201
|
Clerbaux LA, Albertini MC, Amigó N, Beronius A, Bezemer GFG, Coecke S, Daskalopoulos EP, del Giudice G, Greco D, Grenga L, Mantovani A, Muñoz A, Omeragic E, Parissis N, Petrillo M, Saarimäki LA, Soares H, Sullivan K, Landesmann B. Factors Modulating COVID-19: A Mechanistic Understanding Based on the Adverse Outcome Pathway Framework. J Clin Med 2022; 11:4464. [PMID: 35956081 PMCID: PMC9369763 DOI: 10.3390/jcm11154464] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
Addressing factors modulating COVID-19 is crucial since abundant clinical evidence shows that outcomes are markedly heterogeneous between patients. This requires identifying the factors and understanding how they mechanistically influence COVID-19. Here, we describe how eleven selected factors (age, sex, genetic factors, lipid disorders, heart failure, gut dysbiosis, diet, vitamin D deficiency, air pollution and exposure to chemicals) influence COVID-19 by applying the Adverse Outcome Pathway (AOP), which is well-established in regulatory toxicology. This framework aims to model the sequence of events leading to an adverse health outcome. Several linear AOPs depicting pathways from the binding of the virus to ACE2 up to clinical outcomes observed in COVID-19 have been developed and integrated into a network offering a unique overview of the mechanisms underlying the disease. As SARS-CoV-2 infectibility and ACE2 activity are the major starting points and inflammatory response is central in the development of COVID-19, we evaluated how those eleven intrinsic and extrinsic factors modulate those processes impacting clinical outcomes. Applying this AOP-aligned approach enables the identification of current knowledge gaps orientating for further research and allows to propose biomarkers to identify of high-risk patients. This approach also facilitates expertise synergy from different disciplines to address public health issues.
Collapse
Affiliation(s)
- Laure-Alix Clerbaux
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | | | - Núria Amigó
- Biosfer Teslab SL., 43204 Reus, Spain;
- Department of Basic Medical Sciences, Universitat Rovira i Virgili (URV), 23204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Anna Beronius
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Gillina F. G. Bezemer
- Impact Station, 1223 JR Hilversum, The Netherlands;
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Evangelos P. Daskalopoulos
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Giusy del Giudice
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland; (G.d.G.); (D.G.); (L.A.S.)
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland; (G.d.G.); (D.G.); (L.A.S.)
| | - Lucia Grenga
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-30200 Bagnols-sur-Ceze, France;
| | - Alberto Mantovani
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Amalia Muñoz
- European Commission, Joint Research Centre (JRC), 2440 Geel, Belgium;
| | - Elma Omeragic
- Faculty of Pharmacy, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Nikolaos Parissis
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Mauro Petrillo
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Laura A. Saarimäki
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland; (G.d.G.); (D.G.); (L.A.S.)
| | - Helena Soares
- Laboratory of Immunobiology and Pathogenesis, Chronic Diseases Research Centre, Faculdade de Ciências Médicas Medical School, University of Lisbon, 1649-004 Lisbon, Portugal;
| | - Kristie Sullivan
- Physicians Committee for Responsible Medicine, Washington, DC 20016, USA;
| | - Brigitte Landesmann
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| |
Collapse
|
202
|
Inchingolo AD, Malcangi G, Ceci S, Patano A, Corriero A, Vimercati L, Azzollini D, Marinelli G, Coloccia G, Piras F, Barile G, Settanni V, Mancini A, De Leonardis N, Garofoli G, Palmieri G, Isacco CG, Rapone B, Scardapane A, Curatoli L, Quaranta N, Ribezzi M, Massaro M, Jones M, Bordea IR, Tartaglia GM, Scarano A, Lorusso F, Macchia L, Larocca AMV, Aityan SK, Tafuri S, Stefanizzi P, Migliore G, Brienza N, Dipalma G, Favia G, Inchingolo F. Effectiveness of SARS-CoV-2 Vaccines for Short- and Long-Term Immunity: A General Overview for the Pandemic Contrast. Int J Mol Sci 2022; 23:8485. [PMID: 35955621 PMCID: PMC9369331 DOI: 10.3390/ijms23158485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The recent COVID-19 pandemic produced a significant increase in cases and an emergency state was induced worldwide. The current knowledge about the COVID-19 disease concerning diagnoses, patient tracking, the treatment protocol, and vaccines provides a consistent contribution for the primary prevention of the viral infection and decreasing the severity of the SARS-CoV-2 disease. The aim of the present investigation was to produce a general overview about the current findings for the COVID-19 disease, SARS-CoV-2 interaction mechanisms with the host, therapies and vaccines' immunization findings. METHODS A literature overview was produced in order to evaluate the state-of-art in SARS-CoV-2 diagnoses, prognoses, therapies, and prevention. RESULTS Concerning to the interaction mechanisms with the host, the virus binds to target with its Spike proteins on its surface and uses it as an anchor. The Spike protein targets the ACE2 cell receptor and enters into the cells by using a special enzyme (TMPRSS2). Once the virion is quietly accommodated, it releases its RNA. Proteins and RNA are used in the Golgi apparatus to produce more viruses that are released. Concerning the therapies, different protocols have been developed in observance of the disease severity and comorbidity with a consistent reduction in the mortality rate. Currently, different vaccines are currently in phase IV but a remarkable difference in efficiency has been detected concerning the more recent SARS-CoV-2 variants. CONCLUSIONS Among the many questions in this pandemic state, the one that recurs most is knowing why some people become more seriously ill than others who instead contract the infection as if it was a trivial flu. More studies are necessary to investigate the efficiency of the treatment protocols and vaccines for the more recent detected SARS-CoV-2 variant.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Sabino Ceci
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Alberto Corriero
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70121 Bari, Italy; (A.C.); (M.R.); (N.B.)
| | - Luigi Vimercati
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Daniela Azzollini
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giovanni Coloccia
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Fabio Piras
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giuseppe Barile
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Vito Settanni
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Nicole De Leonardis
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Grazia Garofoli
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Arnaldo Scardapane
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Luigi Curatoli
- Department Neurosciences & Sensory Organs & Musculoskeletal System, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Nicola Quaranta
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
- Department Neurosciences & Sensory Organs & Musculoskeletal System, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Mario Ribezzi
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70121 Bari, Italy; (A.C.); (M.R.); (N.B.)
| | - Maria Massaro
- Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, 70124 Bari, Italy;
| | - Megan Jones
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy;
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Luigi Macchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Angela Maria Vittoria Larocca
- Hygiene Complex Operating Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Place Giulio Cesare 11 BARI CAP, 70124 Bari, Italy;
| | | | - Silvio Tafuri
- Department of Biomedical Science and Human Oncology, University of Bari, 70121 Bari, Italy;
| | - Pasquale Stefanizzi
- Interdisciplinary Department of Medicine, University Hospital of Bari, 70100 Bari, Italy; (P.S.); (G.M.)
| | - Giovanni Migliore
- Interdisciplinary Department of Medicine, University Hospital of Bari, 70100 Bari, Italy; (P.S.); (G.M.)
| | - Nicola Brienza
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70121 Bari, Italy; (A.C.); (M.R.); (N.B.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Gianfranco Favia
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| |
Collapse
|
203
|
Clinical and Virological Features of Patients Hospitalized with Different Types of COVID-19 Vaccination in Mexico City. Vaccines (Basel) 2022; 10:vaccines10081181. [PMID: 35893830 PMCID: PMC9330015 DOI: 10.3390/vaccines10081181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) vaccines effectively protect against severe disease and death. However, the impact of the vaccine used, viral variants, and host factors on disease severity remain poorly understood. This work aimed to compare COVID-19 clinical presentations and outcomes in vaccinated and unvaccinated patients in Mexico City. From March to September 2021, clinical, demographic characteristics, and viral variants were obtained from 1014 individuals with a documented SARS-CoV-2 infection. We compared unvaccinated, partially vaccinated, and fully vaccinated patients, stratifying by age groups. We also fitted multivariate statistical models to evaluate the impact of vaccination status, SARS-CoV-2 lineages, vaccine types, and clinical parameters. Most hospitalized patients were unvaccinated. In patients over 61 years old, mortality was significantly higher in unvaccinated compared to fully vaccinated individuals. In patients aged 31 to 60 years, vaccinated patients were more likely to be outpatients (46%) than unvaccinated individuals (6.1%). We found immune disease and age above 61 years old to be risk factors, while full vaccination was found to be the most protective factor against in-hospital death. This study suggests that vaccination is essential to reduce mortality in a comorbid population such as that of Mexico.
Collapse
|
204
|
Van der Sluis RM, Holm CK, Jakobsen MR. Plasmacytoid dendritic cells during COVID-19: Ally or adversary? Cell Rep 2022; 40:111148. [PMID: 35858624 PMCID: PMC9279298 DOI: 10.1016/j.celrep.2022.111148] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/10/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are specialized cells of the immune system that are thought to be the main cellular source of type I interferon alpha (IFNα) in response to viral infections. IFNs are powerful antivirals, whereas defects in their function or induction lead to impaired resistance to virus infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19. IFN production needs to be controlled, because sustained IFN production can also have detrimental effects on disease outcome. As such, pDCs are likely important for acute antiviral protection against SARS-CoV-2 infection but could potentially also contribute to chronic IFN levels. Here, we provide a historical overview of pDC biology and summarize existing literature addressing their involvement and importance during viral infections of the airways. Furthermore, we outline recent reports focused on the potential role of pDCs during SARS-CoV-2 infection, as well as the potential for this cellular subset to impact COVID-19 disease outcome.
Collapse
|
205
|
Pieniawska-Śmiech K, Pasternak G, Lewandowicz-Uszyńska A, Jutel M. Diagnostic Challenges in Patients with Inborn Errors of Immunity with Different Manifestations of Immune Dysregulation. J Clin Med 2022; 11:4220. [PMID: 35887984 PMCID: PMC9324612 DOI: 10.3390/jcm11144220] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
Inborn errors of immunity (IEI), formerly known as primary immunodeficiency disorders (PIDs), are inherited disorders caused by damaging germline variants in single genes, which result in increased susceptibility to infections and in allergic, autoimmune, autoinflammatory, nonmalignant lymphoproliferative, and neoplastic conditions. Along with well-known warning signs of PID, attention should be paid to signs of immune dysregulation, which seem to be equally important to susceptibility to infection in defining IEI. The modern diagnostics of IEI offer a variety of approaches but with some problems. The aim of this review is to discuss the diagnostic challenges in IEI patients in the context of an immune dysregulation background.
Collapse
Affiliation(s)
- Karolina Pieniawska-Śmiech
- Department of Clinical Immunology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Clinical Immunology and Paediatrics, Provincial Hospital J. Gromkowski, 51-149 Wroclaw, Poland; (G.P.); (A.L.-U.)
| | - Gerard Pasternak
- Department of Clinical Immunology and Paediatrics, Provincial Hospital J. Gromkowski, 51-149 Wroclaw, Poland; (G.P.); (A.L.-U.)
- 3rd Department and Clinic of Paediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Aleksandra Lewandowicz-Uszyńska
- Department of Clinical Immunology and Paediatrics, Provincial Hospital J. Gromkowski, 51-149 Wroclaw, Poland; (G.P.); (A.L.-U.)
- 3rd Department and Clinic of Paediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- ALL-MED Medical Research Institute, 53-201 Wroclaw, Poland
| |
Collapse
|
206
|
Burnett CE, Okholm TLH, Tenvooren I, Marquez DM, Tamaki S, Munoz Sandoval P, Willmore A, Hendrickson CM, Kangelaris KN, Langelier CR, Krummel MF, Woodruff PG, Calfee CS, Erle DJ, Ansel KM, Spitzer MH. Mass cytometry reveals a conserved immune trajectory of recovery in hospitalized COVID-19 patients. Immunity 2022; 55:1284-1298.e3. [PMID: 35779527 PMCID: PMC9170540 DOI: 10.1016/j.immuni.2022.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/01/2022] [Accepted: 06/02/2022] [Indexed: 12/15/2022]
Abstract
While studies have elucidated many pathophysiological elements of COVID-19, little is known about immunological changes during COVID-19 resolution. We analyzed immune cells and phosphorylated signaling states at single-cell resolution from longitudinal blood samples of patients hospitalized with COVID-19, pneumonia and/or sepsis, and healthy individuals by mass cytometry. COVID-19 patients showed distinct immune compositions and an early, coordinated, and elevated immune cell signaling profile associated with early hospital discharge. Intra-patient longitudinal analysis revealed changes in myeloid and T cell frequencies and a reduction in immune cell signaling across cell types that accompanied disease resolution and discharge. These changes, together with increases in regulatory T cells and reduced signaling in basophils, also accompanied recovery from respiratory failure and were associated with better outcomes at time of admission. Therefore, although patients have heterogeneous immunological baselines and highly variable disease courses, a core immunological trajectory exists that defines recovery from severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Cassandra E Burnett
- Department of Otolaryngology-Head and Neck Cancer, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Immunology & Immunology and Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Trine Line Hauge Okholm
- Department of Otolaryngology-Head and Neck Cancer, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Immunology & Immunology and Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Iliana Tenvooren
- Department of Otolaryngology-Head and Neck Cancer, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Immunology & Immunology and Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Diana M Marquez
- Department of Otolaryngology-Head and Neck Cancer, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Immunology & Immunology and Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Stanley Tamaki
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Priscila Munoz Sandoval
- Department of Immunology & Immunology and Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrew Willmore
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Carolyn M Hendrickson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Kirsten N Kangelaris
- Division of Hospital Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Charles R Langelier
- Division of Infectious Diseases, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew F Krummel
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94115, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Prescott G Woodruff
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Carolyn S Calfee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - David J Erle
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - K Mark Ansel
- Department of Immunology & Immunology and Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew H Spitzer
- Department of Otolaryngology-Head and Neck Cancer, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Immunology & Immunology and Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94115, USA.
| |
Collapse
|
207
|
Dieter C, Brondani LDA, Leitão CB, Gerchman F, Lemos NE, Crispim D. Genetic polymorphisms associated with susceptibility to COVID-19 disease and severity: A systematic review and meta-analysis. PLoS One 2022; 17:e0270627. [PMID: 35793369 PMCID: PMC9258831 DOI: 10.1371/journal.pone.0270627] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/15/2022] [Indexed: 12/17/2022] Open
Abstract
Although advanced age and presence of comorbidities significantly impact the variation observed in the clinical symptoms of COVID-19, it has been suggested that genetic variants may also be involved in the disease. Thus, the aim of this study was to perform a systematic review with meta-analysis of the literature to identify genetic polymorphisms that are likely to contribute to COVID-19 pathogenesis. Pubmed, Embase and GWAS Catalog repositories were systematically searched to retrieve articles that investigated associations between polymorphisms and COVID-19. For polymorphisms analyzed in 3 or more studies, pooled OR with 95% CI were calculated using random or fixed effect models in the Stata Software. Sixty-four eligible articles were included in this review. In total, 8 polymorphisms in 7 candidate genes and 74 alleles of the HLA loci were analyzed in 3 or more studies. The HLA-A*30 and CCR5 rs333Del alleles were associated with protection against COVID-19 infection, while the APOE rs429358C allele was associated with risk for this disease. Regarding COVID-19 severity, the HLA-A*33, ACE1 Ins, and TMPRSS2 rs12329760T alleles were associated with protection against severe forms, while the HLA-B*38, HLA-C*6, and ApoE rs429358C alleles were associated with risk for severe forms of COVID-19. In conclusion, polymorphisms in the ApoE, ACE1, TMPRSS2, CCR5, and HLA loci appear to be involved in the susceptibility to and/or severity of COVID-19.
