201
|
Ozaki-Kuroda K, Yamamoto Y, Nohara H, Kinoshita M, Fujiwara T, Irie K, Takai Y. Dynamic localization and function of Bni1p at the sites of directed growth in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:827-39. [PMID: 11154270 PMCID: PMC86674 DOI: 10.1128/mcb.21.3.827-839.2001] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formin homology (FH) proteins are implicated in cell polarization and cytokinesis through actin organization. There are two FH proteins in the yeast Saccharomyces cerevisiae, Bni1p and Bnr1p. Bni1p physically interacts with Rho family small G proteins (Rho1p and Cdc42p), actin, two actin-binding proteins (profilin and Bud6p), and a polarity protein (Spa2p). Here we analyzed the in vivo localization of Bni1p by using a time-lapse imaging system and investigated the regulatory mechanisms of Bni1p localization and function in relation to these interacting proteins. Bni1p fused with green fluorescent protein localized to the sites of cell growth throughout the cell cycle. In a small-budded cell, Bni1p moved along the bud cortex. This dynamic localization of Bni1p coincided with the apparent site of bud growth. A bni1-disrupted cell showed a defect in directed growth to the pre-bud site and to the bud tip (apical growth), causing its abnormally spherical cell shape and thick bud neck. Bni1p localization at the bud tips was absolutely dependent on Cdc42p, largely dependent on Spa2p and actin filaments, and partly dependent on Bud6p, but scarcely dependent on polarized cortical actin patches or Rho1p. These results indicate that Bni1p regulates polarized growth within the bud through its unique and dynamic pattern of localization, dependent on multiple factors, including Cdc42p, Spa2p, Bud6p, and the actin cytoskeleton.
Collapse
Affiliation(s)
- K Ozaki-Kuroda
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
202
|
Lu B, Roegiers F, Jan LY, Jan YN. Adherens junctions inhibit asymmetric division in the Drosophila epithelium. Nature 2001; 409:522-5. [PMID: 11206549 DOI: 10.1038/35054077] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2000] [Accepted: 11/20/2000] [Indexed: 11/08/2022]
Abstract
Asymmetric division is a fundamental mechanism for generating cellular diversity. In the central nervous system of Drosophila, neural progenitor cells called neuroblasts undergo asymmetric division along the apical-basal cellular axis. Neuroblasts originate from neuroepithelial cells, which are polarized along the apical-basal axis and divide symmetrically along the planar axis. The asymmetry of neuroblasts might arise from neuroblast-specific expression of the proteins required for asymmetric division. Alternatively, both neuroblasts and neuroepithelial cells could be capable of dividing asymmetrically, but in neuroepithelial cells other polarity cues might prevent asymmetric division. Here we show that by disrupting adherens junctions we can convert the symmetric epithelial division into asymmetric division. We further confirm that the adenomatous polyposis coli (APC) tumour suppressor protein is recruited to adherens junctions, and demonstrate that both APC and microtubule-associated EB1 homologues are required for the symmetric epithelial division along the planar axis. Our results indicate that neuroepithelial cells have all the necessary components to execute asymmetric division, but that this pathway is normally overridden by the planar polarity cue provided by adherens junctions.
