201
|
Yang F, Shang J, Kou L, Li C, Deng Z. Mechanical Behaviors in Janus Transition-Metal Dichalcogenides: A Molecular Dynamics Simulation. NANOMATERIALS 2022; 12:nano12111910. [PMID: 35683765 PMCID: PMC9182101 DOI: 10.3390/nano12111910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 12/31/2022]
Abstract
In this work, molecular dynamics simulations are performed to investigate the mechanical properties of Janus WSSe and MoSSe monolayers considering the effects of structural anisotropy, temperature, and tensile strain rates. The results demonstrate that Janus WSSe and MoSSe monolayers show strong mechanical anisotropy under tension along the armchair and zigzag directions, respectively. This anisotropy displays distinct temperature dependence. When the coupled effects of the temperature and anisotropy are considered for the tensions along the zigzag direction, there is a transition of ductile-to-brittle failure in the Janus WSSe monolayer at the critical temperature range of 80~90 K due to the competition between atomic thermal vibrations and structural bending/wrinkles. This phenomenon is further confirmed by both stress–strain curves and structural evolutions of the systems. Finally, a strain rate hardening mechanism is found when various strain rates are applied, and it demonstrates that the Janus monolayer could maintain stable mechanical properties under different loading conditions. Our investigations provide a helpful reference for subsequent theoretical and experimental studies on the mechanical properties of Janus monolayer structures and could shed some light on the design of promising nanoscale functional devices based on Janus transition-metal dichalcogenides.
Collapse
Affiliation(s)
- Fan Yang
- School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072, China; (F.Y.); (C.L.)
| | - Jing Shang
- School of Materials Science & Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
- Correspondence: (J.S.); (Z.D.)
| | - Liangzhi Kou
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Chun Li
- School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072, China; (F.Y.); (C.L.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Zichen Deng
- School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072, China; (F.Y.); (C.L.)
- Correspondence: (J.S.); (Z.D.)
| |
Collapse
|
202
|
Lee KH, Al Ba'ba'a H, Yu K, Li K, Zhang Y, Du H, Masri SF, Wang Q. Magnetoactive Acoustic Topological Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201204. [PMID: 35470580 PMCID: PMC9218775 DOI: 10.1002/advs.202201204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Topological field-effect transistor is a revolutionary concept that physical fields are used to switch on and off quantum topological states of the condensed matter. Although this emerging concept has been explored in electronics, how to realize it in the acoustic realm remains elusive. In this work, a class of magnetoactive acoustic topological transistors capable of on-demand switching on and off topological states and reconfiguring topological edges with external magnetic fields is presented. The key mechanism is to harness magnetic fields to tune air-cavity volumes within acoustic chambers, thus breaking or preserving the inversion symmetry to manifest or conceal the quantum valley Hall effect. To switch the topological transport beyond the in-plane routes, a magneto-tuned non-topological band gap to allow or forbid the wave transport out-of-plane is harnessed. With the reversible magnetic control, on-demand switching of topological routes to realize topological field-effect waveguides and wave regulators is demonstrated. Analogous to the impact of semiconductor transistors on modern electronics, this work may expand the scope of topological acoustics by achieving unprecedented functions in acoustic modulation.
Collapse
Affiliation(s)
- Kyung Hoon Lee
- Sonny Astani Department of Civil and Environmental EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Hasan Al Ba'ba'a
- Sonny Astani Department of Civil and Environmental EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Kunhao Yu
- Sonny Astani Department of Civil and Environmental EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Ketian Li
- Sonny Astani Department of Civil and Environmental EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Yanchu Zhang
- Sonny Astani Department of Civil and Environmental EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Haixu Du
- Sonny Astani Department of Civil and Environmental EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Sami F. Masri
- Sonny Astani Department of Civil and Environmental EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Qiming Wang
- Sonny Astani Department of Civil and Environmental EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
| |
Collapse
|
203
|
Zhao C, Li L, Zhang L, Qin J, Chen H, Xia B, Yang B, Zheng H, Wang S, Liu C, Li Y, Guan D, Cui P, Zhang Z, Jia J. Coexistence of Robust Edge States and Superconductivity in Few-Layer Stanene. PHYSICAL REVIEW LETTERS 2022; 128:206802. [PMID: 35657877 DOI: 10.1103/physrevlett.128.206802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
High-quality stanene films have been actively pursued for realizing not only quantum spin Hall edge states without backscattering, but also intrinsic superconductivity, two central ingredients that may further endow the systems to host topological superconductivity. Yet to date, convincing evidence of topological edge states in stanene remains to be seen, let alone the coexistence of these two ingredients, owing to the bottleneck of growing high-quality stanene films. Here we fabricate one- to five-layer stanene films on the Bi(111) substrate and observe the robust edge states using scanning tunneling microscopy/spectroscopy. We also measure distinct superconducting gaps on different-layered stanene films. Our first-principles calculations further show that hydrogen passivation plays a decisive role as a surfactant in improving the quality of the stanene films, while the Bi substrate endows the films with nontrivial topology. The coexistence of nontrivial topology and intrinsic superconductivity renders the system a promising candidate to become the simplest topological superconductor based on a single-element system.
Collapse
Affiliation(s)
- Chenxiao Zhao
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Leiqiang Li
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at Microscale (HFNL), and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Liying Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
- International Laboratory for Quantum Functional Materials of Henan and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Jin Qin
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongyuan Chen
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bing Xia
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Yang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Zheng
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Shiyong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Canhua Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yaoyi Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Dandan Guan
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Cui
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at Microscale (HFNL), and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhenyu Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at Microscale (HFNL), and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinfeng Jia
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
204
|
Islam S, Shamim S, Ghosh A. Benchmarking Noise and Dephasing in Emerging Electrical Materials for Quantum Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2109671. [PMID: 35545231 DOI: 10.1002/adma.202109671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/01/2022] [Indexed: 06/15/2023]
Abstract
As quantum technologies develop, a specific class of electrically conducting materials is rapidly gaining interest because they not only form the core quantum-enabled elements in superconducting qubits, semiconductor nanostructures, or sensing devices, but also the peripheral circuitry. The phase coherence of the electronic wave function in these emerging materials will be crucial when incorporated in the quantum architecture. The loss of phase memory, or dephasing, occurs when a quantum system interacts with the fluctuations in the local electromagnetic environment, which manifests in "noise" in the electrical conductivity. Hence, characterizing these materials and devices therefrom, for quantum applications, requires evaluation of both dephasing and noise, although there are very few materials where these properties are investigated simultaneously. Here, the available data on magnetotransport and low-frequency fluctuations in electrical conductivity are reviewed to benchmark the dephasing and noise. The focus is on new materials that are of direct interest to quantum technologies. The physical processes causing dephasing and noise in these systems are elaborated, the impact of both intrinsic and extrinsic parameters from materials synthesis and devices realization are evaluated, and it is hoped that a clearer pathway to design and characterize both material and devices for quantum applications is thus provided.
Collapse
Affiliation(s)
- Saurav Islam
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
| | - Saquib Shamim
- Experimentelle Physik III, Physikalisches Institut, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Topological Insulators, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Arindam Ghosh
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
205
|
Rasche B, Brunner J, Schramm T, Ghimire MP, Nitzsche U, Büchner B, Giraud R, Richter M, Dufouleur J. Determination of Cleavage Energy and Efficient Nanostructuring of Layered Materials by Atomic Force Microscopy. NANO LETTERS 2022; 22:3550-3556. [PMID: 35427144 DOI: 10.1021/acs.nanolett.1c04868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A method is presented to use atomic force microscopy to measure the cleavage energy of van der Waals materials and similar quasi-two-dimensional materials. The cleavage energy of graphite is measured to be 0.36 J/m2, in good agreement with literature data. The same method yields a cleavage energy of 0.6 J/m2 for MoS2 as a representative of the dichalcogenides. In the case of the weak topological insulator Bi14Rh3I9 no cleavage energy is obtained, although cleavage is successful with an adapted approach. The cleavage energies of these materials are evaluated by means of density-functional calculations and literature data. This further validates the presented method and sets an upper limit of about 0.7 J/m2 to the cleavage energy that can be measured by the present setup. In addition, this method can be used as a tool for manipulating exfoliated flakes, prior to or after contacting, which may open a new route for the fabrication of nanostructures.
Collapse
Affiliation(s)
- Bertold Rasche
- Department of Chemistry, University of Cologne, 50939 Cologne, Germany
| | - Julius Brunner
- Leibniz IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany
| | - Tim Schramm
- Leibniz IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany
| | - Madhav Prasad Ghimire
- Central Department of Physics, Tribhuvan University, Kirtipur 44613, Kathmandu, Nepal
| | - Ulrike Nitzsche
- Leibniz IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany
| | - Bernd Büchner
- Leibniz IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany
- Department of Physics, TU Dresden, D-01062 Dresden, Germany
| | - Romain Giraud
- Leibniz IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany
- Université Grenoble Alpes, CNRS, CEA, Grenoble-INP, Spintec, F-38000 Grenoble, France
| | - Manuel Richter
- Leibniz IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), TU Dresden, D-01062 Dresden, Germany
| | - Joseph Dufouleur
- Leibniz IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany
- Center for Transport and Devices, TU Dresden, D-01062 Dresden, Germany
| |
Collapse
|
206
|
Huang J, Duan X, Jeon S, Kim Y, Zhou J, Li J, Liu S. On-demand quantum spin Hall insulators controlled by two-dimensional ferroelectricity. MATERIALS HORIZONS 2022; 9:1440-1447. [PMID: 35438108 DOI: 10.1039/d2mh00334a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We propose a new class of quantum materials, type-II two-dimensional ferroelectric topological insulators (2DFETIs), which allow non-volatility and an on-off switch of quantum spin Hall states. A general strategy is developed to realize type-II 2DFETIs using only topologically trivial 2D ferroelectrics. The built-in electric field arising from the out-of-plane polarization across the bilayer heterostrucuture of 2D ferroelectrics enables robust control of the band gap size and band inversion strength, which can be utilized to manipulate the topological phase transitions on-demand. Using first-principles calculations with hybrid density functionals, we demonstrate that a series of bilayer heterostructures are type-II 2DFETIs characterized with a direct coupling between the band topology and polarization state. We propose a few 2DFETI-based quantum electronics, including domain-wall quantum circuits and topological memristors.
