201
|
Shoji T, Takaya A, Sato Y, Kimura S, Suzuki T, Yamamoto T. RlmCD-mediated U747 methylation promotes efficient G748 methylation by methyltransferase RlmAII in 23S rRNA in Streptococcus pneumoniae; interplay between two rRNA methylations responsible for telithromycin susceptibility. Nucleic Acids Res 2015; 43:8964-72. [PMID: 26365244 PMCID: PMC4605293 DOI: 10.1093/nar/gkv609] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/31/2015] [Indexed: 11/18/2022] Open
Abstract
Adenine at position 752 in a loop of helix 35 from positions 745 to 752 in domain II of 23S rRNA is involved in binding to the ribosome of telithromycin (TEL), a member of ketolides. Methylation of guanine at position 748 by the intrinsic methyltransferase RlmAII enhances binding of telithromycin (TEL) to A752 in Streptococcus pneumoniae. We have found that another intrinsic methylation of the adjacent uridine at position 747 enhances G748 methylation by RlmAII, rendering TEL susceptibility. U747 and another nucleotide, U1939, were methylated by the dual-specific methyltransferase RlmCD encoded by SP_1029 in S. pneumoniae. Inactivation of RlmCD reduced N1-methylated level of G748 by RlmAIIin vivo, leading to TEL resistance when the nucleotide A2058, located in domain V of 23S rRNA, was dimethylated by the dimethyltransferase Erm(B). In vitro methylation of rRNA showed that RlmAII activity was significantly enhanced by RlmCD-mediated pre-methylation of 23S rRNA. These results suggest that RlmCD-mediated U747 methylation promotes efficient G748 methylation by RlmAII, thereby facilitating TEL binding to the ribosome.
Collapse
Affiliation(s)
- Tatsuma Shoji
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Akiko Takaya
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yoshiharu Sato
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Satoshi Kimura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomoko Yamamoto
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan Division of Clinical Research, Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| |
Collapse
|
202
|
Imöhl M, van der Linden M. Antimicrobial Susceptibility of Invasive Streptococcus pyogenes Isolates in Germany during 2003-2013. PLoS One 2015; 10:e0137313. [PMID: 26340445 PMCID: PMC4560406 DOI: 10.1371/journal.pone.0137313] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/14/2015] [Indexed: 11/19/2022] Open
Abstract
A nationwide laboratory-based surveillance study of invasive S. pyogenes infections was conducted in Germany. Invasive isolates (n = 1,281) were obtained between 2003 and 2013. All isolates were susceptible to penicillin, cefotaxime and vancomycin. Tetracycline showed the highest rate of resistant or intermediate resistant isolates with 9.8%, followed by macrolides (4.0%), trimethoprim/sulfamethoxazole (SXT) (1.9%), levofloxacin (1.3%), chloramphenicol (0.9%) and clindamycin (0.7%). The most prominent trends were the appearance of levofloxacin non-susceptible isolates since 2011, and an increase of SXT non-susceptibility since 2012.
Collapse
Affiliation(s)
- Matthias Imöhl
- Institute of Medical Microbiology and National Reference Center for Streptococci, University Hospital RWTH Aachen, Aachen, Germany
- * E-mail:
| | - Mark van der Linden
- Institute of Medical Microbiology and National Reference Center for Streptococci, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
203
|
Pavlova A, Gumbart JC. Parametrization of macrolide antibiotics using the force field toolkit. J Comput Chem 2015; 36:2052-63. [PMID: 26280362 DOI: 10.1002/jcc.24043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/25/2015] [Accepted: 07/03/2015] [Indexed: 01/09/2023]
Abstract
Macrolides are an important class of antibiotics that target the bacterial ribosome. Computer simulations of macrolides are limited as specific force field parameters have not been previously developed for them. Here, we determine CHARMM-compatible force field parameters for erythromycin, azithromycin, and telithromycin, using the force field toolkit (ffTK) plugin in VMD. Because of their large size, novel approaches for parametrizing them had to be developed. Two methods for determining partial atomic charges, from interactions with TIP3P water and from the electrostatic potential, as well as several approaches for fitting the dihedral parameters were tested. The performance of the different parameter sets was evaluated by molecular dynamics simulations of the macrolides in ribosome, with a distinct improvement in maintenance of key interactions observed after refinement of the initial parameters. Based on the results of the macrolide tests, recommended procedures for parametrizing very large molecules using ffTK are given.
Collapse
Affiliation(s)
- Anna Pavlova
- School of Physics and School of Chemistry, Georgia Institute of Technology, Atlanta, 30332, Georgia
| | - James C Gumbart
- School of Physics and School of Chemistry, Georgia Institute of Technology, Atlanta, 30332, Georgia
| |
Collapse
|
204
|
Makarov GI, Golovin AV, Sumbatyan NV, Bogdanov AA. Molecular dynamics investigation of a mechanism of allosteric signal transmission in ribosomes. BIOCHEMISTRY (MOSCOW) 2015; 80:1047-56. [DOI: 10.1134/s0006297915080106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
205
|
Vitali LA, Di Luca MC, Prenna M, Petrelli D. Correlation between genetic features of the mef(A)-msr(D) locus and erythromycin resistance in Streptococcus pyogenes. Diagn Microbiol Infect Dis 2015; 84:57-62. [PMID: 26429294 DOI: 10.1016/j.diagmicrobio.2015.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/31/2015] [Accepted: 08/09/2015] [Indexed: 10/23/2022]
Abstract
We investigated the correlation between the genetic variation within mef(A)-msr(D) determinants of efflux-mediated erythromycin resistance in Streptococcus pyogenes and the level of erythromycin resistance. Twenty-eight mef(A)-positive strains were selected according to erythromycin MIC (4-32 μg/mL), and their mef(A)-msr(D) regions were sequenced. Strains were classified according to the bacteriophage carrying mef(A)-msr(D). A new Φm46.1 genetic variant was found in 8 strains out of 28 and named VP_00501.1. Degree of allelic variation was higher in mef(A) than in msr(D). Hotspots for recombination were mapped within the locus that could have shaped the apparent mosaic structure of the region. There was a general correlation between mef(A)-msr(D) sequence and erythromycin resistance level. However, lysogenic conversion of susceptible strains by mef(A)-msr(D)-carrying Φm46.1 indicated that key determinants may not all reside within the mef(A)-msr(D) locus and that horizontal gene transfer could contribute to changes in the level of antibiotic resistance in S. pyogenes.
Collapse
Affiliation(s)
| | - Maria Chiara Di Luca
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Manuela Prenna
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Dezemona Petrelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
206
|
Warit S, Phunpruch S, Jityam C, Jaitrong S, Billamas P, Chaiprasert A, Palittapongarnpim P, Prammananan T. Genetic characterisation of a whiB7 mutant of a Mycobacterium tuberculosis clinical strain. J Glob Antimicrob Resist 2015; 3:262-266. [PMID: 27842870 DOI: 10.1016/j.jgar.2015.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/19/2015] [Accepted: 07/05/2015] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium tuberculosis is naturally resistant to clarithromycin (CLR). The genes Rv3197A (whiB7) and Rv1988 (ermMT) have been shown to be involved in the resistant phenotype. In this study, a CLR-susceptible M. tuberculosis clinical strain was identified, designated as DS3214, and the nucleotide sequences and expression profiles of whiB7 and ermMT were investigated. The results revealed that strain DS3214 contained a one nucleotide deletion in whiB7, leading to a truncated peptide. Expression of whiB7 was low, whereas comparable expression of ermMT was determined compared with the reference strain M. tuberculosis H37Rv. Overexpression of the mutant whiB7 in M. tuberculosis H37Ra did not increase the minimum inhibitory concentration (MIC) to CLR or kanamycin, indicating the defect of the mutant WhiB7. The CLR-susceptible M. tuberculosis clinical strain, whose whiB7 is naturally mutated, was first described in this study and whiB7 has been shown to play a role in the CLR-susceptible phenotype.
Collapse
Affiliation(s)
- Saradee Warit
- Tuberculosis Research Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani 12120, Thailand
| | - Saranya Phunpruch
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand; Bioenergy Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Chaitas Jityam
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Sarinya Jaitrong
- Tuberculosis Research Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani 12120, Thailand
| | - Pamaree Billamas
- Tuberculosis Research Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani 12120, Thailand
| | - Angkana Chaiprasert
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Prasit Palittapongarnpim
- Tuberculosis Research Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani 12120, Thailand; Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Therdsak Prammananan
- Tuberculosis Research Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani 12120, Thailand.
