201
|
Murabito E, Verma M, Bekker M, Bellomo D, Westerhoff HV, Teusink B, Steuer R. Monte-Carlo modeling of the central carbon metabolism of Lactococcus lactis: insights into metabolic regulation. PLoS One 2014; 9:e106453. [PMID: 25268481 PMCID: PMC4182131 DOI: 10.1371/journal.pone.0106453] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 08/07/2014] [Indexed: 11/18/2022] Open
Abstract
Metabolic pathways are complex dynamic systems whose response to perturbations and environmental challenges are governed by multiple interdependencies between enzyme properties, reactions rates, and substrate levels. Understanding the dynamics arising from such a network can be greatly enhanced by the construction of a computational model that embodies the properties of the respective system. Such models aim to incorporate mechanistic details of cellular interactions to mimic the temporal behavior of the biochemical reaction system and usually require substantial knowledge of kinetic parameters to allow meaningful conclusions. Several approaches have been suggested to overcome the severe data requirements of kinetic modeling, including the use of approximative kinetics and Monte-Carlo sampling of reaction parameters. In this work, we employ a probabilistic approach to study the response of a complex metabolic system, the central metabolism of the lactic acid bacterium Lactococcus lactis, subject to perturbations and brief periods of starvation. Supplementing existing methodologies, we show that it is possible to acquire a detailed understanding of the control properties of a corresponding metabolic pathway model that is directly based on experimental observations. In particular, we delineate the role of enzymatic regulation to maintain metabolic stability and metabolic recovery after periods of starvation. It is shown that the feedforward activation of the pyruvate kinase by fructose-1,6-bisphosphate qualitatively alters the bifurcation structure of the corresponding pathway model, indicating a crucial role of enzymatic regulation to prevent metabolic collapse for low external concentrations of glucose. We argue that similar probabilistic methodologies will help our understanding of dynamic properties of small-, medium- and large-scale metabolic networks models.
Collapse
Affiliation(s)
- Ettore Murabito
- Manchester Institute of Biotechnology, School of Chemical Engineering and Analytical Sciences (CEAS), Manchester Centre for Integrative Systems Biology (MCISB), The University of Manchester, Manchester, United Kingdom
- * E-mail: (EM); (RS)
| | - Malkhey Verma
- Manchester Institute of Biotechnology, School of Chemical Engineering and Analytical Sciences (CEAS), Manchester Centre for Integrative Systems Biology (MCISB), The University of Manchester, Manchester, United Kingdom
| | - Martijn Bekker
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Domenico Bellomo
- Systems Bioinformatics IBIVU and Netherlands Institute for Systems Biology (NISB), VU University Amsterdam, Amsterdam, The Netherlands
| | - Hans V. Westerhoff
- Manchester Institute of Biotechnology, School of Chemical Engineering and Analytical Sciences (CEAS), Manchester Centre for Integrative Systems Biology (MCISB), The University of Manchester, Manchester, United Kingdom
- Synthetic Systems Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Molecular Cell Physiology, FALW, VU University Amsterdam, Amsterdam, The Netherlands
| | - Bas Teusink
- Systems Bioinformatics IBIVU and Netherlands Institute for Systems Biology (NISB), VU University Amsterdam, Amsterdam, The Netherlands
| | - Ralf Steuer
- CzechGlobe - Global Change Research Center, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Humboldt-University Berlin, Institute for Theoretical Biology, Berlin, Germany
- * E-mail: (EM); (RS)
| |
Collapse
|
202
|
Schwabe A, Bruggeman FJ. Single yeast cells vary in transcription activity not in delay time after a metabolic shift. Nat Commun 2014; 5:4798. [DOI: 10.1038/ncomms5798] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/25/2014] [Indexed: 11/09/2022] Open
|
203
|
Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M. Trehalose metabolism in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:544-67. [PMID: 24645920 DOI: 10.1111/tpj.12509] [Citation(s) in RCA: 310] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/18/2014] [Accepted: 03/03/2014] [Indexed: 05/18/2023]
Abstract
Trehalose is a quantitatively important compatible solute and stress protectant in many organisms, including green algae and primitive plants. These functions have largely been replaced by sucrose in vascular plants, and trehalose metabolism has taken on new roles. Trehalose is a potential signal metabolite in plant interactions with pathogenic or symbiotic micro-organisms and herbivorous insects. It is also implicated in responses to cold and salinity, and in regulation of stomatal conductance and water-use efficiency. In plants, as in other eukaryotes and many prokaryotes, trehalose is synthesized via a phosphorylated intermediate, trehalose 6-phosphate (Tre6P). A meta-analysis revealed that the levels of Tre6P change in parallel with sucrose, which is the major product of photosynthesis and the main transport sugar in plants. We propose the existence of a bi-directional network, in which Tre6P is a signal of sucrose availability and acts to maintain sucrose concentrations within an appropriate range. Tre6P influences the relative amounts of sucrose and starch that accumulate in leaves during the day, and regulates the rate of starch degradation at night to match the demand for sucrose. Mutants in Tre6P metabolism have highly pleiotropic phenotypes, showing defects in embryogenesis, leaf growth, flowering, inflorescence branching and seed set. It has been proposed that Tre6P influences plant growth and development via inhibition of the SNF1-related protein kinase (SnRK1). However, current models conflict with some experimental data, and do not completely explain the pleiotropic phenotypes exhibited by mutants in Tre6P metabolism. Additional explanations for the diverse effects of alterations in Tre6P metabolism are discussed.
