Arizona, 410 Forbes, Tucson, AZ, 85721, USA
| | - Jacquelyn E Bergen
- Department of Entomology, University of Arizona, 410 Forbes, Tucson, AZ, 85721, USA
| | - Sierra K Fung
- Department of Entomology, University of Arizona, 410 Forbes, Tucson, AZ, 85721, USA
| | - Suzanne E Kelly
- Department of Entomology, University of Arizona, 410 Forbes, Tucson, AZ, 85721, USA
| | - Martha S Hunter
- Department of Entomology, University of Arizona, 410 Forbes, Tucson, AZ, 85721, USA.
| |
Collapse
|
230
|
White JA, Richards NK, Laugraud A, Saeed A, Curry MM, McNeill MR. Endosymbiotic candidates for parasitoid defense in exotic and native New Zealand weevils. MICROBIAL ECOLOGY 2015; 70:274-86. [PMID: 25613091 DOI: 10.1007/s00248-014-0561-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 12/23/2014] [Indexed: 05/26/2023]
Abstract
Some insects are infected with maternally inherited bacterial endosymbionts that protect them against pathogens or parasitoids. The weevil Sitona obsoletus (=Sitona lepidus) is invasive in New Zealand, and suspected to contain such defensive symbionts, because it is particularly resistant to a Moroccan strain of the parasitoid Microctonus aethiopoides (which successfully attacks many other weevil species), and shows geographic variation in susceptibility to an Irish strain of the same parasitoid. Using 454 pyrosequencing, we investigated the bacterial community associated with S. obsoletus, two other exotic weevils (Sitona discoideus and Listronotus bonariensis) and two endemic New Zealand weevils (Irenimus aequalis and Steriphus variabilis). We found that S. obsoletus was infected by one strain of Wolbachia and two strains of Rickettsia, none of which were found in any other weevil species examined. Using diagnostic PCR, we found that S. obsoletus in the Northland region, where parasitism is highly variable, were primarily infected with Wolbachia and Rickettsia strain 2, indicating that these two symbionts should be investigated for potential defensive properties. In comparison, S. discoideus lacked any apparent maternally inherited bacterial endosymbionts. In the other weevil species, we found a different strain of Wolbachia and two different strains of Spiroplasma. Two weevil species (St. variabilis and L. bonariensis) were infected with distinct strains of Nardonella, the ancestral endosymbiont of weevils, whereas three weevil species (S. obsoletus, S. discoideus, and I. aequalis) lacked evidence for Nardonella infection. However, I. aequalis was consistently infected with a novel Enterobacteriaceae strain, suggesting that a symbiont replacement may have taken place, similar to that described for other weevil clades.
Collapse
Affiliation(s)
- Jennifer A White
- Department of Entomology, University of Kentucky, Lexington, KY, 40546, USA,
| | | | | | | | | | | |
Collapse
|
231
|
Brown AN, Lloyd VK. Evidence for horizontal transfer of Wolbachia by a Drosophila mite. EXPERIMENTAL & APPLIED ACAROLOGY 2015; 66:301-311. [PMID: 25921489 DOI: 10.1007/s10493-015-9918-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 04/10/2015] [Indexed: 06/04/2023]
Abstract
Mites are common ectoparasites of Drosophila and have been implicated in bacterial and mobile element invasion of Drosophila stocks. The obligate endobacterium, Wolbachia, has widespread effects on gene expression in their arthropod hosts and alters host reproduction to enhance its survival and propagation, often with deleterious effects in Drosophila hosts. To determine whether Wolbachia could be transferred between Drosophila melanogaster laboratory stocks by the mite Tyrophagus putrescentiae, mites were introduced to Wolbachia-infected Drosophila vials. These vials were kept adjacent to mite-free and Wolbachia-uninfected Drosophila stock vials. The Wolbachia infection statuses of the infected and uninfected flies were checked from generation 1 to 5. Results indicate that Wolbachia DNA could be amplified from mites infesting Wolbachia-infected fly stocks and infection in the previously uninfected stocks arose within generation 1 or 2, concomitant with invasion of mites from the Wolbachia-infected stock. A possible mechanism for the transfer of Wolbachia from flies to mites and vice versa, can be inferred from time-lapse photography of fly and mite interactions. We demonstrated that mites ingest Drosophila corpses, including Wolbachia-infected corpses, and Drosophila larva ingest mites, providing possible sources of Wolbachia infection and transfer. This research demonstrated that T. putrescentiae white mites can facilitate Wolbachia transfer between Drosophila stocks and that this may occur by ingestion of infected corpses. Mite-vectored Wolbachia transfer allows for rapid establishment of Wolbachia infection within a new population. This mode of Wolbachia introduction may be relevant in nature as well as in the laboratory, and could have a variety of biological consequences.
