201
|
Abstract
The standard genetic code is robust to mutations during transcription and translation. Point mutations are likely to be synonymous or to preserve the chemical properties of the original amino acid. Saturation mutagenesis experiments suggest that in some cases the best-performing mutant requires replacement of more than a single nucleotide within a codon. These replacements are essentially inaccessible to common error-based laboratory engineering techniques that alter a single nucleotide per mutation event, due to the extreme rarity of adjacent mutations. In this theoretical study, we suggest a radical reordering of the genetic code that maximizes the mutagenic potential of single nucleotide replacements. We explore several possible genetic codes that allow a greater degree of accessibility to the mutational landscape and may result in a hyperevolvable organism that could serve as an ideal platform for directed evolution experiments. We then conclude by evaluating the challenges of constructing such recoded organisms and their potential applications within the field of synthetic biology. The conservative nature of the genetic code prevents bioengineers from efficiently accessing the full mutational landscape of a gene via common error-prone methods. Here, we present two computational approaches to generate alternative genetic codes with increased accessibility. These new codes allow mutational transitions to a larger pool of amino acids and with a greater extent of chemical differences, based on a single nucleotide replacement within the codon, thus increasing evolvability both at the single-gene and at the genome levels. Given the widespread use of these techniques for strain and protein improvement, along with more fundamental evolutionary biology questions, the use of recoded organisms that maximize evolvability should significantly improve the efficiency of directed evolution, library generation, and fitness maximization.
Collapse
|
202
|
Shepherd TR, Du L, Liljeruhm J, Samudyata, Wang J, Sjödin MOD, Wetterhall M, Yomo T, Forster AC. De novo design and synthesis of a 30-cistron translation-factor module. Nucleic Acids Res 2017; 45:10895-10905. [PMID: 28977654 PMCID: PMC5737471 DOI: 10.1093/nar/gkx753] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 08/17/2017] [Indexed: 11/17/2022] Open
Abstract
Two of the many goals of synthetic biology are synthesizing large biochemical systems and simplifying their assembly. While several genes have been assembled together by modular idempotent cloning, it is unclear if such simplified strategies scale to very large constructs for expression and purification of whole pathways. Here we synthesize from oligodeoxyribonucleotides a completely de-novo-designed, 58-kb multigene DNA. This BioBrick plasmid insert encodes 30 of the 31 translation factors of the PURE translation system, each His-tagged and in separate transcription cistrons. Dividing the insert between three high-copy expression plasmids enables the bulk purification of the aminoacyl-tRNA synthetases and translation factors necessary for affordable, scalable reconstitution of an in vitro transcription and translation system, PURE 3.0.
Collapse
Affiliation(s)
- Tyson R Shepherd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 751 36, Sweden
| | - Liping Du
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Josefine Liljeruhm
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 751 36, Sweden
| | - Samudyata
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 751 36, Sweden
| | - Jinfan Wang
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 751 36, Sweden
| | - Marcus O D Sjödin
- Department of Physical and Analytical Chemistry, Uppsala University, Uppsala 751 23, Sweden
| | - Magnus Wetterhall
- Department of Physical and Analytical Chemistry, Uppsala University, Uppsala 751 23, Sweden
| | - Tetsuya Yomo
- Institute of Biology and Information Science, School of Computer Science and Software Engineering, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Anthony C Forster
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 751 36, Sweden.,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
203
|
Lau YH, Stirling F, Kuo J, Karrenbelt MAP, Chan YA, Riesselman A, Horton CA, Schäfer E, Lips D, Weinstock MT, Gibson DG, Way JC, Silver PA. Large-scale recoding of a bacterial genome by iterative recombineering of synthetic DNA. Nucleic Acids Res 2017; 45:6971-6980. [PMID: 28499033 PMCID: PMC5499800 DOI: 10.1093/nar/gkx415] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/02/2017] [Indexed: 01/02/2023] Open
Abstract
The ability to rewrite large stretches of genomic DNA enables the creation of new organisms with customized functions. However, few methods currently exist for accumulating such widespread genomic changes in a single organism. In this study, we demonstrate a rapid approach for rewriting bacterial genomes with modified synthetic DNA. We recode 200 kb of the Salmonella typhimurium LT2 genome through a process we term SIRCAS (stepwise integration of rolling circle amplified segments), towards constructing an attenuated and genetically isolated bacterial chassis. The SIRCAS process involves direct iterative recombineering of 10–25 kb synthetic DNA constructs which are assembled in yeast and amplified by rolling circle amplification. Using SIRCAS, we create a Salmonella with 1557 synonymous leucine codon replacements across 176 genes, the largest number of cumulative recoding changes in a single bacterial strain to date. We demonstrate reproducibility over sixteen two-day cycles of integration and parallelization for hierarchical construction of a synthetic genome by conjugation. The resulting recoded strain grows at a similar rate to the wild-type strain and does not exhibit any major growth defects. This work is the first instance of synthetic bacterial recoding beyond the Escherichia coli genome, and reveals that Salmonella is remarkably amenable to genome-scale modification.
Collapse
Affiliation(s)
- Yu Heng Lau
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| | - Finn Stirling
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| | - James Kuo
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| | - Michiel A P Karrenbelt
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Yujia A Chan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| | - Adam Riesselman
- Program in Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Connor A Horton
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| | - Elena Schäfer
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| | - David Lips
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| | - Matthew T Weinstock
- Synthetic Genomics, Inc., 11149 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Daniel G Gibson
- Synthetic Genomics, Inc., 11149 North Torrey Pines Road, La Jolla, CA 92037, USA.,Synthetic Biology and Bioenergy Group, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA
| | - Jeffrey C Way
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| | - Pamela A Silver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| |
Collapse
|
204
|
McCarthy CGP, Fitzpatrick DA. Multiple Approaches to Phylogenomic Reconstruction of the Fungal Kingdom. ADVANCES IN GENETICS 2017; 100:211-266. [PMID: 29153401 DOI: 10.1016/bs.adgen.2017.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Fungi are possibly the most diverse eukaryotic kingdom, with over a million member species and an evolutionary history dating back a billion years. Fungi have been at the forefront of eukaryotic genomics, and owing to initiatives like the 1000 Fungal Genomes Project the amount of fungal genomic data has increased considerably over the last 5 years, enabling large-scale comparative genomics of species across the kingdom. In this chapter, we first review fungal evolution and the history of fungal genomics. We then review in detail seven phylogenomic methods and reconstruct the phylogeny of 84 fungal species from 8 phyla using each method. Six methods have seen extensive use in previous fungal studies, while a Bayesian supertree method is novel to fungal phylogenomics. We find that both established and novel phylogenomic methods can accurately reconstruct the fungal kingdom. Finally, we discuss the accuracy and suitability of each phylogenomic method utilized.
Collapse
|
205
|
Richardson SM, Mitchell LA, Stracquadanio G, Yang K, Dymond JS, DiCarlo JE, Lee D, Huang CLV, Chandrasegaran S, Cai Y, Boeke JD, Bader JS. Design of a synthetic yeast genome. Science 2017; 355:1040-1044. [PMID: 28280199 DOI: 10.1126/science.aaf4557] [Citation(s) in RCA: 386] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 01/26/2017] [Indexed: 01/25/2023]
Abstract
We describe complete design of a synthetic eukaryotic genome, Sc2.0, a highly modified Saccharomyces cerevisiae genome reduced in size by nearly 8%, with 1.1 megabases of the synthetic genome deleted, inserted, or altered. Sc2.0 chromosome design was implemented with BioStudio, an open-source framework developed for eukaryotic genome design, which coordinates design modifications from nucleotide to genome scales and enforces version control to systematically track edits. To achieve complete Sc2.0 genome synthesis, individual synthetic chromosomes built by Sc2.0 Consortium teams around the world will be consolidated into a single strain by "endoreduplication intercross." Chemically synthesized genomes like Sc2.0 are fully customizable and allow experimentalists to ask otherwise intractable questions about chromosome structure, function, and evolution with a bottom-up design strategy.