Collapse
Affiliation(s)
- Cristine Dieter
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Letícia de Almeida Brondani
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiane Bauermann Leitão
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernando Gerchman
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Natália Emerim Lemos
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
208
|
Campbell TM, Liu Z, Zhang Q, Moncada-Velez M, Covill LE, Zhang P, Alavi Darazam I, Bastard P, Bizien L, Bucciol G, Lind Enoksson S, Jouanguy E, Karabela ŞN, Khan T, Kendir-Demirkol Y, Arias AA, Mansouri D, Marits P, Marr N, Migeotte I, Moens L, Ozcelik T, Pellier I, Sendel A, Şenoğlu S, Shahrooei M, Smith CE, Vandernoot I, Willekens K, Kart Yaşar K, COVID Human Genetic Effort AbelLaurentAiutiAlessandroAl-MuhsenSalehAl-MullaFahdAndersonMark S.AndreakosEvangelosAriasAndrés A.Baris FeldmanHagitBelotAlexandreBiggsCatherine M.BogunovicDusanBolzeAlexandreBondarenkoAnastasiiaBousfihaAhmed A.BrodinPetterBrycesonYenanBustamanteCarlos D.ButteManish J.CasariGiorgioChristodoulouJohnCondino-NetoAntonioConstantinescuStefan N.CooperMegan A.DalgardClifton L.DesaiMurkeshDroletBeth A.El BaghdadiJamilaEspinosa-PadillaSaraFellayJacquesFloresCarlosFrancoJosé LuisFroidureAntoineGregersenPeter K.GrimbacherBodoHaerynckFilomeenHaginDavidHalwaniRabihHammarströmLennartHeathJames R.HenricksonSarah E.HsiehElena W.Y.HusebyeEysteinImaiKohsukeItanYuvalJarvisErich D.KaramitrosTimokratisKisandKaiKuCheng-LungLauYu-LungLingYunLucasCarrie L.ManiatisTomMansouriDavoodMaródiLászlóMeytsIsabelleMilnerJoshua D.MironskaKristinaMogensenTrine H.MorioTomohiroNgLisa F.P.NotarangeloLuigi D.NovelliAntonioNovelliGiuseppeO'FarrellyClionaOkadaSatoshiOkamotoKeisukeOzcelikTayfunPan-HammarströmQiangPapadakiMariaPapeJean W.Perez de DiegoRebecaPerlinDavid S.PesoleGrazianoPlanasAnna M.PrandoCarolinaPujolAuroraQuintana-MurciLluisRamaswamySathishkumarReniaLaurentResnickIgorRodríguez-GallegoCarlosSancho-ShimizuVanessaSedivaAnnaSeppänenMikko R.J.ShahrooeiMohammedShcherbinaAnnaSlabyOndrejSnowAndrew L.Soler-PalacínPereSpaanAndrás N.TancevskiIvanTangyeStuart G.TayounAhmad AbouTurveyStuart E.UddinK M FurkanUddinMohammed J.van de BeekDiederikVinhDonald C.von BernuthHorstWautersJoostZatzMayanaZawadzkiPawelSuHelen C.CasanovaJean-Laurent, Bergman P, Abel L, Cobat A, Casanova JL, Meyts I, Bryceson YT. Respiratory viral infections in otherwise healthy humans with inherited IRF7 deficiency. J Exp Med 2022; 219:e20220202. [PMID: 35670811 PMCID: PMC9178406 DOI: 10.1084/jem.20220202] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/29/2022] [Accepted: 05/12/2022] [Indexed: 12/18/2022] Open
Abstract
Autosomal recessive IRF7 deficiency was previously reported in three patients with single critical influenza or COVID-19 pneumonia episodes. The patients' fibroblasts and plasmacytoid dendritic cells produced no detectable type I and III IFNs, except IFN-β. Having discovered four new patients, we describe the genetic, immunological, and clinical features of seven IRF7-deficient patients from six families and five ancestries. Five were homozygous and two were compound heterozygous for IRF7 variants. Patients typically had one episode of pulmonary viral disease. Age at onset was surprisingly broad, from 6 mo to 50 yr (mean age 29 yr). The respiratory viruses implicated included SARS-CoV-2, influenza virus, respiratory syncytial virus, and adenovirus. Serological analyses indicated previous infections with many common viruses. Cellular analyses revealed strong antiviral immunity and expanded populations of influenza- and SARS-CoV-2-specific memory CD4+ and CD8+ T cells. IRF7-deficient individuals are prone to viral infections of the respiratory tract but are otherwise healthy, potentially due to residual IFN-β and compensatory adaptive immunity.
Collapse
Affiliation(s)
- Tessa Mollie Campbell
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Qian Zhang:
| | - Marcela Moncada-Velez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Laura E. Covill
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Ilad Alavi Darazam
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Giorgia Bucciol
- Department of Microbiology, Immunology and Transplantation, Laboratory of Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Sara Lind Enoksson
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Şemsi Nur Karabela
- Department of Infectious Diseases and Clinical Microbiology, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Taushif Khan
- Department of Human Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Yasemin Kendir-Demirkol
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Andres Augusto Arias
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Primary Immunodeficiencies Group, University of Antioquia UdeA, Medellin, Colombia
- School of Microbiology, University of Antioquia UdeA, Medellin, Colombia
| | - Davood Mansouri
- Department of Clinical Immunology and Infectious Diseases, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- The Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Per Marits
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Nico Marr
- Department of Human Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Isabelle Migeotte
- Centre de Génétique Humaine de l’Université Libre de Bruxelles, Hôpital Erasme, Brussels, Belgium
| | - Leen Moens
- Department of Microbiology, Immunology and Transplantation, Laboratory of Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Bilkent University, Bilkent-Ankara, Turkey
| | - Isabelle Pellier
- Université d'Angers, INSERM, CNRS, CRCINA, Pediatric Immuno-Hemato-oncology Unit, CHU Angers, Angers, France
| | - Anton Sendel
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Sevtap Şenoğlu
- Department of Infectious Diseases and Clinical Microbiology, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Mohammad Shahrooei
- Specialized Immunology Laboratory of Dr. Shahrooei, Sina Medical Complex, Ahvaz, Iran
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | - C.I. Edvard Smith
- Department of Infectious Diseases, The Immunodeficiency Unit, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Translational Research Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Isabelle Vandernoot
- Centre de Génétique Humaine de l’Université Libre de Bruxelles, Hôpital Erasme, Brussels, Belgium
| | - Karen Willekens
- Department of Molecular Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Kadriye Kart Yaşar
- Department of Infectious Diseases and Clinical Microbiology, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | | | - Peter Bergman
- Department of Infectious Diseases, The Immunodeficiency Unit, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Jean-Laurent Casanova:
| | - Isabelle Meyts
- Department of Microbiology, Immunology and Transplantation, Laboratory of Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Yenan T. Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Broegelmann Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
209
|
Kousathanas A, Pairo-Castineira E, Rawlik K, Stuckey A, Odhams CA, Walker S, Russell CD, Malinauskas T, Wu Y, Millar J, Shen X, Elliott KS, Griffiths F, Oosthuyzen W, Morrice K, Keating S, Wang B, Rhodes D, Klaric L, Zechner M, Parkinson N, Siddiq A, Goddard P, Donovan S, Maslove D, Nichol A, Semple MG, Zainy T, Maleady-Crowe F, Todd L, Salehi S, Knight J, Elgar G, Chan G, Arumugam P, Patch C, Rendon A, Bentley D, Kingsley C, Kosmicki JA, Horowitz JE, Baras A, Abecasis GR, Ferreira MAR, Justice A, Mirshahi T, Oetjens M, Rader DJ, Ritchie MD, Verma A, Fowler TA, Shankar-Hari M, Summers C, Hinds C, Horby P, Ling L, McAuley D, Montgomery H, Openshaw PJM, Elliott P, Walsh T, Tenesa A, Fawkes A, Murphy L, Rowan K, Ponting CP, Vitart V, Wilson JF, Yang J, Bretherick AD, Scott RH, Hendry SC, Moutsianas L, Law A, Caulfield MJ, Baillie JK. Whole-genome sequencing reveals host factors underlying critical COVID-19. Nature 2022; 607:97-103. [PMID: 35255492 PMCID: PMC9259496 DOI: 10.1038/s41586-022-04576-6] [Citation(s) in RCA: 209] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/23/2022] [Indexed: 12/15/2022]
Abstract
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2-4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease.
Collapse
Affiliation(s)
| | - Erola Pairo-Castineira
- Roslin Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Konrad Rawlik
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | | | | | - Clark D Russell
- Roslin Institute, University of Edinburgh, Edinburgh, UK
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Tomas Malinauskas
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Yang Wu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Xia Shen
- Biostatistics Group, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK
| | | | | | | | - Kirstie Morrice
- Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Sean Keating
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Bo Wang
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Lucija Klaric
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Marie Zechner
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Nick Parkinson
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | | | | | - David Maslove
- Department of Critical Care Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Alistair Nichol
- Clinical Research Centre at St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Malcolm G Semple
- NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Respiratory Medicine and Institute in the Park, Alder Hey Children's Hospital and University of Liverpool, Liverpool, UK
| | | | | | | | | | - Julian Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anurag Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tom A Fowler
- Genomics England, London, UK
- Test and Trace, the Health Security Agency, Department of Health and Social Care, London, UK
| | - Manu Shankar-Hari
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Charles Hinds
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Peter Horby
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lowell Ling
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Danny McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
- Department of Intensive Care Medicine, Royal Victoria Hospital, Belfast, UK
| | | | - Peter J M Openshaw
- National Heart and Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust: London, London, UK
| | | | - Timothy Walsh
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Albert Tenesa
- Roslin Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK
| | - Angie Fawkes
- Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Kathy Rowan
- Intensive Care National Audit and Research Centre, London, UK
| | - Chris P Ponting
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - James F Wilson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK
| | - Jian Yang
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Andrew D Bretherick
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Richard H Scott
- Genomics England, London, UK
- Great Ormond Street Hospital, London, UK
| | | | | | - Andy Law
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Mark J Caulfield
- Genomics England, London, UK.
- William Harvey Research Institute, Queen Mary University of London, London, UK.
| | - J Kenneth Baillie
- Roslin Institute, University of Edinburgh, Edinburgh, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK.
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK.
| |
Collapse
|
210
|
Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, Klein C, Morio T, Oksenhendler E, Picard C, Puel A, Puck J, Seppänen MRJ, Somech R, Su HC, Sullivan KE, Torgerson TR, Meyts I. Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 2022; 42:1473-1507. [PMID: 35748970 PMCID: PMC9244088 DOI: 10.1007/s10875-022-01289-3] [Citation(s) in RCA: 635] [Impact Index Per Article: 211.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/02/2022] [Indexed: 12/19/2022]
Abstract
We report the updated classification of inborn errors of immunity, compiled by the International Union of Immunological Societies Expert Committee. This report documents the key clinical and laboratory features of 55 novel monogenic gene defects, and 1 phenocopy due to autoantibodies, that have either been discovered since the previous update (published January 2020) or were characterized earlier but have since been confirmed or expanded in subsequent studies. While variants in additional genes associated with immune diseases have been reported in the literature, this update includes only those that the committee assessed that reached the necessary threshold to represent novel inborn errors of immunity. There are now a total of 485 inborn errors of immunity. These advances in discovering the genetic causes of human immune diseases continue to significantly further our understanding of molecular, cellular, and immunological mechanisms of disease pathogenesis, thereby simultaneously enhancing immunological knowledge and improving patient diagnosis and management. This report is designed to serve as a resource for immunologists and geneticists pursuing the molecular diagnosis of individuals with heritable immunological disorders and for the scientific dissection of cellular and molecular mechanisms underlying monogenic and related human immune diseases.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, NSW, Australia.
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Aziz Bousfiha
- Laboratoire d'Immunologie Clinique, d'Inflammation et d'Allergy LICIA Clinical Immunology Unit, Casablanca Children's Hospital, Ibn Rochd Medical School, King Hassan II University, Casablanca, Morocco
| | | | - Jose Luis Franco
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Steven M Holland
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Klein
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eric Oksenhendler
- Department of Clinical Immunology, Hôpital Saint-Louis, APHP, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, APHP, Paris, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Université Paris Cité, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital, 75015, Paris, France
- Université Paris Cité, Imagine Institute, 75015, Paris, France
| | - Jennifer Puck
- Department of Pediatrics, University of California San Francisco and UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Mikko R J Seppänen
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center and Rare Diseases Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Raz Somech
- Pediatric Department and Immunology Unit, Sheba Medical Center, Tel Aviv, Israel
| | - Helen C Su
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Isabelle Meyts
- Department of Immunology and Microbiology, Laboratory for Inborn Errors of Immunity, Department of Pediatrics, University Hospitals Leuven and KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
211
|
Lam LM, Mangalmurti NS. ExRNA Takes a Toll in Sepsis-Associated Lung Injury. Am J Respir Cell Mol Biol 2022; 67:271-272. [PMID: 35728049 PMCID: PMC9447133 DOI: 10.1165/rcmb.2022-0237ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Lk Metthew Lam
- University of Pennsylvania Perelman School of Medicine, 14640, Philadelphia, Pennsylvania, United States
| | - Nilam S Mangalmurti
- University of Pennsylvania Perelman School of Medicine, 14640, Philadelphia, Pennsylvania, United States;
| |
Collapse
|
212
|
López-Rodríguez R, Del Pozo-Valero M, Corton M, Minguez P, Ruiz-Hornillos J, Pérez-Tomás ME, Barreda-Sánchez M, Mancebo E, Villaverde C, Núñez-Moreno G, Romero R, Paz-Artal E, Guillén-Navarro E, Almoguera B, Ayuso C. Presence of rare potential pathogenic variants in subjects under 65 years old with very severe or fatal COVID-19. Sci Rep 2022; 12:10369. [PMID: 35725860 PMCID: PMC9208539 DOI: 10.1038/s41598-022-14035-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Rare variants affecting host defense against pathogens could be involved in COVID-19 severity and may help explain fatal outcomes in young and middle-aged patients. Our aim was to report the presence of rare genetic variants in certain genes, by using whole exome sequencing, in a selected group of COVID-19 patients under 65 years who required intubation or resulting in death (n = 44). To this end, different etiopathogenic mechanisms were explored using gene prioritization-based analysis in which genes involved in immune response, immunodeficiencies or blood coagulation were studied. We detected 44 different variants of interest, in 29 different patients (66%). Some of these variants were previously described as pathogenic and were located in genes mainly involved in immune response. A network analysis, including the 42 genes with candidate variants, showed three main components, consisting of 25 highly interconnected genes related to immune response and two additional networks composed by genes enriched in carbohydrate metabolism and in DNA metabolism and repair processes. In conclusion, we have detected candidate variants that may potentially influence COVID-19 outcome in our cohort of patients. Further studies are needed to confirm the ultimate role of the genetic variants described in the present study on COVID-19 severity.
Collapse
Affiliation(s)
- Rosario López-Rodríguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Marta Del Pozo-Valero
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Pablo Minguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Javier Ruiz-Hornillos
- Allergy Unit, Hospital Infanta Elena, Valdemoro, Madrid, Spain
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - María Elena Pérez-Tomás
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - María Barreda-Sánchez
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
- Health Sciences Faculty, Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| | - Esther Mancebo
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Cristina Villaverde
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Gonzalo Núñez-Moreno
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Raquel Romero
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Estela Paz-Artal
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense de Madrid, Madrid, Spain
- Center for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Encarna Guillén-Navarro
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
- Medical Genetics Section, Pediatric Department, Virgen de la Arrixaca University Clinical Hospital, Faculty of Medicine, University of Murcia (UMU), Murcia, Spain
| | - Berta Almoguera
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
213
|
Wang Y, Abolhassani H, Hammarström L, Pan-Hammarström Q. SARS-CoV-2 infection in patients with inborn errors of immunity due to DNA repair defects. Acta Biochim Biophys Sin (Shanghai) 2022; 54:836-846. [PMID: 35713311 PMCID: PMC9827799 DOI: 10.3724/abbs.2022071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clinical information on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in patients with inborn errors of immunity (IEI) during the current Coronavirus disease 2019 (COVID-19) pandemic is still limited. Proper DNA repair machinery is required for the development of the adaptive immune system, which provides specific and long-term protection against SARS-CoV-2. This review highlights the impact of SARS-CoV-2 infections on IEI patients with DNA repair disorders and summarizes susceptibility risk factors, pathogenic mechanisms, clinical manifestations and management strategies of COVID-19 in this special patient population.
Collapse
|
214
|
Biancolella M, Colona VL, Mehrian-Shai R, Watt JL, Luzzatto L, Novelli G, Reichardt JKV. COVID-19 2022 update: transition of the pandemic to the endemic phase. Hum Genomics 2022; 16:19. [PMID: 35650595 PMCID: PMC9156835 DOI: 10.1186/s40246-022-00392-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19, which is caused by the SARS-CoV-2, has ravaged the world for the past 2 years. Here, we review the current state of research into the disease with focus on its history, human genetics and genomics and the transition from the pandemic to the endemic phase. We are particularly concerned by the lack of solid information from the initial phases of the pandemic that highlighted the necessity for better preparation to face similar future threats. On the other hand, we are gratified by the progress into human genetic susceptibility investigations and we believe now is the time to explore the transition from the pandemic to the endemic phase. The latter will require worldwide vigilance and cooperation, especially in emerging countries. In the transition to the endemic phase, vaccination rates have lagged and developed countries should assist, as warranted, in bolstering vaccination rates worldwide. We also discuss the current status of vaccines and the outlook for COVID-19.
Collapse
Affiliation(s)
| | - Vito Luigi Colona
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Ruty Mehrian-Shai
- Sheba Medical Center, Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital, Tel Hashomer 2 Sheba Road, 52621, Ramat Gan, Israel
| | - Jessica Lee Watt
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, QLD, 4878, Australia
| | - Lucio Luzzatto
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.,University of Florence, Florence, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy. .,IRCCS Neuromed, Pozzilli, Isernia, Italy. .,Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV, USA. .,Department of Biomedicine and Prevention, School of Medicine and Surgery, Via Montpellier 1, 00133, Rome, Italy.
| | - Juergen K V Reichardt
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD, 4878, Australia
| |
Collapse
|
215
|
Reis J, Buguet A, Román GC, Spencer PS. The COVID-19 pandemic, an environmental neurology perspective. Rev Neurol (Paris) 2022; 178:499-511. [PMID: 35568518 PMCID: PMC8938187 DOI: 10.1016/j.neurol.2022.02.455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/20/2022]
Abstract
Neurologists have a particular interest in SARS-CoV-2 because the nervous system is a major participant in COVID-19, both in its acute phase and in its persistent post-COVID phase. The global spread of SARS-CoV-2 infection has revealed most of the challenges and risk factors that humanity will face in the future. We review from an environmental neurology perspective some characteristics that have underpinned the pandemic. We consider the agent, SARS-CoV-2, the spread of SARS-CoV-2 as influenced by environmental factors, its impact on the brain and some containment measures on brain health. Several questions remain, including the differential clinical impact of variants, the impact of SARS-CoV-2 on sleep and wakefulness, and the neurological components of Long-COVID syndrome. We touch on the role of national leaders and public health policies that have underpinned management of the COVID-19 pandemic. Increased awareness, anticipation and preparedness are needed to address comparable future challenges.