Collapse
Affiliation(s)
- Jiawei Huang
- Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
- Department of Physics, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China.
| | - Xu Duan
- Department of Physics, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China.
- Fudan University, Shanghai 200433, China
| | - Sunam Jeon
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Youngkuk Kim
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - Jian Zhou
- Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Li
- Department of Physics, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Shi Liu
- Department of Physics, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
207
|
One-dimensional Luttinger liquids in a two-dimensional moiré lattice. Nature 2022; 605:57-62. [PMID: 35508779 DOI: 10.1038/s41586-022-04514-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 02/03/2022] [Indexed: 11/08/2022]
Abstract
The Luttinger liquid (LL) model of one-dimensional (1D) electronic systems provides a powerful tool for understanding strongly correlated physics, including phenomena such as spin-charge separation1. Substantial theoretical efforts have attempted to extend the LL phenomenology to two dimensions, especially in models of closely packed arrays of 1D quantum wires2-13, each being described as a LL. Such coupled-wire models have been successfully used to construct two-dimensional (2D) anisotropic non-Fermi liquids2-6, quantum Hall states7-9, topological phases10,11 and quantum spin liquids12,13. However, an experimental demonstration of high-quality arrays of 1D LLs suitable for realizing these models remains absent. Here we report the experimental realization of 2D arrays of 1D LLs with crystalline quality in a moiré superlattice made of twisted bilayer tungsten ditelluride (tWTe2). Originating from the anisotropic lattice of the monolayer, the moiré pattern of tWTe2 hosts identical, parallel 1D electronic channels, separated by a fixed nanoscale distance, which is tuneable by the interlayer twist angle. At a twist angle of approximately 5 degrees, we find that hole-doped tWTe2 exhibits exceptionally large transport anisotropy with a resistance ratio of around 1,000 between two orthogonal in-plane directions. The across-wire conductance exhibits power-law scaling behaviours, consistent with the formation of a 2D anisotropic phase that resembles an array of LLs. Our results open the door for realizing a variety of correlated and topological quantum phases based on coupled-wire models and LL physics.
Collapse
|
208
|
Jeong J, Kim HS, Kwon G, Jeong K, Lee H, Lee JH, Park M, Lee C, Yu S, Kim H, Im S, Yoo K, Lee E, Cho MH. Ferroelastic-Ferroelectric Multiferroicity in van der Waals Rhenium Dichalcogenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108777. [PMID: 35293650 DOI: 10.1002/adma.202108777] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/11/2022] [Indexed: 06/14/2023]
Abstract
2D multiferroics with combined ferroic orders have gained attention owing to their novel functionality and underlying science. Intrinsic ferroelastic-ferroelectric multiferroicity in single-crystalline van der Waals rhenium dichalcogenides, whose symmetries are broken by the Peierls distortion and layer-stacking order, is demonstrated. Ferroelastic switching of the domain orientation and accompanying anisotropic properties is achieved with 1% uniaxial strain using the polymer encapsulation method. Based on the electron localization function and bond dissociation energy of the Re-Re bonds, the change in bond configuration during the evolution of the domain wall and the preferred switching between the two specific orientation states are explained. Furthermore, the ferroelastic switching of ferroelectric polarization is confirmed using the photovoltaic effect. The study provides insights into the reversible bond-switching process and potential applications based on 2D multiferroicity.
Collapse
Affiliation(s)
- Jaehun Jeong
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyeon-Sik Kim
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea
| | - Gihyeon Kwon
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kwangsik Jeong
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hyangsook Lee
- Samsung Advanced Institute of Technology, Suwon, 16678, Republic of Korea
| | - Ji Hye Lee
- Center for Correlated Electron Systems (CCES), Institute of Basic Science (IBS), Seoul, 08826, Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
| | - Myunguk Park
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea
| | - Changjun Lee
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sanghyuck Yu
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea
| | - Heegoo Kim
- Samsung Advanced Institute of Technology, Suwon, 16678, Republic of Korea
| | - Seongil Im
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyunghwa Yoo
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eunha Lee
- Samsung Advanced Institute of Technology, Suwon, 16678, Republic of Korea
| | - Mann-Ho Cho
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea
- Department of System Semiconductor Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
209
|
Pal A, Zhang S, Chavan T, Agashiwala K, Yeh CH, Cao W, Banerjee K. Quantum-Engineered Devices Based on 2D Materials for Next-Generation Information Processing and Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2109894. [PMID: 35468661 DOI: 10.1002/adma.202109894] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/11/2022] [Indexed: 06/14/2023]
Abstract
As an approximation to the quantum state of solids, the band theory, developed nearly seven decades ago, fostered the advance of modern integrated solid-state electronics, one of the most successful technologies in the history of human civilization. Nonetheless, their rapidly growing energy consumption and accompanied environmental issues call for more energy-efficient electronics and optoelectronics, which necessitate the exploration of more advanced quantum mechanical effects, such as band-to-band tunneling, spin-orbit coupling, spin-valley locking, and quantum entanglement. The emerging 2D layered materials, featured by their exotic electrical, magnetic, optical, and structural properties, provide a revolutionary low-dimensional and manufacture-friendly platform (and many more opportunities) to implement these quantum-engineered devices, compared to the traditional electronic materials system. Here, the progress in quantum-engineered devices is reviewed and the opportunities/challenges of exploiting 2D materials are analyzed to highlight their unique quantum properties that enable novel energy-efficient devices, and useful insights to quantum device engineers and 2D-material scientists are provided.
Collapse
Affiliation(s)
- Arnab Pal
- ECE Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Shuo Zhang
- ECE Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- College of ISEE, Zhejiang University, Hangzhou, 310027, China
| | - Tanmay Chavan
- ECE Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Kunjesh Agashiwala
- ECE Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Chao-Hui Yeh
- ECE Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Wei Cao
- ECE Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Kaustav Banerjee
- ECE Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
210
|
Cavin J, Mishra R. Equilibrium phase diagrams of isostructural and heterostructural two-dimensional alloys from first principles. iScience 2022; 25:104161. [PMID: 35434554 PMCID: PMC9010766 DOI: 10.1016/j.isci.2022.104161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 11/26/2022] Open
Abstract
Alloying is a successful strategy for tuning the phases and properties of two-dimensional (2D) transition metal dichalcogenides (TMDCs). To accelerate the synthesis of TMDC alloys, we present a method for generating temperature-composition equilibrium phase diagrams by combining first-principles total-energy calculations with thermodynamic solution models. This method is applied to three representative 2D TMDC alloys: an isostructural alloy, MoS2(1-x)Te2x , and two heterostructural alloys, Mo1-x W x Te2 and WS2(1-x)Te2x . Using density-functional theory and special quasi-random structures, we show that the mixing enthalpy of these binary alloys can be reliably represented using a sub-regular solution model fitted to the total energies of relatively few compositions. The cubic sub-regular solution model captures 3-body effects that are important in TMDC alloys. By comparing phase diagrams generated with this method to those calculated with previous methods, we demonstrate that this method can be used to rapidly design phase diagrams of TMDC alloys and related 2D materials.
Collapse
Affiliation(s)
- John Cavin
- Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rohan Mishra
- Department of Mechanical Engineering and Material Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
211
|
Wang P, Yang Y, Pan E, Liu F, Ajayan PM, Zhou J, Liu Z. Emerging Phases of Layered Metal Chalcogenides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105215. [PMID: 34923740 DOI: 10.1002/smll.202105215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Layered metal chalcogenides, as a "rich" family of 2D materials, have attracted increasing research interest due to the abundant choices of materials with diverse structures and rich electronic characteristics. Although the common metal chalcogenide phases such as 2H and 1T have been intensively studied, many other unusual phases are rarely explored, and some of these show fascinating behaviors including superconductivity, ferroelectrics, ferromagnetism, etc. From this perspective, the unusual phases of metal chalcogenides and their characteristics, as well as potential applications are introduced. First, the unusual phases of metal chalcogenides from different classes, including transition metal dichalcogenides, magnetic element-based chalcogenides, and metal phosphorus chalcogenides, are discussed, respectively. Meanwhile, their excellent properties of different unusual phases are introduced. Then, the methods for producing the unusual phases are discussed, specifically, the stabilization strategies during the chemical vapor deposition process for the unusual phase growth are discussed, followed by an outlook and discussions on how to prepare the unusual phase metal dichalcogenides in terms of synthetic methodology and potential applications.
Collapse
Affiliation(s)
- Ping Wang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics, and Ultrafine Optoelectronic Systems, and School of Physics, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yang Yang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics, and Ultrafine Optoelectronic Systems, and School of Physics, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Er Pan
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313099, China
| | - Fucai Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313099, China
| | - Pulickel M Ajayan
- Department of Materials Science and Nano Engineering, Rice University, Houston, TX, 77005, USA
| | - Jiadong Zhou
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics, and Ultrafine Optoelectronic Systems, and School of Physics, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
212
|
Crépel V, Fu L. Spin-triplet superconductivity from excitonic effect in doped insulators. Proc Natl Acad Sci U S A 2022; 119:e2117735119. [PMID: 35320044 PMCID: PMC9060479 DOI: 10.1073/pnas.2117735119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/13/2022] [Indexed: 11/25/2022] Open
Abstract
SignificanceWe present a mechanism for unconventional superconductivity in doped band insulators, where short-ranged pairing interaction arises from Coulomb repulsion due to virtual interband or excitonic processes. Remarkably, electron pairing is found upon infinitesimal doping, giving rise to Bose-Einstein condensate (BEC)-Bardeen-Cooper-Schrieffer (BCS) crossover at low density. Our theory explains puzzling behaviors of superconductivity and predicts spin-triplet pairing in electron-doped ZrNCl and WTe2.