Collapse
Affiliation(s)
- Sarah M Richardson
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.,High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leslie A Mitchell
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Giovanni Stracquadanio
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.,High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Kun Yang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.,High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jessica S Dymond
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James E DiCarlo
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dongwon Lee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Cheng Lai Victor Huang
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Srinivasan Chandrasegaran
- Department of Environmental Health Science, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yizhi Cai
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,University of Edinburgh, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Jef D Boeke
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Joel S Bader
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA. .,High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
206
|
Wu Y, Li BZ, Zhao M, Mitchell LA, Xie ZX, Lin QH, Wang X, Xiao WH, Wang Y, Zhou X, Liu H, Li X, Ding MZ, Liu D, Zhang L, Liu BL, Wu XL, Li FF, Dong XT, Jia B, Zhang WZ, Jiang GZ, Liu Y, Bai X, Song TQ, Chen Y, Zhou SJ, Zhu RY, Gao F, Kuang Z, Wang X, Shen M, Yang K, Stracquadanio G, Richardson SM, Lin Y, Wang L, Walker R, Luo Y, Ma PS, Yang H, Cai Y, Dai J, Bader JS, Boeke JD, Yuan YJ. Bug mapping and fitness testing of chemically synthesized chromosome X. Science 2017; 355:355/6329/eaaf4706. [PMID: 28280152 DOI: 10.1126/science.aaf4706] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/01/2017] [Indexed: 01/03/2023]
Abstract
Debugging a genome sequence is imperative for successfully building a synthetic genome. As part of the effort to build a designer eukaryotic genome, yeast synthetic chromosome X (synX), designed as 707,459 base pairs, was synthesized chemically. SynX exhibited good fitness under a wide variety of conditions. A highly efficient mapping strategy called pooled PCRTag mapping (PoPM), which can be generalized to any watermarked synthetic chromosome, was developed to identify genetic alterations that affect cell fitness ("bugs"). A series of bugs were corrected that included a large region bearing complex amplifications, a growth defect mapping to a recoded sequence in FIP1, and a loxPsym site affecting promoter function of ATP2 PoPM is a powerful tool for synthetic yeast genome debugging and an efficient strategy for phenotype-genotype mapping.
Collapse
Affiliation(s)
- Yi Wu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Meng Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Leslie A Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University (NYU) Langone Medical Center, New York City, NY 10016, USA
| | - Ze-Xiong Xie
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Qiu-Hui Lin
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Xia Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Wen-Hai Xiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Ying Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Xiao Zhou
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Hong Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Xia Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Duo Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Lu Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Bao-Li Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Xiao-Le Wu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Fei-Fei Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Xiu-Tao Dong
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Bin Jia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Wen-Zheng Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Guo-Zhen Jiang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Yue Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Xue Bai
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Tian-Qing Song
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Yan Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Si-Jie Zhou
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Rui-Ying Zhu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Feng Gao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Zheng Kuang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University (NYU) Langone Medical Center, New York City, NY 10016, USA
| | - Xuya Wang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University (NYU) Langone Medical Center, New York City, NY 10016, USA
| | - Michael Shen
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University (NYU) Langone Medical Center, New York City, NY 10016, USA
| | - Kun Yang
- High Throughput Biology Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Giovanni Stracquadanio
- High Throughput Biology Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.,School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Sarah M Richardson
- High Throughput Biology Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yicong Lin
- Key laboratory of Industrial Biocatalysis (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Lihui Wang
- Key laboratory of Industrial Biocatalysis (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Roy Walker
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Yisha Luo
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Ping-Sheng Ma
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, 518083, PR China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, PR China
| | - Yizhi Cai
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Junbiao Dai
- Key laboratory of Industrial Biocatalysis (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Joel S Bader
- High Throughput Biology Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University (NYU) Langone Medical Center, New York City, NY 10016, USA
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
207
|
Affiliation(s)
- Krishna Kannan
- Synthetic Genomics, Inc., 11149 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Daniel G Gibson
- Synthetic Genomics, Inc., 11149 North Torrey Pines Road, La Jolla, CA 92037, USA. .,J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA
| |
Collapse
|
208
|
Mercy G, Mozziconacci J, Scolari VF, Yang K, Zhao G, Thierry A, Luo Y, Mitchell LA, Shen M, Shen Y, Walker R, Zhang W, Wu Y, Xie ZX, Luo Z, Cai Y, Dai J, Yang H, Yuan YJ, Boeke JD, Bader JS, Muller H, Koszul R. 3D organization of synthetic and scrambled chromosomes. Science 2017; 355:355/6329/eaaf4597. [PMID: 28280150 DOI: 10.1126/science.aaf4597] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/01/2017] [Indexed: 11/02/2022]
Abstract
Although the design of the synthetic yeast genome Sc2.0 is highly conservative with respect to gene content, the deletion of several classes of repeated sequences and the introduction of thousands of designer changes may affect genome organization and potentially alter cellular functions. We report here the Hi-C-determined three-dimensional (3D) conformations of Sc2.0 chromosomes. The absence of repeats leads to a smoother contact pattern and more precisely tractable chromosome conformations, and the large-scale genomic organization is globally unaffected by the presence of synthetic chromosome(s). Two exceptions are synIII, which lacks the silent mating-type cassettes, and synXII, specifically when the ribosomal DNA is moved to another chromosome. We also exploit the contact maps to detect rearrangements induced in SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution) strains.
Collapse
Affiliation(s)
- Guillaume Mercy
- Spatial Regulation of Genomes, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France.,UMR3525, Centre National de la Recherche Scientifique (CNRS), Paris 75015, France.,Sorbonne Universités, Université Pierre et Marie Curie (Université Paris 6), Paris 75005, France
| | - Julien Mozziconacci
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR7600, Université Pierre et Marie Curie (Université Paris 6), Sorbonne Universités, Paris, France
| | - Vittore F Scolari
- Spatial Regulation of Genomes, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France.,UMR3525, Centre National de la Recherche Scientifique (CNRS), Paris 75015, France
| | - Kun Yang
- Department of Biomedical Engineering and High-Throughput Biology Center, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Guanghou Zhao
- Key Laboratory for Industrial Biocatalysis (Ministry of Education), Key Laboratory of Bioinformatics (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Agnès Thierry
- Spatial Regulation of Genomes, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France.,UMR3525, Centre National de la Recherche Scientifique (CNRS), Paris 75015, France
| | - Yisha Luo
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Leslie A Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Michael Shen
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Yue Shen
- BGI-Shenzhen, Shenzhen 518083, China.,BGI-Qingdao, Qingdao 266555, China.,School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Roy Walker
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Weimin Zhang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education), Key Laboratory of Bioinformatics (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Wu
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ze-Xiong Xie
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhouqing Luo
- Key Laboratory for Industrial Biocatalysis (Ministry of Education), Key Laboratory of Bioinformatics (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yizhi Cai
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Junbiao Dai
- Key Laboratory for Industrial Biocatalysis (Ministry of Education), Key Laboratory of Bioinformatics (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Huanming Yang
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China.,BGI-Shenzhen, Shenzhen 518083, China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Joel S Bader
- Department of Biomedical Engineering and High-Throughput Biology Center, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Héloïse Muller
- Spatial Regulation of Genomes, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France. .,UMR3525, Centre National de la Recherche Scientifique (CNRS), Paris 75015, France
| | - Romain Koszul
- Spatial Regulation of Genomes, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France. .,UMR3525, Centre National de la Recherche Scientifique (CNRS), Paris 75015, France
| |
Collapse
|
209
|
Zhang W, Zhao G, Luo Z, Lin Y, Wang L, Guo Y, Wang A, Jiang S, Jiang Q, Gong J, Wang Y, Hou S, Huang J, Li T, Qin Y, Dong J, Qin Q, Zhang J, Zou X, He X, Zhao L, Xiao Y, Xu M, Cheng E, Huang N, Zhou T, Shen Y, Walker R, Luo Y, Kuang Z, Mitchell LA, Yang K, Richardson SM, Wu Y, Li BZ, Yuan YJ, Yang H, Lin J, Chen GQ, Wu Q, Bader JS, Cai Y, Boeke JD, Dai J. Engineering the ribosomal DNA in a megabase synthetic chromosome. Science 2017; 355:355/6329/eaaf3981. [PMID: 28280149 DOI: 10.1126/science.aaf3981] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 01/26/2017] [Indexed: 01/25/2023]
Abstract
We designed and synthesized a 976,067-base pair linear chromosome, synXII, based on native chromosome XII in Saccharomyces cerevisiae SynXII was assembled using a two-step method, specified by successive megachunk integration and meiotic recombination-mediated assembly, producing a functional chromosome in S. cerevisiae. Minor growth defect "bugs" detected in synXII, caused by deletion of tRNA genes, were rescued by introducing an ectopic copy of a single tRNA gene. The ribosomal gene cluster (rDNA) on synXII was left intact during the assembly process and subsequently replaced by a modified rDNA unit used to regenerate rDNA at three distinct chromosomal locations. The signature sequences within rDNA, which can be used to determine species identity, were swapped to generate a Saccharomyces synXII strain that would be identified as Saccharomyces bayanus by standard DNA barcoding procedures.