Collapse
Affiliation(s)
- J Reis
- Université de Strasbourg, 67000 Strasbourg, France; Association RISE, 67205 Oberhausbergen, France.
| | - A Buguet
- General (r) French Army Health Services, Malaria Research Unit, UMR 5246 CNRS, Claude-Bernard Lyon-1 University, 69622 Villeurbanne, France.
| | - G C Román
- Department of Neurology, Neurological Institute, Houston Methodist Hospital, Houston, TX, USA.
| | - P S Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
216
|
Liu P, Fang M, Luo Y, Zheng F, Jin Y, Cheng F, Zhu H, Jin X. Rare Variants in Inborn Errors of Immunity Genes Associated With Covid-19 Severity. Front Cell Infect Microbiol 2022; 12:888582. [PMID: 35694544 PMCID: PMC9184678 DOI: 10.3389/fcimb.2022.888582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/21/2022] [Indexed: 01/08/2023] Open
Abstract
Host genetic factors have been shown to play an important role in SARS-CoV-2 infection and the course of Covid-19 disease. The genetic contributions of common variants influencing Covid-19 susceptibility and severity have been extensively studied in diverse populations. However, the studies of rare genetic defects arising from inborn errors of immunity (IEI) are relatively few, especially in the Chinese population. To fill this gap, we used a deeply sequenced dataset of nearly 500 patients, all of Chinese descent, to investigate putative functional rare variants. Specifically, we annotated rare variants in our call set and selected likely deleterious missense (LDM) and high-confidence predicted loss-of-function (HC-pLoF) variants. Further, we analyzed LDM and HC-pLoF variants between non-severe and severe Covid-19 patients by (a) performing gene- and pathway-level association analyses, (b) testing the number of mutations in previously reported genes mapped from LDM and HC-pLoF variants, and (c) uncovering candidate genes via protein-protein interaction (PPI) network analysis of Covid-19-related genes and genes defined from LDM and HC-pLoF variants. From our analyses, we found that (a) pathways Tuberculosis (hsa:05152), Primary Immunodeficiency (hsa:05340), and Influenza A (hsa:05164) showed significant enrichment in severe patients compared to the non-severe ones, (b) HC-pLoF mutations were enriched in Covid-19-related genes in severe patients, and (c) several candidate genes, such as IL12RB1, TBK1, TLR3, and IFNGR2, are uncovered by PPI network analysis and worth further investigation. These regions generally play an essential role in regulating antiviral innate immunity responses to foreign pathogens and in responding to many inflammatory diseases. We believe that our identified candidate genes/pathways can be potentially used as Covid-19 diagnostic markers and help distinguish patients at higher risk.
Collapse
Affiliation(s)
- Panhong Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Beijing Genomeics Institute At Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Mingyan Fang
- Beijing Genomeics Institute At Shenzhen, BGI-Shenzhen, Shenzhen, China
- Beijing Genomeics Institute In Singapore, BGI-Singapore, Singapore, Singapore
| | - Yuxue Luo
- Beijing Genomeics Institute At Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Fang Zheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fanjun Cheng
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huanhuan Zhu
- Beijing Genomeics Institute At Shenzhen, BGI-Shenzhen, Shenzhen, China
- *Correspondence: Xin Jin, ; Huanhuan Zhu,
| | - Xin Jin
- Beijing Genomeics Institute At Shenzhen, BGI-Shenzhen, Shenzhen, China
- Beijing Genomeics Institute In Singapore, BGI-Singapore, Singapore, Singapore
- School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Xin Jin, ; Huanhuan Zhu,
| |
Collapse
|
217
|
Manry J, Bastard P, Gervais A, Le Voyer T, Rosain J, Philippot Q, Michailidis E, Hoffmann HH, Eto S, Garcia-Prat M, Bizien L, Parra-Martínez A, Yang R, Haljasmägi L, Migaud M, Särekannu K, Maslovskaja J, de Prost N, Tandjaoui-Lambiotte Y, Luyt CE, Amador-Borrero B, Gaudet A, Poissy J, Morel P, Richard P, Cognasse F, Troya J, Trouillet-Assant S, Belot A, Saker K, Garçon P, Rivière JG, Lagier JC, Gentile S, Rosen LB, Shaw E, Morio T, Tanaka J, Dalmau D, Tharaux PL, Sene D, Stepanian A, Mégarbane B, Triantafyllia V, Fekkar A, Heath JR, Franco JL, Anaya JM, Solé-Violán J, Imberti L, Biondi A, Bonfanti P, Castagnoli R, Delmonte OM, Zhang Y, Snow AL, Holland SM, Biggs CM, Moncada-Vélez M, Arias AA, Lorenzo L, Boucherit S, Anglicheau D, Planas AM, Haerynck F, Duvlis S, Ozcelik T, Keles S, Bousfiha AA, El Bakkouri J, Ramirez-Santana C, Paul S, Pan-Hammarström Q, Hammarström L, Dupont A, Kurolap A, Metz CN, Aiuti A, Casari G, Lampasona V, Ciceri F, Barreiros LA, Dominguez-Garrido E, Vidigal M, Zatz M, van de Beek D, Sahanic S, Tancevski I, Stepanovskyy Y, Boyarchuk O, Nukui Y, Tsumura M, Vidaur L, Tangye SG, Burrel S, Duffy D, Quintana-Murci L, Klocperk A, Kann NY, Shcherbina A, et alManry J, Bastard P, Gervais A, Le Voyer T, Rosain J, Philippot Q, Michailidis E, Hoffmann HH, Eto S, Garcia-Prat M, Bizien L, Parra-Martínez A, Yang R, Haljasmägi L, Migaud M, Särekannu K, Maslovskaja J, de Prost N, Tandjaoui-Lambiotte Y, Luyt CE, Amador-Borrero B, Gaudet A, Poissy J, Morel P, Richard P, Cognasse F, Troya J, Trouillet-Assant S, Belot A, Saker K, Garçon P, Rivière JG, Lagier JC, Gentile S, Rosen LB, Shaw E, Morio T, Tanaka J, Dalmau D, Tharaux PL, Sene D, Stepanian A, Mégarbane B, Triantafyllia V, Fekkar A, Heath JR, Franco JL, Anaya JM, Solé-Violán J, Imberti L, Biondi A, Bonfanti P, Castagnoli R, Delmonte OM, Zhang Y, Snow AL, Holland SM, Biggs CM, Moncada-Vélez M, Arias AA, Lorenzo L, Boucherit S, Anglicheau D, Planas AM, Haerynck F, Duvlis S, Ozcelik T, Keles S, Bousfiha AA, El Bakkouri J, Ramirez-Santana C, Paul S, Pan-Hammarström Q, Hammarström L, Dupont A, Kurolap A, Metz CN, Aiuti A, Casari G, Lampasona V, Ciceri F, Barreiros LA, Dominguez-Garrido E, Vidigal M, Zatz M, van de Beek D, Sahanic S, Tancevski I, Stepanovskyy Y, Boyarchuk O, Nukui Y, Tsumura M, Vidaur L, Tangye SG, Burrel S, Duffy D, Quintana-Murci L, Klocperk A, Kann NY, Shcherbina A, Lau YL, Leung D, Coulongeat M, Marlet J, Koning R, Reyes LF, Chauvineau-Grenier A, Venet F, Monneret G, Nussenzweig MC, Arrestier R, Boudhabhay I, Baris-Feldman H, Hagin D, Wauters J, Meyts I, Dyer AH, Kennelly SP, Bourke NM, Halwani R, Sharif-Askari FS, Dorgham K, Sallette J, Sedkaoui SM, AlKhater S, Rigo-Bonnin R, Morandeira F, Roussel L, Vinh DC, Erikstrup C, Condino-Neto A, Prando C, Bondarenko A, Spaan AN, Gilardin L, Fellay J, Lyonnet S, Bilguvar K, Lifton RP, Mane S, HGID Lab, COVID Clinicians, COVID-STORM Clinicians, NIAID Immune Response to COVID Group, NH-COVAIR Study Group, Danish CHGE, Danish Blood Donor Study, St. James's Hospital, SARS CoV2 Interest Group, French COVID Cohort Study Group, Imagine COVID-Group, The Milieu Intérieur Consortium, CoV-Contact Cohort, Amsterdam UMC Covid-19 Biobank Investigators, COVID Human Genetic Effort, CP-COVID-19 Group, CONSTANCES cohort, 3C-Dijon Study, Cerba Health-Care, Etablissement Français du Sang Study group, Anderson MS, Boisson B, Béziat V, Zhang SY, Andreakos E, Hermine O, Pujol A, Peterson P, Mogensen TH, Rowen L, Mond J, Debette S, de Lamballerie X, Burdet C, Bouadma L, Zins M, Soler-Palacin P, Colobran R, Gorochov G, Solanich X, Susen S, Martinez-Picado J, Raoult D, Vasse M, Gregersen PK, Piemonti L, Rodríguez-Gallego C, Notarangelo LD, Su HC, Kisand K, Okada S, Puel A, Jouanguy E, Rice CM, Tiberghien P, Zhang Q, Casanova JL, Abel L, Cobat A. The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proc Natl Acad Sci U S A 2022; 119:e2200413119. [PMID: 35576468 PMCID: PMC9173764 DOI: 10.1073/pnas.2200413119] [Show More Authors] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/17/2022] [Indexed: 01/25/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-β are found in ∼20% of deceased patients across age groups, and in ∼1% of individuals aged <70 y and in >4% of those >70 y old in the general population. With a sample of 1,261 unvaccinated deceased patients and 34,159 individuals of the general population sampled before the pandemic, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to noncarriers. The RRD associated with any combination of autoantibodies was higher in subjects under 70 y old. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRDs were 17.0 (95% CI: 11.7 to 24.7) and 5.8 (4.5 to 7.4) for individuals <70 y and ≥70 y old, respectively, whereas, for autoantibodies neutralizing both molecules, the RRDs were 188.3 (44.8 to 774.4) and 7.2 (5.0 to 10.3), respectively. In contrast, IFRs increased with age, ranging from 0.17% (0.12 to 0.31) for individuals <40 y old to 26.7% (20.3 to 35.2) for those ≥80 y old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84% (0.31 to 8.28) to 40.5% (27.82 to 61.20) for autoantibodies neutralizing both. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, especially when neutralizing both IFN-α2 and IFN-ω. Remarkably, IFRs increase with age, whereas RRDs decrease with age. Autoimmunity to type I IFNs is a strong and common predictor of COVID-19 death.
Collapse
Affiliation(s)
- Jérémy Manry
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | | | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065
| | - Shohei Eto
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Marina Garcia-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | - Alba Parra-Martínez
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Liis Haljasmägi
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | - Karita Särekannu
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Julia Maslovskaja
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Nicolas de Prost
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, 94010 Créteil, France
- Groupe de Recherche Clinique Cardiovascular and Respiratory Manifestations of Acute Lung Injury and Sepsis (CARMAS), Faculté de santé de Créteil, Université Paris Est Créteil, 94010 Créteil Cedex, France
| | - Yacine Tandjaoui-Lambiotte
- Hypoxia and Lung, INSERM U1272, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris, 93022 Bobigny, France
| | - Charles-Edouard Luyt
- Sorbonne Université, Hôpital Pitié Salpêtrière, Médecine Intensive Réanimation, Assistance Publique-Hôpitaux de Paris, 75013 Paris, France
- INSERM, UMRS 1166-iCAN, Institute of Cardiometabolism and Nutrition, 75013 Paris, France
| | - Blanca Amador-Borrero
- Internal Medicine Department, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, 75010 Paris, France
| | - Alexandre Gaudet
- INSERM U1019–CNRS UMR9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, University of Lille, 59000 Lille, France
- Centre Hospitalier Universitaire, de Lille, Pôle de Réanimation, Hôpital Roger Salengro Lille, 59000 Lille, France
| | - Julien Poissy
- INSERM U1019–CNRS UMR9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, University of Lille, 59000 Lille, France
- Centre Hospitalier Universitaire, de Lille, Pôle de Réanimation, Hôpital Roger Salengro Lille, 59000 Lille, France
| | - Pascal Morel
- Etablissement Français du Sang, 93218 La Plaine Saint-Denis, France
- Interactions Hôte-Greffon-Tumeur et Ingénierie Cellulaire et Génique (RIGHT), INSERM, Etablissement Français du Sang, Université de Franche-Comté, 25000 Besançon, France
| | - Pascale Richard
- Etablissement Français du Sang, 93218 La Plaine Saint-Denis, France
| | - Fabrice Cognasse
- Santé Ingéniérie Biologie St-Etienne (SAINBIOSE), INSERM U1059, University of Lyon, Université Jean Monnet Saint-Etienne, 42000 Saint-Étienne, France
- Etablissement Français du Sang, Auvergne-Rhône-Alpes, 42000 Saint-Étienne, France
| | - Jesús Troya
- Department of Internal Medicine, Infanta Leonor University Hospital, 28031 Madrid, Spain
| | - Sophie Trouillet-Assant
- Hospices Civils de Lyon, 69002 Lyon, France
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, Ecole Nationale Supérieure, Université Claude Bernard Lyon 1 (UCBL), 69365 Lyon, France
- Joint Research Unit, Hospices Civils de Lyon-BioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, 69495 Pierre-Bénite, France
| | - Alexandre Belot
- Hospices Civils de Lyon, 69002 Lyon, France
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, Ecole Nationale Supérieure, Université Claude Bernard Lyon 1 (UCBL), 69365 Lyon, France
- National Referee Centre for Rheumatic, and Autoimmune and Systemic Diseases in Children, 69000 Lyon, France
- Immunopathology Federation Lyon Immunopathology Federation (LIFE), Hospices Civils de Lyon, 69002 Lyon, France
| | - Kahina Saker
- Hospices Civils de Lyon, 69002 Lyon, France
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, Ecole Nationale Supérieure, Université Claude Bernard Lyon 1 (UCBL), 69365 Lyon, France
| | - Pierre Garçon
- Intensive Care Unit, Grand Hôpital de l’Est Francilien Site de Marne-La-Vallée, 77600 Jossigny, France
| | - Jacques G. Rivière
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Jean-Christophe Lagier
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Institut Hospitalo-Universitaire Méditerranée Infection, Institut de Recherche pour le Développement, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, 13005 Marseille, France
| | - Stéphanie Gentile
- Service d’Evaluation Médicale, Hôpitaux Universitaires de Marseille Assistance Publique Hôpitaux de Marseille, 13005 Marseille, France
- Aix-Marseille University, School of Medicine, EA 3279, Centre d'Études et de Recherche sur les Services de Santé et la Qualité de vie (CEReSS)–Health Service Research and Quality of Life Center, 13385 Marseille, France
| | - Lindsey B. Rosen
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892
| | - Elana Shaw
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - David Dalmau
- Hospital Universitari MútuaTerrassa, Universitat de Barcelona, 08193 Barcelona, Spain
- Fundació Docència i Recerca Mutua Terrassa, 08221 Terrassa, Spain
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Center (PARCC), INSERM, Université de Paris, 75015 Paris, France
| | - Damien Sene
- Internal Medicine Department, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, 75010 Paris, France
| | - Alain Stepanian
- Service d’Hématologie Biologique, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75010 Paris, France
- EA3518, Institut Universitaire d’Hématologie-Hôpital Saint Louis, Université de Paris, 75010 Paris, France
| | - Bruno Mégarbane
- Réanimation Médicale et Toxicologique, Hôpital Lariboisière Assistance Publique-Hôpitaux de Paris, Université de Paris, INSERM, UMRS-1144, 75010 Paris, France
| | - Vasiliki Triantafyllia
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Arnaud Fekkar
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Service de Parasitologie-Mycologie, Groupe Hospitalier Pitié Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris, France
| | | | - José Luis Franco
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, 050010 Medellín, Colombia
| | - Juan-Manuel Anaya
- Center for Autoimmune Disease Research, School of Medicine and Health Sciences, Universidad del Rosario, 110111 Bogotá, Colombia
| | - Jordi Solé-Violán
- Intensive Care Medicine, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, 35010 Las Palmas de Gran Canaria, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Clinical Sciences, Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| | - Luisa Imberti
- CHemato-oncology Research Laboratory of Associazione italiana contro le leucemie-linfomi e mieloma, Diagnostic Departement, Azienda Socio Sanitaria Territoriale, Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Andrea Biondi
- Pediatric Department and Centro Tettamanti-European Reference Network PaedCan, EuroBloodNet, European Reference Network for Rare Hereditary Metabolic Disorders (MetabERN), University of Milano Bicocca, Fondazione Monza Brianza Bambino Mamma (MBBM), Ospedale San Gerardo, 20900 Monza, Italy
| | - Paolo Bonfanti
- Department of Infectious Diseases, San Gerardo Hospital, University of Milano Bicocca, 20900 Monza, Italy
| | - Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892
- Pediatric Clinic, Fondazione Istituto di Ricovero e Cura a carattere scientifico (IRCCS) Policlinico San Matteo, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892
- National Institute of Allergy and Infectious Diseases (NIAID) Clinical Genomics Program, NIH, Bethesda, MD 20892
| | - Andrew L. Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892
| | - Catherine M. Biggs
- Department of Pediatrics, British Columbia Children’s Hospital, University of British Columbia, Vancouver, BC V6H 0B3, Canada
| | - Marcela Moncada-Vélez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Andrés Augusto Arias
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Primary Immunodeficiencies Group, University of Antioquia UdeA, 050010 Medellin, Colombia
- School of Microbiology, University of Antioquia UdeA, 050010 Medellin, Colombia
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | - Soraya Boucherit
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | - Dany Anglicheau