Collapse
Affiliation(s)
- John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | | | | | | | | |
Collapse
|
204
|
Shestov AA, Liu X, Ser Z, Cluntun AA, Hung YP, Huang L, Kim D, Le A, Yellen G, Albeck JG, Locasale JW. Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step. eLife 2014; 3. [PMID: 25009227 PMCID: PMC4118620 DOI: 10.7554/elife.03342] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 07/08/2014] [Indexed: 12/12/2022] Open
Abstract
Aerobic glycolysis or the Warburg Effect (WE) is characterized by the increased metabolism of glucose to lactate. It remains unknown what quantitative changes to the activity of metabolism are necessary and sufficient for this phenotype. We developed a computational model of glycolysis and an integrated analysis using metabolic control analysis (MCA), metabolomics data, and statistical simulations. We identified and confirmed a novel mode of regulation specific to aerobic glycolysis where flux through GAPDH, the enzyme separating lower and upper glycolysis, is the rate-limiting step in the pathway and the levels of fructose (1,6) bisphosphate (FBP), are predictive of the rate and control points in glycolysis. Strikingly, negative flux control was found and confirmed for several steps thought to be rate-limiting in glycolysis. Together, these findings enumerate the biochemical determinants of the WE and suggest strategies for identifying the contexts in which agents that target glycolysis might be most effective. DOI:http://dx.doi.org/10.7554/eLife.03342.001 Cells generate energy from a sugar called glucose via a process called glycolysis. This process involves many enzymes that catalyze 10 different chemical reactions, and it essentially converts glucose step-by-step into a simpler chemical called pyruvate. Pyruvate is then normally transported into structures within the cell called mitochondria, where it is further broken down using oxygen to release more energy. However, in cells that are rapidly dividing, pyruvate is converted into another chemical called lactate—which releases energy more quickly, but releases less energy overall. Cancer cells often convert most of their glucose into lactate, rather than breaking down pyruvate in their mitochondria: an observation known as the ‘Warburg effect’. And while many factors affect how a cell releases energy from pyruvate, it remains unclear what regulates which of these biochemical processes is most common in a living cell. In this study, Shestov et al. have developed a computational model for the process of glycolysis and used this to investigate the causes of the Warburg Effect. The model was based on the known characteristics of the enzymes and chemical reactions involved at each step. It predicted that the activity of the enzyme called GAPDH, which carries out the sixth step in glycolysis, in many cases affects how much lactate is produced. This suggests that this enzyme represents a bottleneck in the pathway. Next, Shestov et al. performed experiments where they used drugs to block different stages of the glycolysis pathway, and confirmed that the GAPDH enzyme is important for regulating this pathway in living cancer cells too. In these treated cells, the levels of a chemical called fructose-1,6-biphosphate (which is made in a step in the pathway between glucose and pyruvate) were either very high or very low. Shestov et al. proposed that the flow of chemicals through the glycolysis pathway is controlled by the GAPDH enzyme when the chemicals used by the enzymes upstream of GAPDH in the pathway (which includes fructose-1,6-biphosphate) are plentiful. However, if these chemicals are limited, other enzymes that are involved in earlier steps of the pathway regulate the process instead. The findings of Shestov et al. reveal that the regulation of glycolysis is more complex than previously thought, and is also very different when cells are undergoing the Warburg Effect. In the future, these findings might help to identify the types of cancer that could be effectively treated using drugs that target the glycolysis process, which are currently being tested in pre-clinical studies. DOI:http://dx.doi.org/10.7554/eLife.03342.002
Collapse
Affiliation(s)
| | - Xiaojing Liu
- Division of Nutritional Sciences, Cornell University, Ithaca, United States
| | - Zheng Ser
- Division of Nutritional Sciences, Cornell University, Ithaca, United States