Collapse
Affiliation(s)
- Weimin Zhang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guanghou Zhao
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, College of Life Science, Peking University, Beijing 100871, China
| | - Zhouqing Luo
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yicong Lin
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lihui Wang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yakun Guo
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ann Wang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuangying Jiang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qingwen Jiang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | - Yun Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Sha Hou
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jing Huang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianyi Li
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yiran Qin
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junkai Dong
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qin Qin
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiaying Zhang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xinzhi Zou
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xi He
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Zhao
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yibo Xiao
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meng Xu
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Erchao Cheng
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ning Huang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tong Zhou
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yue Shen
- BGI-Shenzhen, Shenzhen 518083, China.,School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.,BGI-Qingdao, Qingdao 266555, China
| | - Roy Walker
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Yisha Luo
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Zheng Kuang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY 10011, USA
| | - Leslie A Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY 10011, USA
| | - Kun Yang
- High-Throughput Biological Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sarah M Richardson
- High-Throughput Biological Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yi Wu
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Jiwei Lin
- Wuxi Qinglan Biotechnology Inc., Yixing, Jiangsu 214200, China
| | - Guo-Qiang Chen
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qingyu Wu
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Joel S Bader
- High-Throughput Biological Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yizhi Cai
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY 10011, USA
| | - Junbiao Dai
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
210
|
Abstract
Gene essentiality is a founding concept of genetics with important implications in both fundamental and applied research. Multiple screens have been performed over the years in bacteria, yeasts, animals and more recently in human cells to identify essential genes. A mounting body of evidence suggests that gene essentiality, rather than being a static and binary property, is both context dependent and evolvable in all kingdoms of life. This concept of a non-absolute nature of gene essentiality changes our fundamental understanding of essential biological processes and could directly affect future treatment strategies for cancer and infectious diseases.
Collapse
|
211
|
Abstract
Controlling the exchange of genetic information between sexually reproducing populations has applications in agriculture, eradication of disease vectors, control of invasive species, and the safe study of emerging biotechnology applications. Here we introduce an approach to engineer a genetic barrier to sexual reproduction between otherwise compatible populations. Programmable transcription factors drive lethal gene expression in hybrid offspring following undesired mating events. As a proof of concept, we target the ACT1 promoter of the model organism Saccharomyces cerevisiae using a dCas9-based transcriptional activator. Lethal overexpression of actin results from mating this engineered strain with a strain containing the wild-type ACT1 promoter. Genetic isolation of a genetically modified organism represents a useful strategy for biocontainment. Here the authors use dCas9-VP64-driven gene expression to construct a ‘species-like’ barrier to reproduction between two otherwise compatible populations.
Collapse
|
212
|
|
213
|
Vickers CE, Williams TC, Peng B, Cherry J. Recent advances in synthetic biology for engineering isoprenoid production in yeast. Curr Opin Chem Biol 2017. [DOI: 10.1016/j.cbpa.2017.05.017] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
214
|
Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods. Proc Natl Acad Sci U S A 2017; 114:E8885-E8894. [PMID: 28928148 DOI: 10.1073/pnas.1700534114] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome. Using overlapping sequences between the adjacent pieces, we assembled the fragments into a complete virus genome in yeast, transferred it into an Escherichia coli host, and reconstituted infectious virus following transfection into mammalian cells. The virus derived from this yeast-assembled genome, KOSYA, replicated with kinetics similar to wild-type virus. We demonstrated the utility of this modular assembly technology by making numerous modifications to a single gene, making changes to two genes at the same time and, finally, generating individual and combinatorial deletions to a set of five conserved genes that encode virion structural proteins. While the ability to perform genome-wide editing through assembly methods in large DNA virus genomes raises dual-use concerns, we believe the incremental risks are outweighed by potential benefits. These include enhanced functional studies, generation of oncolytic virus vectors, development of delivery platforms of genes for vaccines or therapy, as well as more rapid development of countermeasures against potential biothreats.
Collapse
|
215
|
Öztürk S, Ergün BG, Çalık P. Double promoter expression systems for recombinant protein production by industrial microorganisms. Appl Microbiol Biotechnol 2017; 101:7459-7475. [DOI: 10.1007/s00253-017-8487-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 01/19/2023]
|
216
|
Hochrein L, Machens F, Gremmels J, Schulz K, Messerschmidt K, Mueller-Roeber B. AssemblX: a user-friendly toolkit for rapid and reliable multi-gene assemblies. Nucleic Acids Res 2017; 45:e80. [PMID: 28130422 PMCID: PMC5449548 DOI: 10.1093/nar/gkx034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/13/2017] [Indexed: 11/20/2022] Open
Abstract
The assembly of large DNA constructs coding for entire pathways poses a major challenge in the field of synthetic biology. Here, we present AssemblX, a novel, user-friendly and highly efficient multi-gene assembly strategy. The software-assisted AssemblX process allows even unexperienced users to rapidly design, build and test DNA constructs with currently up to 25 functional units, from 75 or more subunits. At the gene level, AssemblX uses scar-free, overlap-based and sequence-independent methods, allowing the unrestricted design of transcriptional units without laborious parts domestication. The assembly into multi-gene modules is enabled via a standardized, highly efficient, polymerase chain reaction-free and virtually sequence-independent scheme, which relies on rare cutting restriction enzymes and optimized adapter sequences. Selection and marker switching strategies render the whole process reliable, rapid and very effective. The assembly product can be easily transferred to any desired expression host, making AssemblX useful for researchers from various fields.
Collapse
Affiliation(s)
- Lena Hochrein
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Fabian Machens
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Juergen Gremmels
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Karina Schulz
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Katrin Messerschmidt
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Bernd Mueller-Roeber
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany.,University of Potsdam, Department of Molecular Biology, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| |
Collapse
|
217
|
Kukwikila M, Gale N, El-Sagheer AH, Brown T, Tavassoli A. Assembly of a biocompatible triazole-linked gene by one-pot click-DNA ligation. Nat Chem 2017; 9:1089-1098. [PMID: 29064492 DOI: 10.1038/nchem.2850] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/25/2017] [Indexed: 11/09/2022]
Abstract
The chemical synthesis of oligonucleotides and their enzyme-mediated assembly into genes and genomes has significantly advanced multiple scientific disciplines. However, these approaches are not without their shortcomings; enzymatic amplification and ligation of oligonucleotides into genes and genomes makes automation challenging, and site-specific incorporation of epigenetic information and/or modified bases into large constructs is not feasible. Here we present a fully chemical one-pot method for the assembly of oligonucleotides into a gene by click-DNA ligation. We synthesize the 335 base-pair gene that encodes the green fluorescent protein iLOV from ten functionalized oligonucleotides that contain 5'-azide and 3'-alkyne units. The resulting click-linked iLOV gene contains eight triazoles at the sites of chemical ligation, and yet is fully biocompatible; it is replicated by DNA polymerases in vitro and encodes a functional iLOV protein in Escherichia coli. We demonstrate the power and potential of our one-pot gene-assembly method by preparing an epigenetically modified variant of the iLOV gene.
Collapse
Affiliation(s)
| | - Nittaya Gale
- ATDBio, Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Afaf H El-Sagheer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom.,Chemistry Branch, Department of Science and Mathematics, Suez University, Suez 43721, Egypt
| | - Tom Brown
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Ali Tavassoli
- Chemistry, University of Southampton, Southampton SO17 1BJ, UK.,Institute for Life Science, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
218
|
Abstract
The Synthetic Yeast Genome Project (Sc2.0) consortium has recently published a collection of seven reports on the design, assembly, and in vivo characterization of five entirely synthetic yeast chromosomes that set the stage for de novo construction of synthetic custom-engineered eukaryotes.
