201
|
Zhang Y, Geng Y, Li S, Shi T, Ma X, Hua R, Fang L. Efficient Knocking Out of the Organophosphorus Insecticides Degradation Gene opdB in Cupriavidus nantongensis X1 T via CRISPR/ Cas9 with Red System. Int J Mol Sci 2023; 24:ijms24066003. [PMID: 36983076 PMCID: PMC10056268 DOI: 10.3390/ijms24066003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Cupriavidus nantongensis X1T is a type strain of the genus Cupriavidus, that can degrade eight kinds of organophosphorus insecticides (OPs). Conventional genetic manipulations in Cupriavidus species are time-consuming, difficult, and hard to control. The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) system has emerged as a powerful tool for genome editing applied in prokaryotes and eukaryotes due to its simplicity, efficiency, and accuracy. Here, we combined CRISPR/Cas9 with the Red system to perform seamless genetic manipulation in the X1T strain. Two plasmids, pACasN and pDCRH were constructed. The pACasN plasmid contained Cas9 nuclease and Red recombinase, and the pDCRH plasmid contained the dual single-guide RNA (sgRNA) of organophosphorus hydrolase (OpdB) in the X1T strain. For gene editing, two plasmids were transferred to the X1T strain and a mutant strain in which genetic recombination had taken place, resulting in the targeted deletion of opdB. The incidence of homologous recombination was over 30%. Biodegradation experiments suggested that the opdB gene was responsible for the catabolism of organophosphorus insecticides. This study was the first to use the CRISPR/Cas9 system for gene targeting in the genus Cupriavidus, and it furthered our understanding of the process of degradation of organophosphorus insecticides in the X1T strain.
Collapse
Affiliation(s)
- Yufei Zhang
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yuehan Geng
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei 230036, China
| | - Shengyang Li
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei 230036, China
| | - Taozhong Shi
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xin Ma
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei 230036, China
| | - Rimao Hua
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei 230036, China
- Institute for Green Development, Anhui Agricultural University, Hefei 230036, China
| | - Liancheng Fang
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei 230036, China
- Institute for Green Development, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
202
|
Zhang K, Zhang W, Qin M, Li Y, Wang H. Characterization and Application of the Sugar Transporter Zmo0293 from Zymomonas mobilis. Int J Mol Sci 2023; 24:ijms24065888. [PMID: 36982961 PMCID: PMC10055971 DOI: 10.3390/ijms24065888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Zymomonas mobilis is a natural ethanologen with many desirable characteristics, which makes it an ideal industrial microbial biocatalyst for the commercial production of desirable bioproducts. Sugar transporters are responsible for the import of substrate sugars and the conversion of ethanol and other products. Glucose-facilitated diffusion protein Glf is responsible for facilitating the diffusion of glucose uptake in Z. mobilis. However, another sugar transporter-encoded gene, ZMO0293, is poorly characterized. We employed gene deletion and heterologous expression mediated by the CRISPR/Cas method to investigate the role of ZMO0293. The results showed that deletion of the ZMO0293 gene slowed growth and reduced ethanol production and the activities of key enzymes involved in glucose metabolism in the presence of high concentrations of glucose. Moreover, ZMO0293 deletion caused different transcriptional changes in some genes of the Entner Doudoroff (ED) pathway in the ZM4-ΔZM0293 strain but not in ZM4 cells. The integrated expression of ZMO0293 restored the growth of the glucose uptake-defective strain Escherichia coli BL21(DE3)-ΔptsG. This study reveals the function of the ZMO0293 gene in Z. mobilis in response to high concentrations of glucose and provides a new biological part for synthetic biology.
Collapse
Affiliation(s)
- Kun Zhang
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Wenwen Zhang
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Mengxing Qin
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yi Li
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Hailei Wang
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
203
|
Zhang B, Yang H, Wu Z, Pan J, Li S, Chen L, Cai X, Liu Z, Zheng Y. Spatiotemporal Gene Expression by a Genetic Circuit for Chemical Production in Escherichia coli. ACS Synth Biol 2023; 12:768-779. [PMID: 36821871 DOI: 10.1021/acssynbio.2c00568] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Gene expression in spatiotemporal distribution improves the ability of cells to respond to changing environments. For microbial cell factories in artificial environments, reconstruction of the target compound's biosynthetic pathway in a new spatiotemporal dimension/scale promotes the production of chemicals. Here, a genetic circuit based on the Esa quorum sensing and lac operon was designed to achieve the dynamic temporal gene expression. Meanwhile, the pathway was regulated by an l-cysteine-specific sensor and relocalized to the plasma membrane for further flux enhancement to l-cysteine and toxicity reduction on a spatial scale. Finally, the integrated spatiotemporal regulation circuit for l-cysteine biosynthesis enabled a 14.16 g/L l-cysteine yield in Escherichia coli. Furthermore, this spatiotemporal regulation circuit was also applied in our previously constructed engineered strain for pantothenic acid, methionine, homoserine, and 2-aminobutyric acid production, and the titer increased by 29, 33, 28, and 41%, respectively. These results highlighted the applicability of our spatiotemporal regulation circuit to enhance the performance of microbial cell factories.