| | - Ahmad A Cluntun
- Field of Biochemistry and Molecular Cell Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Yin P Hung
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Lei Huang
- Field of Computational Biology, Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, United States
| | - Dongsung Kim
- Field of Biochemistry and Molecular Cell Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - John G Albeck
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Jason W Locasale
- Division of Nutritional Sciences, Cornell University, Ithaca, United States
| |
Collapse
|
205
|
Kotte O, Volkmer B, Radzikowski JL, Heinemann M. Phenotypic bistability in Escherichia coli's central carbon metabolism. Mol Syst Biol 2014; 10:736. [PMID: 24987115 PMCID: PMC4299493 DOI: 10.15252/msb.20135022] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Fluctuations in intracellular molecule abundance can lead to distinct, coexisting phenotypes in isogenic populations. Although metabolism continuously adapts to unpredictable environmental changes, and although bistability was found in certain substrate-uptake pathways, central carbon metabolism is thought to operate deterministically. Here, we combine experiment and theory to demonstrate that a clonal Escherichia coli population splits into two stochastically generated phenotypic subpopulations after glucose-gluconeogenic substrate shifts. Most cells refrain from growth, entering a dormant persister state that manifests as a lag phase in the population growth curve. The subpopulation-generating mechanism resides at the metabolic core, overarches the metabolic and transcriptional networks, and only allows the growth of cells initially achieving sufficiently high gluconeogenic flux. Thus, central metabolism does not ensure the gluconeogenic growth of individual cells, but uses a population-level adaptation resulting in responsive diversification upon nutrient changes.
Collapse
Affiliation(s)
- Oliver Kotte
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Benjamin Volkmer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Jakub L Radzikowski
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Matthias Heinemann
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
206
|
Chen Y, Wang Z, Xu M, Wang X, Liu R, Liu Q, Zhang Z, Xia T, Zhao J, Jiang G, Xu Y, Liu S. Nanosilver incurs an adaptive shunt of energy metabolism mode to glycolysis in tumor and nontumor cells. ACS NANO 2014; 8:5813-5825. [PMID: 24810997 DOI: 10.1021/nn500719m] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Due to its significant antimicrobial properties, nanosilver (nAg) has been substantially used in a wide spectrum of areas. This has raised the concerns on the detrimental effects on environment and human health. Although numerous studies have documented nAg-mediated toxicity to cells or organisms, little attempt has been made to study the biological impacts of nAg on cells at nontoxic concentrations, namely, the distinct biological effects that can be separated from direct cytotoxicity. Here, we studied nAg-mediated effects on energy metabolism in cells under sublethal exposure. Treatment of nAg at nontoxic concentrations resulted in a decline of ATP synthesis and attenuation of respiratory chain function in nontumor HEK293T cells and tumor cells with differential respiration rate, including HepG2, HeLa, A498, and PC3 cells. Cellular energy homeostasis was switched from oxidative phosphorylation-based aerobic metabolism to anaerobic glycolysis, which is an adaption process to satisfy the energy demand for cell survival. Nanospheres with smaller size showed greater capability to alter cellular energy metabolism than those with larger size or nanoplates. Mechanistic investigation manifested that inhibition of PGC-1α by nAg was, at least partially, accountable for the transition from oxidative phosphorylation to glycolysis. Additionally, altered expression of a few energy metabolism-related genes (such as PFKFB3 and PDHA1) was also involved in the transition process. We further showed nAg-induced depolarization of mitochondrial membrane potential and reduction of respiratory chain complex activity. Together, our combined results uncovered the mechanisms by which nAg induced energy metabolism reprogramming in both tumor and nontumor cells under sublethal dosage.