Collapse
Affiliation(s)
- Amy N Brown
- Department of Biology, Mount Allison University, 35B York St., Sackville, NB, E4L 1G7, Canada
| | | |
Collapse
|
232
|
Cass BN, Yallouz R, Bondy EC, Mozes-Daube N, Horowitz AR, Kelly SE, Zchori-Fein E, Hunter MS. Dynamics of the endosymbiont Rickettsia in an insect pest. MICROBIAL ECOLOGY 2015; 70:287-297. [PMID: 25626393 DOI: 10.1007/s00248-015-0565-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 01/02/2015] [Indexed: 06/04/2023]
Abstract
A new heritable bacterial association can bring a fresh set of molecular capabilities, providing an insect host with an almost instantaneous genome extension. Increasingly acknowledged as agents of rapid evolution, inherited microbes remain underappreciated players in pest management programs. A Rickettsia bacterium was tracked sweeping through populations of an invasive whitefly provisionally described as the "B" or "MEAM1" of the Bemisia tabaci species complex, in the southwestern USA. In this population, Rickettsia provides strong fitness benefits and distorts whitefly sex ratios under laboratory conditions. In contrast, whiteflies in Israel show few apparent fitness benefits from Rickettsia under laboratory conditions, only slightly decreasing development time. A survey of B. tabaci B samples revealed the distribution of Rickettsia across the cotton-growing regions of Israel and the USA. Thirteen sites from Israel and 22 sites from the USA were sampled. Across the USA, Rickettsia frequencies were heterogeneous among regions, but were generally very high, whereas in Israel, the infection rates were lower and declining. The distinct outcomes of Rickettsia infection in these two countries conform to previously reported phenotypic differences. Intermediate frequencies in some areas in both countries may indicate a cost to infection in certain environments or that the frequencies are in flux. This suggests underlying geographic differences in the interactions between bacterial symbionts and this serious agricultural pest.
Collapse
Affiliation(s)
- Bodil N Cass
- Graduate Interdisciplinary Program in Entomology and Insect Science, University of Arizona, 410 Forbes, Tucson, AZ, 85721, USA,
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Martinez J, Ok S, Smith S, Snoeck K, Day JP, Jiggins FM. Should Symbionts Be Nice or Selfish? Antiviral Effects of Wolbachia Are Costly but Reproductive Parasitism Is Not. PLoS Pathog 2015; 11:e1005021. [PMID: 26132467 PMCID: PMC4488530 DOI: 10.1371/journal.ppat.1005021] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/11/2015] [Indexed: 12/20/2022] Open
Abstract
Symbionts can have mutualistic effects that increase their host's fitness and/or parasitic effects that reduce it. Which of these strategies evolves depends in part on the balance of their costs and benefits to the symbiont. We have examined these questions in Wolbachia, a vertically transmitted endosymbiont of insects that can provide protection against viral infection and/or parasitically manipulate its hosts' reproduction. Across multiple symbiont strains we find that the parasitic phenotype of cytoplasmic incompatibility and antiviral protection are uncorrelated. Strong antiviral protection is associated with substantial reductions in other fitness-related traits, whereas no such trade-off was detected for cytoplasmic incompatibility. The reason for this difference is likely that antiviral protection requires high symbiont densities but cytoplasmic incompatibility does not. These results are important for the use of Wolbachia to block dengue virus transmission by mosquitoes, as natural selection to reduce these costs may lead to reduced symbiont density and the loss of antiviral protection.