Collapse
Affiliation(s)
- Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hui Yang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zidan Wu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiayuan Pan
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shirong Li
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lifeng Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
204
|
Zhang X, Zhang H, Shen T, Pei J, Zhao L. Biotransformation to synthesize the methylated derivatives of baicalein using engineered Escherichia coli. Bioprocess Biosyst Eng 2023; 46:735-745. [PMID: 36932217 DOI: 10.1007/s00449-023-02860-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/04/2023] [Indexed: 03/19/2023]
Abstract
Oroxylin A and negletein are flavonoid compounds existing in plants, with excellent pharmacological activities such as anti-inflammatory, anti-viropexis, and anti-cancer. Nevertheless, the natural abundance of these compounds in plants is extremely low. Here, a biotransformation pathway was developed in engineered strains to synthesize oroxylin A and negletein from baicalin by using the crude extract of Scutellaria baicalensis as the substrate. Briefly, the precursor baicalin in this crude extract was hydrolyzed by a β-glucuronidase to form the intermediate baicalein, then O-methyltransferases utilize this intermediate to synthesize oroxylin A and negletein. Through screening strains and carbon sources, regulating intercellular S-adenosyl L-methionine synthesis, and optimizing culture conditions, the titers of the target products increased gradually, with 188.0 mg/L for oroxylin A and 222.7 mg/L for negletein finally. The study illustrates a convenient method to synthesize oroxylin A and negletein from a low-cost substrate, paving the way for the mass acquisition and further bioactivities development and utilization of these rare and high-value compounds.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.,College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Haiyan Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.,College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Tianyu Shen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.,College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China. .,College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China. .,College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
205
|
Li Q, Sun M, Lv L, Zuo Y, Zhang S, Zhang Y, Yang S. Improving the Editing Efficiency of CRISPR-Cas9 by Reducing the Generation of Escapers Based on the Surviving Mechanism. ACS Synth Biol 2023; 12:672-680. [PMID: 36867054 DOI: 10.1021/acssynbio.2c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Due to the high specificity in targeting DNA and highly convenient programmability, CRISPR-Cas-based antimicrobials applied for eliminating specific strains such as antibiotic-resistant bacteria in the microbiome were gradually developed. However, the generation of escapers makes the elimination efficiency far lower than the acceptable rate (10-8) recommended by the National Institutes of Health. Here, a systematic study was carried out providing insight into the escaping mechanisms in Escherichia coli, and strategies for reducing the escapers were devised accordingly. We first showed an escape rate of 10-5-10-3 in E. coli MG1655 under the editing of pEcCas/pEcgRNA established previously. Detailed analysis of the escapers obtained at ligA site in E. coli MG1655 uncovered that the disruption of cas9 was the main cause of the generation of survivors, notably the frequent insertion of IS5. Hence, the sgRNA was next designed to target the "perpetrator" IS5, and subsequently the killing efficiency was improved 4-fold. Additionally, the escape rate in IS-free E. coli MDS42 was also tested at the ligA site, ∼10-fold decrease compared with MG1655, but the disruption of cas9 was still observed in all survivors manifested in the form of frameshifts or point mutations. Thus, we optimized the tool itself by increasing the copy number of cas9 to retain some cas9 that still has the correct DNA sequence. Fortunately, the escape rates dropped below 10-8 at 9 of the 16 tested genes. Furthermore, the λ-Red recombination system was added to generate the pEcCas-2.0, and a 100% gene deletion efficiency was achieved at genes cadA, maeB, and gntT in MG1655, whereas those genes were edited with low efficiency previously. Last, the application of pEcCas-2.0 was then expanded to the E. coli B strain BL21(DE3) and W strain ATCC9637. This study reveals the mechanism of E. coli surviving Cas9-mediated death, and a highly efficient editing tool is established based on the mechanism, which will accelerate the further application of CRISPR-Cas.
Collapse
Affiliation(s)
- Qi Li
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Mingjun Sun
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Lu Lv
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Yong Zuo
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Suyi Zhang
- Luzhou Laojiao Co., Ltd, Luzhou 646000, Sichuan China
| | - Ying Zhang
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou 313000, China
| |
Collapse
|
206
|
Elmore JR, Dexter GN, Baldino H, Huenemann JD, Francis R, Peabody GL, Martinez-Baird J, Riley LA, Simmons T, Coleman-Derr D, Guss AM, Egbert RG. High-throughput genetic engineering of nonmodel and undomesticated bacteria via iterative site-specific genome integration. SCIENCE ADVANCES 2023; 9:eade1285. [PMID: 36897939 PMCID: PMC10005180 DOI: 10.1126/sciadv.ade1285] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/01/2023] [Indexed: 05/31/2023]
Abstract
Efficient genome engineering is critical to understand and use microbial functions. Despite recent development of tools such as CRISPR-Cas gene editing, efficient integration of exogenous DNA with well-characterized functions remains limited to model bacteria. Here, we describe serine recombinase-assisted genome engineering, or SAGE, an easy-to-use, highly efficient, and extensible technology that enables selection marker-free, site-specific genome integration of up to 10 DNA constructs, often with efficiency on par with or superior to replicating plasmids. SAGE uses no replicating plasmids and thus lacks the host range limitations of other genome engineering technologies. We demonstrate the value of SAGE by characterizing genome integration efficiency in five bacteria that span multiple taxonomy groups and biotechnology applications and by identifying more than 95 heterologous promoters in each host with consistent transcription across environmental and genetic contexts. We anticipate that SAGE will rapidly expand the number of industrial and environmental bacteria compatible with high-throughput genetics and synthetic biology.