Collapse
Affiliation(s)
- Almer van der Sloot
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3C 3J7, Canada.
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
219
|
García A, González S, Antequera F. Nucleosomal organization and DNA base composition patterns. Nucleus 2017; 8:469-474. [PMID: 28635365 PMCID: PMC5703254 DOI: 10.1080/19491034.2017.1337611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 11/23/2022] Open
Abstract
Nucleosomes are the basic units of chromatin. They compact the genome inside the nucleus and regulate the access of proteins to DNA. In the yeast genome, most nucleosomes occupy well-defined positions, which are maintained under many different physiological situations and genetic backgrounds. Although several short sequence elements have been described that favor or reduce the affinity between histones and DNA, the extent to which the DNA sequence affects nucleosome positioning in the genomic context remains unclear. Recent analyses indicate that the base composition pattern of mononucleosomal DNA differs among species, and that the same sequence elements have a different impact on nucleosome positioning in different genomes despite the high level of phylogenetic conservation of histones. These studies have also shown that the DNA sequence contributes to nucleosome positioning to the point that it is possible to design synthetic DNA molecules capable of generating regular and species-specific nucleosomal patterns in vivo.
Collapse
Affiliation(s)
- Alicia García
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
| | - Sara González
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
| | - Francisco Antequera
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
220
|
Huang F, Spangler JR, Huang AY. In vivo cloning of up to 16 kb plasmids in E. coli is as simple as PCR. PLoS One 2017; 12:e0183974. [PMID: 28837659 PMCID: PMC5570364 DOI: 10.1371/journal.pone.0183974] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/15/2017] [Indexed: 02/04/2023] Open
Abstract
The precise assembly of defined DNA sequences into plasmids is an essential task in bioscience research. While a number of molecular cloning techniques have been developed, many methods require specialized expensive reagents or laborious experimental procedure. Not surprisingly, conventional cloning techniques based on restriction digestion and ligation are still commonly used in routine DNA cloning. Here, we describe a simple, fast, and economical cloning method based on RecA- and RecET-independent in vivo recombination of DNA fragments with overlapping ends using E. coli. All DNA fragments were prepared by a 2-consecutive PCR procedure with Q5 DNA polymerase and used directly for transformation resulting in 95% cloning accuracy and zero background from parental template plasmids. Quantitative relationships were established between cloning efficiency and three factors–the length of overlapping nucleotides, the number of DNA fragments, and the size of target plasmids–which can provide general guidance for selecting in vivo cloning parameters. The method may be used to accurately assemble up to 5 DNA fragments with 25 nt overlapping ends into relatively small plasmids, and 3 DNA fragments into plasmids up to 16 kb in size. The whole cloning procedure may be completed within 2 days by a researcher with little training in cloning. The combination of high accuracy and zero background eliminates the need for screening a large number of colonies. The method requires no enzymes other than Q5 DNA polymerase, has no sequence restriction, is highly reliable, and represents one of the simplest, fastest, and cheapest cloning techniques available. Our method is particularly suitable for common cloning tasks in the lab where the primary goal is to quickly generate a plasmid with a pre-defined sequence at low costs.
Collapse
Affiliation(s)
- Faqing Huang
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Joseph Rankin Spangler
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Allen Yang Huang
- Oak Grove High School, Hattiesburg, Mississippi, United States of America
| |
Collapse
|
221
|
Mol M, Kabra R, Singh S. Genome modularity and synthetic biology: Engineering systems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 132:43-51. [PMID: 28801037 DOI: 10.1016/j.pbiomolbio.2017.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/05/2017] [Indexed: 12/15/2022]
Abstract
Whole genome sequencing projects running in various laboratories around the world has generated immense data. A systematic phylogenetic analysis of this data shows that genome complexity goes on decreasing as it evolves, due to its modular nature. This modularity can be harnessed to minimize the genome further to reduce it with the bare minimum essential genes. A reduced modular genome, can fuel progress in the area of synthetic biology by providing a ready to use plug and play chassis. Advances in gene editing technology such as the use of tailor made synthetic transcription factors will further enhance the availability of synthetic devices to be applied in the fields of environment, agriculture and health.
Collapse
Affiliation(s)
- Milsee Mol
- National Centre for Cell Science, NCCS Complex, SP Pune University Campus, Pune 411007, India
| | - Ritika Kabra
- National Centre for Cell Science, NCCS Complex, SP Pune University Campus, Pune 411007, India
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, SP Pune University Campus, Pune 411007, India.
| |
Collapse
|
222
|
Moses T, Mehrshahi P, Smith AG, Goossens A. Synthetic biology approaches for the production of plant metabolites in unicellular organisms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4057-4074. [PMID: 28449101 DOI: 10.1093/jxb/erx119] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Synthetic biology is the repurposing of biological systems for novel objectives and applications. Through the co-ordinated and balanced expression of genes, both native and those introduced from other organisms, resources within an industrial chassis can be siphoned for the commercial production of high-value commodities. This developing interdisciplinary field has the potential to revolutionize natural product discovery from higher plants, by providing a diverse array of tools, technologies, and strategies for exploring the large chemically complex space of plant natural products using unicellular organisms. In this review, we emphasize the key features that influence the generation of biorefineries and highlight technologies and strategic solutions that can be used to overcome engineering pitfalls with rational design. Also presented is a succinct guide to assist the selection of unicellular chassis most suited for the engineering and subsequent production of the desired natural product, in order to meet the global demand for plant natural products in a safe and sustainable manner.
Collapse
Affiliation(s)
- Tessa Moses
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Payam Mehrshahi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
223
|
Abstract
Plants are attractive platforms for synthetic biology and metabolic engineering. Plants' modular and plastic body plans, capacity for photosynthesis, extensive secondary metabolism, and agronomic systems for large-scale production make them ideal targets for genetic reprogramming. However, efforts in this area have been constrained by slow growth, long life cycles, the requirement for specialized facilities, a paucity of efficient tools for genetic manipulation, and the complexity of multicellularity. There is a need for better experimental and theoretical frameworks to understand the way genetic networks, cellular populations, and tissue-wide physical processes interact at different scales. We highlight new approaches to the DNA-based manipulation of plants and the use of advanced quantitative imaging techniques in simple plant models such as Marchantia polymorpha. These offer the prospects of improved understanding of plant dynamics and new approaches to rational engineering of plant traits.
Collapse
Affiliation(s)
- Christian R Boehm
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Bernardo Pollak
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | | | | | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
224
|
Jagtap UB, Jadhav JP, Bapat VA, Pretorius IS. Synthetic biology stretching the realms of possibility in wine yeast research. Int J Food Microbiol 2017; 252:24-34. [DOI: 10.1016/j.ijfoodmicro.2017.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 01/02/2023]
|
225
|
Evans A, Ratcliffe E. Rising influence of synthetic biology in regenerative medicine. ENGINEERING BIOLOGY 2017. [DOI: 10.1049/enb.2017.0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Angharad Evans
- Centre for Biological Engineering, Department of Chemical Engineering Loughborough University Loughborough Leicestershire UK
| | - Elizabeth Ratcliffe
- Centre for Biological Engineering, Department of Chemical Engineering Loughborough University Loughborough Leicestershire UK
| |
Collapse
|
226
|
Gibson B, Geertman JMA, Hittinger CT, Krogerus K, Libkind D, Louis EJ, Magalhães F, Sampaio JP. New yeasts—new brews: modern approaches to brewing yeast design and development. FEMS Yeast Res 2017; 17:3861261. [DOI: 10.1093/femsyr/fox038] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023] Open
|
227
|
de Jong H, Geiselmann J, Ropers D. Resource Reallocation in Bacteria by Reengineering the Gene Expression Machinery. Trends Microbiol 2017; 25:480-493. [DOI: 10.1016/j.tim.2016.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/03/2016] [Accepted: 12/15/2016] [Indexed: 11/27/2022]
|
228
|
Zaucha J, Heddle JG. Resurrecting the Dead (Molecules). Comput Struct Biotechnol J 2017; 15:351-358. [PMID: 28652896 PMCID: PMC5472138 DOI: 10.1016/j.csbj.2017.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/11/2017] [Accepted: 05/21/2017] [Indexed: 12/15/2022] Open
Abstract
Biological molecules, like organisms themselves, are subject to genetic drift and may even become "extinct". Molecules that are no longer extant in living systems are of high interest for several reasons including insight into how existing life forms evolved and the possibility that they may have new and useful properties no longer available in currently functioning molecules. Predicting the sequence/structure of such molecules and synthesizing them so that their properties can be tested is the basis of "molecular resurrection" and may lead not only to a deeper understanding of evolution, but also to the production of artificial proteins with novel properties and even to insight into how life itself began.