Collapse
Affiliation(s)
- B Lu
- Howard Hughes Medical Institute and Department of Physiology, University of California at San Francisco, 94143-0725, USA
| | | | | | | |
Collapse
|
203
|
Farkasovsky M, Küntzel H. Cortical Num1p interacts with the dynein intermediate chain Pac11p and cytoplasmic microtubules in budding yeast. J Cell Biol 2001; 152:251-62. [PMID: 11266443 PMCID: PMC2199608 DOI: 10.1083/jcb.152.2.251] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Num1p, a cortical 313-kD protein, controls cytoplasmic microtubule (cMT) functions and nuclear migration through the bud neck in anaphase cells. A green fluorescent protein (GFP)-Num1p fusion protein localizes at the bud tip and the distal mother pole of living cells, apparently forming cMT capture sites at late anaphase. In addition, galactose-induced GFP-Num1p is seen at the bud neck and in lateral regions of the mother cortex. The bud tip location of Num1p depends on Bni1p but does not require Kar9p, Dyn1p, or cMTs, whereas cMT contacts with polar Num1p dots are reduced in cells lacking Dyn1p. Num1p associates with the dynein intermediate chain Pac11p in the presence of Dyn1p, and with the alpha-tubulin Tub3p, as shown by coimmune precipitation of tagged proteins. Num1p also forms a complex with Bni1p and Kar9p, although Num1p is not required for Bni1p- and Kar9p-dependent nuclear migration to the bud neck in preanaphase cells. Our data suggest that Num1p controls nuclear migration during late anaphase by forming dynein-interacting cortical cMT capture sites at both cellular poles. In addition, Num1p may transiently cooperate with an associated Bni1p-Kar9p complex at the bud tip of early anaphase cells.
Collapse
Affiliation(s)
- Marian Farkasovsky
- Max-Planck Institute for Experimental Medicine, D-37075 Göttingen, Germany
| | - Hans Küntzel
- Max-Planck Institute for Experimental Medicine, D-37075 Göttingen, Germany
| |
Collapse
|
204
|
Abstract
Accurate distribution of the chromosomes in dividing cells requires coupling of cellular polarity cues with both the orientation of the mitotic spindle and cell cycle progression. Work in budding yeast has demonstrated that cytoplasmic dynein and the kinesin Kip3p define redundant pathways that ensure proper spindle orientation. Furthermore, it has been shown that the Kip3p pathway components Kar9p and Bim1p (Yeb1p) form a complex that provides a molecular link between cortical polarity cues and spindle microtubules. Recently, other studies indicated that the cortical localization of Kar9p depends upon actin cables and Myo2p, a type V myosin. In addition, a BUB2-dependent cell cycle checkpoint has been described that inhibits the mitotic exit network and cytokinesis until proper centrosome position is achieved. Combined, these studies provide molecular insight into how cells link cellular polarity, spindle position and cell cycle progression.
Collapse
Affiliation(s)
- S C Schuyler
- Department of Pediatric Oncology, The Dana-Farber Cancer Institute and Pediatric Hematology, The Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
205
|
Abstract
The MAPRE genes encode the EB1 family proteins. The yeast EB1 protein had been shown to play important roles in microtubule dynamic regulation, cytokinesis, mitotic spindle positioning, and episome segregation. To facilitate functional studies of mammalian EB1 family proteins, we characterized the human MAPRE genes (MAPRE1, MAPRE2, and MAPRE3) and their proteins (EB1, RP1, and EBF3). We found that the three MAPRE genes had similar genomic structures but were on different chromosomes. We showed that EB1 family proteins appeared to be expressed ubiquitously. We identified two EBF3 proteins, which were encoded by alternatively spliced MAPRE3 mRNAs. We demonstrated that there were also two RP1 proteins, which were products of translation from different initiation codons. We showed that the three EB1 family proteins had different abilities to interact with APC in vitro, and we provided the first direct evidence for the association between endogenous EB1 and APC.