Collapse
Affiliation(s)
- Joshua R. Elmore
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Gara N. Dexter
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Henri Baldino
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jay D. Huenemann
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN 37996,USA
| | - Ryan Francis
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - George L. Peabody
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Jessica Martinez-Baird
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Lauren A. Riley
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN 37996,USA
| | - Tuesday Simmons
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94701, USA
| | - Devin Coleman-Derr
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94701, USA
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, USA
| | - Adam M. Guss
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Robert G. Egbert
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
207
|
Hu M, Li M, Li C, Luo Y, Zhang T. High-Level Productivity of Lacto- N-neotetraose in Escherichia coli by Systematic Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4051-4058. [PMID: 36815842 DOI: 10.1021/acs.jafc.2c08772] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Lacto-N-neotetraose (LNnT) is a critical component of human milk oligosaccharides. This study introduces a systems metabolic engineering method to produce LNnT in Escherichia coli. First, 12 target genes contributing to LNnT production were identified using a double-plasmid system. Subsequently, combinatorial optimization of the copy number was performed to tune the target gene expression strength. Next, the CRISPR/Cas9 system was used to block the UDP-Gal and UDP-GlcNAc competitive pathways, and the titer of LNnT reached 1.16 g/L (E27). Moreover, the lactoylglutathione lyase (GloA) was deleted to block the competing metabolite pathway from glycerol to lactate, and the titer of LNnT (1.46 g/L) was 26% higher than that of strain E27. Finally, the LNnT productivity was increased to 0.34 g/L/h in a 3 L bioreactor, which was 36% higher than the recently reported LNnT productivity. This research work opens an innovative framework for the effective production of LNnT.
Collapse
Affiliation(s)
- Miaomiao Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chenchen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yejiao Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
208
|
Zhang P, Gao J, Zhang H, Wang Y, Liu Z, Lee SY, Mao X. Metabolic engineering of Escherichia coli for the production of an antifouling agent zosteric acid. Metab Eng 2023; 76:247-259. [PMID: 36822462 DOI: 10.1016/j.ymben.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023]
Abstract
Zosteric acid (ZA) is a Zostera species-derived, sulfated phenolic acid compound with antifouling activity and has gained much attention due to its nontoxic and biodegradable characteristics. However, the yield of Zostera species available for ZA extraction is limited by natural factors, such as season, latitude, light, and temperature. Here we report the development of metabolically engineered Escherichia coli strains capable of producing ZA from glucose and glycerol. First, intracellular availability of the sulfur donor 3'-phosphoadenosine-5'-phosphosulfate (PAPS) was enhanced by knocking out the cysH gene responsible for PAPS consumption and overexpressing the genes required for PAPS biosynthesis. Co-overexpression of the genes encoding tyrosine ammonia-lyase, sulfotransferase 1A1, ATP sulfurylase, and adenosine 5'-phosphosulfate kinase constructed ZA producing strain with enhanced PAPS supply. Second, the feedback-resistant forms of aroG and tyrA genes (encoding 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase and chorismate mutase, respectively) were overexpressed to relieve the feedback regulation of L-tyrosine biosynthesis. Third, the pykA gene involved in phosphoenolpyruvate-consuming reaction, the regulator gene tyrR, the competing pathway gene pheA, and the ptsHIcrr genes essential for the PEP:carbohydrate phosphotransferase system were deleted. Moreover, all genes involved in the shikimate pathway and the talA, tktA, and tktB genes in the pentose phosphate pathway were examined for ZA production. The PTS-independent glucose uptake system, the expression vector system, and the carbon source were also optimized. As a result, the best-performing strain successfully produced 1.52 g L-1 ZA and 1.30 g L-1p-hydroxycinnamic acid from glucose and glycerol in a 700 mL fed-batch bioreactor.