Collapse
Affiliation(s)
- Valentin Crépel
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Liang Fu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
213
|
Demirkol Ö, Sevik C, Demiroğlu İ. First principles assessment of the phase stability and transition mechanisms of designated crystal structures of pristine and Janus transition metal dichalcogenides. Phys Chem Chem Phys 2022; 24:7430-7441. [PMID: 35266937 DOI: 10.1039/d1cp05642e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Two-dimensional Transition Metal Dichalcogenides (TMDs) possessing extraordinary physical properties at reduced dimensionality have attracted interest due to their promise in electronic and optical device applications. However, TMD monolayers can show a broad range of different properties depending on their crystal phase; for example, H phases are usually semiconductors, while the T phases are metallic. Thus, controlling phase transitions has become critical for device applications. In this study, the energetically low-lying crystal structures of pristine and Janus TMDs are investigated by using ab initio Nudged Elastic Band and molecular dynamics simulations to provide a general explanation for their phase stability and transition properties. Across all materials investigated, the T phase is found to be the least stable and the H phase is the most stable except for WTe2, while the T' and T'' phases change places according to the TMD material. The transition energy barriers are found to be large enough to hint that even the higher energy phases are unlikely to undergo a phase transition to a more stable phase if they can be achieved except for the least stable T phase, which has zero barrier towards the T' phase. Indeed, in molecular dynamics simulations the thermodynamically least stable T phase transformed into the T' phase spontaneously while in general no other phase transition was observed up to 2100 K for the other three phases. Thus, the examined T', T'' and H phases were shown to be mostly stable and do not readily transform into another phase. Furthermore, so-called mixed phase calculations considered in our study explain the experimentally observed lateral hybrid structures and point out that the coexistence of different phases is strongly stable against phase transitions. Indeed, stable complex structures such as metal-semiconductor-metal architectures, which have immense potential to be used in future device applications, are also possible based on our investigation.
Collapse
Affiliation(s)
- Öznur Demirkol
- Department of Physics, Eskişehir Technical University, Eskişehir, TR 26470, Turkey
| | - Cem Sevik
- Department of Mechanical Engineering, Eskişehir Technical University, Eskisehir, TR 26555, Turkey.,Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - İlker Demiroğlu
- Department of Advanced Technologies, Eskişehir Technical University, Eskisehir, TR 26555, Turkey.
| |
Collapse
|
214
|
Javaid M, Taylor PD, Tawfik SA, Spencer MJS. Tuning the Schottky barrier height in a multiferroic In 2Se 3/Fe 3GeTe 2 van der Waals heterojunction. NANOSCALE 2022; 14:4114-4122. [PMID: 34904617 DOI: 10.1039/d1nr06906c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ferroelectric material In2Se3 is currently of significant interest due to its built-in polarisation characteristics that can significantly modulate its electronic properties. Here we employ density functional theory to determine the transport characteristics at the metal-semiconductor interface of the two-dimensional multiferroic In2Se3/Fe3GeTe2 heterojunction. We show a significant tuning of the Schottky barrier height as a result of the change in the intrinsic polarisation state of In2Se3: the switching in the electric polarisation of In2Se3 results in the switching of the nature of the Schottky barrier, from being n-type to p-type, and is accompanied by a change in the spin polarisation of the electrons. This switchable Schottky barrier structure can form an essential component in a two-dimensional field effect transistor that can be operated by switching the ferroelectric polarisation, rather than by the application of strain or electric field. The band structure and density of state calculations show that Fe3GeTe2 lends its magnetic and metallic characteristics to the In2Se3 layer, making the In2Se3/Fe3GeTe2 heterojunction a potentially viable multiferroic candidate in nanoelectronic devices like field-effect transistors. Moreover, our findings reveal a transfer of charge carriers from the In2Se3 layer to the Fe3GeTe2 layer, resulting in the formation of an in-built electric field at the metal-semiconductor interface. Our work can substantially broaden the device potential of the In2Se3/Fe3GeTe2 heterojunction in future low-energy electronic devices.
Collapse
Affiliation(s)
- M Javaid
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia.
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Patrick D Taylor
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia.
| | - Sherif Abdulkader Tawfik
- Institute for Frontier Materials, Deakin University Geelong, Victoria 3216, Australia.
- ARC Centre of Excellence in Exciton Science School of Science RMIT University Melbourne, VIC 3001, Australia
| | - Michelle J S Spencer
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia.
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| |
Collapse
|
215
|
Abstract
In a two-dimensional (2D) Kagome lattice, the ideal Kagome bands including Dirac cones, van Hove singularities, and a flat band are highly expected, because they can provide a promising platform to investigate novel physical phenomena. However, in the reported Kagome materials, the complex 3D and multiorder electron hoppings result in the disappearance of the ideal Kagome bands in these systems. Here, we propose an alternative way to achieve the ideal Kagome bands in non-Kagome materials by confining excess electrons in the system to the crystal interstitial sites to form a 2D Kagome lattice, coined as a Kagome electride. Then, we predict two novel stable 2D Kagome electrides in hexagonal materials Li5Si and Li5Sn, whose band structures are similar to the ideal Kagome bands, including topological Dirac cones with beautiful Fermi arcs in their surface states, van Hove singularities, and a flat band. In addition, Li5Si is revealed to be a low-temperature superconductor at ambient pressure, and its superconducting transition temperature Tc can be increased from 1.1 K at 0 GPa to 7.2 K at 100 GPa. The high Tc is unveiled to be the consequence of strong electron-phonon coupling originated from the sp-hybridized phonon-coupled bands and phonon softening caused by strong Fermi nesting. Due to the strong Fermi nesting, the charge density wave phase transition occurs at 110 GPa with the lattice reconstructed from hexagonal to orthorhombic, accompanied with the increase of Tc to 10.5 K. Our findings pave an alternative way to fabricate more real materials with Kagome bands in electrides.
Collapse
Affiliation(s)
- Jing-Yang You
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551
| | - Bo Gu
- Kavli Institute for Theoretical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Gang Su
- Kavli Institute for Theoretical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan Ping Feng
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551.,Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546
| |
Collapse
|
216
|
Li JW, Ke SS, Deng HX, Sun X, Guo Y, Lü HF. Defect modulated electronic structure and magnetism in the 1T′ phase of Janus MoSSe. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2021.111440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
217
|
Zhang Y, Zhang P, Xu T, Wang X, Jiang H, Gong Y. H2S-assisted growth of 2D MS2 (M = Ti, Zr, Nb). CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
218
|
Hu Y, Liang J, Xia Y, Zhao C, Jiang M, Ma J, Tie Z, Jin Z. 2D Arsenene and Arsenic Materials: Fundamental Properties, Preparation, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104556. [PMID: 34846791 DOI: 10.1002/smll.202104556] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/06/2021] [Indexed: 06/13/2023]
Abstract
As emerging 2D materials, arsenene and arsenic materials have attracted rising interest in the past few years. The diverse crystalline phases, exotic electrical characteristics, and widespread applications of 2D arsenene and arsenic bring them great research value and utilization potential. Herein, the recent progress of 2D arsenene and arsenic is reviewed in terms of fundamental properties, preparation, and applications. The fundamental properties of 2D arsenene and arsenic, including the crystal phases, environmental stability, and electrical structure, from theoretical to experimental reports are first summarized. Then, the experimental processes for preparing 2D arsenene and arsenic, along with their respective advantages and disadvantages, are introduced including epitaxial growth, mechanical exfoliation, and liquid-phase exfoliation. Moreover, applications of 2D arsenene and arsenic are discussed, suggesting a wide range of applications of 2D arsenene and arsenic in field-effect transistors, sensors, catalysts, biological applications, and so on. Finally, some perspectives about the challenges and opportunities of promising 2D arsenene and arsenic are provided. This review provides a helpful guidance and stimulates more focus on future explorations and developments of 2D arsenene and arsenic.
Collapse
Affiliation(s)
- Yi Hu
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Junchuan Liang
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Yuren Xia
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Cheng Zhao
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Minghang Jiang
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Jing Ma
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zuoxiu Tie
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Zhong Jin
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| |
Collapse
|
219
|
Frombach D, Recher P. Tunable effective length of fractional Josephson junctions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:164005. [PMID: 35062004 DOI: 10.1088/1361-648x/ac4dbc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Topological Josephson junctions (TJJs) have been a subject of widespread interest due to their hosting of Majorana zero modes. In long junctions, i.e. junctions where the junction length exceeds the superconducting coherence length, TJJs manifest themselves in specific features of the critical current (Beenakker 2013Phys. Rev. Lett.110017003). Here we propose to couple the helical edge states mediating the TJJ to additional channels or quantum dots, by which the effective junction length can be increased by tunable parameters associated with these couplings, so that such measurements become possible even in short junctions. Besides effective low-energy models that we treat analytically, we investigate realizations by a Kane-Mele model with edge passivation and treat them numerically via tight binding models. In each case, we explicitly calculate the critical current using the Andreev bound state spectrum and show that it differs in effectively long junctions in the cases of strong and weak parity changing perturbations (quasiparticle poisoning).
Collapse
Affiliation(s)
- Daniel Frombach
- Institut für Mathematische Physik, Technische Universität Braunschweig, D-38106 Braunschweig, Germany
| | - Patrik Recher
- Institut für Mathematische Physik, Technische Universität Braunschweig, D-38106 Braunschweig, Germany
- Laboratory for Emerging Nanometrology Braunschweig, D-38106 Braunschweig, Germany
| |
Collapse
|
220
|
Large-gap insulating dimer ground state in monolayer IrTe 2. Nat Commun 2022; 13:906. [PMID: 35173153 PMCID: PMC8850425 DOI: 10.1038/s41467-022-28542-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 02/01/2022] [Indexed: 11/09/2022] Open
Abstract
Monolayers of two-dimensional van der Waals materials exhibit novel electronic phases distinct from their bulk due to the symmetry breaking and reduced screening in the absence of the interlayer coupling. In this work, we combine angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy to demonstrate the emergence of a unique insulating 2 × 1 dimer ground state in monolayer 1T-IrTe2 that has a large band gap in contrast to the metallic bilayer-to-bulk forms of this material. First-principles calculations reveal that phonon and charge instabilities as well as local bond formation collectively enhance and stabilize a charge-ordered ground state. Our findings provide important insights into the subtle balance of interactions having similar energy scales that occurs in the absence of strong interlayer coupling, which offers new opportunities to engineer the properties of 2D monolayers.