Collapse
Affiliation(s)
- Yue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Understanding bistability in yeast glycolysis using general properties of metabolic pathways. Math Biosci 2014; 255:33-42. [PMID: 24956444 DOI: 10.1016/j.mbs.2014.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 11/23/2022]
Abstract
UNLABELLED Glycolysis is the central pathway in energy metabolism in the majority of organisms. In a recent paper, van Heerden et al. showed experimentally and computationally that glycolysis can exist in two states, a global steady state and a so-called imbalanced state. In the imbalanced state, intermediary metabolites accumulate at low levels of ATP and inorganic phosphate. It was shown that Baker's yeast uses a peculiar regulatory mechanism--via trehalose metabolism--to ensure that most yeast cells reach the steady state and not the imbalanced state. RESULTS Here we explore the apparent bistable behaviour in a core model of glycolysis that is based on a well-established detailed model, and study in great detail the bifurcation behaviour of solutions, without using any numerical information on parameter values. CONCLUSION We uncover a rich suite of solutions, including so-called imbalanced states, bistability, and oscillatory behaviour. The techniques employed are generic, directly suitable for a wide class of biochemical pathways, and could lead to better analytical treatments of more detailed models.
Collapse
|
208
|
Mulukutla BC, Yongky A, Daoutidis P, Hu WS. Bistability in glycolysis pathway as a physiological switch in energy metabolism. PLoS One 2014; 9:e98756. [PMID: 24911170 PMCID: PMC4049617 DOI: 10.1371/journal.pone.0098756] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/07/2014] [Indexed: 12/13/2022] Open
Abstract
The flux of glycolysis is tightly controlled by feed-back and feed-forward allosteric regulations to maintain the body's glucose homeostasis and to respond to cell's growth and energetic needs. Using a mathematical model based on reported mechanisms for the allosteric regulations of the enzymes, we demonstrate that glycolysis exhibits multiple steady state behavior segregating glucose metabolism into high flux and low flux states. Two regulatory loops centering on phosphofructokinase and on pyruvate kinase each gives rise to the bistable behavior, and together impose more complex flux control. Steady state multiplicity endows glycolysis with a robust switch to transit between the two flux states. Under physiological glucose concentrations the glycolysis flux does not move between the states easily without an external stimulus such as hormonal, signaling or oncogenic cues. Distinct combination of isozymes in glycolysis gives different cell types the versatility in their response to different biosynthetic and energetic needs. Insights from the switch behavior of glycolysis may reveal new means of metabolic intervention in the treatment of cancer and other metabolic disorders through suppression of glycolysis.
Collapse
Affiliation(s)
- Bhanu Chandra Mulukutla
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Andrew Yongky
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Prodromos Daoutidis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
209
|
Schmidt AM, Fagerer SR, Jefimovs K, Buettner F, Marro C, Siringil EC, Boehlen KL, Pabst M, Ibáñez AJ. Molecular phenotypic profiling of a Saccharomyces cerevisiae strain at the single-cell level. Analyst 2014; 139:5709-17. [DOI: 10.1039/c4an01119h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Studying cell-to-cell heterogeneity requires techniques which robustly deliver reproducible results with single-cell sensitivity.
Collapse
Affiliation(s)
- A. Mareike Schmidt
- Institute of Molecular Systems Biology
- ETH Zurich
- CH-8093 Zurich, Switzerland
| | - Stephan R. Fagerer
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- CH-8093 Zurich, Switzerland
| | - Konstantins Jefimovs
- Laboratory for Electronics/Metrology/Reliability
- EMPA
- Swiss Federal Institute for Materials Science and Technology
- CH-8600 Dübendorf, Switzerland
| | - Florian Buettner
- Institute of Computational Biology
- Helmholtz-Zentrum München
- 85764 Neuherberg, Germany
| | - Christian Marro
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- CH-8093 Zurich, Switzerland
| | - Erdem C. Siringil
- Laboratory for Advanced Materials Processing
- EMPA
- Swiss Federal Institute for Materials Science and Technology
- CH-3602 Thun, Swizerland
| | - Karl L. Boehlen
- Laboratory for Advanced Materials Processing
- EMPA
- Swiss Federal Institute for Materials Science and Technology
- CH-3602 Thun, Swizerland
| | - Martin Pabst
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- CH-8093 Zurich, Switzerland
| | - Alfredo J. Ibáñez
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- CH-8093 Zurich, Switzerland
| |
Collapse
|