Collapse
Affiliation(s)
- L K Su
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | |
Collapse
|
206
|
Cheeseman IM, Enquist-Newman M, Müller-Reichert T, Drubin DG, Barnes G. Mitotic spindle integrity and kinetochore function linked by the Duo1p/Dam1p complex. J Cell Biol 2001; 152:197-212. [PMID: 11149931 PMCID: PMC2193660 DOI: 10.1083/jcb.152.1.197] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2000] [Accepted: 11/17/2000] [Indexed: 11/22/2022] Open
Abstract
Duo1p and Dam1p were previously identified as spindle proteins in the budding yeast, Saccharomyces cerevisiae. Here, analyses of a diverse collection of duo1 and dam1 alleles were used to develop a deeper understanding of the functions and interactions of Duo1p and Dam1p. Based on the similarity of mutant phenotypes, genetic interactions between duo1 and dam1 alleles, interdependent localization to the mitotic spindle, and Duo1p/Dam1p coimmunoprecipitation from yeast protein extracts, these analyses indicated that Duo1p and Dam1p perform a shared function in vivo as components of a protein complex. Duo1p and Dam1p are not required to assemble bipolar spindles, but they are required to maintain metaphase and anaphase spindle integrity. Immunofluorescence and electron microscopy of duo1 and dam1 mutant spindles revealed a diverse variety of spindle defects. Our results also indicate a second, previously unidentified, role for the Duo1p/Dam1p complex. duo1 and dam1 mutants show high rates of chromosome missegregation, premature anaphase events while arrested in metaphase, and genetic interactions with a subset of kinetochore components consistent with a role in kinetochore function. In addition, Duo1p and Dam1p localize to kinetochores in chromosome spreads, suggesting that this complex may serve as a link between the kinetochore and the mitotic spindle.
Collapse
Affiliation(s)
- Iain M. Cheeseman
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720
| | - Maria Enquist-Newman
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720
| | - Thomas Müller-Reichert
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720
| | - David G. Drubin
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720
| | - Georjana Barnes
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720
| |
Collapse
|
207
|
Bellaïche Y, Gho M, Kaltschmidt JA, Brand AH, Schweisguth F. Frizzled regulates localization of cell-fate determinants and mitotic spindle rotation during asymmetric cell division. Nat Cell Biol 2001; 3:50-7. [PMID: 11146626 DOI: 10.1038/35050558] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell-fate diversity is generated in part by the unequal segregation of cell-fate determinants during asymmetric cell divisions. In the Drosophila pupa, the pI sense organ precursor cell is polarized along the anterior-posterior axis of the fly and divides asymmetrically to generate a posterior pIIa cell and an anterior pIIb cell. The anterior pIIb cell specifically inherits the determinant Numb and the adaptor protein Partner of Numb (Pon). By labelling both the Pon crescent and the microtubules in living pupae, we show that determinants localize at the anterior cortex before mitotic-spindle formation, and that the spindle forms with random orientation and rotates to line up with the Pon crescent. By imaging living frizzled (fz) mutant pupae we show that Fz regulates the orientation of the polarity axis of pI, the initiation of spindle rotation and the unequal partitioning of determinants. We conclude that Fz participates in establishing the polarity of pI.
Collapse
Affiliation(s)
- Y Bellaïche
- Ecole Normale Supérieure, UMR 8544, 46, rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
208
|
Abstract
In all eukaryotes, a microtubule-based structure known as the spindle is responsible for accurate chromosome segregation during cell division. Spindle assembly and function require localized regulation of microtubule dynamics and the activity of a variety of microtubule-based motor proteins. Recent work has begun to uncover the molecular mechanisms that underpin this process. Here we describe the structural and dynamic properties of the spindle, and introduce the current concepts regarding how a bipolar spindle is assembled and how it functions to segregate chromosomes.
Collapse
Affiliation(s)
- T Wittmann
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
209
|
Roegiers F, Younger-Shepherd S, Jan LY, Jan YN. Two types of asymmetric divisions in the Drosophila sensory organ precursor cell lineage. Nat Cell Biol 2001; 3:58-67. [PMID: 11146627 DOI: 10.1038/35050568] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Asymmetric partitioning of cell-fate determinants during development requires coordinating the positioning of these determinants with orientation of the mitotic spindle. In the Drosophila peripheral nervous system, sensory organ progenitor cells (SOPs) undergo several rounds of division to produce five cells that give rise to a complete sensory organ. Here we have observed the asymmetric divisions that give rise to these cells in the developing pupae using green fluorescent protein fusion proteins. We find that spindle orientation and determinant localization are tightly coordinated at each division. Furthermore, we find that two types of asymmetric divisions exist within the sensory organ precursor cell lineage: the anterior-posterior pI cell-type division, where the spindle remains symmetric throughout mitosis, and the strikingly neuroblast-like apical-basal division of the pIIb cell, where the spindle exhibits a strong asymmetry at anaphase. In both these divisions, the spindle reorientates to position itself perpendicular to the region of the cortex containing the determinant. On the basis of these observations, we propose that two distinct mechanisms for controlling asymmetric cell divisions occur within the same lineage in the developing peripheral nervous system in Drosophila.