Collapse
Affiliation(s)
- Peichao Zhang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jing Gao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Haiyang Zhang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yongzhen Wang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhen Liu
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), BioProcess Engineering Research Center, Institute for the BioCentury, KAIST, Daejeon, Republic of Korea.
| | - Xiangzhao Mao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
209
|
Chen J, Zhou X, Tang Y, Jiang Z, Kang X, Wang J, Yue M. Characterization of two-component system CitB family in Salmonella enterica serovar Gallinarum biovar Gallinarum. Vet Microbiol 2023; 278:109659. [PMID: 36645991 DOI: 10.1016/j.vetmic.2023.109659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Salmonella enterica serovar Gallinarum biovar Gallinarum is an avian-adapted pathogen causing fowl typhoid and leading to enormous economic loss in the global poultry industry. Two-component systems (TCSs) are crucial for bacteria survival, virulence, sensing and responding to the environment. 23 pairs of TCSs classified into five families were found in S. Gallinarum strain 287/91, of which the CitB family contains three pairs of TCSs, namely CitA/CitB, DcuS/DcuR and DpiB/DpiA, whose functions remained unaddressed. Thus, four mutants of S. Gallinarum strain U20, ΔcitAB (Δcit), ΔdcuSR (Δdcu), ΔdpiBA (Δdpi) and ΔcitABΔdcuSRΔdpiBA (Δ3), were constructed. The results suggested that the CitB family did not affect the growth or the metabolic capacities tested, while different TCSs exerted various effects on biofilm formation and antimicrobial resistance against multiple drug classes. Furthermore, the CitB family negatively impacted the tolerance of environmental stress, contributing to compromised virulence in chicken embryos and in vivo survival of S. Gallinarum. Collectively, this research provided new knowledge of how the CitB family is involved in the pathogenicity of S. Gallinarum.
Collapse
Affiliation(s)
- Jiaqi Chen
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China.
| | - Xiao Zhou
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China.
| | - Yanting Tang
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China.
| | - Zhijie Jiang
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China.
| | - Xiamei Kang
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China.
| | - Jianfeng Wang
- Hangzhou Original Breeding Farm, Hangzhou 311115, Zhejiang, China.
| | - Min Yue
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
210
|
Li D, Wang X, Qin Z, Yu S, Chen J, Zhou J. Combined engineering of l-sorbose dehydrogenase and fermentation optimization to increase 2-keto-l-gulonic acid production in Escherichia coli. BIORESOURCE TECHNOLOGY 2023; 372:128672. [PMID: 36702324 DOI: 10.1016/j.biortech.2023.128672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
One-step fermentation to produce 2-keto-l-gulonic acid (2-KLG), the precursor of vitamin C, is a long-term goal. Improvement of the enzyme's activity through engineering could benefit 2-KLG production. This study aimed to conduct a semi-rational design of l-sorbose dehydrogenase (SDH) through structure-directed, to screen mutants that could enhance the 2-KLG titer. First, the predicted structure of SDH was obtained using AlphaFold2. The key mutation sites in the substrate pocket were identified by Ala scanning. Subsequently, the mutant V336I/V368A was obtained by iterative saturation mutagenesis, which increased the yield of 2-KLG 1.9-fold. Finally, 5.03 g/L of 2-KLG was obtained by a two-stage temperature control fermentation method, and the conversion rate was 50%. Furthermore, experiments showed that knockdown of the l-sorbose-associated phosphotransferase system delays 2-KLG production. The results show that the production of 2-KLG was effectively increased through a combination of SDH engineering and fermentation optimization.
Collapse
Affiliation(s)
- Dong Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinglong Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zhijie Qin
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shiqin Yu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
211
|
Sakae K, Nonaka D, Kishida M, Hirata Y, Fujiwara R, Kondo A, Noda S, Tanaka T. Caffeic acid production from glucose using metabolically engineered Escherichia coli. Enzyme Microb Technol 2023; 164:110193. [PMID: 36621069 DOI: 10.1016/j.enzmictec.2023.110193] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Caffeic acid (3,4-dihydroxycinnamic acid) is a precursor for high-valued compounds with anticancer, antiviral activities, and anti-inflammatory making it an important substance in the food additive, cosmetics, and pharmaceutical industries. Here, we developed an engineered Escherichia coli strain capable of directly producing high levels of caffeic acid from glucose. Tyrosine ammonia-lyase from Rhodotorula glutinis (RgTAL) and p-coumaric acid 3-hydroxylase from Saccharothrix espanaensis (SeC3H) were expressed. Next, feedback-resistant chorismate mutase/prephenate dehydrogenase, was introduced to promote l-tyrosine synthesis. This engineered strain CA3 produced 1.58 g/L of caffeic acid from glucose without tyrosine supplemented to the medium. Furthermore, to reduce p-coumaric acid accumulation, 4-hydroxyphenylacetate 3-hydroxylase from Pseudomonas aeruginosa (PaHpaBC) was introduced. Finally, an engineered strain CA8 directly produced 6.17 g/L of caffeic acid from glucose using a jar fermenter. The E. coli developed in this study would be helpful as a chassis strain to produce value-added caffeic acid-derivatives.