| |
Collapse
|
207
|
Shi J, Jin Y, Bian T, Li K, Sun Z, Cheng Z, Jin S, Wu W. SuhB is a novel ribosome associated protein that regulates expression of MexXY by modulating ribosome stalling inPseudomonas aeruginosa. Mol Microbiol 2015; 98:370-83. [DOI: 10.1111/mmi.13126] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Jing Shi
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education; Department of Microbiology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education; Department of Microbiology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Ting Bian
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education; Department of Microbiology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Kewei Li
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education; Department of Microbiology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Ziyu Sun
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education; Department of Microbiology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education; Department of Microbiology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Shouguang Jin
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education; Department of Microbiology; College of Life Sciences; Nankai University; Tianjin 300071 China
- Department of Molecular Genetics and Microbiology; College of Medicine; University of Florida; Gainesville FL 32610 USA
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education; Department of Microbiology; College of Life Sciences; Nankai University; Tianjin 300071 China
| |
Collapse
|
208
|
Mirzaei B, Bameri Z, Babaei R, Shahcheraghi F. Isolation of High Level Macrolide Resistant Bordetella pertussis Without Transition Mutation at Domain V in Iran. Jundishapur J Microbiol 2015; 8:e18190. [PMID: 26396713 PMCID: PMC4575774 DOI: 10.5812/jjm.8(5)2015.18190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 07/31/2014] [Accepted: 09/24/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Bordetella pertussis, as a causative agent of whooping cough, due to the annual rise y of infection cases, failure of prophylaxis and treatment by macrolides, is considered as the new concern in the health care system. OBJECTIVES The main objective of this study was the determination of single nucleotide polymorphisms (SNPs) at domain V, as the main binding site for macrolides, following the identification of high level macrolides resistant B. pertussis. MATERIALS AND METHODS Following the identification of 11 recovered B. pertussis isolates, from a total of 1084 nasopharyngeal swabs, by using the biochemical and molecular methods, the activities of erythromycin, azithromycin and clarithromycin antibiotics against the recovered isolates were examined. Subsequently, A-G transition mutations in domain V were analyzed by molecular techniques, such as Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) and sequencing. RESULTS After susceptibility testing, one strain was detected as a high level macrolide resistant B. pertussis (Erythromycin = 128 μg/mL, Clarithromycin > 256 μg/mL). After sequencing and PCR-RFLP methods, transition mutations in positions 2047 and 2058 of the mentioned domain were not observed. CONCLUSIONS Although previous studies have shown that A-G transition mutations in 23 SrRNA gene (domain V) are the main reason for the occurrence of high level macrolides resistance in B. pertussis, however, the mentioned single nucleotide polymorphisms (SNPs) have not been detected in our resistant strain. This is the first report of high level macrolide resistant B. pertussis, without SNPs in domain V, in Iran.
Collapse
Affiliation(s)
- Bahman Mirzaei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Zakaria Bameri
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Ryhane Babaei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Fereshteh Shahcheraghi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, IR Iran
- Corresponding author: Fereshteh Shahcheraghi, Department of Bacteriology, Pasteur Institute of Iran, Tehran, IR Iran. Tel: +98-2166953311, Fax: +98-2166953331, E-mail:
| |
Collapse
|
209
|
Detection of the macrolide-lincosamide-streptogramin B resistance geneerm(44) and a novelerm(44) variant in staphylococci from aquatic environments. FEMS Microbiol Ecol 2015. [DOI: 10.1093/femsec/fiv090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
210
|
Abbas A, Srivastava P, Nirwan PS. Prevalence of MLSB Resistance and Observation of erm A & erm C Genes At A Tertiary Care Hospital. J Clin Diagn Res 2015; 9:DC08-10. [PMID: 26266120 DOI: 10.7860/jcdr/2015/13584.6112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/18/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND The increasing resistance to macrolide, lincosamide, streptogramin B (MLSB) agents among Staphylococcus aureus is becoming a challenge to microbiologist. Clindamycin has been a useful drug for treatment of infection caused by the staphylococcus aureus, but change in clindamycin sensitivity pattern due to various mechanisms is leading to therapeutic failure. One of the important mechanisms is mediation of resistance by erm genes. Staphylococcus strains which have erm genes show inducible clindamycin resistance that cannot be determined by routine disk diffusion test resulting in treatment failure. AIM This study was aimed to detect the prevalence of MLSBi and MLSBc resistance and observation of erm A & erm C genes among MLSBi isolates. MATERIALS AND METHODS A total 500 Staphylococcus aureus were isolated; they were checked by disk induction test (D- Test). Those isolates which showed inducible clindamycin resistance were randomly selected and subjected to PCR for the observation of erm A and erm C genes. RESULTS Prevalence of MLSBi and MLSBc isolates were almost similar that is 10.8% and 11.6% respectively. MLSBi isolates showed more resistance to drugs when compared to MLSBc isolates. Neither of MLSBi and MLSBc isolates was resistant to Vancomycin and Linezolid. Inducible clindamycin was mainly due to presence of erm A gene. CONCLUSION D- test should be mandatory at every microbiology laboratory and should be used in routine antibiotic procedure which will minimize the misuse of drug ultimately minimize the risk of treatment failure. PCR should be performed for the detection of genes responsible for erythromycin resistance as it is a quick and most sensitive method.
Collapse
Affiliation(s)
- Ameer Abbas
- PhD Student, Department of Microbiology, National Institute of Medical Sciences Jaipur, India
| | - Preeti Srivastava
- Associate Professor, Department of Microbiology, National Institute of Medical Sciences Jaipur, India
| | - Prem Singh Nirwan
- Head and Professor, Department of Microbiology, National Institute of Medical Sciences Jaipur, India
| |
Collapse
|
211
|
Miller WR, Munita JM, Arias CA. Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti Infect Ther 2015; 12:1221-36. [PMID: 25199988 DOI: 10.1586/14787210.2014.956092] [Citation(s) in RCA: 407] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Multidrug-resistant (MDR) enterococci are important nosocomial pathogens and a growing clinical challenge. These organisms have developed resistance to virtually all antimicrobials currently used in clinical practice using a diverse number of genetic strategies. Due to this ability to recruit antibiotic resistance determinants, MDR enterococci display a wide repertoire of antibiotic resistance mechanisms including modification of drug targets, inactivation of therapeutic agents, overexpression of efflux pumps and a sophisticated cell envelope adaptive response that promotes survival in the human host and the nosocomial environment. MDR enterococci are well adapted to survive in the gastrointestinal tract and can become the dominant flora under antibiotic pressure, predisposing the severely ill and immunocompromised patient to invasive infections. A thorough understanding of the mechanisms underlying antibiotic resistance in enterococci is the first step for devising strategies to control the spread of these organisms and potentially establish novel therapeutic approaches.
Collapse
Affiliation(s)
- William R Miller
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical School, 6431 Fannin St. Rm. MSB 2.112, Houston, TX 77030, USA
| | | | | |
Collapse
|
212
|
Silva LG, Genteluci GL, Corrêa de Mattos M, Glatthardt T, Sá Figueiredo AM, Ferreira-Carvalho BT. Group C Streptococcus dysgalactiae subsp. equisimilis in south-east Brazil: genetic diversity, resistance profile and the first report of human and equine isolates belonging to the same multilocus sequence typing lineage. J Med Microbiol 2015; 64:551-558. [DOI: 10.1099/jmm.0.000052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/08/2015] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ligia Guedes Silva
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, RJ, Brazil
| | | | - Marcos Corrêa de Mattos
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, RJ, Brazil
| | - Thaís Glatthardt
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, RJ, Brazil
| | | | | |
Collapse
|
213
|
Mikalsen T, Pedersen T, Willems R, Coque TM, Werner G, Sadowy E, van Schaik W, Jensen LB, Sundsfjord A, Hegstad K. Investigating the mobilome in clinically important lineages of Enterococcus faecium and Enterococcus faecalis. BMC Genomics 2015; 16:282. [PMID: 25885771 PMCID: PMC4438569 DOI: 10.1186/s12864-015-1407-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/27/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The success of Enterococcus faecium and E. faecalis evolving as multi-resistant nosocomial pathogens is associated with their ability to acquire and share adaptive traits, including antimicrobial resistance genes encoded by mobile genetic elements (MGEs). Here, we investigate this mobilome in successful hospital associated genetic lineages, E. faecium sequence type (ST)17 (n=10) and ST78 (n=10), E. faecalis ST6 (n=10) and ST40 (n=10) by DNA microarray analyses. RESULTS The hybridization patterns of 272 representative targets including plasmid backbones (n=85), transposable elements (n=85), resistance determinants (n=67), prophages (n=29) and clustered regularly interspaced short palindromic repeats (CRISPR)-cas sequences (n=6) separated the strains according to species, and for E. faecalis also according to STs. RCR-, Rep_3-, RepA_N- and Inc18-family plasmids were highly prevalent and with the exception of Rep_3, evenly distributed between the species. There was a considerable difference in the replicon profile, with rep 17/pRUM , rep 2/pRE25 , rep 14/EFNP1 and rep 20/pLG1 dominating in E. faecium and rep 9/pCF10 , rep 2/pRE25 and rep 7 in E. faecalis strains. We observed an overall high correlation between the presence and absence of genes coding for resistance towards antibiotics, metals, biocides and their corresponding MGEs as well as their phenotypic antimicrobial susceptibility pattern. Although most IS families were represented in both E. faecalis and E. faecium, specific IS elements within these families were distributed in only one species. The prevalence of IS256-, IS3-, ISL3-, IS200/IS605-, IS110-, IS982- and IS4-transposases was significantly higher in E. faecium than E. faecalis, and that of IS110-, IS982- and IS1182-transposases in E. faecalis ST6 compared to ST40. Notably, the transposases of IS981, ISEfm1 and IS1678 that have only been reported in few enterococcal isolates were well represented in the E. faecium strains. E. faecalis ST40 strains harboured possible functional CRISPR-Cas systems, and still resistance and prophage sequences were generally well represented. CONCLUSIONS The targeted MGEs were highly prevalent among the selected STs, underlining their potential importance in the evolution of hospital-adapted lineages of enterococci. Although the propensity of inter-species horizontal gene transfer (HGT) must be emphasized, the considerable species-specificity of these MGEs indicates a separate vertical evolution of MGEs within each species, and for E. faecalis within each ST.
Collapse
Affiliation(s)
- Theresa Mikalsen
- Research group for Host-microbe Interactions, Department of Medical Biology, Faculty of Health Science, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Torunn Pedersen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| | - Rob Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Teresa M Coque
- Servicio de Microbiologia, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain. .,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain.
| | - Guido Werner
- Division of Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany.
| | - Ewa Sadowy
- Department of Molecular Microbiology, National Medicines Institute, ul, Chełmska 30/34, 00-725, Warsaw, Poland.