Collapse
|
221
|
Matsuyama K, Aoki R, Miura K, Fukui A, Togawa Y, Yoshimura T, Fujimura N, Kiriya D. Metallic Transport in Monolayer and Multilayer Molybdenum Disulfides by Molecular Surface Charge Transfer Doping. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8163-8170. [PMID: 35107263 DOI: 10.1021/acsami.1c22156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carrier modulation in transition-metal dichalcogenides (TMDCs) is of importance for applying electronic devices to tune their transport properties and controlling phases, including metallic to superconductivity. Although the surface charge transfer doping method has shown a strong modulation ability of the electronic structures in TMDCs and a degenerately doped state has been proposed, the details of the electronic states have not been elucidated, and this transport behavior should show a considerable thickness dependence in TMDCs. In this study, we characterize the metallic transport behavior in the monolayer and multilayer MoS2 under surface charge transfer doping with a strong electron dopant, benzyl viologen (BV) molecules. The metallic behavior transforms to an insulative state under a negative gate voltage. Consequently, metal-insulator transition (MIT) was observed in both monolayer and multilayer MoS2 correlating with the critical conductivity of order e2/h. In the multilayer case, the BV molecules strongly modulated the topmost surface layer in the bulk MoS2; the transfer characteristics suggested a crossover from a heterogeneously doped state with a doped topmost layer to doping in the deep layers caused by the variation in the gate voltage. The findings of this work will be useful for understanding the device characteristics of thin-layered materials and for applying them to the controlling phases via carrier modulation.
Collapse
Affiliation(s)
- Keigo Matsuyama
- Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
| | - Ryuya Aoki
- Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
| | - Kohei Miura
- Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
| | - Akito Fukui
- Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
| | - Yoshihiko Togawa
- Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
| | - Takeshi Yoshimura
- Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
| | - Norifumi Fujimura
- Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
| | - Daisuke Kiriya
- Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
| |
Collapse
|
222
|
Tsai Y, Li Z, Hu S. Recent Progress of Atomic Layer Technology in Spintronics: Mechanism, Materials and Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:661. [PMID: 35214988 PMCID: PMC8880290 DOI: 10.3390/nano12040661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/16/2022]
Abstract
The atomic layer technique is generating a lot of excitement and study due to its profound physics and enormous potential in device fabrication. This article reviews current developments in atomic layer technology for spintronics, including atomic layer deposition (ALD) and atomic layer etching (ALE). To begin, we introduce the main atomic layer deposition techniques. Then, in a brief review, we discuss ALE technology for insulators, semiconductors, metals, and newly created two-dimensional van der Waals materials. Additionally, we compare the critical factors learned from ALD to constructing ALE technology. Finally, we discuss the future prospects and challenges of atomic layer technology in the field of spinronics.
Collapse
Affiliation(s)
| | | | - Shaojie Hu
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China; (Y.T.); (Z.L.)
| |
Collapse
|
223
|
Xie A, Jian Y, Cheng Z, Gu Y, Chen Z, Song X, Yang Z. High responsivity of hybrid MoTe 2/perovskite heterojunction photodetectors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:154007. [PMID: 35081518 DOI: 10.1088/1361-648x/ac4f1b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) van der Waals heterojunction offers alternative facile platforms for many optoelectronic devices due to no-dangling bonds and steep interface carrier gradient. Here, we demonstrate a 2D heterojunction device, which combines the benefits of high carrier mobility of 2D MoTe2and strong light absorption of perovskite, to achieve excellent responsivity. This device architecture is constructed based on the charge carriers separation and transfer with the high-gain photogating effect at the interface of the heterojunction. The device exhibits high responsivity of 334.6 A W-1, impressive detectivity of 6.2 × 1010Jones. All the results provide the insight into the benefits of interfacial carriers transfer for designing hybrid perovskite-2D materials based optoelectronic devices.
Collapse
Affiliation(s)
- An Xie
- Key Laboratory of Functional Materials and Applications of Fujian Province, Xiamen University of Technology, Xiamen 361024, People's Republic of China
| | - Yuxian Jian
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Zichao Cheng
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Yu Gu
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Zhanyang Chen
- Shangdong Gemei Tungsten & Molybdenum Material Co. Ltd, Weihai 265222, People's Republic of China
| | - Xiufeng Song
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Zaixing Yang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| |
Collapse
|
224
|
Pham PV, Bodepudi SC, Shehzad K, Liu Y, Xu Y, Yu B, Duan X. 2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges. Chem Rev 2022; 122:6514-6613. [PMID: 35133801 DOI: 10.1021/acs.chemrev.1c00735] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A grand family of two-dimensional (2D) materials and their heterostructures have been discovered through the extensive experimental and theoretical efforts of chemists, material scientists, physicists, and technologists. These pioneering works contribute to realizing the fundamental platforms to explore and analyze new physical/chemical properties and technological phenomena at the micro-nano-pico scales. Engineering 2D van der Waals (vdW) materials and their heterostructures via chemical and physical methods with a suitable choice of stacking order, thickness, and interlayer interactions enable exotic carrier dynamics, showing potential in high-frequency electronics, broadband optoelectronics, low-power neuromorphic computing, and ubiquitous electronics. This comprehensive review addresses recent advances in terms of representative 2D materials, the general fabrication methods, and characterization techniques and the vital role of the physical parameters affecting the quality of 2D heterostructures. The main emphasis is on 2D heterostructures and 3D-bulk (3D) hybrid systems exhibiting intrinsic quantum mechanical responses in the optical, valley, and topological states. Finally, we discuss the universality of 2D heterostructures with representative applications and trends for future electronics and optoelectronics (FEO) under the challenges and opportunities from physical, nanotechnological, and material synthesis perspectives.
Collapse
Affiliation(s)
- Phuong V Pham
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Srikrishna Chanakya Bodepudi
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Khurram Shehzad
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Yuan Liu
- School of Physics and Electronics, Hunan University, Hunan 410082, China
| | - Yang Xu
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Bin Yu
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, California 90095-1569, United States
| |
Collapse
|
225
|
Yang X, Bao JK, Lou Z, Li P, Jiang C, Wang J, Sun T, Liu Y, Guo W, Ramakrishnan S, Kotla SR, Tolkiehn M, Paulmann C, Cao GH, Nie Y, Li W, Liu Y, van Smaalen S, Lin X, Xu ZA. Commensurate Stacking Phase Transitions in an Intercalated Transition Metal Dichalcogenide. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108550. [PMID: 34871466 DOI: 10.1002/adma.202108550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Intercalation and stacking-order modulation are two active ways in manipulating the interlayer interaction of transition metal dichalcogenides (TMDCs), which lead to a variety of emergent phases and allow for engineering material properties. Herein, the growth of Pb-intercalated TMDCs-Pb(Ta1+x Se2 )2 , the first 124-phase, is reported. Pb(Ta1+x Se2 )2 exhibits a unique two-step first-order structural phase transition at around 230 K. The transitions are solely associated with the stacking degree of freedom, evolving from a high-temperature (high-T) phase with ABC stacking and R3m symmetry to an intermediate phase with AB stacking and P3m1, and finally to a low-temperature (low-T) phase again with R3msymmetry, but with ACB stacking. Each step involves a rigid slide of building blocks by a vector [1/3, 2/3, 0]. Intriguingly, gigantic lattice contractions occur at the transitions on warming. At low-T, bulk superconductivity with Tc ≈ 1.8 K is observed. The underlying physics of the structural phase transitions are discussed from first-principle calculations. The symmetry analysis reveals topological nodal lines in the band structure. The results demonstrate the possibility of realizing higher-order metal-intercalated phases of TMDCs and advance the knowledge of polymorphic transitions, and may inspire stacking-order engineering in TMDCs and beyond.
Collapse
Affiliation(s)
- Xiaohui Yang
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, 310027, P. R. China
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310024, P. R. China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, P. R. China
| | - Jin-Ke Bao
- Laboratory of Crystallography, University of Bayreuth, 95447, Bayreuth, Germany
- Department of Physics, Materials Genome Institute and International Center for Quantum and Molecular Structures, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhefeng Lou
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, 310027, P. R. China
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310024, P. R. China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, P. R. China
| | - Peng Li
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, 310027, P. R. China
- Center for Correlated Matter, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Chenxi Jiang
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jialu Wang
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, 310027, P. R. China
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310024, P. R. China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, P. R. China
| | - Tulai Sun
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yabin Liu
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Wei Guo
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Sitaram Ramakrishnan
- Laboratory of Crystallography, University of Bayreuth, 95447, Bayreuth, Germany
- Department of Quantum Matter, AdSM, Hiroshima University, Higashi-Hiroshima, 739-8530, Japan
| | - Surya Rohith Kotla
- Laboratory of Crystallography, University of Bayreuth, 95447, Bayreuth, Germany
| | | | - Carsten Paulmann
- Mineralogisch-Petrographisches Institute, Universität Hamburg, 20146, Hamburg, Germany
| | - Guang-Han Cao
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, 310027, P. R. China
- State Key Lab of Silicon Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yuefeng Nie
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Wenbin Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, P. R. China
| | - Yang Liu
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, 310027, P. R. China
- Center for Correlated Matter, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Sander van Smaalen
- Laboratory of Crystallography, University of Bayreuth, 95447, Bayreuth, Germany
| | - Xiao Lin
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310024, P. R. China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, P. R. China
| | - Zhu-An Xu
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, 310027, P. R. China
- State Key Lab of Silicon Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
226
|
Zhou R, Wu J, Chen Y, Xie L. Polymorph Structures, Rich Physical Properties and Potential Applications of
Two‐Dimensional MoTe
2
,
WTe
2
and Its Alloys. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rui Zhou
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Juanxia Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology Beijing 100190 China
| | - Yuansha Chen
- Beijing National Laboratory for Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences Beijing 100190 China
| | - Liming Xie
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
227
|
Huang H, Zha J, Li S, Tan C. Two-dimensional alloyed transition metal dichalcogenide nanosheets: Synthesis and applications. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
228
|
Zhang H, pei M, Liu B, Wang Z, Zhao X. Structure and electronic properties of MoSe2/PtS2 van der Waals heterostructure. Phys Chem Chem Phys 2022; 24:19853-19864. [DOI: 10.1039/d2cp02559k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structure and electronic properties of MoSe2/PtS2 van der Waals heterostructure and their dependence on the interlayer coupling, biaxial strain and external electric field are systematically investigated by using the first-principles...
Collapse
|
229
|
Ji YT, Tan X, Yue XY, Sun Y, Wang YY, Liang H, Li Q, Sun X, Wu DD. Strain-induced spin-gapless semiconductors and pure thermal spin-current in magnetic black arsenic-phosphorus monolayer. Phys Chem Chem Phys 2022; 24:13897-13904. [DOI: 10.1039/d2cp01108e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spin-gapless semiconductor (SGS) materials are regarded as the most promising candidates for ideal massless and dissipationless states towards low-power spintronics device application. Here, we propose a spin-gapless semiconducting black arsenic-phosphorus...