Collapse
Affiliation(s)
- Kosuke Sakae
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Daisuke Nonaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Mayumi Kishida
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yuuki Hirata
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ryosuke Fujiwara
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Shuhei Noda
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
212
|
Wang L, Wang H, Chen J, Qin Z, Yu S, Zhou J. Coordinating caffeic acid and salvianic acid A pathways for efficient production of rosmarinic acid in Escherichia coli. Metab Eng 2023; 76:29-38. [PMID: 36623792 DOI: 10.1016/j.ymben.2023.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/17/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Rosmarinic acid is a natural hydroxycinnamic acid ester used widely in the food and pharmaceutical industries. Although many attempts have been made to screen rate-limiting enzymes and optimize modules through co-culture fermentation, the titer of rosmarinic acid remains at the microgram level by microorganisms. A de novo biosynthetic pathway for rosmarinic acid was constructed based on caffeic acid synthesis modules in Escherichia coli. Knockout of competing pathways increased the titer of rosmarinic acid and reduced the synthesis of rosmarinic acid analogues. An L-amino acid deaminase was introduced to balance metabolic flux between the synthesis of caffeic acid and salvianic acid A. The ratio of FADH2/FAD was maintained via the coordination of deaminase and HpaBC, which is responsible for caffeic acid synthesis. Knockout of menI, encoding an endogenous thioesterase, increased the stability of caffeoyl-CoA. The final strain produced 5780.6 mg/L rosmarinic acid in fed-batch fermentation, the highest yet reported for microbial production. The strategies applied in this study lay a foundation for the synthesis of other caffeic acid and rosmarinic acid derivatives.
Collapse
Affiliation(s)
- Lian Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Huijing Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jianbin Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Zhijie Qin
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Shiqin Yu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
213
|
McNaught KJ, Kuatsjah E, Zahn M, Prates ÉT, Shao H, Bentley GJ, Pickford AR, Gruber JN, Hestmark KV, Jacobson DA, Poirier BC, Ling C, San Marchi M, Michener WE, Nicora CD, Sanders JN, Szostkiewicz CJ, Veličković D, Zhou M, Munoz N, Kim YM, Magnuson JK, Burnum-Johnson KE, Houk KN, McGeehan JE, Johnson CW, Beckham GT. Initiation of fatty acid biosynthesis in Pseudomonas putida KT2440. Metab Eng 2023; 76:193-203. [PMID: 36796578 DOI: 10.1016/j.ymben.2023.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Deciphering the mechanisms of bacterial fatty acid biosynthesis is crucial for both the engineering of bacterial hosts to produce fatty acid-derived molecules and the development of new antibiotics. However, gaps in our understanding of the initiation of fatty acid biosynthesis remain. Here, we demonstrate that the industrially relevant microbe Pseudomonas putida KT2440 contains three distinct pathways to initiate fatty acid biosynthesis. The first two routes employ conventional β-ketoacyl-ACP synthase III enzymes, FabH1 and FabH2, that accept short- and medium-chain-length acyl-CoAs, respectively. The third route utilizes a malonyl-ACP decarboxylase enzyme, MadB. A combination of exhaustive in vivo alanine-scanning mutagenesis, in vitro biochemical characterization, X-ray crystallography, and computational modeling elucidate the presumptive mechanism of malonyl-ACP decarboxylation via MadB. Given that functional homologs of MadB are widespread throughout domain Bacteria, this ubiquitous alternative fatty acid initiation pathway provides new opportunities to target a range of biotechnology and biomedical applications.
Collapse
Affiliation(s)
- Kevin J McNaught
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Eugene Kuatsjah
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Michael Zahn
- Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Érica T Prates
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Huiling Shao
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA, 90095, USA
| | - Gayle J Bentley
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Andrew R Pickford
- Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Josephine N Gruber
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Kelley V Hestmark
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Daniel A Jacobson
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Brenton C Poirier
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Chen Ling
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Myrsini San Marchi
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA, 90095, USA
| | - William E Michener
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jacob N Sanders
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA, 90095, USA
| | - Caralyn J Szostkiewicz
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Dušan Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Nathalie Munoz
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA; Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Young-Mo Kim
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jon K Magnuson
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Kristin E Burnum-Johnson
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA; Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA, 90095, USA
| | - John E McGeehan
- Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Christopher W Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; DOE Agile BioFoundry, Emeryville, CA, 94608, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
| |
Collapse
|
214
|
Shen ZY, Wang YF, Wang LJ, Wang Y, Liu ZQ, Zheng YG. Local metabolic response of Escherichia coli to the module genetic perturbations in l-methionine biosynthetic pathway. J Biosci Bioeng 2023; 135:217-223. [PMID: 36707399 DOI: 10.1016/j.jbiosc.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/16/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023]
Abstract
l-Methionine biosynthesis is through multilevel regulated and multibranched biosynthetic pathway (MRMBP). Because of the complex regulatory mechanism and the imbalanced metabolic flux between branched pathways, microbial production of l-methionine has not been commercialized. In this study, local metabolic response in MRMBP of l-methionine was investigated and various crucial genes in branched pathways were determined. In l-serine pathway, the crucial gene was serABC. In O-succinyl homoserine (OSH) pathway, which was the C4 backbone of l-methionine, metB and metL controlled the metabolic flux jointly. In l-cysteine pathway, the crucial gene cysEfbr could disturb the flux distribution of local network in l-methionine biosynthesis. However, no crucial gene for l-methionine production in 5-methyl tetrahydrofolate (CH3-THF) pathway was found. The relation between these pathways was also researched. l-Serine pathway, as the upstream pathway of l-cysteine and CH3-THF, played a crucial role in l-methionine biosynthesis. l-Cysteine pathway showed the strongest controlling force of the metabolic flux, and OSH pathway was second to l-cysteine pathway. In contrast, CH3-THF pathway was the weakest, which was probably the mainly limited steps at present and had great potential in further research. In addition, constructed W3110 IJAHFEBC/pA∗HAmL was able to produce 2.62 g/L l-methionine in flask. This study is instructive for l-methionine biosynthesis and provides a new research method of biosynthesizing other metabolic products in MRMBPs.