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Lars Bogø Jensen
- Division of Food Microbiologyt, National Food Institute, Danish Technical University, Copenhagen V, Denmark.
| | - Arnfinn Sundsfjord
- Research group for Host-microbe Interactions, Department of Medical Biology, Faculty of Health Science, UiT - The Arctic University of Norway, Tromsø, Norway. .,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| | - Kristin Hegstad
- Research group for Host-microbe Interactions, Department of Medical Biology, Faculty of Health Science, UiT - The Arctic University of Norway, Tromsø, Norway. .,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|
214
|
Luo H, Liu M, Wang L, Zhou W, Wang M, Cheng A, Jia R, Chen S, Sun K, Yang Q, Chen X, Zhu D. Identification of ribosomal RNA methyltransferase gene ermF in Riemerella anatipestifer. Avian Pathol 2015; 44:162-8. [PMID: 25690020 DOI: 10.1080/03079457.2015.1019828] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Riemerella anatipestifer is a major bacterial pathogen of waterfowl, globally responsible for avian septicaemic disease. As chemotherapy is the predominant method for the prevention and treatment of R. anatipestifer infection in poultry, the widespread use of antibiotics has favoured the emergence of antibiotic-resistant strains. However, little is known about R. anatipestifer susceptibility to macrolide antibiotics and its resistance mechanism. We report for the first time the identification of a macrolide resistance mechanism in R. anatipestifer that is mediated by the ribosomal RNA methyltransferase ermF. We identified the presence of the ermF gene in 64/206 (31%) R. anatipestifer isolates from different regions in China. An ermF deletion strain was constructed to investigate the function of the ermF gene on the resistance to high levels of macrolides. The ermF mutant strain showed significantly decreased resistance to macrolide and lincosamide, exhibiting 1024-, 1024-, 4- and >2048-fold reduction in the minimum inhibitory concentrations for erythromycin, azithromycin, tylosin and lincomycin, respectively. Furthermore, functional analysis of ermF expression in E. coli XL1-blue showed that the R. anatipestifer ermF gene was functional in E. coli XL1-blue and conferred resistance to high levels of erythromycin (100 µg/ml), supporting the hypothesis that the ermF gene is associated with high-level macrolide resistance. Our work suggests that ribosomal RNA modification mediated by the ermF methyltransferase is the predominant mechanism of resistance to erythromycin in R. anatipestifer isolates.
Collapse
Affiliation(s)
- Hongyan Luo
- a Research Center of Avian Diseases , College of Veterinary Medicine of Sichuan Agricultural University , Sichuan , P.R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Borase HP, Salunkhe RB, Patil CD, Suryawanshi RK, Salunke BK, Wagh ND, Patil SV. Innovative approach for urease inhibition by Ficus carica extract-fabricated silver nanoparticles: An in vitro study. Biotechnol Appl Biochem 2015; 62:780-4. [PMID: 25560197 DOI: 10.1002/bab.1341] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/29/2014] [Indexed: 11/10/2022]
Abstract
In the present study, a rapid, low-cost, and ecofriendly method of stable silver nanoparticles (AgNPs) synthesis using leaves extract of Ficus carica (F. carica), a plant with diverse metabolic consortium, is reported for the first time. An absorption peak at 422 nm in UV-Vis spectroscopy, a spherical shape with an average size of 21 nm in transmission electron microscopy, and crystalline nature in X-ray powder diffraction studies were observed for the synthesized AgNPs. Fourier transform infrared analysis indicated that proteins of F. carica might have a vital role in AgNP synthesis and stabilization. AgNPs were found to inhibit urease, a key enzyme responsible for the survival and pathogenesis of the bacterium, Helicobacter pylori. Inhibition of urease by AgNPs was monitored spectrophotometrically by the evaluation of ammonia release. The urease inhibition potential of AgNPs can be explored in the treatment of H. pylori by preparing novel combinations of standard drugs with AgNPs- or AgNPs-encapsulated drug molecules.
Collapse
Affiliation(s)
- Hemant P Borase
- School of Life Sciences, North Maharashtra University, Jalgaon, Maharashtra, India
| | - Rahul B Salunkhe
- School of Life Sciences, North Maharashtra University, Jalgaon, Maharashtra, India
| | | | - Rahul K Suryawanshi
- School of Life Sciences, North Maharashtra University, Jalgaon, Maharashtra, India
| | | | - Nilesh D Wagh
- School of Environment Science, North Maharashtra University, Jalgaon, Maharashtra, India
| | - Satish V Patil
- School of Life Sciences, North Maharashtra University, Jalgaon, Maharashtra, India.,North Maharashtra Microbial Culture Collection Centre (NMCC), North Maharashtra University, Jalgaon, Maharashtra, India
| |
Collapse
|
216
|
Silva-Costa C, Friães A, Ramirez M, Melo-Cristino J. Macrolide-resistant Streptococcus pyogenes: prevalence and treatment strategies. Expert Rev Anti Infect Ther 2015; 13:615-28. [PMID: 25746210 DOI: 10.1586/14787210.2015.1023292] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although penicillin remains the first-choice treatment for Streptococcus pyogenes infection, macrolides are important alternatives for allergic patients and lincosamides are recommended together with β-lactams in invasive infections. S. pyogenes may exhibit macrolide resistance because of active efflux (mef genes) or target modification (erm genes), the latter conferring cross resistance to lincosamides and streptogramin B. Worldwide, resistance is restricted to a limited number of genetic lineages, despite resistance genes being encoded on mobile genetic elements. For reasons that are not completely clear, resistance and the associated phenotypes are highly variable across countries. Although resistance remains high in several countries, particularly in Asia, an overall decreasing trend of resistance has been noted in recent years, mostly in Europe. This decrease is not always accompanied by declines in macrolide consumption, suggesting significant roles of other factors in determining the dynamics of macrolide-resistant clones. Continued surveillance is needed to obtain further insights into the forces governing macrolide resistance in S. pyogenes.
Collapse
Affiliation(s)
- Catarina Silva-Costa
- Faculdade de Medicina, Instituto de Microbiologia, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, PT 1649-028 Lisboa, Portugal
| | | | | | | |
Collapse
|
217
|
Yuan QB, Guo MT, Yang J. Fate of antibiotic resistant bacteria and genes during wastewater chlorination: implication for antibiotic resistance control. PLoS One 2015; 10:e0119403. [PMID: 25738838 PMCID: PMC4349789 DOI: 10.1371/journal.pone.0119403] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/12/2015] [Indexed: 01/26/2023] Open
Abstract
This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L). The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L). By comparison, sulfadiazine- and erythromycin-resistant bacteria exhibited tolerance to low chlorine dose (up to 60 mg Cl2 min/L). However, quantitative real-time PCRs revealed that chlorination decreased limited erythromycin or tetracycline resistance genes, with the removal levels of overall erythromycin and tetracycline resistance genes at 0.42 ± 0.12 log and 0.10 ± 0.02 log, respectively. About 40% of erythromycin-resistance genes and 80% of tetracycline resistance genes could not be removed by chlorination. Chlorination was considered not effective in controlling antimicrobial resistance. More concern needs to be paid to the potential risk of antibiotic resistance genes in the wastewater after chlorination.
Collapse
Affiliation(s)
- Qing-Bin Yuan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Mei-Ting Guo
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Tsinghua University, 100084, Beijing, China
- * E-mail:
| | - Jian Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|
218
|
Propionibacterium acnes: from commensal to opportunistic biofilm-associated implant pathogen. Clin Microbiol Rev 2015; 27:419-40. [PMID: 24982315 DOI: 10.1128/cmr.00092-13] [Citation(s) in RCA: 420] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Propionibacterium acnes is known primarily as a skin commensal. However, it can present as an opportunistic pathogen via bacterial seeding to cause invasive infections such as implant-associated infections. These infections have gained more attention due to improved diagnostic procedures, such as sonication of explanted foreign materials and prolonged cultivation time of up to 14 days for periprosthetic biopsy specimens, and improved molecular methods, such as broad-range 16S rRNA gene PCR. Implant-associated infections caused by P. acnes are most often described for shoulder prosthetic joint infections as well as cerebrovascular shunt infections, fibrosis of breast implants, and infections of cardiovascular devices. P. acnes causes disease through a number of virulence factors, such as biofilm formation. P. acnes is highly susceptible to a wide range of antibiotics, including beta-lactams, quinolones, clindamycin, and rifampin, although resistance to clindamycin is increasing. Treatment requires a combination of surgery and a prolonged antibiotic treatment regimen to successfully eliminate the remaining bacteria. Most authors suggest a course of 3 to 6 months of antibiotic treatment, including 2 to 6 weeks of intravenous treatment with a beta-lactam. While recently reported data showed a good efficacy of rifampin against P. acnes biofilms, prospective, randomized, controlled studies are needed to confirm evidence for combination treatment with rifampin, as has been performed for staphylococcal implant-associated infections.