- Department of Nephrology and Transplantation, Necker University Hospital, Assistance Publique-Hôpitaux de Paris, 75743 Paris, France
- Institut Necker Enfants Malades, INSERM U1151–CNRS UMR 8253, Université de Paris, 75015 Paris, France
| | - Anna M. Planas
- Institute for Biomedical Research, Spanish National Research Council, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Filomeen Haerynck
- Department of Paediatric Immunology and Pulmonology, Center for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, 9000 Ghent, Belgium
| | - Sotirija Duvlis
- Faculty of Medical Sciences, University “Goce Delchev,” Štip 2000, Republic of North Macedonia
- Institute of Public Health of the Republic of North Macedonia, Skopje 1000, Republic of North Macedonia
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Bilkent University, 06800 Ankara, Turkey
| | - Sevgi Keles
- Meram Faculty of Medicine, Necmettin Erbakan University, 42080 Konya, Turkey
| | - Ahmed A. Bousfiha
- Clinical Immunology Unit, Department of Pediatric Infectious Disease, Centre Hospitalier-Universitaire Ibn Roucshd, 20360 Casablanca, Morocco
- Laboratoire d’Immunologie Clinique, Inflammation et Allergie (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, 20250 Casablanca, Morocco
| | - Jalila El Bakkouri
- Clinical Immunology Unit, Department of Pediatric Infectious Disease, Centre Hospitalier-Universitaire Ibn Roucshd, 20360 Casablanca, Morocco
- Laboratoire d’Immunologie Clinique, Inflammation et Allergie (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, 20250 Casablanca, Morocco
| | - Carolina Ramirez-Santana
- Center for Autoimmune Disease Research, School of Medicine and Health Sciences, Universidad del Rosario, 111211 Bogotá, Colombia
| | - Stéphane Paul
- Department of Immunology, CIC1408, Groupe sur l’Immunité des Muqueuses et des Agents Pathogènes (GIMAP) Centre International de Recherche en Infectiologie, INSERM U1111, University Hospital of Saint-Étienne, 42000 Saint-Étienne, France
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lennart Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Annabelle Dupont
- University of Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes (EGID), F-59000 Lille, France
| | - Alina Kurolap
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, 6423906 Tel Aviv, Israel
| | - Christine N. Metz
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Alessandro Aiuti
- Vita-Salute San Raffaele University, and Clinical Genomics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, 20132 Milan, Italy
| | - Giorgio Casari
- Vita-Salute San Raffaele University, and Clinical Genomics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, 20132 Milan, Italy
| | - Vito Lampasona
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele University Vita-Salute San Raffaele, 20132 Milano, Italy
| | - Lucila A. Barreiros
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, 05508-060 São Paulo, Brazil
| | | | | | - Mayana Zatz
- University of São Paulo, 05508-060 São Paulo, Brazil
| | - Diederik van de Beek
- Department of Neurology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Sabina Sahanic
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Oksana Boyarchuk
- Department of Children’s Diseases and Pediatric Surgery, I. Horbachevsky Ternopil National Medical University, 46022 Ternopil, Ukraine
| | - Yoko Nukui
- Department of Infection Control and Prevention, Medical Hospital, Tokyo Medical and Dental University, Tokyo 113-8655, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Loreto Vidaur
- Intensive Care Medicine, Donostia University Hospital, Biodonostia Institute of Donostia, 20014 San Sebastián, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Sydney, NWS 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, NWS 2010, Australia
| | - Sonia Burrel
- Sorbonne Université, INSERM U1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié Salpêtrière, Service de Virologie, 75013 Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, CNRS UMR 2000, 75015 Paris, France
- Department of Human Genomics and Evolution, Collège de France, 75231 Paris, France
| | - Adam Klocperk
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, 150 06 Prague, Czech Republic
| | - Nelli Y. Kann
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia 117997
| | - Anna Shcherbina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia 117997
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Daniel Leung
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Matthieu Coulongeat
- Division of Geriatric Medicine, Tours University Medical Center, 37044 Tours, France
| | - Julien Marlet
- INSERM U1259, Morphogenèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours, 37044 Tours, France
- Service de Bactériologie, Virologie et Hygiène Hospitalière, Centre Hospitalier Universitaire de Tours, 37044 Tours, France
| | - Rutger Koning
- Department of Neurology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Luis Felipe Reyes
- Department of Microbiology, Universidad de La Sabana, 250001 Chía, Colombia
- Department of Critical Care Medicine, Clínica Universidad de La Sabana, 250001 Chía, Colombia
| | | | - Fabienne Venet
- Laboratoire d’Immunologie, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69437 Lyon, France
- Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69007 Lyon, France
- EA 7426, Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, BioMérieux, Hôpital Edouard Herriot, 69437 Lyon, France
| | - Guillaume Monneret
- Laboratoire d’Immunologie, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69437 Lyon, France
- EA 7426, Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, BioMérieux, Hôpital Edouard Herriot, 69437 Lyon, France
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065
- HHMI, Rockefeller University, New York, NY 10065
| | - Romain Arrestier
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, 94010 Créteil, France
- Groupe de Recherche Clinique Cardiovascular and Respiratory Manifestations of Acute Lung Injury and Sepsis (CARMAS), Faculté de santé de Créteil, Université Paris Est Créteil, 94010 Créteil Cedex, France
| | - Idris Boudhabhay
- Department of Nephrology and Transplantation, Necker University Hospital, Assistance Publique-Hôpitaux de Paris, 75743 Paris, France
- Institut Necker Enfants Malades, INSERM U1151–CNRS UMR 8253, Université de Paris, 75015 Paris, France
| | - Hagit Baris-Feldman
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, 6423906 Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - David Hagin
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center, 6423906 Tel Aviv, Israel
| | - Joost Wauters
- Medical Intensive Care Unit, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Department of Pediatrics, Jeffrey Modell Diagnostic and Research Network Center, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Adam H. Dyer
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin D24 NR0A, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin D08 W9RT, Ireland
| | - Sean P. Kennelly
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin D24 NR0A, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin D08 W9RT, Ireland
| | - Nollaig M. Bourke
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin D08 W9RT, Ireland
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, 27272 Sharjah, United Arab Emirates
- Immunology Research Lab, College of Medicine, King Saud University, 11362 Riyadh, Saudi Arabia
| | - Fatemeh Saheb Sharif-Askari
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Karim Dorgham
- Sorbonne Université, INSERM, Centre d’Immunologie et des Maladies Infectieuses, 75013 Paris, France
| | | | | | - Suzan AlKhater
- Department of Pediatrics, King Fahad Hospital of the University, Al Khobar 34445, Saudi Arabia
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Raúl Rigo-Bonnin
- Department of Clinical Laboratory, Hospital Universitari de Bellvitge, The Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Francisco Morandeira
- Department of Immunology, Hospital Universitari de Bellvitge, The Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Lucie Roussel
- Department of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Infectious Disease Susceptibility Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Donald C. Vinh
- Department of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Infectious Disease Susceptibility Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, 05508-060 São Paulo, Brazil
| | - Carolina Prando
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, 80250-200 Curitiba, Brazil
| | | | - András N. Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Laurent Gilardin
- Service de Médecine Interne, Hôpital Universitaire Jean-Verdier, Assistance Publique-Hôpitaux de Paris, 93140 Bondy, France
- INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Stanislas Lyonnet
- Imagine Institute, Université de Paris, INSERM, UMR 1163, 75015 Paris, France
| | - Kaya Bilguvar
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06511
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510
- Department of Medical Genetics, Acibadem University School of Medicine, 34750 Istanbul, Turkey
| | - Richard P. Lifton
- Institute for Biomedical Research, Spanish National Research Council, 08036 Barcelona, Spain
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06511
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mark S. Anderson
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Olivier Hermine
- Imagine Institute, University of Paris, 75015 Paris, France
- Department of Paediatric Immunology and Pulmonology, Center for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, 9000 Ghent, Belgium
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, The Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER) U759, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Trine H. Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, 8000 Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Lee Rowen
- Institute for Systems Biology, Seattle, WA 98109
| | | | - Stéphanie Debette
- University of Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, F-33000 Bordeaux, France
- Department of Neurology, Institute of Neurodegenerative Diseases, Bordeaux University Hospital, F-33000 Bordeaux, France
| | - Xavier de Lamballerie
- Institut Hospitalo-Universitaire Méditerranée Infection, Unité des Virus Émergents, Aix-Marseille University, Institut pour la Recherche et le Développment (IRD) 190, INSERM 1207, 13005 Marseille, France
| | - Charles Burdet
- Epidémiologie clinique du Centre d’Investigation Clinique (CIC-EP), INSERM CIC 1425, Hôpital Bichat, 75018 Paris, France
- Université de Paris, Infection Antimicrobials Modelling Evolution (IAME), UMR 1137, INSERM, 75870 Paris, France
- Département Epidémiologie, Biostatistiques et Recherche Clinique, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, 75018 Paris, France
| | - Lila Bouadma
- Université de Paris, Infection Antimicrobials Modelling Evolution (IAME), UMR 1137, INSERM, 75870 Paris, France
- Service de Réanimation Médicale et des Maladies Infectieuses, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Nord Université de Paris, F-75018 Paris, France
| | - Marie Zins
- Cohorte Constances Groupe Hospitalier Universitaire centre, Assistance Publique-Hôpitaux de Paris, Université de Paris, 94800 Villejuif, France
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Roger Colobran
- Immunology Division, Genetics Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Guy Gorochov
- Sorbonne Université, INSERM, Centre d’Immunologie et des Maladies Infectieuses, 75013 Paris, France
- Département d’Immunologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpétrière, 75015 Paris, France
| | - Xavier Solanich
- Department of Internal Medicine, Hospital Universitari de Bellvitge, The Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Sophie Susen
- University of Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes (EGID), F-59000 Lille, France
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain
- Institute for Health Science Research Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
- Department of Infectious Diseases and Immunity, University of Vic-Central University of Catalonia, 08500 Vic, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Didier Raoult
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Institut Hospitalo-Universitaire Méditerranée Infection, Institut de Recherche pour le Développement, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, 13005 Marseille, France
| | - Marc Vasse
- Service de Biologie Clinique and UMR-S 1176, Hôpital Foch, 92150 Suresnes, France
| | - Peter K. Gregersen
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Lorenzo Piemonti
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Carlos Rodríguez-Gallego
- Department of Clinical Sciences, Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
- Department of Immunology, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, 35010 Las Palmas de Gran Canaria, Spain
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892
| | - Helen C. Su
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065
| | - Pierre Tiberghien
- Etablissement Français du Sang, 93218 La Plaine Saint-Denis, France
- Interactions Hôte-Greffon-Tumeur et Ingénierie Cellulaire et Génique (RIGHT), INSERM, Etablissement Français du Sang, Université de Franche-Comté, 25000 Besançon, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- HHMI, Rockefeller University, New York, NY 10065
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| |
Collapse
|
218
|
Abuhammour W, Yavuz L, Jain R, Abu Hammour K, Al-Hammouri GF, El Naofal M, Halabi N, Yaslam S, Ramaswamy S, Taylor A, Wafadari D, Alsarhan A, Khansaheb H, Deesi ZO, Varghese RM, Uddin M, Al Suwaidi H, Al-Hammadi S, Alkhaja A, AlDabal LM, Loney T, Nowotny N, Al Khayat A, Alsheikh-Ali A, Abou Tayoun A. Genetic and Clinical Characteristics of Patients in the Middle East With Multisystem Inflammatory Syndrome in Children. JAMA Netw Open 2022; 5:e2214985. [PMID: 35639375 PMCID: PMC9157271 DOI: 10.1001/jamanetworkopen.2022.14985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
IMPORTANCE Clinical, genetic, and laboratory characteristics of Middle Eastern patients with multisystem inflammatory syndrome in children (MIS-C) have not yet been documented. OBJECTIVE To assess the genetic and clinical characteristics of patients with MIS-C of primarily Arab and Asian origin. DESIGN, SETTING, AND PARTICIPANTS A prospective, multicenter cohort study was conducted from September 1, 2020, to August 31, 2021, in the United Arab Emirates and Jordan. Forty-five patients with MIS-C and a matched control group of 25 healthy children with a confirmed SARS-CoV-2 infection status were recruited. Whole exome sequencing in all 70 participants was performed to identify rare, likely deleterious variants in patients with MIS-C and to correlate genetic findings with the clinical course of illness. EXPOSURES SARS-CoV-2. MAIN OUTCOMES AND MEASURES Fever, organ system complications, laboratory biomarkers, whole exome sequencing findings, treatments, and clinical outcomes were measured. The Mann-Whitney U test was used to assess the association between genetic variants and MIS-C attributes. The Fisher exact test was used to compute the genetic burden in MIS-C relative to controls. RESULTS A total of 45 patients with MIS-C (23 [51.1%] male; 30 [66.7%] of Middle Eastern origin; mean [SD] age, 6.7 [3.6] years) and 25 controls (17 [68.0%] male; 24 [96.0%] of Middle Eastern origin; mean [SD] age 7.4 [4.0] years) participated in the study. Key inflammatory markers were significantly dysregulated in all patients with MIS-C. Mucocutaneous and gastrointestinal manifestations were each reported in 36 patients (80.0%; 95% CI, 66.1%-89.1%), cardiac findings were reported in 22 (48.9%; 95% CI, 35.0%-63.0%), and neurologic findings were reported in 14 (31.1%; 95% CI, 19.5%-45.6%). Rare, likely deleterious heterozygous variants in immune-related genes, including TLR3, TLR6, IL22RA2, IFNB1, and IFNA6, were identified in 19 patients (42.2%; 95% CI, 29.0%-56.7%), of whom 7 had multiple variants. There was higher enrichment of genetic variants in patients relative to controls (29 vs 3, P < .001). Patients with those variants tended to have earlier disease onset (7 patients [36.8%; 95% CI, 19.1%-58.9%] with genetic findings vs 2 [7.7%; 95% CI, 2.1%-24.1%] without genetic findings were younger than 3 years at onset) and resistance to treatment (8 patients [42.1%; 95% CI, 23.1%-63.7%] with genetic findings vs 3 patients [11.5%; 95% CI, 4.0%-29.0%] without genetic findings received 2 doses of intravenous immunoglobulin). CONCLUSIONS AND RELEVANCE The results of this cohort study suggest that rare, likely deleterious genetic variants may contribute to MIS-C disease. This finding paves the way for additional studies with larger, diverse populations to fully characterize the genetic contribution to this new disease entity.