Collapse
Affiliation(s)
- F Roegiers
- Howard Hughes Medical Institute, Departments of Physiology and Biochemistry, University of California, San Francisco, California 94143-0725, USA
| | | | | | | |
Collapse
|
210
|
Niethammer M, Smith DS, Ayala R, Peng J, Ko J, Lee MS, Morabito M, Tsai LH. NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 2000; 28:697-711. [PMID: 11163260 DOI: 10.1016/s0896-6273(00)00147-1] [Citation(s) in RCA: 382] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Disruption of one allele of the LIS1 gene causes a severe developmental brain abnormality, type I lissencephaly. In Aspergillus nidulans, the LIS1 homolog, NUDF, and cytoplasmic dynein are genetically linked and regulate nuclear movements during hyphal growth. Recently, we demonstrated that mammalian LIS1 regulates dynein functions. Here we characterize NUDEL, a novel LIS1-interacting protein with sequence homology to gene products also implicated in nuclear distribution in fungi. Like LIS1, NUDEL is robustly expressed in brain, enriched at centrosomes and neuronal growth cones, and interacts with cytoplasmic dynein. Furthermore, NUDEL is a substrate of Cdk5, a kinase known to be critical during neuronal migration. Inhibition of Cdk5 modifies NUDEL distribution in neurons and affects neuritic morphology. Our findings point to cross-talk between two prominent pathways that regulate neuronal migration.
Collapse
Affiliation(s)
- M Niethammer
- Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, Massachussetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
211
|
Miller KG, Rand JB. A role for RIC-8 (Synembryn) and GOA-1 (G(o)alpha) in regulating a subset of centrosome movements during early embryogenesis in Caenorhabditis elegans. Genetics 2000; 156:1649-60. [PMID: 11102364 PMCID: PMC1461398 DOI: 10.1093/genetics/156.4.1649] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RIC-8 (synembryn) and GOA-1 (G(o)alpha) are key components of a signaling network that regulates neurotransmitter secretion in Caenorhabditis elegans. Here we show that ric-8 and goa-1 reduction of function mutants exhibit partial embryonic lethality. Through Nomarski analysis we show that goa-1 and ric-8 mutant embryos exhibit defects in multiple events that involve centrosomes, including one-cell posterior centrosome rocking, P(1) centrosome flattening, mitotic spindle alignment, and nuclear migration. In ric-8 reduction of function backgrounds, the embryonic lethality, spindle misalignments and delayed nuclear migration are strongly enhanced by a 50% reduction in maternal goa-1 gene dosage. Several other microfilament- and microtubule-mediated events, as well as overall embryonic polarity, appear unperturbed in the mutants. In addition, our results suggest that RIC-8 and GOA-1 do not have roles in centrosome replication, in the diametric movements of daughter centrosomes along the nuclear membrane, or in the extension of microtubules from centrosomes. Through immunostaining we show that GOA-1 (G(o)alpha) localizes to cell cortices as well as near centrosomes. Our results demonstrate that two components of a neuronal signal transduction pathway also play a role in centrosome movements during early embryogenesis.