Collapse
|
219
|
Ruer S, Pinotsis N, Steadman D, Waksman G, Remaut H. Virulence-targeted Antibacterials: Concept, Promise, and Susceptibility to Resistance Mechanisms. Chem Biol Drug Des 2015; 86:379-99. [DOI: 10.1111/cbdd.12517] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Ségolène Ruer
- Structural and Molecular Microbiology; Structural Biology Research Center; VIB; Pleinlaan 2 Brussels 1050 Belgium
- Structural Biology Brussels; Vrije Universiteit Brussel; Pleinlaan 2 Brussels 1050 Belgium
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology (ISMB); UCL and Birkbeck College; London WC1E 7HX UK
| | - David Steadman
- Wolfson Institute for Biomedical Research (WIBR); UCL; London WC1E 6BT UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology (ISMB); UCL and Birkbeck College; London WC1E 7HX UK
| | - Han Remaut
- Structural and Molecular Microbiology; Structural Biology Research Center; VIB; Pleinlaan 2 Brussels 1050 Belgium
- Structural Biology Brussels; Vrije Universiteit Brussel; Pleinlaan 2 Brussels 1050 Belgium
| |
Collapse
|
220
|
Ou G, Liu Y, Tang Y, You X, Zeng Y, Xiao J, Chen L, Yu M, Wang M, Zhu C. In vitro subminimum inhibitory concentrations of macrolide antibiotics induce macrolide resistance in Mycoplasma pneumoniae. Hippokratia 2015; 19:57-62. [PMID: 26435649 PMCID: PMC4574589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
AIM This study aims to investigate the inducing effect of subminimum inhibitory concentrations of macrolide antibiotics on Mycoplasma pneumoniae (M. pneumoniae) resistance to drugs. MATERIALS AND METHODS One M. pneumoniae reference strain M129 (ATCC 29342) and 104 clinical isolates were incubated at 37C for 6-8 days. Genomic DNA of M. pneumoniae was extracted using TIANamp Bacteria DNA kit and amplified by polymerase chain reaction (PCR). RESULTS Ten sensitive isolates obtained from 104 M. pneumoniae clinical isolates were induced by subminimum inhibitory concentrations of macrolide antibiotics. Among them, three were found to possess mutations in L4 and L22 ribosomal proteins. Two cases carried simultaneously the C162A and A430G mutations of L4 and the T279C mutation of L22. In addition, one case had only the A209T mutation of L4. CONCLUSIONS Repeated in vitro exposure to subminimum inhibitory concentrations of macrolide antibiotics could induce selective mutations in ribosomal genes of M. pneumoniae clinical isolates that cause resistance to macrolide antibiotics. Hippokratia 2015, 19 (1): 57-62.
Collapse
Affiliation(s)
- G Ou
- Institution of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key, Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province, P.R. China
| | - Y Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Y Tang
- Shaoyang Medical College, Shaoyang City, Hunan Province, P.R. China
| | - X You
- Institution of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key, Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province, P.R. China
| | - Y Zeng
- Institution of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key, Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province, P.R. China
| | - J Xiao
- Institution of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key, Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province, P.R. China
| | - L Chen
- Institution of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key, Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province, P.R. China
| | - M Yu
- Institution of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key, Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province, P.R. China
| | - M Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - C Zhu
- Institution of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key, Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province, P.R. China
| |
Collapse
|
221
|
|
222
|
Yang Z, Wang J, Wang W, Zhang Y, Han L, Zhang Y, Nie X, Zhan S. Proportions of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus in patients with surgical site infections in mainland China: a systematic review and meta-analysis. PLoS One 2015; 10:e0116079. [PMID: 25602284 PMCID: PMC4300093 DOI: 10.1371/journal.pone.0116079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 12/01/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Sufficient details have not been specified for the epidemiological characteristics of Staphylococcus aureus (S. aureus) and methicillin-resistant Staphylococcus aureus (MRSA) among surgical site infections (SSIs) in mainland China. This systematic review aimed to estimate proportions of S. aureus and MRSA in SSIs through available published studies. METHODS PubMed, Embase and four Chinese electronic databases were searched to identify relevant primary studies published between 2007 and 2012. Meta-analysis was conducted on the basis of logit-transformed metric for proportions of S. aureus and MRSA, followed by pre-defined subgroup meta-analysis. Random-effects meta-regression was also conducted to explore the impact of possible factors on S. aureus proportions. RESULTS 106 studies were included, of which 38 studies involved MRSA. S. aureus accounted for 19.1% (95%CI 17.2-21.0%; I(2) = 84.1%) of all isolates in SSIs, which was roughly parallel to 18.5% in the United States (US) (P-value = 0.57) but significantly exceeded those calculated through the surveillance system in China (P-value<0.001). In subgroup analysis, S. aureus in patients with thoracic surgery (41.1%, 95%CI 26.3-57.7%; I(2) = 74.4%) was more common than in those with gynecologic surgery (20.1%, 95%CI 15.6-25.6%; I(2) = 33.0%) or abdominal surgery (13.8%, 95%CI 10.3-18.4%; I(2) = 70.0%). Similar results were found in meta-regression. MRSA accounted for 41.3% (95%CI 36.5-46.3%; I(2) = 64.6%) of S. aureus, significantly lower than that in the US (P-value = 0.001). MRSA was sensitive to vancomycin (522/522) and linezolid (93/94), while 79.9% (95%CI 67.4-88.4%; I(2) = 0%) and 92.0% (95%CI 80.2-97.0%; I(2) = 0%) of MRSA was resistant to clindamycin and erythromycin respectively. CONCLUSION The overall proportion of S. aureus among SSIs in China was similar to that in the US but seemed higher than those reported through the Chinese national surveillance system. Proportions of S. aureus SSIs may vary with different surgery types. Commonly seen in SSIs, MRSA tended to be highly sensitive to vancomycin and linezolid but mostly resistant to clindamycin and erythromycin.
Collapse
Affiliation(s)
- Zhirong Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Shantou-Oxford Clinical Research Unit, Shantou University Medical College, Shantou, Guangdong, China
| | - Jing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Weiwei Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yuelun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Lizhong Han
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - Xiaolu Nie
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Siyan Zhan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
223
|
Chandola U, Das R, Panda B. Role of the N6-methyladenosine RNA mark in gene regulation and its implications on development and disease. Brief Funct Genomics 2014; 14:169-79. [PMID: 25305461 DOI: 10.1093/bfgp/elu039] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Epigenetics is a field that encompasses chemical modifications of DNA and histone proteins, both of which alter gene expression without changing the underlying nucleotide sequence. DNA methylation and modifications of histone tails have been studied in detail and are now known to be global gene regulatory mechanisms. An analogous post-transcriptional modification is chemical modification of specific nucleotides in RNA. Study of RNA modifications is a nascent field as yet, and the significance of these marks in controlling cell growth and differentiation is just beginning to be appreciated. The addition of a methyl group to adenosine (N-methyl-6-adenosine) or m6A is the most abundant modification in mammalian mRNAs. Though identified four decades ago, interest in this particular modification was set off by the discovery that the obesity gene FTO was an RNA demethylase. Since then, many studies have investigated m6A modification in different species. In this review, we summarize the current literature and hypotheses about the presence and function of this ubiquitous RNA modification in mammals, viruses, yeast and plants in terms of the consensus sequence and the methyltransferase/demethylation machinery identified thus far. We discuss its potential role in regulating molecular and physiological processes in each of these organisms, especially its role in RNA splicing, RNA degradation and development. We also enlist the methodologies developed so far, both locus-specific and transcriptome-wide, to study this modification. Lastly, we discuss whether m6A alterations have consequences on modulating disease aetiology, and speculate about its potential role in cancer.
Collapse
|
224
|
Chen D, Feng J, Huang L, Zhang Q, Wu J, Zhu X, Duan Y, Xu Z. Identification and characterization of a new erythromycin biosynthetic gene cluster in Actinopolyspora erythraea YIM90600, a novel erythronolide-producing halophilic actinomycete isolated from salt field. PLoS One 2014; 9:e108129. [PMID: 25250723 PMCID: PMC4176971 DOI: 10.1371/journal.pone.0108129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/25/2014] [Indexed: 12/20/2022] Open
Abstract
Erythromycins (Ers) are clinically potent macrolide antibiotics in treating pathogenic bacterial infections. Microorganisms capable of producing Ers, represented by Saccharopolyspora erythraea, are mainly soil-dwelling actinomycetes. So far, Actinopolyspora erythraea YIM90600, a halophilic actinomycete isolated from Baicheng salt field, is the only known Er-producing extremophile. In this study, we have reported the draft genome sequence of Ac. erythraea YIM90600, genome mining of which has revealed a new Er biosynthetic gene cluster encoding several novel Er metabolites. This Er gene cluster shares high identity and similarity with the one of Sa. erythraea NRRL2338, except for two absent genes, eryBI and eryG. By correlating genotype and chemotype, the biosynthetic pathways of 3'-demethyl-erythromycin C, erythronolide H (EH) and erythronolide I have been proposed. The formation of EH is supposed to be sequentially biosynthesized via C-6/C-18 epoxidation and C-14 hydroxylation from 6-deoxyerythronolide B. Although an in vitro enzymatic activity assay has provided limited evidence for the involvement of the cytochrome P450 oxidase EryFAc (derived from Ac. erythraea YIM90600) in the catalysis of a two-step oxidation, resulting in an epoxy moiety, the attempt to construct an EH-producing Sa. erythraea mutant via gene complementation was not successful. Characterization of EryKAc (derived from Ac. erythraea YIM90600) in vitro has confirmed its unique role as a C-12 hydroxylase, rather than a C-14 hydroxylase of the erythronolide. Genomic characterization of the halophile Ac. erythraea YIM90600 will assist us to explore the great potential of extremophiles, and promote the understanding of EH formation, which will shed new insights into the biosynthesis of Er metabolites.
Collapse
Affiliation(s)
- Dandan Chen
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Huzhou Center of Bio-synthetic Innovation, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Huzhou, China
| | - Junyin Feng
- Huzhou Center of Bio-synthetic Innovation, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Huzhou, China
| | - Lei Huang
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Qinglin Zhang
- Huzhou Center of Bio-synthetic Innovation, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Huzhou, China
| | - Jiequn Wu
- Huzhou Center of Bio-synthetic Innovation, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Huzhou, China
| | - Xiangcheng Zhu
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan, China
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, China
| | - Yanwen Duan
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan, China
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, China
| | - Zhinan Xu
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
225
|
Evaluation of the automated Vitek 2 system for detection of various mechanisms of macrolide and lincosamide resistance in Staphylococcus aureus. J Clin Microbiol 2014; 52:4087-9. [PMID: 25210074 DOI: 10.1128/jcm.01617-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We evaluated the performance of the automated Vitek 2 system against disk diffusion for susceptibility testing of Staphylococcus aureus strains showing various resistance mechanisms to macrolides and lincosamides (ML). The Vitek 2 system showed 100% concordance with the D-zone test in detection of the most common resistance mechanisms to ML, including methylase and efflux systems.