Collapse
Affiliation(s)
- Zhen-Yang Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China
| | - Yi-Feng Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China
| | - Li-Juan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China
| | - Ying Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China
| |
Collapse
|
215
|
Metabolic engineering of Escherichia coli to enhance protein production by coupling ShCAST-based optimized transposon system and CRISPR interference. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
216
|
Hao M, Tang J, Ge S, Li T, Xia N. Bacterial-Artificial-Chromosome-Based Genome Editing Methods and the Applications in Herpesvirus Research. Microorganisms 2023; 11:589. [PMID: 36985163 PMCID: PMC10056367 DOI: 10.3390/microorganisms11030589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Herpesviruses are major pathogens that infect humans and animals. Manipulating the large genome is critical for exploring the function of specific genes and studying the pathogenesis of herpesviruses and developing novel anti-viral vaccines and therapeutics. Bacterial artificial chromosome (BAC) technology significantly advanced the capacity of herpesviruses researchers to manipulate the virus genomes. In the past years, advancements in BAC-based genome manipulating and screening strategies of recombinant BACs have been achieved, which has promoted the study of the herpes virus. This review summarizes the advances in BAC-based gene editing technology and selection strategies. The merits and drawbacks of BAC-based herpesvirus genome editing methods and the application of BAC-based genome manipulation in viral research are also discussed. This review provides references relevant for researchers in selecting gene editing methods in herpes virus research. Despite the achievements in the genome manipulation of the herpes viruses, the efficiency of BAC-based genome manipulation is still not satisfactory. This review also highlights the need for developing more efficient genome-manipulating methods for herpes viruses.
Collapse
Affiliation(s)
- Mengling Hao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jiabao Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen 361102, China
| |
Collapse
|
217
|
CRISPR-Cas-Guided Mutagenesis of Chromosome and Virulence Plasmid in Shigella flexneri by Cytosine Base Editing. mSystems 2023; 8:e0104522. [PMID: 36541764 PMCID: PMC9948704 DOI: 10.1128/msystems.01045-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Shigella is a Gram-negative bacterium that invades the human gut epithelium. The resulting infection, shigellosis, is the deadliest bacterial diarrheal disease. Much of the information about the genes dictating the pathophysiology of Shigella, both on the chromosome and the virulence plasmid, was obtained by classical reverse genetics. However, technical limitations of the prevalent mutagenesis techniques restrict the generation of mutants in a single reaction to a small number, preventing large-scale targeted mutagenesis of Shigella and the subsequent assessment of phenotype. We adopted a CRISPR-Cas-dependent approach, where a nickase Cas9 and cytidine deaminase fusion is guided by single guide RNA (sgRNA) to introduce targeted C→T transitions, resulting in internal stop codons and premature termination of translation. In proof-of-principle experiments using an mCherry fluorescent reporter, we were able to generate loss-of-function mutants in both Escherichia coli and Shigella flexneri with up to 100% efficacy. Using a modified fluctuation assay, we determined that under optimized conditions, the frequency of untargeted mutations introduced by the Cas9-deaminase fusion was in the same range as spontaneous mutations, making our method a safe choice for bacterial mutagenesis. Furthermore, we programmed the method to mutate well-characterized chromosomal and plasmid-borne Shigella flexneri genes and found the mutant phenotype to be similar to those of the reported gene deletion mutants, with no apparent polar effects at the phenotype level. This method can be used in a 96-well-plate format to increase the throughput and generate an array of targeted loss-of-function mutants in a few days. IMPORTANCE Loss-of-function mutagenesis is critical in understanding the physiological role of genes. Therefore, high-throughput techniques to generate such mutants are important for facilitating the assessment of gene function at a pace that matches systems biology approaches. However, to our knowledge, no such method was available for generating an array of single gene mutants in an important enteropathogen-Shigella. This pathogen causes high morbidity and mortality in children, and antibiotic-resistant strains are quickly emerging. Therefore, determination of the function of unknown Shigella genes is of the utmost importance to develop effective strategies to control infections. Our present work will bridge this gap by providing a rapid method for generating loss-of-function mutants. The highly effective and specific method has the potential to be programmed to generate multiple mutants in a single, massively parallel reaction. By virtue of plasmid compatibility, this method can be extended to other members of Enterobacteriaceae.