Collapse
Affiliation(s)
| | - Lemis Yavuz
- Al Jalila Children’s Hospital, Dubai, United Arab Emirates
| | - Ruchi Jain
- Al Jalila Genomics Center, Al Jalila Children’s Hospital, Dubai, United Arab Emirates
| | - Khawla Abu Hammour
- Department of Biopharmaceutics and Clinical Pharmacy, The University of Jordan, Amman, Jordan
| | | | - Maha El Naofal
- Al Jalila Genomics Center, Al Jalila Children’s Hospital, Dubai, United Arab Emirates
| | - Nour Halabi
- Al Jalila Genomics Center, Al Jalila Children’s Hospital, Dubai, United Arab Emirates
| | - Sawsan Yaslam
- Al Jalila Genomics Center, Al Jalila Children’s Hospital, Dubai, United Arab Emirates
| | | | - Alan Taylor
- Al Jalila Genomics Center, Al Jalila Children’s Hospital, Dubai, United Arab Emirates
| | - Deena Wafadari
- Al Jalila Children’s Hospital, Dubai, United Arab Emirates
| | - Ali Alsarhan
- Al Jalila Children’s Hospital, Dubai, United Arab Emirates
| | - Hamda Khansaheb
- Medical Education and Research Department, Dubai Health Authority, Dubai, United Arab Emirates
| | - Zulfa Omar Deesi
- Microbiology and Infection Control Unit, Pathology and Genetics Department, Latifa Hospital for Women and Children, Dubai, United Arab Emirates
| | - Rupa Murthy Varghese
- Virology Laboratory, Microbiology and Infection Control Unit, Latifa Hospital for Women and Children, Dubai, United Arab Emirates
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Hanan Al Suwaidi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Suleiman Al-Hammadi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Abdulmajeed Alkhaja
- Medical Education and Research Department, Dubai Health Authority, Dubai, United Arab Emirates
| | - Laila Mohamed AlDabal
- Medical Affairs Department, Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - Tom Loney
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Norbert Nowotny
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Alawi Alsheikh-Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Dubai Health Authority, Dubai, United Arab Emirates
| | - Ahmad Abou Tayoun
- Al Jalila Genomics Center, Al Jalila Children’s Hospital, Dubai, United Arab Emirates
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
219
|
Sacco K, Castagnoli R, Vakkilainen S, Liu C, Delmonte OM, Oguz C, Kaplan IM, Alehashemi S, Burbelo PD, Bhuyan F, de Jesus AA, Dobbs K, Rosen LB, Cheng A, Shaw E, Vakkilainen MS, Pala F, Lack J, Zhang Y, Fink DL, Oikonomou V, Snow AL, Dalgard CL, Chen J, Sellers BA, Montealegre Sanchez GA, Barron K, Rey-Jurado E, Vial C, Poli MC, Licari A, Montagna D, Marseglia GL, Licciardi F, Ramenghi U, Discepolo V, Lo Vecchio A, Guarino A, Eisenstein EM, Imberti L, Sottini A, Biondi A, Mató S, Gerstbacher D, Truong M, Stack MA, Magliocco M, Bosticardo M, Kawai T, Danielson JJ, Hulett T, Askenazi M, Hu S, Cohen JI, Su HC, Kuhns DB, Lionakis MS, Snyder TM, Holland SM, Goldbach-Mansky R, Tsang JS, Notarangelo LD. Immunopathological signatures in multisystem inflammatory syndrome in children and pediatric COVID-19. Nat Med 2022; 28:1050-1062. [PMID: 35177862 PMCID: PMC9119950 DOI: 10.1038/s41591-022-01724-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/31/2022] [Indexed: 12/22/2022]
Abstract
Pediatric Coronavirus Disease 2019 (pCOVID-19) is rarely severe; however, a minority of children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might develop multisystem inflammatory syndrome in children (MIS-C), with substantial morbidity. In this longitudinal multi-institutional study, we applied multi-omics (analysis of soluble biomarkers, proteomics, single-cell gene expression and immune repertoire analysis) to profile children with COVID-19 (n = 110) and MIS-C (n = 76), along with pediatric healthy controls (pHCs; n = 76). pCOVID-19 was characterized by robust type I interferon (IFN) responses, whereas prominent type II IFN-dependent and NF-κB-dependent signatures, matrisome activation and increased levels of circulating spike protein were detected in MIS-C, with no correlation with SARS-CoV-2 PCR status around the time of admission. Transient expansion of TRBV11-2 T cell clonotypes in MIS-C was associated with signatures of inflammation and T cell activation. The association of MIS-C with the combination of HLA A*02, B*35 and C*04 alleles suggests genetic susceptibility. MIS-C B cells showed higher mutation load than pCOVID-19 and pHC. These results identify distinct immunopathological signatures in pCOVID-19 and MIS-C that might help better define the pathophysiology of these disorders and guide therapy.
Collapse
Affiliation(s)
- Keith Sacco
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Svetlana Vakkilainen
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Can Liu
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Graduate Program in Biological Sciences, University of Maryland, College Park, MD, USA
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cihan Oguz
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | | | - Sara Alehashemi
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Burbelo
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Farzana Bhuyan
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adriana A de Jesus
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lindsey B Rosen
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aristine Cheng
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elana Shaw
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Justin Lack
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Danielle L Fink
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Vasileios Oikonomou
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew L Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jinguo Chen
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), National Institutes of Health, Bethesda, MD, USA
| | - Brian A Sellers
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), National Institutes of Health, Bethesda, MD, USA
| | - Gina A Montealegre Sanchez
- Intramural Clinical Management and Operation Branch (ICMOB), Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Karyl Barron
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emma Rey-Jurado
- Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Cecilia Vial
- Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Maria Cecilia Poli
- Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile
- Unidad de Inmunología y Reumatología, Hospital de niños Dr. Roberto del Río, Santiago, Chile
| | - Amelia Licari
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Daniela Montagna
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Laboratory of Immunology and Transplantation, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gian Luigi Marseglia
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Francesco Licciardi
- Department of Pediatric and Public Health Sciences, Regina Margherita Children's Hospital, A.O.U. Città Della Salute E Della Scienza Di Torino, University of Turin, Turin, Italy
| | - Ugo Ramenghi
- Department of Pediatric and Public Health Sciences, Regina Margherita Children's Hospital, A.O.U. Città Della Salute E Della Scienza Di Torino, University of Turin, Turin, Italy
| | - Valentina Discepolo
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples Federico II, Napoli, Italy
| | - Andrea Lo Vecchio
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples Federico II, Napoli, Italy
| | - Alfredo Guarino
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples Federico II, Napoli, Italy
| | - Eli M Eisenstein
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - Luisa Imberti
- CREA Laboratory (AIL Center for Hemato-Oncologic Research), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alessandra Sottini
- CREA Laboratory (AIL Center for Hemato-Oncologic Research), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Andrea Biondi
- Pediatric Department and Centro Tettamanti-European Reference Network PaedCan, EuroBloodNet, MetabERN, University of Milano Bicocca, Fondazione MBBM, Ospedale San Gerardo, Monza, Italy
| | - Sayonara Mató
- Randall Children's Hospital at Legacy Emanuel, Portland, OR, USA
| | - Dana Gerstbacher
- Division of Pediatric Rheumatology, Stanford Children's Hospital, Stanford, CA, USA
| | - Meng Truong
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Stack
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mary Magliocco
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tomoki Kawai
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey J Danielson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tyler Hulett
- CDI Laboratories, Antygen Division, Baltimore, MD, USA
| | | | - Shaohui Hu
- CDI Laboratories, Antygen Division, Baltimore, MD, USA
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Douglas B Kuhns
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michail S Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Raphaela Goldbach-Mansky
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John S Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- NIH Center for Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
220
|
Bergman P, Wullimann D, Gao Y, Wahren Borgström E, Norlin AC, Lind Enoksson S, Aleman S, Ljunggren HG, Buggert M, Smith CIE. Elevated CD21 low B Cell Frequency Is a Marker of Poor Immunity to Pfizer-BioNTech BNT162b2 mRNA Vaccine Against SARS-CoV-2 in Patients with Common Variable Immunodeficiency. J Clin Immunol 2022; 42:716-727. [PMID: 35290571 PMCID: PMC8922070 DOI: 10.1007/s10875-022-01244-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/24/2022] [Indexed: 12/18/2022]
Abstract
PURPOSE Limited data is available on the effect of COVID-19 vaccination in immunocompromised individuals. Here, we provide the results from vaccinating a single-center cohort of patients with common variable immunodeficiency (CVID). METHODS In a prospective, open-label clinical trial, 50 patients with CVID and 90 age-matched healthy controls (HC) were analyzed for SARS-CoV-2 spike antibody (Ab) production after one or two doses of the Pfizer-BioNTech BNT162b2 mRNA vaccine. Additionally, in selected patients, SARS-CoV-2 spike-specific T-cells were assessed. RESULTS A potent vaccine-induced anti-spike-specific IgG Ab response was observed in all the HC. In contrast, only 68.3% of the CVID patients seroconverted, with median titers of specific Ab being 83-fold lower than in HC. In fact, only 4/46 patients (8.6%) of patients who were seronegative at baseline reached the threshold for an optimal response (250 U/mL). Using the EUROclass definition, patients with either a reduced proportion, but not absolute counts, of switched memory B-cells or having an increased frequency of CD21low B-cells generally generated poor vaccine responses. Overall, CVID-patients had reduced spike-specific IFN-γ positive CD4+ T cell responses 2 weeks after the second dose, compared to HC. The total CD4 and CD4 central memory cell counts correlated with humoral immunity to the vaccine. CONCLUSIONS CVID patients with low frequency of switched memory B-cells or an increased frequency of CD21low B-cells according to the EUROclass definition demonstrated poor responses to Pfizer-BioNTech BNT162b2 mRNA vaccination. Cellular immune responses were significantly affected, affirming that the defect in CVID is not limited to humoral immunity.
Collapse
Affiliation(s)
- Peter Bergman
- Department of Infectious Diseases, Immunodeficiency Unit, Karolinska University Hospital, Stockholm, Sweden.
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden.
| | - David Wullimann
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yu Gao
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Emilie Wahren Borgström
- Department of Infectious Diseases, Immunodeficiency Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Anna-Carin Norlin
- Department of Infectious Diseases, Immunodeficiency Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Lind Enoksson
- Department of Clinical immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Investigation and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Soo Aleman
- Department of Infectious Diseases, Immunodeficiency Unit, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Department of Infectious Diseases, Immunodeficiency Unit, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - C I Edvard Smith
- Department of Infectious Diseases, Immunodeficiency Unit, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
221
|
Planès R, Pinilla M, Santoni K, Hessel A, Passemar C, Lay K, Paillette P, Valadão ALC, Robinson KS, Bastard P, Lam N, Fadrique R, Rossi I, Pericat D, Bagayoko S, Leon-Icaza SA, Rombouts Y, Perouzel E, Tiraby M, Zhang Q, Cicuta P, Jouanguy E, Neyrolles O, Bryant CE, Floto AR, Goujon C, Lei FZ, Martin-Blondel G, Silva S, Casanova JL, Cougoule C, Reversade B, Marcoux J, Ravet E, Meunier E. Human NLRP1 is a sensor of pathogenic coronavirus 3CL proteases in lung epithelial cells. Mol Cell 2022; 82:2385-2400.e9. [PMID: 35594856 PMCID: PMC9108100 DOI: 10.1016/j.molcel.2022.04.033] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/16/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Rémi Planès
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France; InvivoGen, Toulouse, France; IRIM, University of Montpellier, CNRS, Montpellier, France.
| | - Miriam Pinilla
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France; InvivoGen, Toulouse, France
| | - Karin Santoni
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Audrey Hessel
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Charlotte Passemar
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Kenneth Lay
- Institute of Medical Biology, Agency of Science, Technology and Research, 8A Biomedical Grove, #06-06 Immunos, 138648 Singapore, Singapore; Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore
| | | | | | - Kim Samirah Robinson
- A(∗)STAR Skin Research Laboratories, 11 Mandalay Road, 308232 Singapore, Singapore
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Nathaniel Lam
- University of Cambridge, Department of Veterinary Medicine, Cambridge CB30ES, UK; University of Cambridge, School of Clinical Medicine, Box 111, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - Ricardo Fadrique
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Ida Rossi
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - David Pericat
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Salimata Bagayoko
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Stephen Adonai Leon-Icaza
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Yoann Rombouts
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | | | | | - Qian Zhang
- University of Paris, Imagine Institute, Paris, France
| | - Pietro Cicuta
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Olivier Neyrolles
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Clare E Bryant
- University of Cambridge, Department of Veterinary Medicine, Cambridge CB30ES, UK; University of Cambridge, School of Clinical Medicine, Box 111, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - Andres R Floto
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | | | - Franklin Zhong Lei
- A(∗)STAR Skin Research Laboratories, 11 Mandalay Road, 308232 Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232 Singapore, Singapore; Skin Research Institute of Singapore (SRIS), 11 Mandalay Road, 308232 Singapore, Singapore
| | - Guillaume Martin-Blondel
- Service des Maladies Infectieuses et Tropicales, CHU de Toulouse, Toulouse, France; Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM UMR1291 - CNRS UMR5051 - Université Toulouse III, Toulouse, France
| | - Stein Silva
- Critical Care Unit, University Hospital of Purpan, Toulouse, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Howard Hughes Medical Institute, New York, NY, USA
| | - Céline Cougoule
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Bruno Reversade
- Institute of Medical Biology, Agency of Science, Technology and Research, 8A Biomedical Grove, #06-06 Immunos, 138648 Singapore, Singapore; Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore; Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 10 Medical Drive, 117597 Singapore, Singapore; The Medical Genetics Department, Koç University School of Medicine, 34010 Istanbul, Turkey
| | - Julien Marcoux
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | | | - Etienne Meunier
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
222
|
Brown GJ, Cañete PF, Wang H, Medhavy A, Bones J, Roco JA, He Y, Qin Y, Cappello J, Ellyard JI, Bassett K, Shen Q, Burgio G, Zhang Y, Turnbull C, Meng X, Wu P, Cho E, Miosge LA, Andrews TD, Field MA, Tvorogov D, Lopez AF, Babon JJ, López CA, Gónzalez-Murillo Á, Garulo DC, Pascual V, Levy T, Mallack EJ, Calame DG, Lotze T, Lupski JR, Ding H, Ullah TR, Walters GD, Koina ME, Cook MC, Shen N, de Lucas Collantes C, Corry B, Gantier MP, Athanasopoulos V, Vinuesa CG. TLR7 gain-of-function genetic variation causes human lupus. Nature 2022; 605:349-356. [PMID: 35477763 PMCID: PMC9095492 DOI: 10.1038/s41586-022-04642-z] [Citation(s) in RCA: 335] [Impact Index Per Article: 111.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022]
Abstract
Although circumstantial evidence supports enhanced Toll-like receptor 7 (TLR7) signalling as a mechanism of human systemic autoimmune disease1-7, evidence of lupus-causing TLR7 gene variants is lacking. Here we describe human systemic lupus erythematosus caused by a TLR7 gain-of-function variant. TLR7 is a sensor of viral RNA8,9 and binds to guanosine10-12. We identified a de novo, previously undescribed missense TLR7Y264H variant in a child with severe lupus and additional variants in other patients with lupus. The TLR7Y264H variant selectively increased sensing of guanosine and 2',3'-cGMP10-12, and was sufficient to cause lupus when introduced into mice. We show that enhanced TLR7 signalling drives aberrant survival of B cell receptor (BCR)-activated B cells, and in a cell-intrinsic manner, accumulation of CD11c+ age-associated B cells and germinal centre B cells. Follicular and extrafollicular helper T cells were also increased but these phenotypes were cell-extrinsic. Deficiency of MyD88 (an adaptor protein downstream of TLR7) rescued autoimmunity, aberrant B cell survival, and all cellular and serological phenotypes. Despite prominent spontaneous germinal-centre formation in Tlr7Y264H mice, autoimmunity was not ameliorated by germinal-centre deficiency, suggesting an extrafollicular origin of pathogenic B cells. We establish the importance of TLR7 and guanosine-containing self-ligands for human lupus pathogenesis, which paves the way for therapeutic TLR7 or MyD88 inhibition.
Collapse
Affiliation(s)
- Grant J Brown
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Pablo F Cañete
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Hao Wang
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Arti Medhavy
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Josiah Bones
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jonathan A Roco
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yuke He
- China Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yuting Qin
- China Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jean Cappello
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Julia I Ellyard
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Katharine Bassett
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Qian Shen
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Gaetan Burgio
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yaoyuan Zhang
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Cynthia Turnbull
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Xiangpeng Meng
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Phil Wu
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Eun Cho
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lisa A Miosge
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - T Daniel Andrews
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Matt A Field
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Denis Tvorogov
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Angel F Lopez
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Jeffrey J Babon
- Division of Structural Biology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | - África Gónzalez-Murillo
- Unidad de Terapias Avanzadas, Oncología, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Fundación de Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | | | - Virginia Pascual
- Department of Pediatrics, Drukier Institute for Children's Health, Weill Cornell Medical College, New York, NY, USA
| | - Tess Levy
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric J Mallack
- Division of Child Neurology, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA
| | - Daniel G Calame
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Timothy Lotze
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - James R Lupski
- Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Huihua Ding
- China Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Shanghai Jiaotong University, Shanghai, China
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai, Jiao Tong University (SJTUSM), Shanghai, China
| | - Tomalika R Ullah
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Giles D Walters
- Department of Renal Medicine, The Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Mark E Koina
- Department of Anatomical Pathology, The Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Matthew C Cook
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Nan Shen
- China Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Shanghai Jiaotong University, Shanghai, China
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai, Jiao Tong University (SJTUSM), Shanghai, China
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carmen de Lucas Collantes
- Sección de Nefrología, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Departamento de Pediatría. Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ben Corry
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Michael P Gantier
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai, Jiao Tong University (SJTUSM), Shanghai, China
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Vicki Athanasopoulos
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Carola G Vinuesa
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia.
- Francis Crick Institute, London, UK.
| |
Collapse
|
223
|
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating pandemic. Although most people infected with SARS-CoV-2 develop a mild to moderate disease with virus replication restricted mainly to the upper airways, some progress to having a life-threatening pneumonia. In this Review, we explore recent clinical and experimental advances regarding SARS-CoV-2 pathophysiology and discuss potential mechanisms behind SARS-CoV-2-associated acute respiratory distress syndrome (ARDS), specifically focusing on new insights obtained using novel technologies such as single-cell omics, organoid infection models and CRISPR screens. We describe how SARS-CoV-2 may infect the lower respiratory tract and cause alveolar damage as a result of dysfunctional immune responses. We discuss how this may lead to the induction of a 'leaky state' of both the epithelium and the endothelium, promoting inflammation and coagulation, while an influx of immune cells leads to overexuberant inflammatory responses and immunopathology. Finally, we highlight how these findings may aid the development of new therapeutic interventions against COVID-19.