Collapse
Affiliation(s)
- Julien Martinez
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Suzan Ok
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Sophie Smith
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Kiana Snoeck
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Jon P. Day
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
234
|
Haselkorn TS, Jaenike J. Macroevolutionary persistence of heritable endosymbionts: acquisition, retention and expression of adaptive phenotypes inSpiroplasma. Mol Ecol 2015; 24:3752-65. [DOI: 10.1111/mec.13261] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 11/26/2022]
Affiliation(s)
| | - John Jaenike
- Department of Biology; University of Rochester; Rochester NY 14627 USA
| |
Collapse
|
235
|
Toomer KH, Chen X, Naito M, Mondo SJ, den Bakker HC, VanKuren NW, Lekberg Y, Morton JB, Pawlowska TE. Molecular evolution patterns reveal life history features of mycoplasma-related endobacteria associated with arbuscular mycorrhizal fungi. Mol Ecol 2015; 24:3485-500. [DOI: 10.1111/mec.13250] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 05/01/2015] [Accepted: 05/22/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Kevin H. Toomer
- School of Integrative Plant Science, Plant Pathology & Plant Microbe-Biology; Cornell University; Ithaca NY 14853 USA
| | - Xiuhua Chen
- School of Integrative Plant Science, Plant Pathology & Plant Microbe-Biology; Cornell University; Ithaca NY 14853 USA
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan 430070 China
| | - Mizue Naito
- School of Integrative Plant Science, Plant Pathology & Plant Microbe-Biology; Cornell University; Ithaca NY 14853 USA
| | - Stephen J. Mondo
- School of Integrative Plant Science, Plant Pathology & Plant Microbe-Biology; Cornell University; Ithaca NY 14853 USA
| | - Henk C. den Bakker
- School of Integrative Plant Science, Plant Pathology & Plant Microbe-Biology; Cornell University; Ithaca NY 14853 USA
| | - Nicholas W. VanKuren
- School of Integrative Plant Science, Plant Pathology & Plant Microbe-Biology; Cornell University; Ithaca NY 14853 USA
| | - Ylva Lekberg
- MPG Ranch; Missoula MT 59802 USA
- Department of Ecosystem and Conservation Sciences; University of Montana; Missoula MT 59812 USA
| | - Joseph B. Morton
- Division of Plant & Soil Sciences; West Virginia University; Morgantown WV 26506 USA
| | - Teresa E. Pawlowska
- School of Integrative Plant Science, Plant Pathology & Plant Microbe-Biology; Cornell University; Ithaca NY 14853 USA
| |
Collapse
|
236
|
Liberti J, Sapountzis P, Hansen LH, Sørensen SJ, Adams RMM, Boomsma JJ. Bacterial symbiont sharing in Megalomyrmex social parasites and their fungus-growing ant hosts. Mol Ecol 2015; 24:3151-69. [PMID: 25907143 PMCID: PMC5008137 DOI: 10.1111/mec.13216] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 02/01/2023]
Abstract
Bacterial symbionts are important fitness determinants of insects. Some hosts have independently acquired taxonomically related microbes to meet similar challenges, but whether distantly related hosts that live in tight symbiosis can maintain similar microbial communities has not been investigated. Varying degrees of nest sharing between Megalomyrmex social parasites (Solenopsidini) and their fungus-growing ant hosts (Attini) from the genera Cyphomyrmex, Trachymyrmex and Sericomyrmex allowed us to address this question, as both ant lineages rely on the same fungal diet, interact in varying intensities and are distantly related. We used tag-encoded FLX 454 pyrosequencing and diagnostic PCR to map bacterial symbiont diversity across the Megalomyrmex phylogenetic tree, which also contains free-living generalist predators. We show that social parasites and hosts share a subset of bacterial symbionts, primarily consisting of Entomoplasmatales, Bartonellaceae, Acinetobacter, Wolbachia and Pseudonocardia and that Entomoplasmatales and Bartonellaceae can co-infect specifically associated combinations of hosts and social parasites with identical 16S rRNA genotypes. We reconstructed in more detail the population-level infection dynamics for Entomoplasmatales and Bartonellaceae in Megalomyrmex symmetochus guest ants and their Sericomyrmex amabilis hosts. We further assessed the stability of the bacterial communities through a diet manipulation experiment and evaluated possible transmission modes in shared nests such as consumption of the same fungus garden food, eating of host brood by social parasites, trophallaxis and grooming interactions between the ants, or parallel acquisition from the same nest environment. Our results imply that cohabiting ant social parasites and hosts may obtain functional benefits from bacterial symbiont transfer even when they are not closely related.