Collapse
|
226
|
Hawkins PA, Chochua S, Jackson D, Beall B, McGee L. Mobile elements and chromosomal changes associated with MLS resistance phenotypes of invasive pneumococci recovered in the United States. Microb Drug Resist 2014; 21:121-9. [PMID: 25115711 DOI: 10.1089/mdr.2014.0086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pneumococcal macrolide resistance is usually expressed as one of two phenotypes: the M phenotype conferred by the mef gene or the MLSB phenotype caused by modification of ribosomal targets, most commonly mediated by an erm methylase. Target-site modification leading to antibiotic resistance can also occur due to sequence mutations within the 23S rRNA or the L4 and L22 riboproteins. We screened 4,535 invasive isolates resistant to erythromycin and 18 invasive isolates nonsusceptible to quinupristin-dalfopristin (Q-D) to deduce the potential mechanisms involved. Of 4,535 erythromycin-resistant isolates, 66.2% were polymerase chain reaction (PCR)-positive for mef alone, 17.8% for ermB alone, and 15.1% for both mef and ermB. Thirty-seven isolates (0.9%) were PCR negative for both determinants. Of these, 3 were positive for ermA (subclass ermTR) and 25 had chromosomal mutations. No chromosomal mutations (in 23S rRNA, rplD, or rplV) nor any of the macrolides/lincosamides/streptogramin (MLS) resistance genes screened for (ermT, ermA, cfr, lsaC, and vgaA) were found in the remaining nine isolates. Of 18 Q-D nonsusceptible isolates, 14 had chromosomal mutations and one carried both mef and ermB; no chromosomal mutations or other resistance genes were found in 3 isolates. Overall, we found 28 mutations, 13 of which have not been previously described in Streptococcus pneumoniae. The role of these mutations remains to be confirmed by transformation assays.
Collapse
Affiliation(s)
- Paulina A Hawkins
- 1 Hubert Department of Global Health, Rollins School of Public Health, Emory University , Atlanta, Georgia
| | | | | | | | | |
Collapse
|
227
|
Mosquera-Rendón J, Cárdenas-Brito S, Pineda JD, Corredor M, Benítez-Páez A. Evolutionary and sequence-based relationships in bacterial AdoMet-dependent non-coding RNA methyltransferases. BMC Res Notes 2014; 7:440. [PMID: 25012753 PMCID: PMC4119055 DOI: 10.1186/1756-0500-7-440] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/02/2014] [Indexed: 12/12/2022] Open
Abstract
Background RNA post-transcriptional modification is an exciting field of research that has evidenced this editing process as a sophisticated epigenetic mechanism to fine tune the ribosome function and to control gene expression. Although tRNA modifications seem to be more relevant for the ribosome function and cell physiology as a whole, some rRNA modifications have also been seen to play pivotal roles, essentially those located in central ribosome regions. RNA methylation at nucleobases and ribose moieties of nucleotides appear to frequently modulate its chemistry and structure. RNA methyltransferases comprise a superfamily of highly specialized enzymes that accomplish a wide variety of modifications. These enzymes exhibit a poor degree of sequence similarity in spite of using a common reaction cofactor and modifying the same substrate type. Results Relationships and lineages of RNA methyltransferases have been extensively discussed, but no consensus has been reached. To shed light on this topic, we performed amino acid and codon-based sequence analyses to determine phylogenetic relationships and molecular evolution. We found that most Class I RNA MTases are evolutionarily related to protein and cofactor/vitamin biosynthesis methyltransferases. Additionally, we found that at least nine lineages explain the diversity of RNA MTases. We evidenced that RNA methyltransferases have high content of polar and positively charged amino acid, which coincides with the electrochemistry of their substrates. Conclusions After studying almost 12,000 bacterial genomes and 2,000 patho-pangenomes, we revealed that molecular evolution of Class I methyltransferases matches the different rates of synonymous and non-synonymous substitutions along the coding region. Consequently, evolution on Class I methyltransferases selects against amino acid changes affecting the structure conformation.
Collapse
Affiliation(s)
| | | | | | | | - Alfonso Benítez-Páez
- Bioinformatics Analysis Group - GABi, Centro de Investigación y Desarrollo en Biotecnología - CIDBIO, 111221 Bogotá, D,C, Colombia.
| |
Collapse
|
228
|
Entorf M, Feßler AT, Kadlec K, Kaspar H, Mankertz J, Peters T, Schwarz S. Tylosin susceptibility of staphylococci from bovine mastitis. Vet Microbiol 2014; 171:368-73. [DOI: 10.1016/j.vetmic.2013.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 11/28/2022]
|
229
|
Emergence of multidrug-resistant Campylobacter species isolates with a horizontally acquired rRNA methylase. Antimicrob Agents Chemother 2014; 58:5405-12. [PMID: 24982085 DOI: 10.1128/aac.03039-14] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic-resistant Campylobacter constitutes a serious threat to public health, and resistance to macrolides is of particular concern, as this class of antibiotics is the drug of choice for clinical therapy of campylobacteriosis. Very recently, a horizontally transferrable macrolide resistance mediated by the rRNA methylase gene erm(B) was reported in a Campylobacter coli isolate, but little is known about the dissemination of erm(B) among Campylobacter isolates and the association of erm(B)-carrying isolates with clinical disease. To address this question and facilitate the control of antibiotic-resistant Campylobacter, we determined the distribution of erm(B) in 1,554 C. coli and Campylobacter jejuni isolates derived from food-producing animals and clinically confirmed human diarrheal cases. The results revealed that 58 of the examined isolates harbored erm(B) and exhibited high-level resistance to macrolides, and most were recent isolates, derived in 2011-2012. In addition, the erm(B)-positive isolates were all resistant to fluoroquinolones, another clinically important antibiotic used for treating campylobacteriosis. The erm(B) gene is found to be associated with chromosomal multidrug resistance genomic islands (MDRGIs) of Gram-positive origin or with plasmids of various sizes. All MDRGIs were transferrable to macrolide-susceptible C. jejuni by natural transformation under laboratory conditions. Molecular typing of the erm(B)-carrying isolates by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) identified diverse genotypes and outbreak-associated diarrheal isolates. Molecular typing also suggested zoonotic transmission of erm(B)-positive Campylobacter. These findings reveal an emerging and alarming trend of dissemination of erm(B) and MDRGIs in Campylobacter and underscore the need for heightened efforts to control their further spread.
Collapse
|
230
|
Macrolide antibiotics allosterically predispose the ribosome for translation arrest. Proc Natl Acad Sci U S A 2014; 111:9804-9. [PMID: 24961372 DOI: 10.1073/pnas.1403586111] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Translation arrest directed by nascent peptides and small cofactors controls expression of important bacterial and eukaryotic genes, including antibiotic resistance genes, activated by binding of macrolide drugs to the ribosome. Previous studies suggested that specific interactions between the nascent peptide and the antibiotic in the ribosomal exit tunnel play a central role in triggering ribosome stalling. However, here we show that macrolides arrest translation of the truncated ErmDL regulatory peptide when the nascent chain is only three amino acids and therefore is too short to be juxtaposed with the antibiotic. Biochemical probing and molecular dynamics simulations of erythromycin-bound ribosomes showed that the antibiotic in the tunnel allosterically alters the properties of the catalytic center, thereby predisposing the ribosome for halting translation of specific sequences. Our findings offer a new view on the role of small cofactors in the mechanism of translation arrest and reveal an allosteric link between the tunnel and the catalytic center of the ribosome.
Collapse
|
231
|
Shahcheraghi F, Nakhost Lotfi M, Nikbin VS, Shooraj F, Azizian R, Parzadeh M, Allahyar Torkaman MR, Zahraei SM. The First Macrolide-Resistant Bordetella pertussis Strains Isolated From Iranian Patients. Jundishapur J Microbiol 2014; 7:e10880. [PMID: 25371806 PMCID: PMC4217671 DOI: 10.5812/jjm.10880] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/16/2013] [Accepted: 06/25/2013] [Indexed: 11/30/2022] Open
Abstract
Background: Whooping cough was considered as one of the major causes of childhood morbidity and mortality worldwide. Resistant isolates of Bordetella pertussis to macrolides in some countries have been recently reported. Objectives: Recent reports on macrolide-resistant B. pertussis isolates and lack of evidence for such resistance in clinical isolates of the Iranian patients led the authors of the current study to study antibiotic susceptibility of the collected isolates in the country. Susceptibility of the B. pertussis isolates to three antibiotics was studied. Relatedness of the strains recovered in this research was also examined. Materials and Methods: The antibacterial activities of erythromycin, azithromycin, and clarithromycin antibiotics against the recovered isolates of 779 nasopharyngeal swabs were examined using MIC (Minimum Inhibitory Concentration) method. Relationship of the strains was characterized by Pulsed-field Gel Electrophoresis (PFGE). Results: Among the specimens, 11 cases (1.4%) were culture-positive. Among these isolates, only two isolates had high MIC values for erythromycin and clarithromycin. Pulsed-field gel electrophoresis analysis of the isolates revealed 6 PFGE profiles (A-F) among which three and two isolates had the same patterns in profiles A and B, respectively. Conclusions: Azithromycin can be a good drug of choice to treat patients infected by B. pertussis in Iran. Clonal relationship of the isolates showed that the same B. pertussis strains were isolated from different patients in Iran.