Collapse
|
230
|
Marini G, Calandra M. Light-Tunable Charge Density Wave Orders in MoTe_{2} and WTe_{2} Single Layers. PHYSICAL REVIEW LETTERS 2021; 127:257401. [PMID: 35029411 DOI: 10.1103/physrevlett.127.257401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
By using constrained density functional theory modeling, we demonstrate that ultrafast optical pumping unveils hidden charge orders in group VI monolayer transition metal ditellurides. We show that irradiation of the insulating 2H phases stabilizes multiple transient charge density wave orders with light-tunable distortion, periodicity, electronic structure, and band gap. Moreover, optical pumping of the semimetallic 1T^{'} phases generates a transient charge ordered metallic phase composed of 2D diamond clusters. For each transient phase we identify the critical fluence at which it is observed and the specific optical and Raman fingerprints to directly compare with future ultrafast pump-probe experiments. Our work demonstrates that it is possible to stabilize charge density waves even in insulating 2D transition metal dichalcogenides by ultrafast irradiation.
Collapse
Affiliation(s)
- Giovanni Marini
- Graphene Labs, Fondazione Istituto Italiano di Tecnologia, Via Morego, I-16163 Genova, Italy
| | - Matteo Calandra
- Graphene Labs, Fondazione Istituto Italiano di Tecnologia, Via Morego, I-16163 Genova, Italy
- Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo, Italy
- Sorbonne Université, CNRS, Institut des Nanosciences de Paris, UMR7588, F-75252, Paris, France
| |
Collapse
|
231
|
Zhu J, Li T, Young AF, Shan J, Mak KF. Quantum Oscillations in Two-Dimensional Insulators Induced by Graphite Gates. PHYSICAL REVIEW LETTERS 2021; 127:247702. [PMID: 34951797 DOI: 10.1103/physrevlett.127.247702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
We demonstrate a mechanism for magnetoresistance oscillations in insulating states of two-dimensional (2D) materials arising from the interaction of the 2D layer and proximal graphite gates. We study a series of devices based on different 2D systems, including mono- and bilayer T_{d}-WTe_{2}, MoTe_{2}/WSe_{2} moiré heterobilayers, and Bernal-stacked bilayer graphene, which all share a similar graphite-gated geometry. We find that the 2D systems, when tuned near an insulating state, generically exhibit magnetoresistance oscillations corresponding to a high-density Fermi surface, in contravention of naïve band theory. Simultaneous measurement of the resistivity of the graphite gates shows that the oscillations of the sample layer are precisely correlated with those of the graphite gates. Further supporting this connection, the oscillations are quenched when the graphite gate is replaced by a low-mobility metal, TaSe_{2}. The observed phenomenon arises from the oscillatory behavior of graphite density of states, which modulates the device capacitance and, as a consequence, the carrier density in the sample layer even when a constant electrochemical potential is maintained between the sample and the gate electrode. Oscillations are most pronounced near insulating states where the resistivity is strongly density dependent. Our study suggests a unified mechanism for quantum oscillations in graphite-gated 2D insulators based on electrostatic sample-gate coupling.
Collapse
Affiliation(s)
- Jiacheng Zhu
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Tingxin Li
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Andrea F Young
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Jie Shan
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA
| | - Kin Fai Mak
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA
| |
Collapse
|
232
|
Zhou W, Wu L, Li A, Zhang B, Ouyang F. Structural Symmetry, Spin-Orbit Coupling, and Valley-Related Properties of Monolayer WSi 2N 4 Family. J Phys Chem Lett 2021; 12:11622-11628. [PMID: 34816722 DOI: 10.1021/acs.jpclett.1c03197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently prepared layered MoSi2N4 exhibits excellent stability and semiconductor properties, adding building blocks for two-dimensional families. In this research, we present the spin-orbit coupling and valley-related properties of monolayer WSi2N4 family. Better than transition metal dichalcogenides, the structural symmetry of WSi2N4 monolayer can be different by changing the stacking of three parts in the monolayers, resulting in a Rashba spin-orbit field. The vertical and horizontal polarization will lift the degeneration of the in-plane and out-of-plane polarized spin, respectively. The gradient of potential energy and the proportion of d orbitals play dominant roles. The in-plane orbitals contribute to the out-of-plane spin polarization, while the out-of-plane orbitals contribute to the in-plane spin polarization. The characteristics of a Rashba semiconductor can be utilized in spin/valley Hall effects, as well as the regulation of the spin direction of the valley electrons, promoting the manipulation of multiple degrees of freedom of electrons in monolayer materials.
Collapse
Affiliation(s)
- Wenzhe Zhou
- State Key Laboratory of Powder Metallurgy, and Powder Metallurgy Research Institute, Central South University, Changsha 410083, People's Republic of China
| | - Liang Wu
- School of Physics and Electronics, and Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha 410083, People's Republic of China
| | - Aolin Li
- State Key Laboratory of Powder Metallurgy, and Powder Metallurgy Research Institute, Central South University, Changsha 410083, People's Republic of China
| | - Bei Zhang
- School of Physics and Technology, Xinjiang University, Urumqi 830046, People's Republic of China
| | - Fangping Ouyang
- State Key Laboratory of Powder Metallurgy, and Powder Metallurgy Research Institute, Central South University, Changsha 410083, People's Republic of China
- School of Physics and Electronics, and Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha 410083, People's Republic of China
- School of Physics and Technology, Xinjiang University, Urumqi 830046, People's Republic of China
| |
Collapse
|
233
|
Ullah F, Lee JH, Tahir Z, Samad A, Le CT, Kim J, Kim D, Rashid MU, Lee S, Kim K, Cheong H, Jang JI, Seong MJ, Kim YS. Selective Growth and Robust Valley Polarization of Bilayer 3 R-MoS 2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57588-57596. [PMID: 34797625 DOI: 10.1021/acsami.1c16889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Noncentrosymmetric transition-metal dichalcogenides, particularly their 3R polymorphs, provide a robust setting for valleytronics. Here, we report on the selective growth of monolayers and bilayers of MoS2, which were acquired from two closely but differently oriented substrates in a chemical vapor deposition reactor. It turns out that as-grown bilayers are predominantly 3R-type, not more common 2H-type, as verified by microscopic and spectroscopic characterization. As expected, the 3R bilayer showed a significantly higher valley polarization compared with the centrosymmetric 2H bilayer, which undergoes efficient interlayer scattering across contrasting valleys because of their vertical alignment of the K and K' points in momentum space. Interestingly, the 3R bilayer showed even higher valley polarization compared with the monolayer counterpart. Moreover, the 3R bilayer reasonably maintained its valley efficiency over a very wide range of excitation power density from ∼0.16 kW/cm2 to ∼0.16 MW/cm2 at both low and room temperatures. These observations are rather surprising because valley dephasing could be more efficient in the bilayer via both interlayer and intralayer scatterings, whereas only intralayer scattering is allowed in the monolayer. The improved valley polarization of the 3R bilayer can be attributed to its indirect-gap nature, where valley-polarized excitons can relax into the valley-insensitive band edge, which otherwise scatter into the contrasting valley to effectively cancel out the initial valley polarization. Our results provide a facile route for the growth of 3R-MoS2 bilayers that could be utilized as a platform for advancing valleytronics.
Collapse
Affiliation(s)
- Farman Ullah
- Department of Physics and Energy Harvest Storage Research Center, University of Ulsan, Ulsan 44610, South Korea
| | - Je-Ho Lee
- Department of Physics, Chung-Ang University, Seoul 06974, South Korea
| | - Zeeshan Tahir
- Department of Physics and Energy Harvest Storage Research Center, University of Ulsan, Ulsan 44610, South Korea
| | - Abdus Samad
- Department of Physics and Energy Harvest Storage Research Center, University of Ulsan, Ulsan 44610, South Korea
| | - Chinh Tam Le
- Department of Physics and Energy Harvest Storage Research Center, University of Ulsan, Ulsan 44610, South Korea
| | - Jungcheol Kim
- Department of Physics, Sogang University, Seoul 04107, South Korea
| | - Donggyu Kim
- Department of Physics, Sogang University, Seoul 04107, South Korea
| | - Mamoon Ur Rashid
- Department of Physics and Energy Harvest Storage Research Center, University of Ulsan, Ulsan 44610, South Korea
| | - Sol Lee
- Department of Physics, Yonsei University, Seoul 03722, South Korea
| | - Kwanpyo Kim
- Department of Physics, Yonsei University, Seoul 03722, South Korea
| | - Hyeonsik Cheong
- Department of Physics, Sogang University, Seoul 04107, South Korea
| | - Joon I Jang
- Department of Physics, Sogang University, Seoul 04107, South Korea
| | - Maeng-Je Seong
- Department of Physics, Chung-Ang University, Seoul 06974, South Korea
| | - Yong Soo Kim
- Department of Physics and Energy Harvest Storage Research Center, University of Ulsan, Ulsan 44610, South Korea
| |
Collapse
|
234
|
Kim JM, Haque MF, Hsieh EY, Nahid SM, Zarin I, Jeong KY, So JP, Park HG, Nam S. Strain Engineering of Low-Dimensional Materials for Emerging Quantum Phenomena and Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021:e2107362. [PMID: 34866241 DOI: 10.1002/adma.202107362] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Recent discoveries of exotic physical phenomena, such as unconventional superconductivity in magic-angle twisted bilayer graphene, dissipationless Dirac fermions in topological insulators, and quantum spin liquids, have triggered tremendous interest in quantum materials. The macroscopic revelation of quantum mechanical effects in quantum materials is associated with strong electron-electron correlations in the lattice, particularly where materials have reduced dimensionality. Owing to the strong correlations and confined geometry, altering atomic spacing and crystal symmetry via strain has emerged as an effective and versatile pathway for perturbing the subtle equilibrium of quantum states. This review highlights recent advances in strain-tunable quantum phenomena and functionalities, with particular focus on low-dimensional quantum materials. Experimental strategies for strain engineering are first discussed in terms of heterogeneity and elastic reconfigurability of strain distribution. The nontrivial quantum properties of several strain-quantum coupled platforms, including 2D van der Waals materials and heterostructures, topological insulators, superconducting oxides, and metal halide perovskites, are next outlined, with current challenges and future opportunities in quantum straintronics followed. Overall, strain engineering of quantum phenomena and functionalities is a rich field for fundamental research of many-body interactions and holds substantial promise for next-generation electronics capable of ultrafast, dissipationless, and secure information processing and communications.