Collapse
Affiliation(s)
- Joanito Liberti
- Centre for Social EvolutionDepartment of BiologyUniversity of CopenhagenUniversitetsparken 15DK‐2100CopenhagenDenmark
| | - Panagiotis Sapountzis
- Centre for Social EvolutionDepartment of BiologyUniversity of CopenhagenUniversitetsparken 15DK‐2100CopenhagenDenmark
| | - Lars H. Hansen
- Molecular Microbial Ecology GroupDepartment of BiologyUniversity of CopenhagenUniversitetsparken 15DK‐2100CopenhagenDenmark
- Present address: Environmental Microbial Genomics GroupDepartment of Environmental ScienceAarhus UniversityDK‐4000RoskildeDenmark
| | - Søren J. Sørensen
- Molecular Microbial Ecology GroupDepartment of BiologyUniversity of CopenhagenUniversitetsparken 15DK‐2100CopenhagenDenmark
| | - Rachelle M. M. Adams
- Centre for Social EvolutionDepartment of BiologyUniversity of CopenhagenUniversitetsparken 15DK‐2100CopenhagenDenmark
- Department of EntomologyNational Museum of Natural HistorySmithsonian InstitutionWashingtonDC20560USA
| | - Jacobus J. Boomsma
- Centre for Social EvolutionDepartment of BiologyUniversity of CopenhagenUniversitetsparken 15DK‐2100CopenhagenDenmark
| |
Collapse
|
237
|
Minimal genomes of mycoplasma-related endobacteria are plastic and contain host-derived genes for sustained life within Glomeromycota. Proc Natl Acad Sci U S A 2015; 112:7791-6. [PMID: 25964324 DOI: 10.1073/pnas.1501676112] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF, Glomeromycota) colonize roots of the majority of terrestrial plants. They provide essential minerals to their plant hosts and receive photosynthates in return. All major lineages of AMF harbor endobacteria classified as Mollicutes, and known as mycoplasma-related endobacteria (MRE). Except for their substantial intrahost genetic diversity and ability to transmit vertically, virtually nothing is known about the life history of these endobacteria. To understand MRE biology, we sequenced metagenomes of three MRE populations, each associated with divergent AMF hosts. We found that each AMF species harbored a genetically distinct group of MRE. Despite vertical transmission, all MRE populations showed extensive chromosomal rearrangements, which we attributed to genetic recombination, activity of mobile elements, and a history of plectroviral invasion. The MRE genomes are characterized by a highly reduced gene content, indicating metabolic dependence on the fungal host, with the mechanism of energy production remaining unclear. Several MRE genes encode proteins with domains involved in protein-protein interactions with eukaryotic hosts. In addition, the MRE genomes harbor genes horizontally acquired from AMF. Some of these genes encode small ubiquitin-like modifier (SUMO) proteases specific to the SUMOylation systems of eukaryotes, which MRE likely use to manipulate their fungal host. The extent of MRE genome plasticity and reduction, along with the large number of horizontally acquired host genes, suggests a high degree of adaptation to the fungal host. These features, together with the ubiquity of the MRE-Glomeromycota associations, emphasize the significance of MRE in the biology of Glomeromycota.