Collapse
Affiliation(s)
- Fereshteh Shahcheraghi
- Department of Bacteriology, Pertussis Reference Laboratory, Microbiology Research Center, Pasteur Institute of Iran, Tehran, IR Iran
- Corresponding author: Fereshteh Shahcheraghi, Department of Bacteriology, Pertussis Reference Laboratory, Microbiology Research Center, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax: +98-2166405535, E-mail:
| | - Masoumeh Nakhost Lotfi
- Department of Bacteriology, Pertussis Reference Laboratory, Microbiology Research Center, Pasteur Institute of Iran, Tehran, IR Iran
| | - Vajiheh Sadat Nikbin
- Department of Bacteriology, Pertussis Reference Laboratory, Microbiology Research Center, Pasteur Institute of Iran, Tehran, IR Iran
| | - Fahimeh Shooraj
- Department of Bacteriology, Pertussis Reference Laboratory, Microbiology Research Center, Pasteur Institute of Iran, Tehran, IR Iran
| | - Reza Azizian
- Department of Bacteriology, Pertussis Reference Laboratory, Microbiology Research Center, Pasteur Institute of Iran, Tehran, IR Iran
| | - Masoumeh Parzadeh
- Department of Bacteriology, Pertussis Reference Laboratory, Microbiology Research Center, Pasteur Institute of Iran, Tehran, IR Iran
| | - Mohammad Reza Allahyar Torkaman
- Department of Bacteriology, Pertussis Reference Laboratory, Microbiology Research Center, Pasteur Institute of Iran, Tehran, IR Iran
| | - Seyed Mohsen Zahraei
- Center for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, IR Iran
| |
Collapse
|
232
|
Joy SR, Li X, Snow DD, Gilley JE, Woodbury B, Bartelt-Hunt SL. Fate of antimicrobials and antimicrobial resistance genes in simulated swine manure storage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 481:69-74. [PMID: 24583946 DOI: 10.1016/j.scitotenv.2014.02.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 05/23/2023]
Abstract
The behavior of three antibiotics (bacitracin, chlortetracycline, and tylosin) and two classes of antibiotic resistance genes (ARGs), tet and erm, were monitored in swine manure slurry under anaerobic conditions. First-order decay rates were determined for each antibiotic with half-lives ranging from 1 day (chlortetracycline) to 10 days (tylosin). ARGs were monitored in the swine manure slurry, and losses of approximately 1 to 3 orders of magnitude in relative abundance were observed during the 40 day storage period. First-order degradation profiles were observed for chlortetracycline and its corresponding resistance genes, tet(X) and tet(Q). Tylosin was degraded to approximately 10% of the starting concentration by day 40; however, the relative abundance of erm(B) remained at 50-60% of the initial relative abundance while the relative abundance of erm(F) decreased by 80-90%, consistent with tylosin. These results indicate that tet resistance genes respond primarily to chlortetracycline antimicrobials, and may be lost when the parent tetracycline compound is degraded. In contrast, erm(B) resistance gene may respond to a range of antimicrobials in animal manure, and may persist despite losses of tylosin.
Collapse
Affiliation(s)
- Stacey R Joy
- Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Xu Li
- Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Daniel D Snow
- School of Natural Resources, Water Sciences Laboratory, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | | | - Bryan Woodbury
- USDA Meat Animal Research Center, Clay Center, NE 68933, United States
| | - Shannon L Bartelt-Hunt
- Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States.
| |
Collapse
|
233
|
Characterization of methicillin-resistant coagulase-negative staphylococci in milk from cows with mastitis in Brazil. Antonie van Leeuwenhoek 2014; 106:227-33. [DOI: 10.1007/s10482-014-0185-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 04/22/2014] [Indexed: 10/25/2022]
|
234
|
Abstract
In this issue of Molecular Cell, Gupta et al. (2013a) describe a novel, antibiotic-dependent ribosomal frameshifting event that activates translation of an antibiotic resistance gene.
Collapse
Affiliation(s)
- Ian Brierley
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
235
|
Binh TT, Shiota S, Suzuki R, Matsuda M, Trang TTH, Kwon DH, Iwatani S, Yamaoka Y. Discovery of novel mutations for clarithromycin resistance in Helicobacter pylori by using next-generation sequencing. J Antimicrob Chemother 2014; 69:1796-803. [PMID: 24648504 DOI: 10.1093/jac/dku050] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Resistance to clarithromycin is the most important factor causing failure of Helicobacter pylori eradication. Although clarithromycin resistance is mainly associated with three point mutations in the 23S rRNA genes, it is unclear whether other mutations are associated with this resistance. METHODS Two types of clarithromycin-resistant strains (low- and high-resistance strains) were obtained from clarithromycin-susceptible H. pylori following exposure to low clarithromycin concentrations. The genome sequences were determined with a next-generation sequencer. Natural transformation was used to introduce the candidate mutations into strain 26695. Etest and an agar dilution method were used to determine the MICs. RESULTS High-resistance strains contained the mutation A2143G in the 23S rRNA genes, whereas low-resistance strains did not. There were seven candidate mutations in six genes outside of the 23S rRNA genes. The mutated sequences in hp1048 (infB), hp1314 (rpl22) and the 23S rRNA gene were successfully transformed into strain 26695 and the transformants showed an increased MIC of and low resistance to clarithromycin. The transformants containing a single mutation in infB or rpl22 (either a 9 bp insertion or a 3 bp deletion) or the 23S rRNA gene showed low MICs (0.5, 2.0, 4.0 and 32 mg/L, respectively) while the transformants containing double mutations (mutation in the 23S rRNA genes and mutation in infB or rpl22) showed higher MICs (>256 mg/L). CONCLUSIONS Next-generation sequencing can be a useful tool for screening mutations related to drug resistance. We discovered novel mutations related to clarithromycin resistance in H. pylori (infB and rpl22), which have synergic effects with 23S rRNA resulting in higher MICs.
Collapse
Affiliation(s)
- Tran Thanh Binh
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh, Vietnam
| | - Seiji Shiota
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Rumiko Suzuki
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Miyuki Matsuda
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Tran Thi Huyen Trang
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Dong Hyeon Kwon
- Biology Department, Long Island University, Brooklyn, NY, USA
| | - Shun Iwatani
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan Department of Medicine-Gastroenterology, Baylor College of Medicine and Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan Department of Medicine-Gastroenterology, Baylor College of Medicine and Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| |
Collapse
|
236
|
Liu X, Hu Y, Pai PJ, Chen D, Lam H. Label-free quantitative proteomics analysis of antibiotic response in Staphylococcus aureus to oxacillin. J Proteome Res 2014; 13:1223-33. [PMID: 24156611 DOI: 10.1021/pr400669d] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is the leading cause of fatal bacterial infections in hospitals and has become a global health threat. Although the resistance mechanisms of β-lactam antibiotics have been studied for decades, there are few attempts at systems-wide investigations into how the bacteria respond to antibiotic stress. Spectral counting-based label-free quantitative proteomics has been applied to study global responses in MRSA and methicillin-susceptible S. aureus (MSSA) treated with subinhibitory doses of oxacillin, a model β-lactam antibiotic. We developed a simple and easily repeated sample preparation procedure that is effective for extracting surface-associated proteins. On average, 1025 and 1013 proteins were identified at a false discovery rate threshold of 0.01, for the untreated group of MRSA and MSSA. Upon treatment with oxacillin, 81 proteins (65 up-regulated, 16 down-regulated) were shown differentially expressed in MRSA (p < 0.05). In comparison, 225 proteins (162 up-regulated, 63 down-regulated) were shown differentially expressed in oxacillin-treated MSSA. β-Lactamase and penicillin-binding protein 2a were observed up-regulated uniquely in oxacillin-treated MRSA, which is consistent with the known β-lactam resistance mechanisms of S. aureus. More interestingly, the peptidoglycan biosynthesis pathway and the pantothenate and CoA biosynthesis pathway were found to be up-regulated in both oxacillin-treated MRSA and MSSA, and a series of energy metabolism pathways were up-regulated uniquely in oxacillin-treated MSSA. These new data offer a more complete view of the proteome changes in bacteria in response to the antibiotic. This report is the first in using label-free quantitative proteomics to study β-lactam antibiotic responses in S. aureus.
Collapse
Affiliation(s)
- Xiaofen Liu
- Department of Chemical and Biomolecular Engineering and ‡Division of Biomedical Engineering, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong
| | | | | | | | | |
Collapse
|
237
|
Kinouchi H, Arimoto H, Nishiguchi K, Oka M, Maki H, Kitagawa H, Kamimori H. Binding properties of antimicrobial agents to dipeptide terminal of lipid II using surface plasmon resonance. Anal Biochem 2014; 452:67-75. [PMID: 24556247 DOI: 10.1016/j.ab.2014.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
Abstract
We developed a surface plasmon resonance (SPR) assay to estimate the interactions of antimicrobial agents with the dipeptide terminal of lipid II (D-alanyl-D-alanine) and its analogous dipeptides (L-alanyl-L-alanine and D-alanyl-D-lactate) as ligands. The established SPR method showed the reproducible immobilization of ligands on sensor chip and analysis of binding kinetics of antimicrobial agents to ligands. The ligand-immobilized chip could be used repeatedly for at least 200 times for the binding assay of antimicrobial agents, indicating that the ligand-immobilized chip is sufficiently robust for the analysis of binding kinetics. In this SPR system, the selective and specific binding characteristics of vancomycin and its analogs to the ligands were estimated and the kinetic parameters were calculated. The kinetic parameters revealed that one of the remarkable binding characteristics was the specific interaction of vancomycin to only the D-alanyl-D-alanine ligand. In addition, the kinetic binding data of SPR showed close correlation with the antimicrobial activity. The SPR data of other antimicrobial agents (e.g., teicoplanin) to the ligands showed correlation with the antimicrobial activity on the basis of the therapeutic mechanism. Our SPR method could be a valuable tool for predicting the binding characteristics of antimicrobial agents to the dipeptide terminal of lipid II.