Collapse
Affiliation(s)
- Jin Myung Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Md Farhadul Haque
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ezekiel Y Hsieh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shahriar Muhammad Nahid
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ishrat Zarin
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kwang-Yong Jeong
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- Department of Physics, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jae-Pil So
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Hong-Gyu Park
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Republic of Korea
| | - SungWoo Nam
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
235
|
Limbu TB, Adhikari B, Song SK, Chitara B, Tang Y, Parsons GN, Yan F. Toward understanding the phase-selective growth mechanism of films and geometrically-shaped flakes of 2D MoTe 2. RSC Adv 2021; 11:38839-38848. [PMID: 35493247 PMCID: PMC9044229 DOI: 10.1039/d1ra07787b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
Two-dimensional (2D) molybdenum ditelluride (MoTe2) is an interesting material for fundamental study and applications, due to its ability to exist in different polymorphs of 2H, 1T, and 1T′, their phase change behavior, and unique electronic properties. Although much progress has been made in the growth of high-quality flakes and films of 2H and 1T′-MoTe2 phases, phase-selective growth of all three phases remains a huge challenge, due to the lack of enough information on their growth mechanism. Herein, we present a novel approach to growing films and geometrical-shaped few-layer flakes of 2D 2H-, 1T-, and 1T′-MoTe2 by atmospheric-pressure chemical vapor deposition (APCVD) and present a thorough understanding of the phase-selective growth mechanism by employing the concept of thermodynamics and chemical kinetics involved in the growth processes. Our approach involves optimization of growth parameters and understanding using thermodynamical software, HSC Chemistry. A lattice strain-mediated mechanism has been proposed to explain the phase selective growth of 2D MoTe2, and different chemical kinetics-guided strategies have been developed to grow MoTe2 flakes and films. This study investigates the phase-controlled growth of flakes and films of 2D MoTe2 by atmospheric-pressure chemical vapor deposition and presents a thorough understanding on the growth mechanism.![]()
Collapse
Affiliation(s)
- Tej B Limbu
- Department of Chemistry and Biochemistry, North Carolina Central University Durham NC 27707 USA .,Department of Physical and Applied Sciences, University of Houston-Clear Lake Houston TX 77058 USA
| | - Bikram Adhikari
- Department of Chemistry and Biochemistry, North Carolina Central University Durham NC 27707 USA
| | - Seung Keun Song
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh North Carolina 27695 USA
| | - Basant Chitara
- Department of Chemistry and Biochemistry, North Carolina Central University Durham NC 27707 USA
| | - Yongan Tang
- Department of Mathematics and Physics, North Carolina Central University Durham NC 27707 USA
| | - Gregory N Parsons
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh North Carolina 27695 USA
| | - Fei Yan
- Department of Chemistry and Biochemistry, North Carolina Central University Durham NC 27707 USA
| |
Collapse
|
236
|
Lu J, Niu G, Ren X, Bao D, Chen H, Yang H, Lin X, Du S, Gao HJ. Controllable fabrication and photocatalytic performance of nanoscale single-layer MoSe 2 islands with substantial edges on an Ag(111) substrate. NANOSCALE 2021; 13:19165-19171. [PMID: 34780595 DOI: 10.1039/d1nr05641g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) are emerging as new electrocatalysts and photocatalysts. The edge sites of 2D TMDs show high catalytic activity and are thus favored at the catalyst surface over TMD inert basal planes. However, 2D TMDs that predominantly expose edges are thermodynamically unfavorable, limiting the number of edge sites at the surface. Herein, we demonstrate a controllable synthesis strategy of single-layer 2D MoSe2 islands with a lateral size of approximately 5-12 nm on an Ag(111) substrate by pre-deposition of excess Se atoms. The surplus Se atoms react with the Ag(111) substrate and form silver selenide compounds to separate MoSe2 islands and further prevent MoSe2 islands from growing up. The nanoscale MoSe2 islands greatly increase the ratio of exposed edge sites relative to the basal plane sites, which leads to excellent photocatalytic activity for the degradation of a methylene blue (MB) organic pollutant. This work paves the way to limit the size of 2D TMDs at the nanoscale and enables new opportunities for enhancing the catalytic activity of 2D TMD materials.
Collapse
Affiliation(s)
- Jianchen Lu
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650090, P. R. China
| | - Gefei Niu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650090, P. R. China
| | - Xiao Ren
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Deliang Bao
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Hui Chen
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Haitao Yang
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Xiao Lin
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- CAS Center for Excellence in Topological Quantum Computation, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shixuan Du
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- CAS Center for Excellence in Topological Quantum Computation, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hong-Jun Gao
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- CAS Center for Excellence in Topological Quantum Computation, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
237
|
Tan C, Deng MX, Zheng G, Xiang F, Albarakati S, Algarni M, Farrar L, Alzahrani S, Partridge J, Yi JB, Hamilton AR, Wang RQ, Wang L. Spin-Momentum Locking Induced Anisotropic Magnetoresistance in Monolayer WTe 2. NANO LETTERS 2021; 21:9005-9011. [PMID: 34694117 DOI: 10.1021/acs.nanolett.1c02329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Monolayer WTe2 is predicted to be a quantum spin Hall insulator (QSHI), and its quantized edge transport has recently been demonstrated. However, one of the essential properties of a QSHI, spin-momentum locking of the helical edge states, has yet to be experimentally validated. Here, we measure and observe gate-controlled anisotropic magnetoresistance (AMR) in monolayer WTe2 devices. Electrically tuning the Fermi energy into the band gap, a large in-plane AMR is observed and the minimum of the in-plane AMR occurs when the applied magnetic field is perpendicular to the current direction. In line with the experimental observations, the theoretical predictions based on the band structure of monolayer WTe2 demonstrate that the AMR effect originates from spin-momentum locking in the helical edge states of monolayer WTe2. Our findings reveal that the spin quantization axis of the helical edge states in monolayer WTe2 can be precisely determined from AMR measurements.
Collapse
Affiliation(s)
- Cheng Tan
- School of Science and ARC Centre of Excellence in Future Low-Energy Electronics Technologies, RMIT Node, RMIT University, Melbourne, Victoria 3000, Australia
| | - Ming-Xun Deng
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, SPTE, South China Normal University, Guangzhou 510006, China
| | - Guolin Zheng
- School of Science and ARC Centre of Excellence in Future Low-Energy Electronics Technologies, RMIT Node, RMIT University, Melbourne, Victoria 3000, Australia
| | - Feixiang Xiang
- School of Physics and ARC Centre of Excellence in Future Low-Energy Electronics Technologies, UNSW Node, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Sultan Albarakati
- School of Science and ARC Centre of Excellence in Future Low-Energy Electronics Technologies, RMIT Node, RMIT University, Melbourne, Victoria 3000, Australia
| | - Meri Algarni
- School of Science and ARC Centre of Excellence in Future Low-Energy Electronics Technologies, RMIT Node, RMIT University, Melbourne, Victoria 3000, Australia
| | - Lawrence Farrar
- School of Science and ARC Centre of Excellence in Future Low-Energy Electronics Technologies, RMIT Node, RMIT University, Melbourne, Victoria 3000, Australia
| | - Saleh Alzahrani
- School of Science and ARC Centre of Excellence in Future Low-Energy Electronics Technologies, RMIT Node, RMIT University, Melbourne, Victoria 3000, Australia
| | - James Partridge
- School of Science and ARC Centre of Excellence in Future Low-Energy Electronics Technologies, RMIT Node, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jia Bao Yi
- Global Innovative Center for Advanced Nanomaterials, School of Engineering, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Alex R Hamilton
- School of Physics and ARC Centre of Excellence in Future Low-Energy Electronics Technologies, UNSW Node, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Rui-Qiang Wang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, SPTE, South China Normal University, Guangzhou 510006, China
| | - Lan Wang
- School of Science and ARC Centre of Excellence in Future Low-Energy Electronics Technologies, RMIT Node, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
238
|
Chen X, Shi Z, Tian Y, Lin P, Wu D, Li X, Dong B, Xu W, Fang X. Two-dimensional Ti 3C 2 MXene-based nanostructures for emerging optoelectronic applications. MATERIALS HORIZONS 2021; 8:2929-2963. [PMID: 34558566 DOI: 10.1039/d1mh00986a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since the first discovery of Ti3C2 in 2011, two-dimensional (2D) transition-metal carbides, carbonitrides and nitrides, known as MXenes, have attracted significant attention. Due to their outstanding electronic, optical, mechanical, and thermal properties, versatile structures and surface chemistries, Ti3C2 MXenes have emerged as new candidates with great potential for applications in optoelectronic devices, such as photovoltaics, photodetectors and photoelectrochemical devices. The excellent metallic conductivity, high anisotropic carrier mobility, good structural and chemical stabilities, high optical transmittance, excellent mechanical strength, tunable work functions, and wide range of optical absorption properties of Ti3C2 MXene nanostructures are the key to their success in a number of electronic and photonic device applications. Herein, we summarize the fundamental properties and preparation of pure Ti3C2 MXenes, functionalized Ti3C2 MXenes and their hybrid nanocomposites, as well as their optoelectronic applications. In the end, the perspective and current challenges of Ti3C2 MXenes toward the development of advanced MXene-based nanostructures are briefly discussed for future optoelectronic applications.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhifeng Shi
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Yongtao Tian
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Pei Lin
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Di Wu
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Xinjian Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Bin Dong
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China.
| | - Wen Xu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China.
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012 Changchun, China
| | - Xiaosheng Fang
- Department of Materials Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
239
|
MoTe 2 Field-Effect Transistors with Low Contact Resistance through Phase Tuning by Laser Irradiation. NANOMATERIALS 2021; 11:nano11112805. [PMID: 34835570 PMCID: PMC8620056 DOI: 10.3390/nano11112805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022]
Abstract
Due to their extraordinary electrical and physical properties, two-dimensional (2D) transition metal dichalcogenides (TMDs) are considered promising for use in next-generation electrical devices. However, the application of TMD-based devices is limited because of the Schottky barrier interface resulting from the absence of dangling bonds on the TMDs’ surface. Here, we introduce a facile phase-tuning approach for forming a homogenous interface between semiconducting hexagonal (2H) and semi-metallic monoclinic (1T′) molybdenum ditelluride (MoTe2). The formation of ohmic contacts increases the charge carrier mobility of MoTe2 field-effect transistor devices to 16.1 cm2 V−1s−1 with high reproducibility, while maintaining a high on/off current ratio by efficiently improving charge injection at the interface. The proposed method enables a simple fabrication process, local patterning, and large-area scaling for the creation of high-performance 2D electronic devices.