Collapse
Affiliation(s)
- Jan Zaucha
- Departament of Computer Science, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| | - Jonathan G. Heddle
- Bionanoscience and Biochemistry Laboratory, Jagiellonian University, Malopolska Centre of Biotechnology, Gronstajowa 7A, 30-387 Kraków, Poland
| |
Collapse
|
229
|
Genome Partitioner: A web tool for multi-level partitioning of large-scale DNA constructs for synthetic biology applications. PLoS One 2017; 12:e0177234. [PMID: 28531174 PMCID: PMC5439662 DOI: 10.1371/journal.pone.0177234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/24/2017] [Indexed: 11/19/2022] Open
Abstract
Recent advances in lower-cost DNA synthesis techniques have enabled new innovations in the field of synthetic biology. Still, efficient design and higher-order assembly of genome-scale DNA constructs remains a labor-intensive process. Given the complexity, computer assisted design tools that fragment large DNA sequences into fabricable DNA blocks are needed to pave the way towards streamlined assembly of biological systems. Here, we present the Genome Partitioner software implemented as a web-based interface that permits multi-level partitioning of genome-scale DNA designs. Without the need for specialized computing skills, biologists can submit their DNA designs to a fully automated pipeline that generates the optimal retrosynthetic route for higher-order DNA assembly. To test the algorithm, we partitioned a 783 kb Caulobacter crescentus genome design. We validated the partitioning strategy by assembling a 20 kb test segment encompassing a difficult to synthesize DNA sequence. Successful assembly from 1 kb subblocks into the 20 kb segment highlights the effectiveness of the Genome Partitioner for reducing synthesis costs and timelines for higher-order DNA assembly. The Genome Partitioner is broadly applicable to translate DNA designs into ready to order sequences that can be assembled with standardized protocols, thus offering new opportunities to harness the diversity of microbial genomes for synthetic biology applications. The Genome Partitioner web tool can be accessed at https://christenlab.ethz.ch/GenomePartitioner.
Collapse
|
230
|
Ren H, Zhao H. SynV and SynX: A story more than DNA synthesis. SCIENCE CHINA-LIFE SCIENCES 2017; 60:558-560. [PMID: 28477058 DOI: 10.1007/s11427-017-9039-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Hengqian Ren
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Chemistry and Biochemistry, Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
231
|
Chen X, Gao C, Guo L, Hu G, Luo Q, Liu J, Nielsen J, Chen J, Liu L. DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals. Chem Rev 2017; 118:4-72. [DOI: 10.1021/acs.chemrev.6b00804] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiulai Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liang Guo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qiuling Luo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jens Nielsen
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark
| | - Jian Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
232
|
Ausländer S, Ausländer D, Fussenegger M. Synthetische Biologie - die Synthese der Biologie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Simon Ausländer
- Department of Biosystems Science and Engineering; ETH Zürich; Mattenstrasse 26 4058 Basel Schweiz
| | - David Ausländer
- Department of Biosystems Science and Engineering; ETH Zürich; Mattenstrasse 26 4058 Basel Schweiz
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering; ETH Zürich; Mattenstrasse 26 4058 Basel Schweiz
- Faculty of Science; Universität Basel; Mattenstrasse 26 4058 Basel Schweiz
| |
Collapse
|
233
|
Ausländer S, Ausländer D, Fussenegger M. Synthetic Biology-The Synthesis of Biology. Angew Chem Int Ed Engl 2017; 56:6396-6419. [PMID: 27943572 DOI: 10.1002/anie.201609229] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/17/2016] [Indexed: 01/01/2023]
Abstract
Synthetic biology concerns the engineering of man-made living biomachines from standardized components that can perform predefined functions in a (self-)controlled manner. Different research strategies and interdisciplinary efforts are pursued to implement engineering principles to biology. The "top-down" strategy exploits nature's incredible diversity of existing, natural parts to construct synthetic compositions of genetic, metabolic, or signaling networks with predictable and controllable properties. This mainly application-driven approach results in living factories that produce drugs, biofuels, biomaterials, and fine chemicals, and results in living pills that are based on engineered cells with the capacity to autonomously detect and treat disease states in vivo. In contrast, the "bottom-up" strategy seeks to be independent of existing living systems by designing biological systems from scratch and synthesizing artificial biological entities not found in nature. This more knowledge-driven approach investigates the reconstruction of minimal biological systems that are capable of performing basic biological phenomena, such as self-organization, self-replication, and self-sustainability. Moreover, the syntheses of artificial biological units, such as synthetic nucleotides or amino acids, and their implementation into polymers inside living cells currently set the boundaries between natural and artificial biological systems. In particular, the in vitro design, synthesis, and transfer of complete genomes into host cells point to the future of synthetic biology: the creation of designer cells with tailored desirable properties for biomedicine and biotechnology.
Collapse
Affiliation(s)
- Simon Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - David Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland.,Faculty of Science, University of Basel, Mattenstrasse 26, 4058, Basel, Switzerland
| |
Collapse
|
234
|
Paramasivan K, Mutturi S. Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae. Crit Rev Biotechnol 2017; 37:974-989. [DOI: 10.1080/07388551.2017.1299679] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Sarma Mutturi
- CSIR-Central Food Technological Research Institute, Mysore, India
| |
Collapse
|
235
|
Bayoumi M, Bayley H, Maglia G, Sapra KT. Multi-compartment encapsulation of communicating droplets and droplet networks in hydrogel as a model for artificial cells. Sci Rep 2017; 7:45167. [PMID: 28367984 PMCID: PMC5377250 DOI: 10.1038/srep45167] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/20/2017] [Indexed: 01/20/2023] Open
Abstract
Constructing a cell mimic is a major challenge posed by synthetic biologists. Efforts to this end have been primarily focused on lipid- and polymer-encapsulated containers, liposomes and polymersomes, respectively. Here, we introduce a multi-compartment, nested system comprising aqueous droplets stabilized in an oil/lipid mixture, all encapsulated in hydrogel. Functional capabilities (electrical and chemical communication) were imparted by protein nanopores spanning the lipid bilayer formed at the interface of the encapsulated aqueous droplets and the encasing hydrogel. Crucially, the compartmentalization enabled the formation of two adjoining lipid bilayers in a controlled manner, a requirement for the realization of a functional protocell or prototissue.
Collapse
Affiliation(s)
- Mariam Bayoumi
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium
| | - Hagan Bayley
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Giovanni Maglia
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.,Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - K Tanuj Sapra
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
236
|
Cirigliano A, Cenciarelli O, Malizia A, Bellecci C, Gaudio P, Lioj M, Rinaldi T. Biological Dual-Use Research and Synthetic Biology of Yeast. SCIENCE AND ENGINEERING ETHICS 2017; 23:365-374. [PMID: 27325416 DOI: 10.1007/s11948-016-9774-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/16/2016] [Indexed: 06/06/2023]
Abstract
In recent years, the publication of the studies on the transmissibility in mammals of the H5N1 influenza virus and synthetic genomes has triggered heated and concerned debate within the community of scientists on biological dual-use research; these papers have raised the awareness that, in some cases, fundamental research could be directed to harmful experiments, with the purpose of developing a weapon that could be used by a bioterrorist. Here is presented an overview regarding the dual-use concept and its related international agreements which underlines the work of the Australia Group (AG) Export Control Regime. It is hoped that the principles and activities of the AG, that focuses on export control of chemical and biological dual-use materials, will spread and become well known to academic researchers in different countries, as they exchange biological materials (i.e. plasmids, strains, antibodies, nucleic acids) and scientific papers. To this extent, and with the aim of drawing the attention of the scientific community that works with yeast to the so called Dual-Use Research of Concern, this article reports case studies on biological dual-use research and discusses a synthetic biology applied to the yeast Saccharomyces cerevisiae, namely the construction of the first eukaryotic synthetic chromosome of yeast and the use of yeast cells as a factory to produce opiates. Since this organism is considered harmless and is not included in any list of biological agents, yeast researchers should take simple actions in the future to avoid the sharing of strains and advanced technology with suspicious individuals.