Collapse
Affiliation(s)
- Hiroki Kinouchi
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Toyonaka, Osaka 561-0825, Japan.
| | - Hirokazu Arimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kenzo Nishiguchi
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Masako Oka
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Hideki Maki
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Hiroshi Kamimori
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
238
|
Wendlandt S, Kadlec K, Feßler AT, van Duijkeren E, Schwarz S. Two different erm(C)-carrying plasmids in the same methicillin-resistant Staphylococcus aureus CC398 isolate from a broiler farm. Vet Microbiol 2014; 171:382-7. [PMID: 24553412 DOI: 10.1016/j.vetmic.2014.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 01/29/2023]
Abstract
During a study on plasmid-borne antimicrobial resistance among methicillin-resistant Staphylococcus aureus (MRSA) isolates from broiler farms, an MRSA isolate was identified which carried multiple plasmids. This MRSA isolate belonged to CC398 and exhibited spa type t3015 and dru type dt11a. Plasmid profiling revealed the presence of one large and two small plasmids. The resistance genes tet(L) (tetracycline resistance), dfrK (trimethoprim resistance) and aadD (kanamycin/neomycin resistance) were located on the large plasmid. Both small plasmids, designated pSWS371 and pSWS372, carried only an erm(C) gene for macrolide/lincosamide resistance. Sequence analysis revealed that the 2458-bp plasmid pSWS371 carried only a repL gene for plasmid replication in addition to the erm(C) gene. In contrast, the 3882-bp plasmid pSWS372 harbored - in addition to the erm(C) gene - three more genes: a repF gene for plasmid replication, a cop-6 gene for a small protein potentially involved in copy number control of the plasmid and a novel pre/mob gene for a protein involved in plasmid recombination and mobilization. The erm(C) genes of both small plasmids exhibited constitutive erm(C) gene expression and analysis of the respective translational attenuators identified deletions of 16 bp and 74 bp which explain the constitutive expression. The simultaneous presence of two small plasmids that carry the same resistance gene in the same MRSA isolate is a rare observation. The fact that both plasmids belong to different incompatibility groups as specified by the different rep genes, repL and repF, explains why they can stably coexist in the same bacterial cell.
Collapse
Affiliation(s)
- Sarah Wendlandt
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Kristina Kadlec
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Andrea T Feßler
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Engeline van Duijkeren
- Centre for Infectious Disease Control Netherlands (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Stefan Schwarz
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany.
| |
Collapse
|
239
|
Leibovitz E, Broides A, Greenberg D, Newman N. Current management of pediatric acute otitis media. Expert Rev Anti Infect Ther 2014; 8:151-61. [DOI: 10.1586/eri.09.112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
240
|
Kinouchi H, Arimoto H, Nishiguchi K, Oka M, Maki H, Kitagawa H, Kamimori H. Binding Properties of Antimicrobial Agents to Lipid Membranes Using Surface Plasmon Resonance. Biol Pharm Bull 2014; 37:1383-9. [DOI: 10.1248/bpb.b14-00358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiroki Kinouchi
- Pharmaceutical Research Division, Shionogi & Co., Ltd
- Department of Biochemistry, Kobe Pharmaceutical University
| | | | | | - Masako Oka
- Pharmaceutical Research Division, Shionogi & Co., Ltd
| | - Hideki Maki
- Pharmaceutical Research Division, Shionogi & Co., Ltd
| | | | | |
Collapse
|
241
|
Gupta P, Sothiselvam S, Vázquez-Laslop N, Mankin AS. Deregulation of translation due to post-transcriptional modification of rRNA explains why erm genes are inducible. Nat Commun 2013; 4:1984. [PMID: 23749080 DOI: 10.1038/ncomms2984] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 05/07/2013] [Indexed: 01/28/2023] Open
Abstract
A key mechanism of bacterial resistance to macrolide antibiotics is the dimethylation of a nucleotide in the large ribosomal subunit by erythromycin resistance methyltransferases. The majority of erm genes are expressed only when the antibiotic is present and the erythromycin resistance methyltransferase activity is critical for the survival of bacteria. Although these genes were among the first discovered inducible resistance genes, the molecular basis for their inducibility has remained unknown. Here we show that erythromycin resistance methyltransferase expression reduces cell fitness. Modification of the nucleotide in the ribosomal tunnel skews the cellular proteome by deregulating the expression of a set of proteins. We further demonstrate that aberrant translation of specific proteins results from abnormal interactions of the nascent peptide with the erythromycin resistance methyltransferase-modified ribosomal tunnel. Our findings provide a plausible explanation why erm genes have evolved to be inducible and underscore the importance of nascent peptide recognition by the ribosome for generating a balanced cellular proteome.
Collapse
Affiliation(s)
- Pulkit Gupta
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
242
|
Golovina AY, Dzama MM, Petriukov KS, Zatsepin TS, Sergiev PV, Bogdanov AA, Dontsova OA. Method for site-specific detection of m6A nucleoside presence in RNA based on high-resolution melting (HRM) analysis. Nucleic Acids Res 2013; 42:e27. [PMID: 24265225 PMCID: PMC3936739 DOI: 10.1093/nar/gkt1160] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemical landscape of natural RNA species is decorated with the large number of modified nucleosides. Some of those could easily be detected by reverse transcription, while others permit only high-performance liquid chromatography or mass-spectrometry detection. Presence of m6A nucleoside at a particular position of long RNA molecule is challenging to observe. Here we report an easy and high-throughput method for detection of m6A nucleosides in RNA based on high-resolution melting analysis. The method relies on the previous knowledge of the modified nucleoside position at a particular place of RNA and allows rapid screening for conditions or genes necessary for formation of that modification.
Collapse
Affiliation(s)
- Anna Y Golovina
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia, Department of Bioinformatics and Bioengineering, Lomonosov Moscow State University, Moscow 119992, Russia and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | | | | | | | | | | | | |
Collapse
|
243
|
Gupta P, Kannan K, Mankin AS, Vázquez-Laslop N. Regulation of gene expression by macrolide-induced ribosomal frameshifting. Mol Cell 2013; 52:629-42. [PMID: 24239289 DOI: 10.1016/j.molcel.2013.10.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/11/2013] [Accepted: 10/09/2013] [Indexed: 11/29/2022]
Abstract
The expression of many genes is controlled by upstream ORFs (uORFs). Typically, the progression of the ribosome through a regulatory uORF, which depends on the physiological state of the cell, influences the expression of the downstream gene. In the classic mechanism of induction of macrolide resistance genes, antibiotics promote translation arrest within the uORF, and the static ribosome induces a conformational change in mRNA, resulting in the activation of translation of the resistance cistron. We show that ketolide antibiotics, which do not induce ribosome stalling at the uORF of the ermC resistance gene, trigger its expression via a unique mechanism. Ketolides promote frameshifting at the uORF, allowing the translating ribosome to invade the intergenic spacer. The dynamic unfolding of the mRNA structure leads to the activation of resistance. Conceptually similar mechanisms may control other cellular genes. The identified property of ketolides to reduce the fidelity of reading frame maintenance may have medical implications.
Collapse
Affiliation(s)
- Pulkit Gupta
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | - Krishna Kannan
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | - Alexander S Mankin
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA.
| | - Nora Vázquez-Laslop
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA.
| |
Collapse
|
244
|
Petráčková D, Janeček J, Bezoušková S, Kalachová L, Techniková Z, Buriánková K, Halada P, Haladová K, Weiser J. Fitness and proteome changes accompanying the development of erythromycin resistance in a population of Escherichia coli grown in continuous culture. Microbiologyopen 2013; 2:841-52. [PMID: 23996919 PMCID: PMC3831644 DOI: 10.1002/mbo3.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/04/2013] [Accepted: 07/16/2013] [Indexed: 12/27/2022] Open
Abstract
We studied the impact of a sublethal concentration of erythromycin on the fitness and proteome of a continuously cultivated population of Escherichia coli. The development of resistance to erythromycin in the population was followed over time by the gradient plate method and minimum inhibitory concentration (MIC) measurements. We measured the growth rate, standardized efficiency of synthesis of radiolabeled proteins, and translation accuracy of the system. The proteome changes were followed over time in two parallel experiments that differed in the presence or absence of erythromycin. A comparison of the proteomes at each time point (43, 68, and 103 h) revealed a group of unique proteins differing in expression. From all 35 proteins differing throughout the cultivation, only three were common to more than one time point. In the final population, a significant proportion of upregulated proteins was localized to the outer or inner cytoplasmic membranes or to the periplasmic space. In a population growing for more than 100 generations in the presence of antibiotic, erythromycin-resistant bacterial clones with improved fitness in comparison to early resistant culture predominated. This phenomenon was accompanied by distinct changes in protein expression during a stepwise, population-based development of erythromycin resistance.