Collapse
|
238
|
Rynkiewicz EC, Hemmerich C, Rusch DB, Fuqua C, Clay K. Concordance of bacterial communities of two tick species and blood of their shared rodent host. Mol Ecol 2015; 24:2566-79. [DOI: 10.1111/mec.13187] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/10/2015] [Accepted: 03/20/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Evelyn C. Rynkiewicz
- Institute of Evolutionary Biology & Centre for Immunity; Infection and Evolution; University of Edinburgh; Edinburgh EH9 3JT UK
- Department of Biology; Indiana University; 1001 E 3rd St Bloomington IN 47405 USA
| | - Chris Hemmerich
- Center for Genomics and Bioinformatics; Indiana University; 1001 E 3rd St Bloomington IN 47405 USA
| | - Douglas B. Rusch
- Center for Genomics and Bioinformatics; Indiana University; 1001 E 3rd St Bloomington IN 47405 USA
| | - Clay Fuqua
- Department of Biology; Indiana University; 1001 E 3rd St Bloomington IN 47405 USA
| | - Keith Clay
- Department of Biology; Indiana University; 1001 E 3rd St Bloomington IN 47405 USA
| |
Collapse
|
239
|
Genome sequence of the Drosophila melanogaster male-killing Spiroplasma strain MSRO endosymbiont. mBio 2015; 6:mBio.02437-14. [PMID: 25827421 PMCID: PMC4453565 DOI: 10.1128/mbio.02437-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spiroplasmas are helical and motile members of a cell wall-less eubacterial group called Mollicutes. Although all spiroplasmas are associated with arthropods, they exhibit great diversity with respect to both their modes of transmission and their effects on their hosts; ranging from horizontally transmitted pathogens and commensals to endosymbionts that are transmitted transovarially (i.e., from mother to offspring). Here we provide the first genome sequence, along with proteomic validation, of an endosymbiotic inherited Spiroplasma bacterium, the Spiroplasma poulsonii MSRO strain harbored by Drosophila melanogaster. Comparison of the genome content of S. poulsonii with that of horizontally transmitted spiroplasmas indicates that S. poulsonii has lost many metabolic pathways and transporters, demonstrating a high level of interdependence with its insect host. Consistent with genome analysis, experimental studies showed that S. poulsonii metabolizes glucose but not trehalose. Notably, trehalose is more abundant than glucose in Drosophila hemolymph, and the inability to metabolize trehalose may prevent S. poulsonii from overproliferating. Our study identifies putative virulence genes, notably, those for a chitinase, the H2O2-producing glycerol-3-phosphate oxidase, and enzymes involved in the synthesis of the eukaryote-toxic lipid cardiolipin. S. poulsonii also expresses on the cell membrane one functional adhesion-related protein and two divergent spiralin proteins that have been implicated in insect cell invasion in other spiroplasmas. These lipoproteins may be involved in the colonization of the Drosophila germ line, ensuring S. poulsonii vertical transmission. The S. poulsonii genome is a valuable resource to explore the mechanisms of male killing and symbiont-mediated protection, two cardinal features of many facultative endosymbionts. Most insect species, including important disease vectors and crop pests, harbor vertically transmitted endosymbiotic bacteria. These endosymbionts play key roles in their hosts’ fitness, including protecting them against natural enemies and manipulating their reproduction in ways that increase the frequency of symbiont infection. Little is known about the molecular mechanisms that underlie these processes. Here, we provide the first genome draft of a vertically transmitted male-killing Spiroplasma bacterium, the S. poulsonii MSRO strain harbored by D. melanogaster. Analysis of the S. poulsonii genome was complemented by proteomics and ex vivo metabolic experiments. Our results indicate that S. poulsonii has reduced metabolic capabilities and expresses divergent membrane lipoproteins and potential virulence factors that likely participate in Spiroplasma-host interactions. This work fills a gap in our knowledge of insect endosymbionts and provides tools with which to decipher the interaction between Spiroplasma bacteria and their well-characterized host D. melanogaster, which is emerging as a model of endosymbiosis.