Collapse
Affiliation(s)
- Angela Cirigliano
- Department of Biology and Biotechnology, La Sapienza University of Rome, Rome, Italy
| | - Orlando Cenciarelli
- Department of Industrial Engineering, School of Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Malizia
- Department of Industrial Engineering, School of Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Bellecci
- Department of Industrial Engineering, School of Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Pasquale Gaudio
- Department of Industrial Engineering, School of Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | | | - Teresa Rinaldi
- Department of Biology and Biotechnology, La Sapienza University of Rome, Rome, Italy.
- Ministry of Defense, Rome, Italy.
| |
Collapse
|
237
|
|
238
|
Ikushima S, Boeke JD. New Orthogonal Transcriptional Switches Derived from Tet Repressor Homologues for Saccharomyces cerevisiae Regulated by 2,4-Diacetylphloroglucinol and Other Ligands. ACS Synth Biol 2017; 6:497-506. [PMID: 28005347 DOI: 10.1021/acssynbio.6b00205] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we describe the development of tightly regulated expression switches in yeast, by engineering distant homologues of Escherichia coli TetR, including the transcriptional regulator PhlF from Pseudomonas and others. Previous studies demonstrated that the PhlF protein bound its operator sequence (phlO) in the absence of 2,4-diacetylphloroglucinol (DAPG) but dissociated from phlO in the presence of DAPG. Thus, we developed a DAPG-Off system in which expression of a gene preceded by the phlO-embedded promoter was activated by a fusion of PhlF to a multimerized viral activator protein (VP16) domain in a DAPG-free environment but repressed when DAPG was added to growth medium. In addition, we constructed a DAPG-On system with the opposite behavior of the DAPG-Off system; i.e., DAPG triggers the expression of a reporter gene. Exposure of DAPG to yeast cells did not cause any serious deleterious effect on yeast physiology in terms of growth. Efforts to engineer additional Tet repressor homologues were partially successful and a known mammalian switch, the p-cumate switch based on CymR from Pseudomonas, was found to function in yeast. Orthogonality between the TetR (doxycycline), CamR (d-camphor), PhlF (DAPG), and CymR (p-cumate)-based Off switches was demonstrated by evaluating all 4 ligands against suitably engineered yeast strains. This study expands the toolbox of "On" and "Off" switches for yeast biotechnology.
Collapse
Affiliation(s)
- Shigehito Ikushima
- High
Throughput Biology Center and Department of Molecular Biology and
Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Central
Laboratories for Key Technologies, KIRIN Company Limited, Yokohama, Kanagawa 236-0004, Japan
| | - Jef D. Boeke
- High
Throughput Biology Center and Department of Molecular Biology and
Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Institute for Systems Genetics and Department of Biochemistry & Molecular Pharmacology, NYU Langone Medical Center, New York, New York 10016, United States
| |
Collapse
|
239
|
Oberortner E, Cheng JF, Hillson NJ, Deutsch S. Streamlining the Design-to-Build Transition with Build-Optimization Software Tools. ACS Synth Biol 2017; 6:485-496. [PMID: 28004921 DOI: 10.1021/acssynbio.6b00200] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Scaling-up capabilities for the design, build, and test of synthetic biology constructs holds great promise for the development of new applications in fuels, chemical production, or cellular-behavior engineering. Construct design is an essential component in this process; however, not every designed DNA sequence can be readily manufactured, even using state-of-the-art DNA synthesis methods. Current biological computer-aided design and manufacture tools (bioCAD/CAM) do not adequately consider the limitations of DNA synthesis technologies when generating their outputs. Designed sequences that violate DNA synthesis constraints may require substantial sequence redesign or lead to price-premiums and temporal delays, which adversely impact the efficiency of the DNA manufacturing process. We have developed a suite of build-optimization software tools (BOOST) to streamline the design-build transition in synthetic biology engineering workflows. BOOST incorporates knowledge of DNA synthesis success determinants into the design process to output ready-to-build sequences, preempting the need for sequence redesign. The BOOST web application is available at https://boost.jgi.doe.gov and its Application Program Interfaces (API) enable integration into automated, customized DNA design processes. The herein presented results highlight the effectiveness of BOOST in reducing DNA synthesis costs and timelines.
Collapse
Affiliation(s)
- Ernst Oberortner
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, United States
| | - Jan-Fang Cheng
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, United States
| | - Nathan J. Hillson
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, United States
- Fuels
Synthesis and Technology Divisions, DOE Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
| | - Samuel Deutsch
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, United States
| |
Collapse
|
240
|
|
241
|
Shen Y, Wang Y, Chen T, Gao F, Gong J, Abramczyk D, Walker R, Zhao H, Chen S, Liu W, Luo Y, Müller CA, Paul-Dubois-Taine A, Alver B, Stracquadanio G, Mitchell LA, Luo Z, Fan Y, Zhou B, Wen B, Tan F, Wang Y, Zi J, Xie Z, Li B, Yang K, Richardson SM, Jiang H, French CE, Nieduszynski CA, Koszul R, Marston AL, Yuan Y, Wang J, Bader JS, Dai J, Boeke JD, Xu X, Cai Y, Yang H. Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome. Science 2017; 355:eaaf4791. [PMID: 28280153 PMCID: PMC5390853 DOI: 10.1126/science.aaf4791] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/01/2017] [Indexed: 12/15/2022]
Abstract
Here, we report the successful design, construction, and characterization of a 770-kilobase synthetic yeast chromosome II (synII). Our study incorporates characterization at multiple levels-including phenomics, transcriptomics, proteomics, chromosome segregation, and replication analysis-to provide a thorough and comprehensive analysis of a synthetic chromosome. Our Trans-Omics analyses reveal a modest but potentially relevant pervasive up-regulation of translational machinery observed in synII, mainly caused by the deletion of 13 transfer RNAs. By both complementation assays and SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution), we targeted and debugged the origin of a growth defect at 37°C in glycerol medium, which is related to misregulation of the high-osmolarity glycerol response. Despite the subtle differences, the synII strain shows highly consistent biological processes comparable to the native strain.