Collapse
Affiliation(s)
- Denisa Petráčková
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Wyres KL, van Tonder A, Lambertsen LM, Hakenbeck R, Parkhill J, Bentley SD, Brueggemann AB. Evidence of antimicrobial resistance-conferring genetic elements among pneumococci isolated prior to 1974. BMC Genomics 2013; 14:500. [PMID: 23879707 PMCID: PMC3726389 DOI: 10.1186/1471-2164-14-500] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/23/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Antimicrobial resistance among pneumococci has greatly increased over the past two to three decades. Resistance to tetracycline (tet(M)), chloramphenicol (cat) and macrolides (erm(B) and/or mef(A/E)) is generally conferred by acquisition of specific genes that are associated with mobile genetic elements, including those of the Tn916 and Tn5252 families. The first tetracycline-, chloramphenicol- and macrolide-resistant pneumococci were detected between 1962 and 1970; however, until now the oldest pneumococcus shown to harbour Tn916 and/or Tn5252 was isolated in 1974. In this study the genomes of 38 pneumococci isolated prior to 1974 were probed for the presence of tet(M), cat, erm(B), mef(A/E) and int (integrase) to indicate the presence of Tn916/Tn5252-like elements. RESULTS Two Tn916-like, tet(M)-containing, elements were identified among pneumococci dated 1967 and 1968. The former element was highly similar to that of the PMEN1 multidrug-resistant, globally-distributed pneumococcal reference strain, which was isolated in 1984. The latter element was associated with a streptococcal phage. A third, novel genetic element, designated ICESpPN1, was identified in the genome of an isolate dated 1972. ICESpPN1 contained a region of similarity to Tn5252, a region of similarity to a pneumococcal pathogenicity island and novel lantibiotic synthesis/export-associated genes. CONCLUSIONS These data confirm the existence of pneumococcal Tn916 elements in the first decade within which pneumococcal tetracycline resistance was described. Furthermore, the discovery of ICESpPN1 demonstrates the dynamic variability of pneumococcal genetic elements and is contrasted with the evidence for Tn916 stability.
Collapse
Affiliation(s)
- Kelly L Wyres
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - Andries van Tonder
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - Lotte M Lambertsen
- Department of Microbiology Surveillance and Research, Statens Serum Institut, 5 Artillerivej, Copenhagen 2300, Denmark
| | - Regine Hakenbeck
- Department of Microbiology, University Kaiserslautern, Kaiserslautern, Germany
| | - Julian Parkhill
- Pathogen Genomics Team, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Stephen D Bentley
- Pathogen Genomics Team, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Angela B Brueggemann
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| |
Collapse
|
246
|
Small MC, Lopes P, Andrade RB, MacKerell AD. Impact of ribosomal modification on the binding of the antibiotic telithromycin using a combined grand canonical monte carlo/molecular dynamics simulation approach. PLoS Comput Biol 2013; 9:e1003113. [PMID: 23785274 PMCID: PMC3681621 DOI: 10.1371/journal.pcbi.1003113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/07/2013] [Indexed: 02/05/2023] Open
Abstract
Resistance to macrolide antibiotics is conferred by mutation of A2058 to G or methylation by Erm methyltransferases of the exocyclic N6 of A2058 (E. coli numbering) that forms the macrolide binding site in the 50S subunit of the ribosome. Ketolides such as telithromycin mitigate A2058G resistance yet remain susceptible to Erm-based resistance. Molecular details associated with macrolide resistance due to the A2058G mutation and methylation at N6 of A2058 by Erm methyltransferases were investigated using empirical force field-based simulations. To address the buried nature of the macrolide binding site, the number of waters within the pocket was allowed to fluctuate via the use of a Grand Canonical Monte Carlo (GCMC) methodology. The GCMC water insertion/deletion steps were alternated with Molecular Dynamics (MD) simulations to allow for relaxation of the entire system. From this GCMC/MD approach information on the interactions between telithromycin and the 50S ribosome was obtained. In the wild-type (WT) ribosome, the 2'-OH to A2058 N1 hydrogen bond samples short distances with a higher probability, while the effectiveness of telithromycin against the A2058G mutation is explained by a rearrangement of the hydrogen bonding pattern of the 2'-OH to 2058 that maintains the overall antibiotic-ribosome interactions. In both the WT and A2058G mutation there is significant flexibility in telithromycin's imidazole-pyridine side chain (ARM), indicating that entropic effects contribute to the binding affinity. Methylated ribosomes show lower sampling of short 2'-OH to 2058 distances and also demonstrate enhanced G2057-A2058 stacking leading to disrupted A752-U2609 Watson-Crick (WC) interactions as well as hydrogen bonding between telithromycin's ARM and U2609. This information will be of utility in the rational design of novel macrolide analogs with improved activity against methylated A2058 ribosomes.
Collapse
Affiliation(s)
- Meagan C. Small
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, United States of America
| | - Pedro Lopes
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, United States of America
| | - Rodrigo B. Andrade
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|
247
|
Molecular characterization of an rsmD-like rRNA methyltransferase from the Wolbachia endosymbiont of Brugia malayi and antifilarial activity of specific inhibitors of the enzyme. Antimicrob Agents Chemother 2013; 57:3843-56. [PMID: 23733469 DOI: 10.1128/aac.02264-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The endosymbiotic organism Wolbachia is an attractive antifilarial drug target. Here we report on the cloning and expression of an rsmD-like rRNA methyltransferase from the Wolbachia endosymbiont of Brugia malayi, its molecular properties, and assays for specific inhibitors. The gene was found to be expressed in all the major life stages of B. malayi. The purified enzyme expressed in Escherichia coli was found to be in monomer form in its native state. The activities of the specific inhibitors (heteroaryl compounds) against the enzyme were tested with B. malayi adult and microfilariae for 7 days in vitro at various concentrations, and NSC-659390 proved to be the most potent compound (50% inhibitory concentration [IC50], 0.32 μM), followed by NSC-658343 (IC50, 4.13 μM) and NSC-657589 (IC50, 7.5 μM). On intraperitoneal administration at 5 mg/kg of body weight for 7 days to adult jirds into which B. malayi had been transplanted intraperitoneally, all the compounds killed a significant proportion of the implanted worms. A very similar result was observed in infected mastomys when inhibitors were administered. Docking studies of enzyme and inhibitors and an in vitro tryptophan quenching experiment were also performed to understand the binding mode and affinity. The specific inhibitors of the enzyme showed a higher affinity for the catalytic site of the enzyme than the nonspecific inhibitors and were found to be potent enough to kill the worm (both adults and microfilariae) in vitro as well as in vivo in a matter of days at micromolar concentrations. The findings suggest that these compounds be evaluated against other pathogens possessing a methyltransferase with a DPPY motif and warrant the design and synthesis of more such inhibitors.
Collapse
|
248
|
Phunpruch S, Warit S, Suksamran R, Billamas P, Jaitrong S, Palittapongarnpim P, Prammananan T. A role for 16S rRNA dimethyltransferase (ksgA) in intrinsic clarithromycin resistance in Mycobacterium tuberculosis. Int J Antimicrob Agents 2013; 41:548-51. [DOI: 10.1016/j.ijantimicag.2013.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/05/2013] [Accepted: 02/11/2013] [Indexed: 11/28/2022]
|
249
|
Methylation of 23S rRNA nucleotide G748 by RlmAII methyltransferase renders Streptococcus pneumoniae telithromycin susceptible. Antimicrob Agents Chemother 2013; 57:3789-96. [PMID: 23716046 DOI: 10.1128/aac.00164-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Several posttranscriptional modifications of bacterial rRNAs are important in determining antibiotic resistance or sensitivity. In all Gram-positive bacteria, dimethylation of nucleotide A2058, located in domain V of 23S rRNA, by the dimethyltransferase Erm(B) results in low susceptibility and resistance to telithromycin (TEL). However, this is insufficient to produce high-level resistance to TEL in Streptococcus pneumoniae. Inactivation of the methyltransferase RlmA(II), which methylates the N-1 position of nucleotide G748, located in hairpin 35 of domain II of 23S rRNA, results in increased resistance to TEL in erm(B)-carrying S. pneumoniae. Sixteen TEL-resistant mutants (MICs, 16 to 32 μg/ml) were obtained from a clinically isolated S. pneumoniae strain showing low TEL susceptibility (MIC, 2 μg/ml), with mutation resulting in constitutive dimethylation of A2058 because of nucleotide differences in the regulatory region of erm(B) mRNA. Primer extension analysis showed that the degree of methylation at G748 in all TEL-resistant mutants was significantly reduced by a mutation in the gene encoding RlmA(II) to create a stop codon or change an amino acid residue. Furthermore, RNA footprinting with dimethyl sulfate and a molecular modeling study suggested that methylation of G748 may contribute to the stable interaction of TEL with domain II of 23S rRNA, even after dimethylation of A2058 by Erm(B). This novel finding shows that methylation of G748 by RlmA(II) renders S. pneumoniae TEL susceptible.
Collapse
|
250
|
Grove TL, Livada J, Schwalm EL, Green MT, Booker SJ, Silakov A. A substrate radical intermediate in catalysis by the antibiotic resistance protein Cfr. Nat Chem Biol 2013; 9:422-7. [PMID: 23644479 PMCID: PMC3897224 DOI: 10.1038/nchembio.1251] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 04/02/2013] [Indexed: 01/08/2023]
Abstract
Cfr-dependent methylation of C8 of adenosine 2503 (A2503) in 23S rRNA confers bacterial resistance to an array of clinically important antibiotics that target the large subunit of the ribosome, including the synthetic oxazolidinone antibiotic linezolid. The key element of the proposed mechanism for Cfr, a radical S-adenosylmethionine (SAM) enzyme, is the addition of a methylene radical — generated by hydrogen-atom abstraction from the methyl group of an S-methylated cysteine residue (mCys) — onto C8 of A2503 to form a protein – nucleic acid cross-linked species containing an unpaired electron. Herein we use continuous-wave and pulsed electron paramagnetic resonance (EPR) techniques to provide direct spectroscopic evidence for this intermediate, showing a spin-delocalized radical with maximum spin density at N7 of the adenine ring. In addition, we use rapid-freeze quench EPR to show that the radical forms and decays with rate constants that are consistent with the rate of formation of the methylated product.
Collapse
Affiliation(s)
- Tyler L Grove
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|