Collapse
|
240
|
Smith AH, Łukasik P, O'Connor MP, Lee A, Mayo G, Drott MT, Doll S, Tuttle R, Disciullo RA, Messina A, Oliver KM, Russell JA. Patterns, causes and consequences of defensive microbiome dynamics across multiple scales. Mol Ecol 2015; 24:1135-49. [DOI: 10.1111/mec.13095] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Andrew H. Smith
- Department of Biology; Drexel University; Philadelphia PA 19104 USA
| | - Piotr Łukasik
- Department of Biology; Drexel University; Philadelphia PA 19104 USA
| | | | - Amanda Lee
- Department of Biology; Drexel University; Philadelphia PA 19104 USA
| | - Garrett Mayo
- Department of Biology; Drexel University; Philadelphia PA 19104 USA
| | - Milton T. Drott
- Department of Biology; Drexel University; Philadelphia PA 19104 USA
| | - Steven Doll
- Department of Biology; Drexel University; Philadelphia PA 19104 USA
| | - Robert Tuttle
- Department of Biology; Drexel University; Philadelphia PA 19104 USA
| | | | - Andrea Messina
- Department of Biology; Drexel University; Philadelphia PA 19104 USA
| | - Kerry M. Oliver
- Department of Entomology; University of Georgia; Athens GA 30602 USA
| | - Jacob A. Russell
- Department of Biology; Drexel University; Philadelphia PA 19104 USA
| |
Collapse
|
241
|
Can maternally inherited endosymbionts adapt to a novel host? Direct costs of Spiroplasma infection, but not vertical transmission efficiency, evolve rapidly after horizontal transfer into D. melanogaster. Heredity (Edinb) 2015; 114:539-43. [PMID: 25649504 DOI: 10.1038/hdy.2014.112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 10/23/2014] [Accepted: 10/27/2014] [Indexed: 11/08/2022] Open
Abstract
Maternally inherited symbionts are common in arthropods and many have important roles in host adaptation. The observation that specific symbiont lineages infect distantly related host species implies new interactions are commonly established by lateral transfer events. However, studies have shown that symbionts often perform poorly in novel hosts. We hypothesized selection on the symbiont may be sufficiently rapid that poor performance in a novel host environment is rapidly ameliorated, permitting symbiont maintenance. Here, we test this prediction for a Spiroplasma strain transinfected into the novel host Drosophila melanogaster. In the generations immediately following transinfection, the symbiont had low transmission efficiency to offspring and imposed severe fitness costs on its host. We observed that effects on host fitness evolved rapidly, being undetectable after 17 generations in the novel host, whereas vertical transmission efficiency was poorly responsive over this period. Our results suggest that long-term symbiosis may more readily be established in cases where symbionts perform poorly in just one aspect of symbiosis.
Collapse
|
242
|
Abstract
All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests.
Collapse
|
243
|
Novel Endosymbioses as a Catalyst of Fast Speciation. INTERDISCIPLINARY EVOLUTION RESEARCH 2015. [DOI: 10.1007/978-3-319-16345-1_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
244
|
|
245
|
Flórez LV, Biedermann PHW, Engl T, Kaltenpoth M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep 2015; 32:904-36. [DOI: 10.1039/c5np00010f] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many organisms team up with symbiotic microbes for defense against predators, parasites, parasitoids, or pathogens. Here we review the known defensive symbioses in animals and the microbial secondary metabolites responsible for providing protection to the host.