Collapse
Affiliation(s)
- K G Miller
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | |
Collapse
|
212
|
Beach DL, Thibodeaux J, Maddox P, Yeh E, Bloom K. The role of the proteins Kar9 and Myo2 in orienting the mitotic spindle of budding yeast. Curr Biol 2000; 10:1497-506. [PMID: 11114516 DOI: 10.1016/s0960-9822(00)00837-x] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Two genetic 'pathways' contribute to the fidelity of nuclear segregation during the process of budding in the yeast Saccharomyces cerevisiae. An early pathway, involving Kar9p and other proteins, orients the mitotic spindle along the mother-bud axis. Upon the onset of anaphase, cytoplasmic dynein provides the motive force for nuclear movement into the bud. Loss of either pathway results in nuclear-migration defects; loss of both is lethal. Here, to visualize the functional steps leading to correct spindle orientation along the mother-bud axis, we imaged live yeast cells expressing Kar9p and dynein as green fluorescent protein fusions. RESULTS Transport of Kar9p into the bud was found to require the myosin Myo2p. Kar9p interacted with microtubules through the microtubule-binding protein Bim1p and facilitated microtubule penetration into the bud. Once microtubules entered the bud, Kar9p provided a platform for microtubule capture at the bud cortex. Kar9p was also observed at sites of microtubule shortening in the bud, suggesting that Kar9p couples microtubule shortening to nuclear migration. CONCLUSIONS Thus, Kar9p provides a key link between the actin cytoskeleton and microtubules early in the cell cycle. A cooperative mechanism between Kar9p and Myo2p facilitates the pre-anaphase orientation of the spindle. Later, Kar9p couples microtubule disassembly with nuclear migration.
Collapse
Affiliation(s)
- D L Beach
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | | | | | | | | |
Collapse
|
213
|
Infante AS, Stein MS, Zhai Y, Borisy GG, Gundersen GG. Detyrosinated (Glu) microtubules are stabilized by an ATP-sensitive plus-end cap. J Cell Sci 2000; 113 ( Pt 22):3907-19. [PMID: 11058078 DOI: 10.1242/jcs.113.22.3907] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Many cell types contain a subset of long-lived, ‘stable’ microtubules that differ from dynamic microtubules in that they are enriched in post-translationally detyrosinated tubulin (Glu-tubulin). Elevated Glu tubulin does not stabilize the microtubules and the mechanism for the stability of Glu microtubules is not known. We used detergent-extracted cell models to investigate the nature of Glu microtubule stability. In these cell models, Glu microtubules did not incorporate exogenously added tubulin subunits on their distal ends, while >70% of the bulk microtubules did. Ca(2+)-generated fragments of Glu microtubules incorporated tubulin, showing that Glu microtubule ends are capped. Consistent with this, Glu microtubules in cell models were resistant to dilution-induced breakdown. Known microtubule end-associated proteins (EB1, APC, p150(Glued) and vinculin focal adhesions) were not localized on Glu microtubule ends. ATP, but not nonhydrolyzable analogues, induced depolymerization of Glu microtubules in cell models. Timelapse and photobleaching studies showed that ATP triggered subunit loss from the plus end. ATP breakdown of Glu microtubules was inhibited by AMP-PNP and vanadate, but not by kinase or other inhibitors. Additional experiments showed that conventional kinesin or kif3 were not involved in Glu microtubule capping. We conclude that Glu microtubules are stabilized by a plus-end cap that includes an ATPase with properties similar to kinesins.
Collapse
Affiliation(s)
- A S Infante
- Integrated Program in Cellular, Molecular and Biophysical Studies and Department of Anatomy and Cell Biology, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
214
|
Yeh E, Yang C, Chin E, Maddox P, Salmon ED, Lew DJ, Bloom K. Dynamic positioning of mitotic spindles in yeast: role of microtubule motors and cortical determinants. Mol Biol Cell 2000; 11:3949-61. [PMID: 11071919 PMCID: PMC15049 DOI: 10.1091/mbc.11.11.3949] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, movement of the mitotic spindle to a predetermined cleavage plane at the bud neck is essential for partitioning chromosomes into the mother and daughter cells. Astral microtubule dynamics are critical to the mechanism that ensures nuclear migration to the bud neck. The nucleus moves in the opposite direction of astral microtubule growth in the mother cell, apparently being "pushed" by microtubule contacts at the cortex. In contrast, microtubules growing toward the neck and within the bud promote nuclear movement in the same direction of microtubule growth, thus "pulling" the nucleus toward the bud neck. Failure of "pulling" is evident in cells lacking Bud6p, Bni1p, Kar9p, or the kinesin homolog, Kip3p. As a consequence, there is a loss of asymmetry in spindle pole body segregation into the bud. The cytoplasmic motor protein, dynein, is not required for nuclear movement to the neck; rather, it has been postulated to contribute to spindle elongation through the neck. In the absence of KAR9, dynein-dependent spindle oscillations are evident before anaphase onset, as are postanaphase dynein-dependent pulling forces that exceed the velocity of wild-type spindle elongation threefold. In addition, dynein-mediated forces on astral microtubules are sufficient to segregate a 2N chromosome set through the neck in the absence of spindle elongation, but cytoplasmic kinesins are not. These observations support a model in which spindle polarity determinants (BUD6, BNI1, KAR9) and cytoplasmic kinesin (KIP3) provide directional cues for spindle orientation to the bud while restraining the spindle to the neck. Cytoplasmic dynein is attenuated by these spindle polarity determinants and kinesin until anaphase onset, when dynein directs spindle elongation to distal points in the mother and bud.