Collapse
|
224
|
Malisoux L, Backes A, Fischer A, Aguayo G, Ollert M, Fagherazzi G. Associations between physical activity prior to infection and COVID-19 disease severity and symptoms: results from the prospective Predi-COVID cohort study. BMJ Open 2022; 12:e057863. [PMID: 35487745 PMCID: PMC9058293 DOI: 10.1136/bmjopen-2021-057863] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To investigate if the physical activity (PA) prior to infection is associated with the severity of the disease in patients positively tested for COVID-19, as well as with the most common symptoms. DESIGN A cross-sectional study using baseline data from a prospective, hybrid cohort study (Predi-COVID) in Luxembourg. Data were collected from May 2020 to June 2021. SETTING Real-life setting (at home) and hospitalised patients. PARTICIPANTS All volunteers aged >18 years with confirmed SARS-CoV-2 infection, as determined by reverse transcription-PCR, and having completed the PA questionnaire (n=452). PRIMARY AND SECONDARY OUTCOME MEASURES The primary outcome was disease severity (asymptomatic, mild illness and moderate illness). The secondary outcomes were self-reported symptoms. RESULTS From the 452 patients included, 216 (48%) were female, the median (IQR) age was 42 (31-51) years, 59 (13%) were classified as asymptomatic, 287 (63%) as mild illness and 106 (24%) as moderate illness. The most prevalent symptoms were fatigue (n=294; 65%), headache (n=281; 62%) and dry cough (n=241; 53%). After adjustment, the highest PA level was associated with a lower risk of moderate illness (OR 0.37; 95% CI 0.14 to 0.98, p=0.045), fatigue (OR 0.54; 95% CI 0.30 to 0.97, p=0.040), dry cough (OR 0.55; 95% CI 0.32 to 0.96, p=0.034) and chest pain (OR 0.32; 95% CI 0.14 to 0.77, p=0.010). CONCLUSIONS PA before COVID-19 infection was associated with a reduced risk of moderate illness severity and a reduced risk of experiencing fatigue, dry cough and chest pain, suggesting that engaging in PA may be an effective approach to minimise the severity of COVID-19. TRIAL REGISTRATION NUMBER NCT04380987.
Collapse
Affiliation(s)
- Laurent Malisoux
- Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Anne Backes
- Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Aurélie Fischer
- Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Gloria Aguayo
- Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Markus Ollert
- Department of Infection & Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, University of Southern, Odense, Denmark
| | - Guy Fagherazzi
- Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| |
Collapse
|
225
|
Borsani O, Bastard P, Rosain J, Gervais A, Sant'Antonio E, Vanni D, Casetti IC, Pietra D, Trotti C, Catricalà S, Ferretti VV, Malcovati L, Arcaini L, Casanova JL, Borghesi A, Rumi E. Autoantibodies against type I IFNs in patients with Ph-negative myeloproliferative neoplasms. Blood 2022; 139:2716-2720. [PMID: 35100354 PMCID: PMC9047990 DOI: 10.1182/blood.2021014890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/14/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Oscar Borsani
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | | | - Daniele Vanni
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Daniela Pietra
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Trotti
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Silvia Catricalà
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Virginia Valeria Ferretti
- Service of Clinical Epidemiology and Biostatistic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Luca Arcaini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Alessandro Borghesi
- Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; and
- Fellay lab, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Elisa Rumi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
226
|
Becker J, Kalinke U. Toll-like receptors matter: plasmacytoid dendritic cells in COVID-19. EMBO J 2022; 41:e111208. [PMID: 35471700 PMCID: PMC9108606 DOI: 10.15252/embj.2022111208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Plasmacytoid dendritic cells (pDC) have the unique ability to rapidly mount high‐level antiviral type I interferon (IFN‐I) responses during diverse virus infections. In COVID‐19 patients, reduced pDC numbers correlate with diminished IFN‐I serum levels and enhanced disease severity. However, the molecular mechanisms underlying SARS‐CoV‐2‐mediated pDC stimulation to induce cytokine responses are still largely unclear. In this issue of the EMBO Journal, van der Sluis and colleagues tackled this question by using an innovative hematopoietic stem and progenitor cells (HSPC)‐pDC system that allows gene editing and the detailed analysis of pDC sensing mechanisms.
Collapse
Affiliation(s)
- Jennifer Becker
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany.,Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
227
|
Levy G, Guglielmelli P, Langmuir P, Constantinescu S. JAK inhibitors and COVID-19. J Immunother Cancer 2022; 10:jitc-2021-002838. [PMID: 35459733 PMCID: PMC9035837 DOI: 10.1136/jitc-2021-002838] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
During SARS-CoV-2 infection, the innate immune response can be inhibited or delayed, and the subsequent persistent viral replication can induce emergency signals that may culminate in a cytokine storm contributing to the severe evolution of COVID-19. Cytokines are key regulators of the immune response and virus clearance, and, as such, are linked to the—possibly altered—response to the SARS-CoV-2. They act via a family of more than 40 transmembrane receptors that are coupled to one or several of the 4 Janus kinases (JAKs) coded by the human genome, namely JAK1, JAK2, JAK3, and TYK2. Once activated, JAKs act on pathways for either survival, proliferation, differentiation, immune regulation or, in the case of type I interferons, antiviral and antiproliferative effects. Studies of graft-versus-host and systemic rheumatic diseases indicated that JAK inhibitors (JAKi) exert immunosuppressive effects that are non-redundant with those of corticotherapy. Therefore, they hold the potential to cut-off pathological reactions in COVID-19. Significant clinical experience already exists with several JAKi in COVID-19, such as baricitinib, ruxolitinib, tofacitinib, and nezulcitinib, which were suggested by a meta-analysis (Patoulias et al.) to exert a benefit in terms of risk reduction concerning major outcomes when added to standard of care in patients with COVID-19. Yet, only baricitinib is recommended in first line for severe COVID-19 treatment by the WHO, as it is the only JAKi that has proven efficient to reduce mortality in individual randomized clinical trials (RCT), especially the Adaptive COVID-19 Treatment Trial (ACTT-2) and COV-BARRIER phase 3 trials. As for secondary effects of JAKi treatment, the main caution with baricitinib consists in the induced immunosuppression as long-term side effects should not be an issue in patients treated for COVID-19. We discuss whether a class effect of JAKi may be emerging in COVID-19 treatment, although at the moment the convincing data are for baricitinib only. Given the key role of JAK1 in both type I IFN action and signaling by cytokines involved in pathogenic effects, establishing the precise timing of treatment will be very important in future trials, along with the control of viral replication by associating antiviral molecules.
Collapse
Affiliation(s)
- Gabriel Levy
- Signal Transduction and Molecular Hematology, Ludwig Institute for Cancer Research, Brussels, Belgium.,Signal Transduction on Molecular Hematology, de Duve Institute, Université Catholique de Louvain, Bruxelles, Belgium.,WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
| | - Paola Guglielmelli
- Department of Clinical and Experimental Medicine, University of Florence, Firenze, Italy.,Center of Research and Innovation for Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliero Universitaria Careggi, Firenze, Italy
| | - Peter Langmuir
- Oncology Targeted Therapeutics, Incyte Corp, Wilmington, Delaware, USA
| | - Stefan Constantinescu
- Signal Transduction and Molecular Hematology, Ludwig Institute for Cancer Research, Brussels, Belgium .,Signal Transduction on Molecular Hematology, de Duve Institute, Université Catholique de Louvain, Bruxelles, Belgium.,WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium.,Nuffield Department of Medicine, Oxford University, Ludwig Institute for Cancer Research, Oxford, UK
| |
Collapse
|
228
|
Gray PE, Bartlett AW, Tangye SG. Severe COVID-19 represents an undiagnosed primary immunodeficiency in a high proportion of infected individuals. Clin Transl Immunology 2022; 11:e1365. [PMID: 35444807 PMCID: PMC9013505 DOI: 10.1002/cti2.1365] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/08/2023] Open
Abstract
Since the emergence of the COVID-19 pandemic in early 2020, a key challenge has been to define risk factors, other than age and pre-existing comorbidities, that predispose some people to severe disease, while many other SARS-CoV-2-infected individuals experience mild, if any, consequences. One explanation for intra-individual differences in susceptibility to severe COVID-19 may be that a growing percentage of otherwise healthy people have a pre-existing asymptomatic primary immunodeficiency (PID) that is unmasked by SARS-CoV-2 infection. Germline genetic defects have been identified in individuals with life-threatening COVID-19 that compromise local type I interferon (IFN)-mediated innate immune responses to SARS-CoV-2. Remarkably, these variants - which impact responses initiated through TLR3 and TLR7, as well as the response to type I IFN cytokines - may account for between 3% and 5% of severe COVID-19 in people under 70 years of age. Similarly, autoantibodies against type I IFN cytokines (IFN-α, IFN-ω) have been detected in patients' serum prior to infection with SARS-CoV-2 and were found to cause c. 20% of severe COVID-19 in the above 70s and 20% of total COVID-19 deaths. These autoantibodies, which are more common in the elderly, neutralise type I IFNs, thereby impeding innate antiviral immunity and phenocopying an inborn error of immunity. The discovery of PIDs underlying a significant percentage of severe COVID-19 may go some way to explain disease susceptibility, may allow for the application of targeted therapies such as plasma exchange, IFN-α or IFN-β, and may facilitate better management of social distancing, vaccination and early post-exposure prophylaxis.
Collapse
Affiliation(s)
- Paul E Gray
- Department of Immunology and Infectious Diseases Sydney Children's Hospital Randwick NSW Australia.,School of Women's and Children's Health University of New South Wales Randwick NSW Australia
| | - Adam W Bartlett
- Department of Immunology and Infectious Diseases Sydney Children's Hospital Randwick NSW Australia.,School of Women's and Children's Health University of New South Wales Randwick NSW Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research Darlinghurst NSW Australia.,St Vincent's Clinical School UNSW Sydney Randwick NSW Australia
| |
Collapse
|
229
|
Bolze A, Neveux I, Schiabor Barrett KM, White S, Isaksson M, Dabe S, Lee W, Grzymski JJ, Washington NL, Cirulli ET. HLA-A∗03:01 is associated with increased risk of fever, chills, and stronger side effects from Pfizer-BioNTech COVID-19 vaccination. HGG ADVANCES 2022; 3:100084. [PMID: 35005651 PMCID: PMC8719913 DOI: 10.1016/j.xhgg.2021.100084] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022] Open
Abstract
COVID-19 vaccines are safe and highly effective, but some individuals experience unpleasant reactions to vaccination. As the majority of adults in the United States have received a COVID-19 vaccine this year, there is an unprecedented opportunity to study the genetics of reactions to vaccination via surveys of individuals who are already part of genetic research studies. Here, we have queried 17,440 participants in the Helix DNA Discovery Project and Healthy Nevada Project about their reactions to COVID-19 vaccination. Our genome-wide association study identifies an association between severe difficulties with daily routine after vaccination and HLA-A∗03:01. This association was statistically significant only for those who received the Pfizer-BioNTech vaccine (BNT162b2; n = 3,694; p = 4.70E−11; OR = 2.07 [95% CI 1.67–2.56]), and showed a smaller effect size in those who received the Moderna vaccine (mRNA-1273; n = 3,610; p = 0.005; OR = 1.32 [95% CI 1.09–1.59]). In Pfizer-BioNTech recipients, HLA-A∗03:01 was associated with a 2-fold increase in risk of self-reported severe difficulties with daily routine following vaccination. The effect was consistent across ages, sexes, and whether the person had previously had a COVID-19 infection. The reactions experienced by HLA-A∗03:01 carriers were driven by associations with chills, fever, fatigue, and generally feeling unwell.
Collapse
Affiliation(s)
- Alexandre Bolze
- Helix, 101 South Ellsworth Avenue, Suite 350, San Mateo, CA 94401, USA
| | - Iva Neveux
- Center for Genomic Medicine, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA
| | | | - Simon White
- Helix, 101 South Ellsworth Avenue, Suite 350, San Mateo, CA 94401, USA
| | - Magnus Isaksson
- Helix, 101 South Ellsworth Avenue, Suite 350, San Mateo, CA 94401, USA
| | - Shaun Dabe
- Renown Health, 1155 Mill Street, Reno, NV 89502, USA
| | - William Lee
- Helix, 101 South Ellsworth Avenue, Suite 350, San Mateo, CA 94401, USA
| | - Joseph J Grzymski
- Center for Genomic Medicine, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA
| | | | | |
Collapse
|
230
|
Abstract
Nonresolving inflammation contributes to many diseases, including COVID-19 in its fatal and long forms. Our understanding of inflammation is rapidly evolving. Like the immune system of which it is a part, inflammation can now be seen as an interactive component of a homeostatic network with the endocrine and nervous systems. This review samples emerging insights regarding inflammatory memory, inflammatory aging, inflammatory cell death, inflammatory DNA, inflammation-regulating cells and metabolites, approaches to resolving or modulating inflammation, and inflammatory inequity.
Collapse
Affiliation(s)
- Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
231
|
Klopp-Schulze L, Shaw JV, Dong JQ, Khandelwal A, Vazquez-Mateo C, Goteti K. Applying Modeling and Simulations for Rational Dose Selection of Novel Toll-Like Receptor 7/8 Inhibitor Enpatoran for Indications of High Medical Need. Clin Pharmacol Ther 2022; 112:297-306. [PMID: 35390178 PMCID: PMC9540480 DOI: 10.1002/cpt.2606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/29/2022] [Indexed: 01/22/2023]
Abstract
Dual toll‐like receptor (TLR) 7 and TLR8 inhibitor enpatoran is under investigation as a treatment for lupus and coronavirus disease 2019 (COVID‐19) pneumonia. Population pharmacokinetic/pharmacodynamic (PopPK/PD) model‐based simulations, using PK and PD (inhibition of ex vivo‐stimulated interleukin‐6 (IL‐6) and interferon‐α (IFN‐α) secretion) data from a phase I study of enpatoran in healthy participants, were leveraged to inform dose selection for lupus and repurposed for accelerated development in COVID‐19. A two‐compartment PK model was linked to sigmoidal maximum effect (Emax) models with proportional decrease from baseline characterizing the PD responses across the investigated single and multiple doses, up to 200 mg daily for 14 days (n = 72). Concentrations that maintain 50/60/90% inhibition (IC50/60/90) of cytokine secretion (IL‐6/IFN‐α) over 24 hours were estimated and stochastic simulations performed to assess target coverage under different dosing regimens. Simulations suggested investigating 25, 50, and 100 mg enpatoran twice daily (b.i.d.) to explore the anticipated therapeutic dose range for lupus. With 25 mg b.i.d., > 50% of subjects are expected to achieve 60% inhibition of IL‐6. With 100 mg b.i.d., most subjects are expected to maintain almost complete target coverage for 24 hours (> 80% subjects IC90,IL‐6 = 15.5 ng/mL; > 60% subjects IC90,IFN‐α = 22.1 ng/mL). For COVID‐19, 50 and 100 mg enpatoran b.i.d. were recommended; 50 mg b.i.d. provides shorter IFN‐α inhibition (median time above IC90 = 13 hours/day), which may be beneficial to avoid interference with the antiviral immune response. Utilization of PopPK/PD models initially developed for lupus enabled informed dose selection for the accelerated development of enpatoran in COVID‐19.
Collapse
Affiliation(s)
- Lena Klopp-Schulze
- Translational Medicine, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Jamie V Shaw
- Translational Medicine, EMD Serono, Billerica, Massachusetts, USA
| | - Jennifer Q Dong
- Translational Medicine, EMD Serono, Billerica, Massachusetts, USA
| | - Akash Khandelwal
- Translational Medicine, the healthcare business of Merck KGaA, Darmstadt, Germany
| | | | - Kosalaram Goteti
- Translational Medicine, EMD Serono, Billerica, Massachusetts, USA
| |
Collapse
|
232
|
Rodríguez-Vargas GS, Nieto-Zambrano PD, Rubio-Rubio JA, Santos-Moreno P, Rojas-Villarraga A. Artritis reumatoide y telemedicina en tiempos de COVID-19. REPERTORIO DE MEDICINA Y CIRUGÍA 2022. [DOI: 10.31260/repertmedcir.01217372.1300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
La artritis reumatoide es una afección autoinmune, crónica y multisistémica que requiere manejo multidisciplinar, siendo la supervisión continua fundamental para controlar su progresión. Tanto la artritis como el tratamiento generan un estado inmunosupresor que predispone a sufrir infecciones. Por la actual emergencia sanitaria ocasionada por el Sars-Cov2, los pacientes con estas enfermedades crónicas e inmunológicas son más susceptibles de contagio, por ello se ha requerido el uso de nuevas tecnologías como la telemedicina, que en los años previos a la pandemia venía incrementándose su uso, para permitir el control de patologías crónicas. El objetivo del presente estudio es revisar qué implicaciones ha tenido el uso de la telemedicina en el manejo de la artritis reumatoide durante la actual pandemia COVID-19 y cuál ha sido la importancia de la implementación de estas tecnologías en la enfermedad.
Collapse
|
233
|
Puel A, Bastard P, Bustamante J, Casanova JL. Human autoantibodies underlying infectious diseases. J Exp Med 2022; 219:e20211387. [PMID: 35319722 PMCID: PMC8952682 DOI: 10.1084/jem.20211387] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
The vast interindividual clinical variability observed in any microbial infection-ranging from silent infection to lethal disease-is increasingly being explained by human genetic and immunological determinants. Autoantibodies neutralizing specific cytokines underlie the same infectious diseases as inborn errors of the corresponding cytokine or response pathway. Autoantibodies against type I IFNs underlie COVID-19 pneumonia and adverse reactions to the live attenuated yellow fever virus vaccine. Autoantibodies against type II IFN underlie severe disease caused by environmental or tuberculous mycobacteria, and other intra-macrophagic microbes. Autoantibodies against IL-17A/F and IL-6 are less common and underlie mucocutaneous candidiasis and staphylococcal diseases, respectively. Inborn errors of and autoantibodies against GM-CSF underlie pulmonary alveolar proteinosis; associated infections are less well characterized. In individual patients, autoantibodies against cytokines preexist infection with the pathogen concerned and underlie the infectious disease. Human antibody-driven autoimmunity can interfere with cytokines that are essential for protective immunity to specific infectious agents but that are otherwise redundant, thereby underlying specific infectious diseases.