Collapse
Affiliation(s)
- Laura V. Flórez
- Max Planck Institute for Chemical Ecology
- Insect Symbiosis Research Group
- 07745 Jena
- Germany
| | - Peter H. W. Biedermann
- Max Planck Institute for Chemical Ecology
- Insect Symbiosis Research Group
- 07745 Jena
- Germany
| | - Tobias Engl
- Max Planck Institute for Chemical Ecology
- Insect Symbiosis Research Group
- 07745 Jena
- Germany
| | - Martin Kaltenpoth
- Max Planck Institute for Chemical Ecology
- Insect Symbiosis Research Group
- 07745 Jena
- Germany
| |
Collapse
|
246
|
O'Connor TK, Humphrey PT, Lapoint RT, Whiteman NK, O'Grady PM. Microbial interactions and the ecology and evolution of Hawaiian Drosophilidae. Front Microbiol 2014; 5:616. [PMID: 25566196 PMCID: PMC4270190 DOI: 10.3389/fmicb.2014.00616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
Adaptive radiations are characterized by an increased rate of speciation and expanded range of habitats and ecological niches exploited by those species. The Hawaiian Drosophilidae is a classic adaptive radiation; a single ancestral species colonized Hawaii approximately 25 million years ago and gave rise to two monophyletic lineages, the Hawaiian Drosophila and the genus Scaptomyza. The Hawaiian Drosophila are largely saprophagous and rely on approximately 40 endemic plant families and their associated microbes to complete development. Scaptomyza are even more diverse in host breadth. While many species of Scaptomyza utilize decomposing plant substrates, some species have evolved to become herbivores, parasites on spider egg masses, and exploit microbes on living plant tissue. Understanding the origin of the ecological diversity encompassed by these nearly 700 described species has been a challenge. The central role of microbes in drosophilid ecology suggests bacterial and fungal associates may have played a role in the diversification of the Hawaiian Drosophilidae. Here we synthesize recent ecological and microbial community data from the Hawaiian Drosophilidae to examine the forces that may have led to this adaptive radiation. We propose that the evolutionary success of the Hawaiian Drosophilidae is due to a combination of factors, including adaptation to novel ecological niches facilitated by microbes.
Collapse
Affiliation(s)
| | - Parris T Humphrey
- Ecology and Evolutionary Biology, University of Arizona Tucson, AZ, USA
| | - Richard T Lapoint
- Ecology and Evolutionary Biology, University of Arizona Tucson, AZ, USA
| | - Noah K Whiteman
- Ecology and Evolutionary Biology, University of Arizona Tucson, AZ, USA
| | - Patrick M O'Grady
- Environmental Science, Policy and Management, University of California Berkeley Berkeley, CA, USA
| |
Collapse
|
247
|
Xie J, Winter C, Winter L, Mateos M. Rapid spread of the defensive endosymbiont Spiroplasma in Drosophila hydei under high parasitoid wasp pressure. FEMS Microbiol Ecol 2014; 91:1-11. [DOI: 10.1093/femsec/fiu017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
248
|
Bolaños LM, Servín-Garcidueñas LE, Martínez-Romero E. Arthropod-Spiroplasma relationship in the genomic era. FEMS Microbiol Ecol 2014; 91:1-8. [PMID: 25764543 DOI: 10.1093/femsec/fiu008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The genus Spiroplasma comprises wall-less, low-GC bacteria that establish pathogenic, mutualistic and commensal symbiotic associations with arthropods and plants. This review focuses on the symbiotic relationships between Spiroplasma bacteria and arthropod hosts in the context of the available genomic sequences. Spiroplasma genomes are reduced and some contain highly repetitive plectrovirus-related sequences. Spiroplasma's diversity in viral invasion susceptibility, virulence factors, substrate utilization, genome dynamics and symbiotic associations with arthropods make this bacterial genus a biological model that provides insights about the evolutionary traits that shape bacterial symbiotic relationships with eukaryotes.