Collapse
|
218
|
Wang H, Lv LB, Chen LP, Xiao JL, Shen J, Gao B, Zhao JG, Han DM, Chen BX, Wang S, Liu G, Xin AG, Xiao P, Gao H. Hemolysin Co-Regulatory Protein 1 Enhances the Virulence of Clinically Isolated Escherichia coli in KM Mice by Increasing Inflammation and Inducing Pyroptosis. Toxins (Basel) 2023; 15:171. [PMID: 36977062 PMCID: PMC10058142 DOI: 10.3390/toxins15030171] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Hemolysin-coregulated protein 1 (Hcp1) is an effector released by the type VI secretion system (T6SS) in certain pathogenic strains of Escherichia coli (E. coli) that causes apoptosis and contributes to the development of meningitis. The exact toxic consequences of Hcp1 and whether it intensifies the inflammatory response by triggering pyroptosis are yet unknown. Here, utilizing the CRISPR/Cas9 genome editing method, we removed the gene expressing Hcp1 from wild-type E. coli W24 and examined the impact of Hcp1 on E. coli virulence in Kunming (KM) mice. It was found that Hcp1-sufficient E. coli was more lethal, exacerbating acute liver injury (ALI) and acute kidney injury (AKI) or even systemic infections, structural organ damage, and inflammatory factor infiltration. These symptoms were alleviated in mice infected with W24Δhcp1. Additionally, we investigated the molecular mechanism by which Hcp1 worsens AKI and found that pyroptosis is involved, manifested as DNA breaks in many renal tubular epithelial cells. Genes or proteins closely related to pyroptosis are abundantly expressed in the kidney. Most importantly, Hcp1 promotes the activation of the NLRP3 inflammasome and the expression of active caspase-1, thereby cleaving GSDMD-N and accelerating the release of active IL-1β and ultimately leading to pyroptosis. In conclusion, Hcp1 enhances the virulence of E. coli, aggravates ALI and AKI, and promotes the inflammatory response; moreover, Hcp1-induced pyroptosis is one of the molecular mechanisms of AKI.
Collapse
Affiliation(s)
- Hao Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Long-Bao Lv
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Li-Ping Chen
- College of Foreign Languages, Yunnan Agricultural University, Kunming 650201, China
| | - Jin-Long Xiao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Jue Shen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Gao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jin-Gang Zhao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Dong-Mei Han
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Bin-Xun Chen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Shuai Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Gen Liu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Ai-Guo Xin
- National Foot-and-Mouth Disease Para-Reference Laboratory (Kunming), Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Peng Xiao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Hong Gao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
219
|
Niu K, Fu Q, Mei ZL, Ge LR, Guan AQ, Liu ZQ, Zheng YG. High-Level Production of l-Methionine by Dynamic Deregulation of Metabolism with Engineered Nonauxotroph Escherichia coli. ACS Synth Biol 2023; 12:492-501. [PMID: 36701126 DOI: 10.1021/acssynbio.2c00481] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
l-Methionine is the only sulfur-containing amino acid among the essential amino acids, and it is mainly produced by the chemical method in industry so far. The fermentation production of l-methionine by genetically engineered strains is an attractive alternative. Due to the complex metabolic mechanism and multilevel regulation of the synthesis pathway in the organism, the fermentation production of l-methionine by genetically engineered strains was still not satisfied. In this study, the biosynthesis pathway of l-methionine was regulated based on the previous studies. As the competitive pathway and an essential amino acid for cell growth, the biosynthesis pathway of l-lysine was first repaired by complementation of the lysA gene in situ on the genome and then replaced the in situ promoter with the dynamically regulated promoter PfliA to construct a nonauxotroph strain. In addition, the central metabolic pathway and l-cysteine catabolism pathway were further modified to promote the cell growth and enhance the l-methionine production. Finally, the l-methionine fermentation yield in a 5 L bioreactor reached 17.74 g/L without adding exogenous amino acids. These strategies can effectively balance the contradiction between cell growth and l-methionine production and alleviate the complexity of fermentation operation and the cost with auxotroph strains, which provide a reference for the industrial production of l-methionine by microbial fermentation.