Collapse
|
240
|
Hernandez Ruiz K, Wang Z, Ciprian M, Zhu M, Tu R, Zhang L, Luo W, Fan Y, Jiang W. Chemical Vapor Deposition Mediated Phase Engineering for 2D Transition Metal Dichalcogenides: Strategies and Applications. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100047] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Karla Hernandez Ruiz
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Institute of Functional Materials College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Ziqian Wang
- Department of Materials Science and Engineering Johns Hopkins University Baltimore MD 21218 USA
| | - Matteo Ciprian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Institute of Functional Materials College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Institute of Functional Materials College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Rong Tu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China
| | - Lianmeng Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Institute of Functional Materials College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Yuchi Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Institute of Functional Materials College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Institute of Functional Materials College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| |
Collapse
|
241
|
He Z, Gao X, Zhang D, Lu P, Wang X, Kalaswad M, Rutherford BX, Wang H. Tailorable multifunctionalities in ultrathin 2D Bi-based layered supercell structures. NANOSCALE 2021; 13:16672-16679. [PMID: 34590640 DOI: 10.1039/d1nr04975e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) materials with robust ferromagnetic behavior have attracted great interest because of their potential applications in next-generation nanoelectronic devices. Aside from graphene and transition metal dichalcogenides, Bi-based layered oxide materials are a group of prospective candidates due to their superior room-temperature multiferroic response. Here, an ultrathin Bi3Fe2Mn2O10+δ layered supercell (BFMO322 LS) structure was deposited on an LaAlO3 (LAO) (001) substrate using pulsed laser deposition. Microstructural analysis suggests that a layered supercell (LS) structure consisting of two-layer-thick Bi-O slabs and two-layer-thick Mn/Fe-O octahedra slabs was formed on top of the pseudo-perovskite interlayer (IL). A robust saturation magnetization value of 129 and 96 emu cm-3 is achieved in a 12.3 nm thick film in the in-plane (IP) and out-of-plane (OP) directions, respectively. The ferromagnetism, dielectric permittivity, and optical bandgap of the ultrathin BFMO films can be effectively tuned by thickness and morphology variation. In addition, the anisotropy of all ultrathin BFMO films switches from OP dominating to IP dominating as the thickness increases. This study demonstrates the ultrathin BFMO film with tunable multifunctionalities as a promising candidate for novel integrated spintronic devices.
Collapse
Affiliation(s)
- Zihao He
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907-2045, USA.
| | - Xingyao Gao
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907-2045, USA
| | - Di Zhang
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907-2045, USA
| | - Ping Lu
- Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Xuejing Wang
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907-2045, USA
| | - Matias Kalaswad
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907-2045, USA.
| | - Bethany X Rutherford
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907-2045, USA
| | - Haiyan Wang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907-2045, USA.
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907-2045, USA
| |
Collapse
|
242
|
Peng C, Shi M, Li F, Wang Y, Liu X, Liu H, Li Z. Construction of 1T@2H MoS 2 heterostructures in situ from natural molybdenite with enhanced electrochemical performance for lithium-ion batteries. RSC Adv 2021; 11:33481-33489. [PMID: 35497512 PMCID: PMC9042300 DOI: 10.1039/d1ra05565h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023] Open
Abstract
Natural molybdenite, an inexpensive and naturally abundant material, can be directly used as an anode material for lithium-ion batteries. However, how to release the intrinsic capacity of natural molybdenite to achieve high rate performance and high capacity is still a challenge. Herein, we introduce an innovative, effective, and one-step approach to preparing a type of heterostructure material containing 1T@2H MoS2 crafted from insertion and expansion of natural molybdenite. The metallic 1T phase formed in situ can significantly improve the electronic conductivity of MoS2. At the same time, 1T@2H MoS2 heterostructures can provide an internal electric field (E-field) to accelerate the migration rate of electrons and ions, promote the charge transfer behaviour, and ensure the reaction reversibility and lithium storage kinetics. Such worm-like 1T@2H MoS2 heterostructures also have a large specific surface area and a large number of defects, which will help shorten the lithium-ion transmission distance and provide more ion transmission channels. As a result, it exhibits a discharge capacity of 788 mA h g-1 remarkably at 100 mA g-1 after 485 cycles and stable cycling performance. It also shows excellent magnification performance of 727 mA h g-1 at 1 A g-1, compared to molybdenite concentrate. Briefly, this work's heterostructure architectures open up a new avenue for applying natural molybdenite in lithium-ion batteries, which has the potential to achieve large-scale commercial applications.
Collapse
Affiliation(s)
- ChengLong Peng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Mingming Shi
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Fei Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Yang Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Xueqin Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - HuaSheng Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Zhen Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| |
Collapse
|
243
|
Zhang CG, Ji WX, Li P, Zhang CW, Wang PJ. Tuning the electronic and optical properties of two-dimensional AgBiP2Se6 and AgInP2Se6 Janus monolayers. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
244
|
Niu K, Weng M, Li S, Guo Z, Wang G, Han M, Pan F, Lin J. Direct Visualization of Large-Scale Intrinsic Atomic Lattice Structure and Its Collective Anisotropy in Air-Sensitive Monolayer 1T'- WTe 2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101563. [PMID: 34467674 PMCID: PMC8529427 DOI: 10.1002/advs.202101563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Probing large-scale intrinsic structure of air-sensitive 2D materials with atomic resolution is so far challenging due to their rapid oxidization and contamination. Here, by keeping the whole experiment including growth, transfer, and characterizations in an interconnected atmosphere-control environment, the large-scale intact lattice structure of air-sensitive monolayer 1T'-WTe2 is directly visualized by atom-resolved scanning transmission electron microscopy. Benefit from the large-scale atomic mapping, collective lattice distortions are further unveiled due to the presence of anisotropic rippling, which propagates perpendicular to only one of the preferential lattice planes in the same WTe2 monolayer. Such anisotropic lattice rippling modulates the intrinsic point defect (Te vacancy) distribution, in which they aggregate at the constrictive inner side of the undulating structure, presumably due to the ripple-induced asymmetric strain as elaborated by density functional theory. The results pave the way for atomic characterizations and defect engineering of air-sensitive 2D layered materials.
Collapse
Affiliation(s)
- Kangdi Niu
- Department of PhysicsSouthern University of Science and TechnologyShenzhen518055China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and DevicesSouthern University of Science and TechnologyShenzhen518055China
| | - Mouyi Weng
- School of Advanced MaterialsPeking UniversityShenzhen Graduate SchoolShenzhen518055China
| | - Songge Li
- Department of PhysicsSouthern University of Science and TechnologyShenzhen518055China
| | - Zenglong Guo
- Department of PhysicsSouthern University of Science and TechnologyShenzhen518055China
| | - Gang Wang
- Department of PhysicsSouthern University of Science and TechnologyShenzhen518055China
| | - Mengjiao Han
- Department of PhysicsSouthern University of Science and TechnologyShenzhen518055China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and DevicesSouthern University of Science and TechnologyShenzhen518055China
| | - Feng Pan
- School of Advanced MaterialsPeking UniversityShenzhen Graduate SchoolShenzhen518055China
| | - Junhao Lin
- Department of PhysicsSouthern University of Science and TechnologyShenzhen518055China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and DevicesSouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
245
|
Chen K, Deng S, Chen E, Wen S, Ouyang T, Wang X, Zhan R, Cai J, Wan X, Chen H. Optimization Strategies for High Photoluminescence Quantum Yield of Monolayer Chemical Vapor Deposition Transition Metal Dichalcogenides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44814-44823. [PMID: 34494826 DOI: 10.1021/acsami.1c14519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemical vapor deposition (CVD) is a promising method to obtain monolayer transition metal dichalcogenides (TMDCs) with high quality and enough size to meet the requirements of practical photoelectric devices. However, the as-grown monolayers often exhibit a lower PL performance due to the stress between the as-grown TMDCs flakes and the substrate. Therefore, finding a facile method to effectively promote the photoluminescence quantum yield (PL QY) of CVD monolayer TMDCs with a clean surface is highly desirable for practical applications. In this work, based on the CVD monolayers MoS2 and MoSe2, the effect of various stress relaxation methods on the TMDCs PL enhancement is systemically studied. By comparing the different kinds of volatile solution treatment processes, as well as the traditional transfer process, it can be found that the volatile solution with a moderate volatilization rate such as ethanol or IPA is a preferred option to improve the PL performance of the CVD monolayer TMDCs, which also surpasses the traditional transfer method by avoiding wrinkles, defects, and contamination to the samples. PL QY of ethanol-treated CVD samples could increase by 6 times on average. Significantly, PL QY of CVD MoSe2 treated by ethanol can reach ∼16%, which is at the forefront of the previous reports of 2D MoSe2. Our study demonstrated an optimized method to enhance the PL QY of CVD monolayer TMDCs, which would facilitate TMDCs optoelectronics.
Collapse
Affiliation(s)
- Kun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Shiyu Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Enzi Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Shiya Wen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Tenghui Ouyang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Ximiao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Runze Zhan
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Jixing Cai
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Xi Wan
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
| | - Huanjun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
246
|
Jing R, Shao Y, Fei Z, Lo CFB, Vitalone RA, Ruta FL, Staunton J, Zheng WJC, Mcleod AS, Sun Z, Jiang BY, Chen X, Fogler MM, Millis AJ, Liu M, Cobden DH, Xu X, Basov DN. Terahertz response of monolayer and few-layer WTe 2 at the nanoscale. Nat Commun 2021; 12:5594. [PMID: 34552072 PMCID: PMC8458490 DOI: 10.1038/s41467-021-23933-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/17/2021] [Indexed: 02/08/2023] Open
Abstract
Tungsten ditelluride (WTe2) is an atomically layered transition metal dichalcogenide whose physical properties change systematically from monolayer to bilayer and few-layer versions. In this report, we use apertureless scattering-type near-field optical microscopy operating at Terahertz (THz) frequencies and cryogenic temperatures to study the distinct THz range electromagnetic responses of mono-, bi- and trilayer WTe2 in the same multi-terraced micro-crystal. THz nano-images of monolayer terraces uncovered weakly insulating behavior that is consistent with transport measurements. The near-field signal on bilayer regions shows moderate metallicity with negligible temperature dependence. Subdiffractional THz imaging data together with theoretical calculations involving thermally activated carriers favor the semimetal scenario with [Formula: see text] over the semiconductor scenario for bilayer WTe2. Also, we observed clear metallic behavior of the near-field signal on trilayer regions. Our data are consistent with the existence of surface plasmon polaritons in the THz range confined to trilayer terraces in our specimens. Finally, data for microcrystals up to 12 layers thick reveal how the response of a few-layer WTe2 asymptotically approaches the bulk limit.