Collapse
Affiliation(s)
- E Yeh
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA
| | | | | | | | | | | | | |
Collapse
|
215
|
Segal M, Bloom K, Reed SI. Bud6 directs sequential microtubule interactions with the bud tip and bud neck during spindle morphogenesis in Saccharomyces cerevisiae. Mol Biol Cell 2000; 11:3689-702. [PMID: 11071900 PMCID: PMC15030 DOI: 10.1091/mbc.11.11.3689] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In budding yeast, spindle polarity relies on a precise temporal program of cytoplasmic microtubule-cortex interactions throughout spindle assembly. Loss of Clb5-dependent kinase activity under conditions of attenuated Cdc28 function disrupts this program, resulting in diploid-specific lethality. Here we show that polarity loss is tolerated by haploids due to a more prominent contribution of microtubule-neck interactions to spindle orientation inherent to haploids. These differences are mediated by the relative partition of Bud6 between the bud tip and bud neck, distinguishing haploids from diploids. Bud6 localizes initially to the bud tip and accumulates at the neck concomitant with spindle assembly. bud6Delta mutant phenotypes are consistent with Bud6's role as a cortical cue for cytoplasmic microtubule capture. Moreover, mutations that affect Bud6 localization and partitioning disrupt the sequential program of microtubule-cortex interactions accordingly. These data support a model whereby Bud6 sequentially cues microtubule capture events at the bud tip followed by capture events at the bud neck, necessary for correct spindle morphogenesis and polarity.
Collapse
Affiliation(s)
- M Segal
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
216
|
Vogel J, Snyder M. The carboxy terminus of Tub4p is required for gamma-tubulin function in budding yeast. J Cell Sci 2000; 113 Pt 21:3871-82. [PMID: 11034914 DOI: 10.1242/jcs.113.21.3871] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The role of gamma-tubulin in microtubule nucleation is well established, however, its function in other aspects of microtubule organization is unknown. The carboxy termini of alpha/beta-tubulins influence the assembly and stability of microtubules. We investigated the role of the carboxy terminus of yeast gamma-tubulin (Tub4p) in microtubule organization. This region consists of a conserved domain (DSYLD), and acidic tail. Cells expressing truncations lacking the DSYLD domain, tail or both regions are temperature sensitive for growth. Growth defects of tub4 mutants lacking either or both carboxy-terminal domains are suppressed by the microtubule destabilizing drug benomyl. tub4 carboxy-terminal mutants arrest as large budded cells with short bipolar spindles positioned at the bud neck. Electron microscopic analysis of wild-type and CTR mutant cells reveals that SPBs are tightly associated with the bud neck/cortex by cytoplasmic microtubules in mutants lacking the tail region (tub4-delta 444, tub4-delta 448). Mutants lacking the DSYLD residues (tub4-delta 444, tub4-delta DSYLD) form many cytoplasmic microtubules. We propose that the carboxy terminus of Tub4p is required for re-organization of the microtubules upon completion of nuclear migration, and facilitates spindle elongation into the bud.