Collapse
Affiliation(s)
- Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, Paris, France
| |
Collapse
|
234
|
Chauvineau-Grenier A, Bastard P, Servajean A, Gervais A, Rosain J, Jouanguy E, Cobat A, Casanova JL, Rossi B. Autoantibodies Neutralizing Type I Interferons in 20% of COVID-19 Deaths in a French Hospital. J Clin Immunol 2022; 42:459-470. [PMID: 35083626 PMCID: PMC8791677 DOI: 10.1007/s10875-021-01203-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/19/2021] [Indexed: 01/08/2023]
Abstract
Recent studies reported the presence of pre-existing autoantibodies (auto-Abs) neutralizing type I interferons (IFNs) in at least 15% of patients with critical COVID-19 pneumonia. In one study, these auto-Abs were found in almost 20% of deceased patients across all ages. We aimed to assess the prevalence and clinical impact of the auto-Abs to type I IFNs in the Seine-Saint-Denis district, which was one of the most affected areas by COVID-19 in France during the first wave. We tested for the presence of auto-Abs neutralizing type I IFNs in a cohort of patients admitted for critical COVID-19 pneumonia during the first wave in the spring of 2020 in the medicine departments at Robert Ballanger Hospital, Aulnay sous Bois. We found circulating auto-Abs that neutralized 100 pg/mL IFN-α2 and/or IFN-ω in the plasma (diluted 1/10) of 7.9% (11 of 139) of the patients hospitalized for critical COVID-19. The presence of neutralizing auto-Abs was associated with an increased risk of mortality, as these auto-Abs were detected in 21% of patients who died from COVID-19 pneumonia. Deceased patients with and without auto-Abs did not present overt clinical differences. These results confirm both the importance of type I IFN immunity in host defense against SARS-CoV-2 infection and the usefulness of detection of auto-Abs neutralizing type I IFNs in the management of patients.
Collapse
Affiliation(s)
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Antoine Servajean
- University of Paris, UFR de Médecine, site Xavier Bichat, Paris, France
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, UFR de Médecine, site Xavier Bichat, Paris, France
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Benjamin Rossi
- Department of Internal Medicine, Robert Ballanger Hospital, Aulnay-Sous-Bois, France
| |
Collapse
|
235
|
Zhao X, Chen D, Li X, Griffith L, Chang J, An P, Guo JT. Interferon Control of Human Coronavirus Infection and Viral Evasion: Mechanistic Insights and Implications for Antiviral Drug and Vaccine Development. J Mol Biol 2022; 434:167438. [PMID: 34990653 PMCID: PMC8721920 DOI: 10.1016/j.jmb.2021.167438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022]
Abstract
Recognition of viral infections by various pattern recognition receptors (PRRs) activates an inflammatory cytokine response that inhibits viral replication and orchestrates the activation of adaptive immune responses to control the viral infection. The broadly active innate immune response puts a strong selective pressure on viruses and drives the selection of variants with increased capabilities to subvert the induction and function of antiviral cytokines. This revolutionary process dynamically shapes the host ranges, cell tropism and pathogenesis of viruses. Recent studies on the innate immune responses to the infection of human coronaviruses (HCoV), particularly SARS-CoV-2, revealed that HCoV infections can be sensed by endosomal toll-like receptors and/or cytoplasmic RIG-I-like receptors in various cell types. However, the profiles of inflammatory cytokines and transcriptome response induced by a specific HCoV are usually cell type specific and determined by the virus-specific mechanisms of subverting the induction and function of interferons and inflammatory cytokines as well as the genetic trait of the host genes of innate immune pathways. We review herein the recent literatures on the innate immune responses and their roles in the pathogenesis of HCoV infections with emphasis on the pathobiological roles and therapeutic effects of type I interferons in HCoV infections and their antiviral mechanisms. The knowledge on the mechanism of innate immune control of HCoV infections and viral evasions should facilitate the development of therapeutics for induction of immune resolution of HCoV infections and vaccines for efficient control of COVID-19 pandemics and other HCoV infections.
Collapse
Affiliation(s)
- Xuesen Zhao
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Institute of Infectious Diseases, Beijing 100015, China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China.
| | - Danying Chen
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Institute of Infectious Diseases, Beijing 100015, China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xinglin Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Institute of Infectious Diseases, Beijing 100015, China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Lauren Griffith
- Baruch S. Blumberg Institute, Hepatitis B Foundation, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Hepatitis B Foundation, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Ping An
- Basic Research Laboratory, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, 3805 Old Easton Road, Doylestown, PA 18902, USA.
| |
Collapse
|
236
|
Burnett CE, Okholm TLH, Tenvooren I, Marquez DM, Tamaki S, Sandoval PM, Calfee CS, Hendrickson CM, Kangelaris KN, Langelier CR, Krummel MF, Woodruff PG, Erle DJ, Ansel KM, Spitzer MH. A conserved immune trajectory of recovery in hospitalized COVID-19 patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.15.484467. [PMID: 35313585 PMCID: PMC8936097 DOI: 10.1101/2022.03.15.484467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many studies have provided insights into the immune response to COVID-19; however, little is known about the immunological changes and immune signaling occurring during COVID-19 resolution. Individual heterogeneity and variable disease resolution timelines obscure unifying immune characteristics. Here, we collected and profiled >200 longitudinal peripheral blood samples from patients hospitalized with COVID-19, with other respiratory infections, and healthy individuals, using mass cytometry to measure immune cells and signaling states at single cell resolution. COVID-19 patients showed a unique immune composition and an early, coordinated and elevated immune cell signaling profile, which correlated with early hospital discharge. Intra-patient time course analysis tied to clinically relevant events of recovery revealed a conserved set of immunological processes that accompany, and are unique to, disease resolution and discharge. This immunological process, together with additional changes in CD4 regulatory T cells and basophils, accompanies recovery from respiratory failure and is associated with better clinical outcomes at the time of admission. Our work elucidates the biological timeline of immune recovery from COVID-19 and provides insights into the fundamental processes of COVID-19 resolution in hospitalized patients.
Collapse
Affiliation(s)
- Cassandra E Burnett
- Departments of Otolaryngology-Head and Neck Cancer, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Immunology & Immunology and Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
- These authors contributed equally
| | - Trine Line Hauge Okholm
- Departments of Otolaryngology-Head and Neck Cancer, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Immunology & Immunology and Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
- These authors contributed equally
| | - Iliana Tenvooren
- Departments of Otolaryngology-Head and Neck Cancer, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Immunology & Immunology and Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
- These authors contributed equally
| | - Diana M Marquez
- Departments of Otolaryngology-Head and Neck Cancer, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Immunology & Immunology and Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Stanley Tamaki
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | - Priscila Munoz Sandoval
- Department of Immunology & Immunology and Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Carolyn S Calfee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Carolyn M Hendrickson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Kirsten N Kangelaris
- Division of Hospital Medicine, Department of Medicine at the University of California San Francisco
| | - Charles R Langelier
- Division of Infectious Diseases, University of California, San Francisco, CA, USA
| | - Matthew F Krummel
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
| | - Prescott G Woodruff
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - David J Erle
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
- Lung Biology Center, Department of Medicine, University of California, San Francisco, CA 94143
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - K Mark Ansel
- Department of Immunology & Immunology and Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
| | - Matthew H Spitzer
- Departments of Otolaryngology-Head and Neck Cancer, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Immunology & Immunology and Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Lead contact
| |
Collapse
|
237
|
Eto S, Nukui Y, Tsumura M, Nakagama Y, Kashimada K, Mizoguchi Y, Utsumi T, Taniguchi M, Sakura F, Noma K, Yoshida Y, Ohshimo S, Nagashima S, Okamoto K, Endo A, Imai K, Kanegane H, Ohnishi H, Hirata S, Sugiyama E, Shime N, Ito M, Ohge H, Kido Y, Bastard P, Casanova JL, Tanaka J, Morio T, Okada S. Neutralizing Type I Interferon Autoantibodies in Japanese Patients With Severe COVID-19. RESEARCH SQUARE 2022:rs.3.rs-1430985. [PMID: 35291303 PMCID: PMC8923117 DOI: 10.21203/rs.3.rs-1430985/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Purpose Autoantibodies (aAbs) to type I interferons (IFNs) have been found in <1% of individuals under the age of 60 in the general population, with the prevalence increasing among those over 65. Neutralizing autoantibodies (naAbs) to type I IFNs have been found in at least 15% of patients with life-threatening COVID-19 pneumonia in several cohorts of primarily European descent. We aimed to define the prevalence of aAbs to IFN-α2 in 3,456 Japanese controls aged 20-91 and of aAbs and naAbs to IFN-α2 and IFN-ω in 627 Japanese COVID-19 patients aged 0-104, among whom were 170 critical, 235 severe, 112 moderate, 105 mild, and 5 asymptomatic infections. Methods ELISA and ISRE reporter assays were used to detect aAbs and naAbs using E. coli-produced IFNs. Results In an uninfected general Japanese population aged 20-91, we found aAbs in 0.087% of individuals. naAbs to type I IFNs (IFN-α2 and/or IFN-ω, 100 pg/mL) were detected in 10.6% of patients with critical infections, 2.6% of patients with severe infections, and ≤1% of patients with asymptomatic to mild infections. They were higher in COVID-19 patients over 50 (5.8%) than in younger patients (0%) and higher in men (5.5%) than in women (1.1%). A significant but not strong correlation between aAbs and naAbs to IFN-α2 existed (r=-0.307, p-value<0.0001), stressing the importance of measuring naAbs. Conclusion In the largest study focusing on a single ethnic and geographic group, we show that Japanese individuals with pre-existing naAbs have a much higher risk of life-threatening COVID-19 pneumonia.
Collapse
Affiliation(s)
- Shohei Eto
- Hiroshima University Graduate School of Biomedical and Health Science
| | - Yoko Nukui
- Kyoto Prefectural University of Medicine
| | - Miyuki Tsumura
- Hiroshima University Graduate School of Biomedical and Health Science
| | | | | | - Yoko Mizoguchi
- Hiroshima University Graduate School of Biomedical and Health Science
| | - Takanori Utsumi
- Hiroshima University Graduate School of Biomedical and Health Science
| | - Maki Taniguchi
- Hiroshima University Graduate School of Biomedical and Health Science
| | - Fumiaki Sakura
- Hiroshima University Graduate School of Biomedical and Health Science
| | - Kosuke Noma
- Hiroshima University Graduate School of Biomedical and Health Science
| | | | | | | | | | | | | | | | | | | | | | - Nobuaki Shime
- Hiroshima University Graduate School of Biomedical and Health Science
| | | | | | | | | | | | - Junko Tanaka
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | | | - Satoshi Okada
- Hiroshima University Graduate School of Biomedical and Health Sciences
| |
Collapse
|
238
|
Shapira G, Abu Hamad R, Weiner C, Rainy N, Sorek-Abramovich R, Benveniste-Levkovitz P, Rock R, Avnat E, Levtzion-Korach O, Bar Chaim A, Shomron N. Population differences in antibody response to SARS-CoV-2 infection and BNT162b2 vaccination. FASEB J 2022; 36:e22223. [PMID: 35239233 PMCID: PMC9111330 DOI: 10.1096/fj.202101492r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/24/2022] [Accepted: 02/10/2022] [Indexed: 12/14/2022]
Abstract
The concentration of SARS‐CoV‐2‐specific serum antibodies, elicited by vaccination or infection, is a primary determinant of anti‐viral immunity, which correlates with protection against infection and COVID‐19. Serum samples were obtained from 25 897 participants and assayed for anti‐SARS‐CoV‐2 spike protein RBD IgG antibodies. The cohort was composed of newly vaccinated BNT162b2 recipients, in the first month or 6 months after vaccination, COVID‐19 patients and a general sample of the Israeli population. Antibody levels of BNT162b2 vaccine recipients were negatively correlated with age, with a prominent decrease in recipients over 55 years old, which was most significant in males. This trend was observable within the first month and 6 months after vaccination, while younger participants were more likely to maintain stable levels of serum antibodies. The antibody concentration of participants previously infected with SARS‐CoV‐2 was lower than the vaccinated and had a more complex, non‐linear relation to age, sex and COVID‐19 symptoms. Taken together, our data supports age and sex as primary determining factors for both the magnitude and durability of humoral response to SARS‐CoV‐2 infection and the COVID‐19 vaccine. Our results could inform vaccination policies, prioritizing the most susceptible populations for repeated vaccination.
Collapse
Affiliation(s)
- Guy Shapira
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | | | - Chen Weiner
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Shamir Medical Center, Be'er Yaacov, Israel
| | - Nir Rainy
- Shamir Medical Center, Be'er Yaacov, Israel
| | | | | | | | - Eden Avnat
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
239
|
Escape and Over-Activation of Innate Immune Responses by SARS-CoV-2: Two Faces of a Coin. Viruses 2022; 14:v14030530. [PMID: 35336937 PMCID: PMC8951629 DOI: 10.3390/v14030530] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
In the past 20 years, coronaviruses (CoVs), including SARS-CoV-1, MERS-CoV, and SARS-CoV-2, have rapidly evolved and emerged in the human population. The innate immune system is the first line of defense against invading pathogens. Multiple host cellular receptors can trigger the innate immune system to eliminate invading pathogens. However, these CoVs have acquired strategies to evade innate immune responses by avoiding recognition by host sensors, leading to impaired interferon (IFN) production and antagonizing of the IFN signaling pathways. In contrast, the dysregulated induction of inflammasomes, leading to uncontrolled production of IL-1 family cytokines (IL-1β and IL-18) and pyroptosis, has been associated with COVID-19 pathogenesis. This review summarizes innate immune evasion strategies employed by SARS-CoV-1 and MERS-CoV in brief and SARS-CoV-2 in more detail. In addition, we outline potential mechanisms of inflammasome activation and evasion and their impact on disease prognosis.
Collapse
|
240
|
Smith CIE, Zain R, Österborg A, Palma M, Buggert M, Bergman P, Bryceson Y. Do reduced numbers of plasmacytoid dendritic cells contribute to the aggressive clinical course of COVID-19 in chronic lymphocytic leukemia? Scand J Immunol 2022; 95:e13153. [PMID: 35244285 PMCID: PMC9115357 DOI: 10.1111/sji.13153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022]
Abstract
Infections with SARS‐CoV‐2 have been unduly severe in patients with haematological malignancies, in particular in those with chronic lymphocytic leukaemia (CLL). Based on a series of observations, we propose that an underlying mechanism for the aggressive clinical course of COVID‐19 in CLL is a paucity of plasmacytoid dendritic cells (pDCs) in these patients. Indeed, pDCs express Toll‐like receptor 7 (TLR7), which together with interferon‐regulatory factor 7 (IRF7), enables pDCs to produce large amounts of type I interferons, essential for combating COVID‐19. Treatment of CLL with Bruton's tyrosine kinase (BTK) inhibitors increased the number of pDCs, likely secondarily to the reduction in the tumour burden.
Collapse
Affiliation(s)
- C I Edvard Smith
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Rula Zain
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Center for Rare Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Anders Österborg
- Dept of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden.,Dept of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Marzia Palma
- Dept of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden.,Dept of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Peter Bergman
- Department of Infectious Diseases, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Yenan Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Broegelmann Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
241
|
Fejtkova M, Sukova M, Hlozkova K, Skvarova Kramarzova K, Rackova M, Jakubec D, Bakardjieva M, Bloomfield M, Klocperk A, Parackova Z, Sediva A, Aluri J, Novakova M, Kalina T, Fronkova E, Hrusak O, Malcova H, Sedlacek P, Liba Z, Kudr M, Stary J, Cooper MA, Svaton M, Kanderova V. TLR8/TLR7 dysregulation due to a novel TLR8 mutation causes severe autoimmune hemolytic anemia and autoinflammation in identical twins. Am J Hematol 2022; 97:338-351. [PMID: 34981838 DOI: 10.1002/ajh.26452] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022]
Abstract
Our study presents a novel germline c.1715G>T (p.G572V) mutation in the gene encoding Toll-like receptor 8 (TLR8) causing an autoimmune and autoinflammatory disorder in a family with monozygotic male twins, who suffer from severe autoimmune hemolytic anemia worsening with infections, and autoinflammation presenting as fevers, enteritis, arthritis, and CNS vasculitis. The pathogenicity of the mutation was confirmed by in vitro assays on transfected cell lines and primary cells. The p.G572V mutation causes impaired stability of the TLR8 protein, cross-reactivity to TLR7 ligands and reduced ability of TLR8 to attenuate TLR7 signaling. This imbalance toward TLR7-dependent signaling leads to increased pro-inflammatory responses, such as nuclear factor-κB (NF-κB) activation and production of pro-inflammatory cytokines IL-1β, IL-6, and TNFα. This unique TLR8 mutation with partial TLR8 protein loss and hyperinflammatory phenotype mediated by TLR7 ligands represents a novel inborn error of immunity with childhood-onset and a good response to TLR7 inhibition.