Collapse
Affiliation(s)
- Luis M Bolaños
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Luis E Servín-Garcidueñas
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Esperanza Martínez-Romero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| |
Collapse
|
249
|
Powell CM, Hail D, Potocnjak J, Hanson JD, Halbert SH, Bextine BR. Bacterial community composition of three candidate insect vectors of palm phytoplasma (Texas Phoenix Palm Decline and Lethal Yellowing). Curr Microbiol 2014; 70:240-5. [PMID: 25298076 DOI: 10.1007/s00284-014-0709-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/28/2014] [Indexed: 02/07/2023]
Abstract
Texas Phoenix Palm Decline (TPPD) and Lethal Yellowing are two phytoplasma-linked diseases in palms. The phytoplasma causing TPPD is thought to be transmitted by three putative planthopper vectors, Ormenaria rufifascia, Omolicna joi, and Haplaxius crudus. These insects have been morphologically and molecularly described, and have screened positive for Candidatus Phytoplasma palmae. Individuals from each species were subjected to 16S bacterial community sequencing using the Roche 454 platform, providing new information regarding the previously unexplored bacterial communities present in putative vectors.
Collapse
Affiliation(s)
- Christopher M Powell
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 75799, USA,
| | | | | | | | | | | |
Collapse
|
250
|
Linneman J, Paulus D, Lim-Fong G, Lopanik NB. Latitudinal variation of a defensive symbiosis in the Bugula neritina (Bryozoa) sibling species complex. PLoS One 2014; 9:e108783. [PMID: 25275632 PMCID: PMC4183541 DOI: 10.1371/journal.pone.0108783] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/04/2014] [Indexed: 11/27/2022] Open
Abstract
Mutualistic relationships are beneficial for both partners and are often studied within a single environment. However, when the range of the partners is large, geographical differences in selective pressure may shift the relationship outcome from positive to negative. The marine bryozoan Bugula neritina is a colonial invertebrate common in temperate waters worldwide. It is the source of bioactive polyketide metabolites, the bryostatins. Evidence suggests that an uncultured vertically transmitted symbiont, "Candidatus Endobugula sertula", hosted by B. neritina produces the bryostatins, which protect the vulnerable larvae from predation. Studies of B. neritina along the North American Atlantic coast revealed a complex of two morphologically similar sibling species separated by an apparent biogeographic barrier: the Type S sibling species was found below Cape Hatteras, North Carolina, while Type N was found above. Interestingly, the Type N colonies lack "Ca. Endobugula sertula" and, subsequently, defensive bryostatins; their documented northern distribution was consistent with traditional biogeographical paradigms of latitudinal variation in predation pressure. Upon further sampling of B. neritina populations, we found that both host types occur in wider distribution, with Type N colonies living south of Cape Hatteras, and Type S to the north. Distribution of the symbiont, however, was not restricted to Type S hosts. Genetic and microscopic evidence demonstrates the presence of the symbiont in some Type N colonies, and larvae from these colonies are endowed with defensive bryostatins and contain "Ca. Endobugula sertula". Molecular analysis of the symbiont from Type N colonies suggests an evolutionarily recent acquisition, which is remarkable for a symbiont thought to be transmitted only vertically. Furthermore, most Type S colonies found at higher latitudes lack the symbiont, suggesting that this host-symbiont relationship is more flexible than previously thought. Our data suggest that the symbiont, but not the host, is restricted by biogeographical boundaries.
Collapse
Affiliation(s)
- Jonathan Linneman
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Darcy Paulus
- Department of Biology, Randolph-Macon College, Ashland, Virginia, United States of America
| | - Grace Lim-Fong
- Department of Biology, Randolph-Macon College, Ashland, Virginia, United States of America
| | - Nicole B. Lopanik
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| |
Collapse
|