Collapse
Affiliation(s)
- Yue Shen
- BGI-Shenzhen, Shenzhen 518083, China
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
- BGI-Qingdao, Qingdao 266555, China
| | - Yun Wang
- BGI-Shenzhen, Shenzhen 518083, China
- BGI-Qingdao, Qingdao 266555, China
| | - Tai Chen
- BGI-Shenzhen, Shenzhen 518083, China
- BGI-Qingdao, Qingdao 266555, China
| | - Feng Gao
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Dariusz Abramczyk
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Roy Walker
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | | | | | - Wei Liu
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Yisha Luo
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Carolin A. Müller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | | | - Bonnie Alver
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Giovanni Stracquadanio
- High-Throughput Biology Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21205 USA
- Department of Biomedical Engineering, School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218 USA
| | - Leslie A. Mitchell
- Institute for Systems Genetics, NYU Langone Medical Center, ACLSW Room 503, 430 East 29th Street, New York, NY 10016
| | - Zhouqing Luo
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | - Bo Wen
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Jin Zi
- BGI-Shenzhen, Shenzhen 518083, China
| | - Zexiong Xie
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Bingzhi Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Kun Yang
- High-Throughput Biology Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21205 USA
| | - Sarah M. Richardson
- High-Throughput Biology Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21205 USA
- Department of Biomedical Engineering, School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218 USA
| | - Hui Jiang
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Romain Koszul
- Department of Genomes and Genetics, Institut Pasteur / CNRS UMR3525, 25-28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Adele L. Marston
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Yingjin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Joel S. Bader
- Department of Biomedical Engineering, School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218 USA
- Institute for Systems Genetics, NYU Langone Medical Center, ACLSW Room 503, 430 East 29th Street, New York, NY 10016
| | - Junbiao Dai
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jef D. Boeke
- Institute for Systems Genetics, NYU Langone Medical Center, ACLSW Room 503, 430 East 29th Street, New York, NY 10016
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
- BGI-Qingdao, Qingdao 266555, China
| | - Yizhi Cai
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| |
Collapse
|
242
|
Xie ZX, Li BZ, Mitchell LA, Wu Y, Qi X, Jin Z, Jia B, Wang X, Zeng BX, Liu HM, Wu XL, Feng Q, Zhang WZ, Liu W, Ding MZ, Li X, Zhao GR, Qiao JJ, Cheng JS, Zhao M, Kuang Z, Wang X, Martin JA, Stracquadanio G, Yang K, Bai X, Zhao J, Hu ML, Lin QH, Zhang WQ, Shen MH, Chen S, Su W, Wang EX, Guo R, Zhai F, Guo XJ, Du HX, Zhu JQ, Song TQ, Dai JJ, Li FF, Jiang GZ, Han SL, Liu SY, Yu ZC, Yang XN, Chen K, Hu C, Li DS, Jia N, Liu Y, Wang LT, Wang S, Wei XT, Fu MQ, Qu LM, Xin SY, Liu T, Tian KR, Li XN, Zhang JH, Song LX, Liu JG, Lv JF, Xu H, Tao R, Wang Y, Zhang TT, Deng YX, Wang YR, Li T, Ye GX, Xu XR, Xia ZB, Zhang W, Yang SL, Liu YL, Ding WQ, Liu ZN, Zhu JQ, Liu NZ, Walker R, Luo Y, Wang Y, Shen Y, Yang H, Cai Y, Ma PS, Zhang CT, Bader JS, Boeke JD, Yuan YJ. "Perfect" designer chromosome V and behavior of a ring derivative. Science 2017; 355:eaaf4704. [PMID: 28280151 DOI: 10.1126/science.aaf4704] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 01/30/2017] [Indexed: 03/28/2024]
Abstract
Perfect matching of an assembled physical sequence to a specified designed sequence is crucial to verify design principles in genome synthesis. We designed and de novo synthesized 536,024-base pair chromosome synV in the "Build-A-Genome China" course. We corrected an initial isolate of synV to perfectly match the designed sequence using integrative cotransformation and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated editing in 22 steps; synV strains exhibit high fitness under a variety of culture conditions, compared with that of wild-type V strains. A ring synV derivative was constructed, which is fully functional in Saccharomyces cerevisiae under all conditions tested and exhibits lower spore viability during meiosis. Ring synV chromosome can extends Sc2.0 design principles and provides a model with which to study genomic rearrangement, ring chromosome evolution, and human ring chromosome disorders.
Collapse
Affiliation(s)
- Ze-Xiong Xie
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Leslie A Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, Langone Medical Center, New York University, New York City, NY 10016, USA
| | - Yi Wu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Xin Qi
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Zhu Jin
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Bin Jia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Xia Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Bo-Xuan Zeng
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Hui-Min Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Xiao-Le Wu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Qi Feng
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Wen-Zheng Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Wei Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Xia Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Guang-Rong Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Jian-Jun Qiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Jing-Sheng Cheng
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Meng Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Zheng Kuang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, Langone Medical Center, New York University, New York City, NY 10016, USA
| | - Xuya Wang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, Langone Medical Center, New York University, New York City, NY 10016, USA
| | - J Andrew Martin
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, Langone Medical Center, New York University, New York City, NY 10016, USA
| | - Giovanni Stracquadanio
- High Throughput Biology Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore 21205, MD, USA
- School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England, UK
| | - Kun Yang
- High Throughput Biology Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore 21205, MD, USA
| | - Xue Bai
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Juan Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Meng-Long Hu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Qiu-Hui Lin
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Wen-Qian Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Ming-Hua Shen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Si Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Wan Su
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - En-Xu Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Rui Guo
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Fang Zhai
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Xue-Jiao Guo
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Hao-Xing Du
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Jia-Qing Zhu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Tian-Qing Song
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Jun-Jun Dai
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Fei-Fei Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Guo-Zhen Jiang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Shi-Lei Han
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Shi-Yang Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Zhi-Chao Yu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Xiao-Na Yang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Ken Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Cheng Hu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Da-Shuai Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Nan Jia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Yue Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Lin-Ting Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Su Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Xiao-Tong Wei
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Mei-Qing Fu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Lan-Meng Qu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Si-Yu Xin
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Ting Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Kai-Ren Tian
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Xue-Nan Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Jin-Hua Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Li-Xiang Song
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Jin-Gui Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Jia-Fei Lv
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Hang Xu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Ran Tao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Yan Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Ting-Ting Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Ye-Xuan Deng
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Yi-Ran Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Ting Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Guang-Xin Ye
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Xiao-Ran Xu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Zheng-Bao Xia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Wei Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Shi-Lan Yang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Yi-Lin Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Wen-Qi Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Zhen-Ning Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Jun-Qi Zhu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Ning-Zhi Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Roy Walker
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Yisha Luo
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Yun Wang
- BGI-Shenzhen, Shenzhen 518083, PR China
| | - Yue Shen
- BGI-Shenzhen, Shenzhen 518083, PR China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, PR China
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, PR China
| | - Yizhi Cai
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Ping-Sheng Ma
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Chun-Ting Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Joel S Bader
- High Throughput Biology Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore 21205, MD, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, Langone Medical Center, New York University, New York City, NY 10016, USA
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
243
|
Mitchell LA, Wang A, Stracquadanio G, Kuang Z, Wang X, Yang K, Richardson S, Martin JA, Zhao Y, Walker R, Luo Y, Dai H, Dong K, Tang Z, Yang Y, Cai Y, Heguy A, Ueberheide B, Fenyö D, Dai J, Bader JS, Boeke JD. Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond. Science 2017; 355. [DOI: 10.1126/science.aaf4831] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
INTRODUCTION
Total synthesis of designer chromosomes and genomes is a new paradigm for the study of genetics and biological systems. The Sc2.0 project is building a designer yeast genome from scratch to test and extend the limits of our biological knowledge. Here we describe the design, rapid assembly, and characterization of synthetic chromosome VI (synVI). Further, we investigate the phenotypic, transcriptomic, and proteomic consequences associated with consolidation of three synthetic chromosomes–synVI, synIII, and synIXR—into a single poly-synthetic strain.
RATIONALE
A host of Sc2.0 chromosomes, including synVI, have now been constructed in discrete strains. With debugging steps, where the number of bugs scales with chromosome length, all individual synthetic chromosomes have been shown to power yeast cells to near wild-type (WT) fitness. Testing the effects of Sc2.0 chromosome consolidation to uncover possible synthetic genetic interactions and/or perturbations of native cellular networks as the number of designer changes increases is the next major step for the Sc2.0 project.
RESULTS
SynVI was rapidly assembled using nine sequential steps of SwAP-In (switching auxotrophies progressively by integration), yielding a ~240-kb synthetic chromosome designed to Sc2.0 specifications. We observed partial silencing of the left- and rightmost genes on synVI, each newly positioned subtelomerically relative to their locations on native VI. This result suggests that consensus core X elements of Sc2.0 universal telomere caps are insufficient to fully buffer telomere position effects. The synVI strain displayed a growth defect characterized by an increased frequency of glycerol-negative colonies. The defect mapped to a synVI design feature in the essential
PRE4
gene (
YFR050C
), encoding the β7 subunit of the 20
S
proteasome. Recoding 10 codons near the 3′ end of the
PRE4
open reading frame (ORF) caused a ~twofold reduction in Pre4 protein level without affecting RNA abundance. Reverting the codons to the WT sequence corrected both the Pre4 protein level and the phenotype. We hypothesize that the formation of a stem loop involving recoded codons underlies reduced Pre4 protein level.
Sc2.0 chromosomes (synI to synXVI) are constructed individually in discrete strains and consolidated into poly-synthetic (poly-syn) strains by “endoreduplication intercross.” Consolidation of synVI with synthetic chromosomes III (synIII) and IXR (synIXR) yields a triple-synthetic (triple-syn) strain that is ~6% synthetic overall—with almost 70 kb deleted, including 20 tRNAs, and more than 12 kb recoded. Genome sequencing of double-synthetic (synIII synVI, synIII synIXR, synVI synIXR) and triple-syn (synIII synVI synIXR) cells indicates that suppressor mutations are not required to enable coexistence of Sc2.0 chromosomes. Phenotypic analysis revealed a slightly slower growth rate for the triple-syn strain only; the combined effect of tRNA deletions on different chromosomes might underlie this result. Transcriptome and proteome analyses indicate that cellular networks are largely unperturbed by the existence of multiple synthetic chromosomes in a single cell. However, a second bug on synVI was discovered through proteomic analysis and is associated with alteration of the
HIS2
transcription start as a consequence of tRNA deletion and loxPsym site insertion. Despite extensive genetic alterations across 6% of the genome, no major global changes were detected in the poly-syn strain “omics” analyses.