Collapse
Affiliation(s)
- Martina Fejtkova
- CLIP ‐ Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic
| | - Martina Sukova
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic
| | - Katerina Hlozkova
- CLIP ‐ Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic
| | - Karolina Skvarova Kramarzova
- CLIP ‐ Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic
| | - Marketa Rackova
- CLIP ‐ Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic
| | - David Jakubec
- Bioinformatics Group, Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
- Department of Software Engineering, Faculty of Mathematics and Physics Charles University Prague Czech Republic
| | - Marina Bakardjieva
- CLIP ‐ Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic
| | - Marketa Bloomfield
- Department of Paediatrics, First Faculty of Medicine Charles University and Thomayer University Hospital Prague Czech Republic
- Department of Immunology, Second Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic
| | - Adam Klocperk
- Department of Immunology, Second Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic
| | - Zuzana Parackova
- Department of Immunology, Second Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic
| | - Anna Sediva
- Department of Immunology, Second Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic
| | - Jahnavi Aluri
- Division of Rheumatology/Immunology, Department of Pediatrics Washington University School of Medicine St. Louis Missouri USA
| | - Michaela Novakova
- CLIP ‐ Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic
| | - Tomas Kalina
- CLIP ‐ Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic
| | - Eva Fronkova
- CLIP ‐ Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic
| | - Ondrej Hrusak
- CLIP ‐ Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic
| | - Hana Malcova
- Department of Paediatric and Adult Rheumatology University Hospital Motol Prague Czech Republic
| | - Petr Sedlacek
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic
| | - Zuzana Liba
- Department of Paediatric Neurology, Second Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic
| | - Martin Kudr
- Department of Paediatric Neurology, Second Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic
| | - Jan Stary
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic
| | - Megan A. Cooper
- Division of Rheumatology/Immunology, Department of Pediatrics Washington University School of Medicine St. Louis Missouri USA
| | - Michael Svaton
- CLIP ‐ Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic
| | - Veronika Kanderova
- CLIP ‐ Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic
| |
Collapse
|
242
|
Abstract
Autoantibodies that neutralize type I interferons increase with age.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute, University of Paris and INSERM U1163, Paris, France.,The Rockefeller University, New York, NY, USA.,Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| |
Collapse
|
243
|
Schmidt A, M. Groh A, S. Frick J, Vehreschild MJGT, U. Ludwig K. Genetic Predisposition and the Variable Course of Infectious Diseases. DEUTSCHES ARZTEBLATT INTERNATIONAL 2022; 119:117-123. [PMID: 35101171 PMCID: PMC9160423 DOI: 10.3238/arztebl.m2022.0105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 08/31/2021] [Accepted: 01/11/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND Contact with a pathogen is followed by variable courses of infectious disease, which are only partly explicable by classical risk factors. The susceptibility to infection is variable, as is the course of disease after infection. In this review, we discuss the extent to which this variation is due to genetic factors of the affected individual (the host). METHODS Selective review of the literature on host genetics in infectious disease, with special attention to the pathogens SARSCoV- 2, influenza viruses, Mycobacterium tuberculosis, and human immunodeficiency virus (HIV). RESULTS Genetic variants of the host contribute to the pathogenesis of infectious diseases. For example, in HIV infection, a relatively common variant leading to a loss of function of the HIV co-receptor CCR5 affects the course of the disease, as do variants in genes of the major histocompatibility complex (MHC) region. Rare monogenic variants of the interferon immune response system contribute to severe disease courses in COVID-19 and influenza (type I interferon in these two cases) and in tuberculosis (type II interferon). An estimated 1.8% of life-threatening courses of COVID-19 in men under age 60 are caused by a deficiency of toll-like receptor 7. The scientific understanding of host genetic factors has already been beneficial to the development of effective drugs. In a small number of cases, genetic information has also been used for individual therapeutic decision-making and for the identification of persons at elevated risk. CONCLUSION A comprehensive understanding of host genetics can improve the care of patients with infectious diseases. Until the present, the clinical utility of host genetics has been limited to rare cases; in the future, polygenic risk scores summarizing the relevant genetic variants in each patient will enable a wider benefit. To make this possible, multicenter studies are needed that will systematically integrate clinical and genetic data.
Collapse
Affiliation(s)
- Axel Schmidt
- Institute of Human Genetics, Medical Faculty of the University of Bonn & Bonn University Hospital
| | - Ana M. Groh
- Medical Department II, Infectiology, University HospitalFrankfurt, Goethe University Frankfurt
| | - Julia S. Frick
- Interfaculty Institute for Microbiology and Infection Medicine, University Hospital and Faculty of Medicine Tübingen
- MVZ Laboratory Ludwigsburg GbR
| | | | - Kerstin U. Ludwig
- Institute of Human Genetics, Medical Faculty of the University of Bonn & Bonn University Hospital
- * Institut für Humangenetik, Department of Genomics Universitätsklinikum Bonn Venusberg-Campus 1, Gebäude 76 53127 Bonn, Germany
| |
Collapse
|
244
|
Tomalka JA, Suthar MS, Deeks SG, Sekaly RP. Fighting the SARS-CoV-2 pandemic requires a global approach to understanding the heterogeneity of vaccine responses. Nat Immunol 2022; 23:360-370. [PMID: 35210622 DOI: 10.1038/s41590-022-01130-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/05/2022] [Indexed: 11/09/2022]
Abstract
Host genetic and environmental factors including age, biological sex, diet, geographical location, microbiome composition and metabolites converge to influence innate and adaptive immune responses to vaccines. Failure to understand and account for these factors when investigating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine efficacy may impair the development of the next generation of vaccines. Most studies aimed at identifying mechanisms of vaccine-mediated immune protection have focused on adaptive immune responses. It is well established, however, that mobilization of the innate immune response is essential to the development of effective cellular and humoral immunity. A comprehensive understanding of the innate immune response and environmental factors that contribute to the development of broad and durable cellular and humoral immune responses to SARS-CoV-2 and other vaccines requires a holistic and unbiased approach. Along with optimization of the immunogen and vectors, the development of adjuvants based on our evolving understanding of how the innate immune system shapes vaccine responses will be essential. Defining the innate immune mechanisms underlying the establishment of long-lived plasma cells and memory T cells could lead to a universal vaccine for coronaviruses, a key biomedical priority.
Collapse
Affiliation(s)
- Jeffrey A Tomalka
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Mehul S Suthar
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.,Department of Pediatrics, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven G Deeks
- Department of Medicine, University of California at San Francisco School of Medicine, San Francisco, CA, USA
| | - Rafick Pierre Sekaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA. .,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
245
|
Mogensen TH. Human genetics of SARS-CoV-2 infection and critical COVID-19. Clin Microbiol Infect 2022; 28:1417-1421. [PMID: 35218979 PMCID: PMC8865963 DOI: 10.1016/j.cmi.2022.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/13/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND During the past two years studies on patients with SARS-CoV-2 infection have revealed rare inborn errors of immunity (IEI) in type interferon (IFN) pathways underlying critical COVID-19 pneumonia. This has provided insights into pathophysiological mechanisms and immune signaling circuits regulating antiviral responses to SARS-CoV-2 and governing susceptibility and outcome of SARS-CoV-2 infection in humans. OBJECTIVES In this review the current knowledge on IEIs underlying critical COVID-19 are presented, and the clinical implications of these findings for individualized prophylaxis and treatment are outlined. SOURCES The review is based on a broad literature search, including primarily studies on whole exome sequencing, and to a lesser extent genome-wide association studies, of patients with critical COVID-19, as well as retrospective descriptive studies of the SARS-CoV-2 disease course in individuals with known IEIs. CONTENT The review describes the discovery of monogenic IEI in 9 genetic loci related to the production or responses to type I IFN in patients with critical COVID-19 pneumonia and the surprising finding of phenocopies of these, represented by neutralizing autoantibodies to type IFN in a significant proportion of patients with critical pneumonia, particularly in elderly men, and further enriched in patients with lethal disease course. Moreover insights gained from studies on SARS-CoV-2 infection, disease course, and outcome in patients with known IEI is presented. Finally, some hypotheses for a possible genetic basis of autoimmune, inflammatory, and long-term complications of SARS-CoV-2 infection are presented and discussed. IMPLICATIONS Uncovering IEI underlying critical COVID-19 or other severe SARS-CoV-2 disease manifestations provide valuable insights into the basic principles of antiviral immune responses and pathophysiology related to SARS-CoV-2 infection. Such knowledge has important clinical implications for identification of susceptible individuals and for diagnosis, prophylaxis, and treatment of patients to reduce disease burden and improve preparedness against viral pandemics with known or emerging viruses in the future.
Collapse
Affiliation(s)
- Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
246
|
Healy K, Pin E, Chen P, Söderdahl G, Nowak P, Mielke S, Hansson L, Bergman P, Smith CIE, Ljungman P, Valentini D, Blennow O, Österborg A, Gabarrini G, Al-Manei K, Alkharaan H, Sobkowiak MJ, Yousef J, Mravinacova S, Cuapio A, Xu X, Akber M, Loré K, Hellström C, Muschiol S, Bogdanovic G, Buggert M, Ljunggren HG, Hober S, Nilsson P, Aleman S, Sällberg Chen M. Salivary IgG to SARS-CoV-2 indicates seroconversion and correlates to serum neutralization in mRNA-vaccinated immunocompromised individuals. MED 2022; 3:137-153.e3. [PMID: 35075450 PMCID: PMC8770252 DOI: 10.1016/j.medj.2022.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/20/2021] [Accepted: 01/05/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Immunocompromised individuals are highly susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Whether vaccine-induced immunity in these individuals involves oral cavity, a primary site of infection, is presently unknown. METHODS Immunocompromised patients (n = 404) and healthy controls (n = 82) participated in a prospective clinical trial (NCT04780659) encompassing two doses of the mRNA BNT162b2 vaccine. Primary immunodeficiency (PID), secondary immunodeficiencies caused by human immunodeficiency virus (HIV) infection, allogeneic hematopoietic stem cell transplantation (HSCT)/chimeric antigen receptor T cell therapy (CAR-T), solid organ transplantation (SOT), and chronic lymphocytic leukemia (CLL) patients were included. Salivary and serum immunoglobulin G (IgG) reactivities to SARS-CoV-2 spike were measured by multiplex bead-based assays and Elecsys anti-SARS-CoV-2 S assay. FINDINGS IgG responses to SARS-CoV-2 spike antigens in saliva in HIV and HSCT/CAR-T groups were comparable to those of healthy controls after vaccination. The PID, SOT, and CLL patients had weaker responses, influenced mainly by disease parameters or immunosuppressants. Salivary responses correlated remarkably well with specific IgG titers and the neutralizing capacity in serum. Receiver operating characteristic curve analysis for the predictive power of salivary IgG yielded area under the curve (AUC) = 0.95 and positive predictive value (PPV) = 90.7% for the entire cohort after vaccination. CONCLUSIONS Saliva conveys vaccine responses induced by mRNA BNT162b2. The predictive power of salivary spike IgG makes it highly suitable for screening vulnerable groups for revaccination. FUNDING Knut and Alice Wallenberg Foundation, Erling Perssons family foundation, Region Stockholm, Swedish Research Council, Karolinska Institutet, Swedish Blood Cancer Foundation, PID patient organization of Sweden, Nordstjernan AB, Center for Medical Innovation (CIMED), Swedish Medical Research Council, and Stockholm County Council (ALF).
Collapse
Affiliation(s)
- Katie Healy
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Pin
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Puran Chen
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Söderdahl
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Piotr Nowak
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Laboratory for Molecular Infection Medicine Sweden MIMS, Umeå University, Umeå, Sweden
| | - Stephan Mielke
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden
| | - Lotta Hansson
- Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - C I Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Per Ljungman
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden
| | - Davide Valentini
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden
| | - Ola Blennow
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Transplantation, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Österborg
- Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Giorgio Gabarrini
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Khaled Al-Manei
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hassan Alkharaan
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
- College of Dentistry, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Jamil Yousef
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Sara Mravinacova
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Angelica Cuapio
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Xinling Xu
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Mira Akber
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Karin Loré
- Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia Hellström
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Sandra Muschiol
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Gordana Bogdanovic
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | - Sophia Hober
- Division of Protein Technology, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Soo Aleman
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
247
|
Brodin P. SARS-CoV-2 infections in children: Understanding diverse outcomes. Immunity 2022; 55:201-209. [PMID: 35093190 PMCID: PMC8769938 DOI: 10.1016/j.immuni.2022.01.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/20/2021] [Accepted: 01/14/2022] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 infections mostly lead to mild or even asymptomatic infections in children, but the reasons for this are not fully understood. More efficient local tissue responses, better thymic function, and cross-reactive immunity have all been proposed to explain this. In rare cases of children and young people, but very rarely in adults, post-infectious hyperinflammatory syndromes can develop and be serious. Here, I will discuss our current understanding of SARS-CoV-2 infections in children and hypothesize that a life history and energy allocation perspective might offer an additional explanation to mild infections, viral dynamics, and the higher incidence of rare multisystem inflammatory syndromes in children and young people.
Collapse
Affiliation(s)
- Petter Brodin
- Department of Immunology and Inflammation, Imperial College London, London, UK; Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
248
|
Immunology of SARS-CoV-2 infection in children. Nat Immunol 2022; 23:177-185. [PMID: 35105983 DOI: 10.1038/s41590-021-01123-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
Children and adolescents exhibit a broad range of clinical outcomes from SARS-CoV-2 infection, with the majority having minimal to mild symptoms. Additionally, some succumb to a severe hyperinflammatory post-infectious complication called multisystem inflammatory syndrome in children (MIS-C), predominantly affecting previously healthy individuals. Studies characterizing the immunological differences associated with these clinical outcomes have identified pathways important for host immunity to SARS-CoV-2 and innate modulators of disease severity. In this Review, we delineate the immunological mechanisms underlying the spectrum of pediatric immune response to SARS-CoV-2 infection in comparison with that of adults.
Collapse
|
249
|
Aricò E, Bracci L, Castiello L, Urbani F, Casanova JL, Belardelli F. Exploiting natural antiviral immunity for the control of pandemics: Lessons from Covid-19. Cytokine Growth Factor Rev 2022; 63:23-33. [PMID: 34955389 PMCID: PMC8675148 DOI: 10.1016/j.cytogfr.2021.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19), triggered by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the disruptive global consequences in terms of mortality and social and economic crises, have taught lessons that may help define strategies to better face future pandemics. Innate and intrinsic immunity form the front-line natural antiviral defense. They involve both tissue-resident and circulating cells, which can produce anti-viral molecules shortly after viral infection. Prototypes of these factors are type I interferons (IFN), antiviral cytokines with a long record of clinical use. During the last two years, there has been an impressive progress in understanding the mechanisms of both SARS-CoV-2 infection and the cellular and soluble antiviral responses occurring early after viral exposure. However, this information was not sufficiently translated into therapeutic approaches. Insufficient type I IFN activity probably accounts for disease progression in many patients. This results from both the multiple interfering mechanisms developed by SARS-CoV-2 to decrease type I IFN response and various pre-existing human deficits of type I IFN activity, inherited or auto-immune. Emerging data suggest that IFN-I-mediated boosting of patients' immunity, achieved directly through the exogenous administration of IFN-β early post viral infection, or indirectly following inoculation of heterologous vaccines (e.g., Bacillus Calmette Guerin), might play a role against SARS-CoV-2. We review how recent insights on the viral and human determinants of critical COVID-19 pneumonia can foster clinical studies of IFN therapy. We also discuss how early therapeutic use of IFN-β and prophylactic campaigns with live attenuated vaccines might prevent a first wave of new pandemic viruses.
Collapse
Affiliation(s)
- Eleonora Aricò
- FaBioCell, Core Facilities, Istituto Superiore di Sanità, Rome, Italy.
| | - Laura Bracci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Luciano Castiello
- FaBioCell, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Urbani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy; Medical Biotechnology and Translational Medicine PhD School, II University of Rome "Tor Vergata", Italy
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; Howard Hughes Medical Institute, New York, NY, USA
| | - Filippo Belardelli
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
250
|
Madden EA, Diamond MS. Host cell-intrinsic innate immune recognition of SARS-CoV-2. Curr Opin Virol 2022; 52:30-38. [PMID: 34814102 PMCID: PMC8580835 DOI: 10.1016/j.coviro.2021.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 01/04/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged at the end of 2019 and caused the pandemic of coronavirus disease 2019 (COVID-19). Basic and clinical investigations indicate that severe forms of COVID-19 are due in part to dysregulated immune responses to virus infection. The innate immune system is the first line of host defense against most virus infections, with pathogen recognition receptors detecting SARS-CoV-2 RNA and protein components and initiating pro-inflammatory and antiviral responses. Notwithstanding this response, SARS-CoV-2 proteins evade, inhibit, and skew innate immune signaling early in infection. In this review, we highlight the components of cell-based recognition of SARS-CoV-2 infection and the mechanisms employed by the virus to modulate these innate immune host defense pathways.
Collapse
Affiliation(s)
- Emily A Madden
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 631100, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|