Collapse
Affiliation(s)
- Ran Jing
- Department of Physics, Columbia University, New York, NY, USA.
| | - Yinming Shao
- Department of Physics, Columbia University, New York, NY, USA
| | - Zaiyao Fei
- Department of Physics, University of Washington, Seattle, WA, USA
| | | | | | - Francesco L Ruta
- Department of Physics, Columbia University, New York, NY, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
| | - John Staunton
- Department of Physics, Columbia University, New York, NY, USA
| | | | | | - Zhiyuan Sun
- Department of Physics, Columbia University, New York, NY, USA
| | - Bor-Yuan Jiang
- Department of Physics, University of California, San Diego, La Jolla, CA, USA
| | - Xinzhong Chen
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - Michael M Fogler
- Department of Physics, University of California, San Diego, La Jolla, CA, USA
| | - Andrew J Millis
- Department of Physics, Columbia University, New York, NY, USA
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY, USA
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - David H Cobden
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Xiaodong Xu
- Department of Physics, University of Washington, Seattle, WA, USA
- Department of Material Science and Engineering, University of Washington, Seattle, WA, USA
| | - D N Basov
- Department of Physics, Columbia University, New York, NY, USA
| |
Collapse
|
247
|
van Thiel TC, Brzezicki W, Autieri C, Hortensius JR, Afanasiev D, Gauquelin N, Jannis D, Janssen N, Groenendijk DJ, Fatermans J, Van Aert S, Verbeeck J, Cuoco M, Caviglia AD. Coupling Charge and Topological Reconstructions at Polar Oxide Interfaces. PHYSICAL REVIEW LETTERS 2021; 127:127202. [PMID: 34597094 DOI: 10.1103/physrevlett.127.127202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
In oxide heterostructures, different materials are integrated into a single artificial crystal, resulting in a breaking of inversion symmetry across the heterointerfaces. A notable example is the interface between polar and nonpolar materials, where valence discontinuities lead to otherwise inaccessible charge and spin states. This approach paved the way for the discovery of numerous unconventional properties absent in the bulk constituents. However, control of the geometric structure of the electronic wave functions in correlated oxides remains an open challenge. Here, we create heterostructures consisting of ultrathin SrRuO_{3}, an itinerant ferromagnet hosting momentum-space sources of Berry curvature, and LaAlO_{3}, a polar wide-band-gap insulator. Transmission electron microscopy reveals an atomically sharp LaO/RuO_{2}/SrO interface configuration, leading to excess charge being pinned near the LaAlO_{3}/SrRuO_{3} interface. We demonstrate through magneto-optical characterization, theoretical calculations and transport measurements that the real-space charge reconstruction drives a reorganization of the topological charges in the band structure, thereby modifying the momentum-space Berry curvature in SrRuO_{3}. Our results illustrate how the topological and magnetic features of oxides can be manipulated by engineering charge discontinuities at oxide interfaces.
Collapse
Affiliation(s)
- T C van Thiel
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628CJ Delft, Netherlands
| | - W Brzezicki
- International Research Centre Magtop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland
- Institute of Theoretical Physics, Jagiellonian University, ulica S. Łojasiewicza 11, PL-30348 Kraków, Poland
| | - C Autieri
- International Research Centre Magtop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland
| | - J R Hortensius
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628CJ Delft, Netherlands
| | - D Afanasiev
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628CJ Delft, Netherlands
| | - N Gauquelin
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - D Jannis
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - N Janssen
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628CJ Delft, Netherlands
| | - D J Groenendijk
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628CJ Delft, Netherlands
| | - J Fatermans
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- Imec-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - S Van Aert
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - J Verbeeck
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - M Cuoco
- SPIN-CNR, IT-84084 Fisciano (SA), Italy
- Dipartimento di Fisica "E. R. Caianiello", Università di Salerno, IT-84084 Fisciano (SA), Italy
| | - A D Caviglia
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628CJ Delft, Netherlands
| |
Collapse
|
248
|
Shi B, Tang H, Song Z, Li J, Xu L, Liu S, Yang J, Sun X, Quhe R, Yang J, Lu J. Phase transition and topological transistors based on monolayer Na 3Bi nanoribbons. NANOSCALE 2021; 13:15048-15057. [PMID: 34533149 DOI: 10.1039/d1nr02221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, a topological-to-trivial insulator quantum-phase transition induced by an electric field has been experimentally reported in monolayer (ML) and bilayer (BL) Na3Bi. A narrow ML/BL Na3Bi nanoribbon is necessary to fabricate a high-performance topological transistor. By using the density functional theory method, we found that wider ML Na3Bi nanoribbons (>7 nm) are topological insulators, featured by insulating bulk states and dissipationless metallic edge states. However, a bandgap is opened for extremely narrow ML Na3Bi nanoribbons (<4 nm) due to the quantum confinement effect, and its size increases with the decrease in width. In the topological insulating ML Na3Bi nanoribbons, a bandgap is opened in the metallic edge states under an external displacement electric field, with strength (∼1.0 V Å-1) much smaller than the reopened displacement electric field in ML Na3Bi (3 V Å-1). An ultrashort ML Na3Bi zigzag nanoribbon topological transistor switched by the electrical field was calculated using first-principles quantum transport simulation. It shows an on/off current/conductance ratio of 4-71 and a large on-state current of 1090 μA μm-1. Therefore, a proof of the concept of topological transistors is presented.
Collapse
Affiliation(s)
- Bowen Shi
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China.
| | - Hao Tang
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China.
| | - Zhigang Song
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jingzhen Li
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China.
| | - Lianqiang Xu
- School of Physics and Electronic Information Engineering, Engineering Research Center of Nanostructure and Functional Materials, Ningxia Normal University, Guyuan, Ningxia 756000, P. R. China
| | - Shiqi Liu
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China.
| | - Jie Yang
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China.
| | - Xiaotian Sun
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Ruge Quhe
- State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China
| | - Jinbo Yang
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China.
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, P. R. China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MEMD), Beijing 100871, P. R. China
| | - Jing Lu
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China.
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, P. R. China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MEMD), Beijing 100871, P. R. China
- Peking University Yangtze Delta Institute of Optoelectronics, Peking University, Nantong 226010, P. R. China
| |
Collapse
|
249
|
Zhang X, Su G, Lu J, Yang W, Zhuang W, Han K, Wang X, Wan Y, Yu X, Yang P. Centimeter-Scale Few-Layer PdS 2: Fabrication and Physical Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43063-43074. [PMID: 34473488 DOI: 10.1021/acsami.1c11824] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To develop next-generation electronic devices, novel semiconductive materials are urgently required. The transition metal dichalcogenides (TMDs) hold the promise of next generation of semiconductor materials for emerging electronic applications. As a member of the group-10 TMDs, PdS2 has a notable layer-number-dependent band structure and tremendously high carrier mobility at room temperature. Here, we demonstrate the experimental realization of centimeter-scale synthesis of the few-layer PdS2 by the combination of physical vapor deposition (PVD) and chemical vapor deposition (CVD) methods. For the first time, the optical anisotropic properties of the few-layer PdS2 were investigated through angle-resolved polarized Raman spectroscopy. Also, the evolution of Raman spectra was studied depending on the temperature in the range of 12-300 K. To further understand the electronic properties of the few-layer PdS2, the field-effect transistor (FET) devices were fabricated and investigated. The electronic measurements of such FET devices reveal that the PdS2 materials exhibit a tunable ambipolar transport mechanism with field-effect mobility of up to ∼388 cm2 V-1 s-1 and the on/off ratio of ∼800, which were not reported before in the literature. To well understand the experimental results, the electronic structure of PdS2 was determined using density functional theory (DFT) calculations. These excellent physical properties are very helpful in developing high-performance opto-electronic applications.
Collapse
Affiliation(s)
- Xudong Zhang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Guowen Su
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Jiangwei Lu
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Wangfan Yang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Wenbo Zhuang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Kai Han
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Xiao Wang
- Faculty of Materials Science & Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Yanfen Wan
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Xiaohua Yu
- Faculty of Materials Science & Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Peng Yang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
250
|
Gao J, Ding W, Zhang S, Zhang Z, Cui P. Coexistence of Superconductivity and Nontrivial Band Topology in Monolayered Cobalt Pnictides on SrTiO 3. NANO LETTERS 2021; 21:7396-7404. [PMID: 34431678 DOI: 10.1021/acs.nanolett.1c02830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As an intrinsically layered material, FeSe has been extensively explored for potentially revealing the underlying mechanisms of high transition temperature (high-Tc) superconductivity and realizing topological superconductivity and Majorana zero modes. Here we use first-principles approaches to identify that the cobalt pnictides of CoX (X = As, Sb, Bi), none of which is a layered material in bulk form. Nevertheless, all can be stabilized as monolayered systems either in freestanding form or supported on the SrTiO3(001) substrate. We further show that each of the cobalt pnictides may potentially harbor high-Tc superconductivity beyond the Cu- and Fe-based superconducting families, and the underlying mechanism is inherently tied to their isovalency nature with the FeSe monolayer. Most strikingly, each of the monolayered CoX's on SrTiO3 is shown to be topologically nontrivial, and our findings provide promising new platforms for realizing topological superconductors in the two-dimensional limit.
Collapse
Affiliation(s)
- Jiaqing Gao
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at Microscale (HFNL), and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenjun Ding
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at Microscale (HFNL), and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shunhong Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at Microscale (HFNL), and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhenyu Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at Microscale (HFNL), and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ping Cui
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at Microscale (HFNL), and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|