CONCLUSION
Analyses of phenotypes, transcriptomics, and proteomics of synVI and poly-syn strains reveal, in general, WT cell properties and the existence of rare bugs resulting from genome editing. Deletion of subtelomeres can lead to gene silencing, recoding deep within an ORF can yield a translational defect, and deletion of elements such as tRNA genes can lead to a complex transcriptional output. These results underscore the complementarity of transcriptomics and proteomics to identify bugs, the consequences of designer changes in Sc2.0 chromosomes. The consolidation of Sc2.0 designer chromosomes into a single strain appears to be exceptionally well tolerated by yeast. A predictable exception to this is the deletion of tRNAs, which will be restored on a separate neochromosome to avoid synthetic lethal genetic interactions between deleted tRNA genes as additional synthetic chromosomes are introduced.
Debugging synVI and characterization of poly-synthetic yeast cells.
(
A
) The second Sc2.0 chromosome to be constructed, synVI, encodes a “bug” that causes a variable colony size, dubbed a “glycerol-negative growth-suppression defect.” (
B
) Synonymous changes in the essential
PRE4
ORF lead to a reduced protein level, which underlies the growth defect. (
C
) The poly-synthetic strain synIII synVI synIXR directs growth of yeast cells to near WT fitness levels.
Collapse
Affiliation(s)
- Leslie A. Mitchell
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Ann Wang
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Key Laboratory for Industrial Biocatalysis (Ministry of Education), Key Laboratory of Bioinformatics (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Giovanni Stracquadanio
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering and Institute of Genetic Medicine, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Zheng Kuang
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Xuya Wang
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Kun Yang
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering and Institute of Genetic Medicine, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sarah Richardson
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering and Institute of Genetic Medicine, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - J. Andrew Martin
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Yu Zhao
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Roy Walker
- Center for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Yisha Luo
- Center for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JL, UK
| | | | - Kang Dong
- GenScript, Piscataway, NJ 08854, USA
| | - Zuojian Tang
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Yanling Yang
- Proteomics Resource Center, Office of Collaborative Science, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Yizhi Cai
- Center for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Adriana Heguy
- Genome Technology Center, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Proteomics Resource Center, Office of Collaborative Science, New York University Langone School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Junbiao Dai
- Key Laboratory for Industrial Biocatalysis (Ministry of Education), Key Laboratory of Bioinformatics (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Joel S. Bader
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Key Laboratory for Industrial Biocatalysis (Ministry of Education), Key Laboratory of Bioinformatics (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jef D. Boeke
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016, USA
| |
Collapse
|
244
|
Synthetische Biologie. J Verbrauch Lebensm 2017. [DOI: 10.1007/s00003-016-1068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
245
|
Cai Y, Dai J. Methods to Synthesize Large DNA Fragments for a Synthetic Yeast Genome. Cold Spring Harb Protoc 2017; 2017:2017/3/pdb.prot080978. [PMID: 28250211 DOI: 10.1101/pdb.prot080978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
De novo DNA synthesis is one of the key enabling technologies for synthetic biology. Methods for large-scale DNA synthesis, in particular, have transformed many facets of life science research, supporting new discoveries in biology through the design of novel synthetic biological systems. This protocol describes in detail the methods currently being used to synthesize and assemble large pieces of DNA for the synthetic yeast genome project. The protocol includes instructions for building block synthesis as well as chunk assembly, each of which can be used as a stand-alone procedure to generate a synthetic DNA of interest.
Collapse
Affiliation(s)
- Yizhi Cai
- Daniel Rutherford Building G.24, School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, United Kingdom;
| | - Junbiao Dai
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
246
|
|
247
|
Watanabe D, Takagi H. Yeasts for Global Happiness: report of the 14th International Congress on Yeasts (ICY14) held in Awaji Island. Genes Cells 2017; 22:130-134. [PMID: 28105742 DOI: 10.1111/gtc.12471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/21/2016] [Indexed: 11/30/2022]
Abstract
The 14th International Congress on Yeasts (ICY14) was held at Awaji Yumebutai International Conference Center (Awaji, Hyogo) in Japan from 11 to 15 September 2016. The main slogan of ICY14 was 'Yeasts for Global Happiness', which enabled us to acknowledge the high-potential usefulness of yeasts contributing to the global happiness in terms of food/beverage, health/medicine and energy/environment industries, as well as to basic biosciences. In addition, two more concepts were introduced: 'from Japan to the world' and 'from senior to junior'. As it was the first ICY meeting held in Japan or other Asian countries, ICY14 provided a good opportunity to widely spread the great achievements by Japanese and Asian yeast researchers, such as those by the 2016 Nobel Laureate Dr. Yoshinori Ohsumi, and also, to convey the fun and importance of yeasts to the next generation of researchers from Asia and all over the world. As a result, a total of 426 yeast lovers from 42 countries (225 overseas and 201 domestic participants) with different generations attended ICY14 to share the latest knowledge of a wide range of yeast research fields and to join active and constructive scientific discussions.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Hiroshi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| |
Collapse
|
248
|
MacPherson M, Saka Y. Short Synthetic Terminators for Assembly of Transcription Units in Vitro and Stable Chromosomal Integration in Yeast S. cerevisiae. ACS Synth Biol 2017; 6:130-138. [PMID: 27529501 DOI: 10.1021/acssynbio.6b00165] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Assembly of synthetic genetic circuits is central to synthetic biology. Yeast S. cerevisiae, in particular, has proven to be an ideal chassis for synthetic genome assemblies by exploiting its efficient homologous recombination. However, this property of efficient homologous recombination poses a problem for multigene assemblies in yeast, since repeated usage of standard parts, such as transcriptional terminators, can lead to rearrangements of the repeats in assembled DNA constructs in vivo. To address this issue in developing a library of orthogonal genetic components for yeast, we designed a set of short synthetic terminators based on a consensus sequence with random linkers to avoid repetitive sequences. We constructed a series of expression vectors with these synthetic terminators for efficient assembly of synthetic genes using Gateway recombination reactions. We also constructed two BAC (bacterial artificial chromosome) vectors for assembling multiple transcription units with the synthetic terminators in vitro and their integration in the yeast genome. The tandem array of synthetic genes integrated in the genome by this method is highly stable because there are few homologous segments in the synthetic constructs. Using this system of assembly and genomic integration of transcription units, we tested the synthetic terminators and their influence on the proximal transcription units. Although all the synthetic terminators have the common consensus with the identical length, they showed different activities and impacts on the neighboring transcription units.
Collapse
Affiliation(s)
- Murray MacPherson
- Institute of Medical Sciences,
School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, U.K
| | - Yasushi Saka
- Institute of Medical Sciences,
School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, U.K
| |
Collapse
|
249
|
Hughes RA, Ellington AD. Synthetic DNA Synthesis and Assembly: Putting the Synthetic in Synthetic Biology. Cold Spring Harb Perspect Biol 2017; 9:9/1/a023812. [PMID: 28049645 DOI: 10.1101/cshperspect.a023812] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The chemical synthesis of DNA oligonucleotides and their assembly into synthons, genes, circuits, and even entire genomes by gene synthesis methods has become an enabling technology for modern molecular biology and enables the design, build, test, learn, and repeat cycle underpinning innovations in synthetic biology. In this perspective, we briefly review the techniques and technologies that enable the synthesis of DNA oligonucleotides and their assembly into larger DNA constructs with a focus on recent advancements that have sought to reduce synthesis cost and increase sequence fidelity. The development of lower-cost methods to produce high-quality synthetic DNA will allow for the exploration of larger biological hypotheses by lowering the cost of use and help to close the DNA read-write cost gap.
Collapse
Affiliation(s)
- Randall A Hughes
- Applied Research Laboratories, The University of Texas at Austin, Austin, Texas 78758
| | - Andrew D Ellington
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
250
|
Development of Synthetic Microbial Platforms to Convert Lignocellulosic Biomass to Biofuels. ADVANCES IN BIOENERGY 2017. [DOI: 10.1016/bs.aibe.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|