Collapse
Affiliation(s)
- J Vogel
- Department of Cellular, Molecular and Developmental Biology, Yale University, PO Box 208103, New Haven CT 06520, USA
| | | |
Collapse
|
217
|
Browning H, Hayles J, Mata J, Aveline L, Nurse P, McIntosh JR. Tea2p is a kinesin-like protein required to generate polarized growth in fission yeast. J Cell Biol 2000; 151:15-28. [PMID: 11018050 PMCID: PMC2189814 DOI: 10.1083/jcb.151.1.15] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2000] [Accepted: 08/17/2000] [Indexed: 11/22/2022] Open
Abstract
Cytoplasmic microtubules are critical for establishing and maintaining cell shape and polarity. Our investigations of kinesin-like proteins (klps) and morphological mutants in the fission yeast Schizosaccharomyces pombe have identified a kinesin-like gene, tea2(+), that is required for cells to generate proper polarized growth. Cells deleted for this gene are often bent during exponential growth and initiate growth from improper sites as they exit stationary phase. They have a reduced cytoplasmic microtubule network and display severe morphological defects in genetic backgrounds that produce long cells. The tip-specific marker, Tea1p, is mislocalized in both tea2-1 and tea2Delta cells, indicating that Tea2p function is necessary for proper localization of Tea1p. Tea2p is localized to the tips of the cell and in a punctate pattern within the cell, often coincident with the ends of cytoplasmic microtubules. These results suggest that this kinesin promotes microtubule growth, possibly through interactions with the microtubule end, and that it is important for establishing and maintaining polarized growth along the long axis of the cell.
Collapse
Affiliation(s)
- H Browning
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA.
| | | | | | | | | | | |
Collapse
|
218
|
Miller RK, Cheng SC, Rose MD. Bim1p/Yeb1p mediates the Kar9p-dependent cortical attachment of cytoplasmic microtubules. Mol Biol Cell 2000; 11:2949-59. [PMID: 10982392 PMCID: PMC14967 DOI: 10.1091/mbc.11.9.2949] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Saccharomyces cerevisiae, positioning of the mitotic spindle depends on the interaction of cytoplasmic microtubules with the cell cortex. In this process, cortical Kar9p in the bud acts as a link between the actin and microtubule cytoskeletons. To identify Kar9p-interacting proteins, a two-hybrid screen was conducted with the use of full-length Kar9p as bait, and three genes were identified: BIM1, STU2, and KAR9 itself. STU2 encodes a component of the spindle pole body. Bim1p is the yeast homologue of the human microtubule-binding protein EB1, which is a binding partner to the adenomatous polyposis coli protein involved in colon cancer. Eighty-nine amino acids within the third quarter of Bim1p was sufficient to confer interaction with Kar9p. The two-hybrid interactions were confirmed with the use of coimmunoprecipitation experiments. Genetic analysis placed Bim1p in the Kar9p pathway for nuclear migration. Bim1p was not required for Kar9p's cortical or spindle pole body localization. However, deletion of BIM1 eliminated Kar9p localization along cytoplasmic microtubules. Furthermore, in the bim1 mutants, the cytoplasmic microtubules no longer intersected the cortical dot of Green Fluorescent Protein-Kar9p. These experiments demonstrate that the interaction of cytoplasmic microtubules with the Kar9p cortical attachment site requires the microtubule-binding protein Bim1p.
Collapse
Affiliation(s)
- R K Miller
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
219
|
Schaerer-Brodbeck C, Riezman H. Interdependence of filamentous actin and microtubules for asymmetric cell division. Biol Chem 2000; 381:815-25. [PMID: 11076014 DOI: 10.1515/bc.2000.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Asymmetric cell divisions are crucial to the generation of cell fate diversity. They contribute to unequal distribution of cellular factors to the daughter cells. Asymmetric divisions are characterized by a 90 degrees rotation of the mitotic spindle. There is increasing evidence that a tight cooperation between cortical, filamentous actin and astral microtubules is indispensable for successful spindle rotation. Over the past years, the dynactin complex has emerged as a key candidate to mediate actin/microtubule interaction at the cortex. This review discusses our current understanding of how spindle rotation is accomplished by the interplay of filamentous actin and microtubules in a variety of experimental systems.
Collapse
|
220
|
Abstract
Coordination of spindle orientation with the axis of cell division is an essential process in all eukaryotes. In addition to ensuring accurate chromosomal segregation, proper spindle orientation also establishes differential cell fates and proper morphogenesis. In both animal and yeast cells, this process is dependent on cytoplasmic microtubules interacting with the cortical actin-based cytoskeleton, although the motive force was unknown. Here we show that yeast Myo2, a myosin V that translocates along polarized actin cables into the bud, orientates the spindle early in the cell cycle by binding and polarizing the microtubule-associated protein Kar9 (refs 7-9). The tail domain of Myo2 that binds Kar9 also interacts with secretory vesicles and vacuolar elements, making it a pivotal component of yeast cell polarization.
Collapse
Affiliation(s)
- H Yin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
221
|
Bloecher A, Venturi GM, Tatchell K. Anaphase spindle position is monitored by the BUB2 checkpoint. Nat Cell Biol 2000; 2:556-8. [PMID: 10934478 DOI: 10.1038/35019601] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- A Bloecher
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, USA
| | | | | |
Collapse
|
222
|
Pereira G, Höfken T, Grindlay J, Manson C, Schiebel E. The Bub2p Spindle Checkpoint Links Nuclear Migration with Mitotic Exit. Mol Cell 2000. [DOI: 10.1016/s1097-2765(05)00017-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
223
|
Abstract
Microtubule orientation to cortical spatial cues is essential for the fidelity of asymmetric cellular processes. A cortical microtubule-capture site, composed of Bim1 and Kar9, has now been identified in yeast. Bim1 is the yeast homologue of EB1, a binding partner of the adenomatous polyposis coli (APC), indicating that important features of this complex may be highly conserved.
Collapse
|
224
|
Kahana J. Hitting the wall: how microtubules interact with the cell cortex. Trends Cell Biol 2000. [DOI: 10.1016/s0962-8924(00)01776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
225
|
Tirnauer JS, Bierer BE. EB1 proteins regulate microtubule dynamics, cell polarity, and chromosome stability. J Cell Biol 2000; 149:761-6. [PMID: 10811817 PMCID: PMC2174556 DOI: 10.1083/jcb.149.4.761] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Barbara E. Bierer
- Laboratory of Lymphocyte Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
226
|
Adames NR, Cooper JA. Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J Cell Biol 2000; 149:863-74. [PMID: 10811827 PMCID: PMC2174570 DOI: 10.1083/jcb.149.4.863] [Citation(s) in RCA: 285] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During mitosis in budding yeast the nucleus first moves to the mother-bud neck and then into the neck. Both movements depend on interactions of cytoplasmic microtubules with the cortex. We investigated the mechanism of these movements in living cells using video analysis of GFP-labeled microtubules in wild-type cells and in EB1 and Arp1 mutants, which are defective in the first and second steps, respectively. We found that nuclear movement to the neck is largely mediated by the capture of microtubule ends at one cortical region at the incipient bud site or bud tip, followed by microtubule depolymerization. Efficient microtubule interactions with the capture site require that microtubules be sufficiently long and dynamic to probe the cortex. In contrast, spindle movement into the neck is mediated by microtubule sliding along the bud cortex, which requires dynein and dynactin. Free microtubules can also slide along the cortex of both bud and mother. Capture/shrinkage of microtubule ends also contributes to nuclear movement into the neck and can serve as a backup mechanism to move the nucleus into the neck when microtubule sliding is impaired. Conversely, microtubule sliding can move the nucleus into the neck even when capture/shrinkage is impaired.
Collapse
Affiliation(s)
- Neil R. Adames
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - John A. Cooper
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|