Collapse
Affiliation(s)
- Kun Niu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qiang Fu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zi-Long Mei
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Li-Rong Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - An-Qi Guan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
220
|
Wang X, Fang C, Wang Y, Shi X, Yu F, Xiong J, Chou SH, He J. Systematic Comparison and Rational Design of Theophylline Riboswitches for Effective Gene Repression. Microbiol Spectr 2023; 11:e0275222. [PMID: 36688639 PMCID: PMC9927458 DOI: 10.1128/spectrum.02752-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Riboswitches are promising regulatory tools in synthetic biology. To date, 25 theophylline riboswitches have been developed for regulation of gene expression in bacteria. However, no one has systematically evaluated their regulatory effects. To promote efficient selection and application of theophylline riboswitches, we examined 25 theophylline riboswitches in Escherichia coli MG1655 and found that they varied widely in terms of activation/repression ratios and expression levels in the absence of theophylline. Of the 20 riboswitches that activate gene expression, only one exhibited a high activation ratio (63.6-fold) and low expression level without theophylline. Furthermore, none of the five riboswitches that repress gene expression were more than 2.0-fold efficient. To obtain an effective repression system, we rationally designed a novel theophylline riboswitch to control a downstream gene or genes by premature transcription termination. This riboswitch allowed theophylline-dependent downregulation of the TurboRFP reporter in a dose- and time-dependent manner. Its performance profile exceeded those of previously described repressive theophylline riboswitches. We then introduced as the second part a RepA tag (protein degradation tag) coding sequence fused at the 5'-terminal end of the turborfp gene, which further reduced protein level, while not reducing the repressive effect of the riboswitch. By combining two tandem theophylline riboswitches with a RepA tag, we constructed a regulatory cassette that represses the expression of the gene(s) of interest at both the transcriptional and posttranslational levels. This regulatory cassette can be used to repress the expression of any gene of interest and represents a crucial step toward harnessing theophylline riboswitches and expanding the synthetic biology toolbox. IMPORTANCE A variety of gene expression regulation tools with significant regulatory effects are essential for the construction of complex gene circuits in synthetic biology. Riboswitches have received wide attention due to their unique biochemical, structural, and genetic properties. Here, we have not only systematically and precisely characterized the regulatory properties of previously developed theophylline riboswitches but also engineered a novel repressive theophylline riboswitch acting at the transcriptional level. By introducing coding sequences of a tandem riboswitch and a RepA protein degradation tag at the 5' end of the reporter gene, we successfully constructed a simple and effective regulatory cassette for gene regulation. Our work provides useful biological components for the construction of synthetic biology gene circuits.
Collapse
Affiliation(s)
- Xun Wang
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Can Fang
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Yifei Wang
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Xinyu Shi
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Fan Yu
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Jin Xiong
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
221
|
Joo Y, Sung JY, Shin SM, Park SJ, Kim KS, Park KD, Kim SB, Lee DW. A Retro-Aldol Reaction Prompted the Evolvability of a Phosphotransferase System for the Utilization of a Rare Sugar. Microbiol Spectr 2023; 11:e0366022. [PMID: 36786576 PMCID: PMC10101011 DOI: 10.1128/spectrum.03660-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
The evolution of the bacterial phosphotransferase system (PTS) linked to glycolysis is dependent on the availability of naturally occurring sugars. Although bacteria exhibit sugar specificities based on carbon catabolite repression, the acquisition and evolvability of the cellular sugar preference under conditions that are suboptimal for growth (e.g., environments rich in a rare sugar) are poorly understood. Here, we generated Escherichia coli mutants via a retro-aldol reaction to obtain progeny that can utilize the rare sugar d-tagatose. We detected a minimal set of adaptive mutations in the d-fructose-specific PTS to render E. coli capable of d-tagatose utilization. These E. coli mutant strains lost the tight regulation of both the d-fructose and N-acetyl-galactosamine PTS following deletions in the binding site of the catabolite repressor/activator protein (Cra) upstream from the fruBKA operon and in the agaR gene, encoding the N-acetylgalactosamine (GalNAc) repressor, respectively. Acquired d-tagatose catabolic pathways then underwent fine-tuned adaptation via an additional mutation in 1-phosphofructose kinase to adjust metabolic fluxes. We determined the evolutionary trajectory at the molecular level, providing insights into the mechanism by which enteric bacteria evolved a substrate preference for the rare sugar d-tagatose. Furthermore, the engineered E. coli mutant strain could serve as an in vivo high-throughput screening platform for engineering non-phosphosugar isomerases to produce rare sugars. IMPORTANCE Microorganisms generate energy through glycolysis, which might have preceded a rapid burst of evolution, including the evolution of cellular respiration in the primordial biosphere. However, little is known about the evolvability of cellular sugar preferences. Here, we generated Escherichia coli mutants via a retro-aldol reaction to obtain progeny that can utilize the rare sugar d-tagatose. Consequently, we identified mutational hot spots and determined the evolutionary trajectory at the molecular level. This provided insights into the mechanism by which enteric bacteria evolved substrate preferences for various sugars, accounting for the widespread occurrence of these taxa. Furthermore, the adaptive laboratory evolution-induced cellular chassis could serve as an in vivo high-throughput screening platform for engineering tailor-made non-phosphorylated sugar isomerases to produce low-calorigenic rare sugars showing antidiabetic, antihyperglycemic, and antitumor activities.
Collapse
Affiliation(s)
- Yunhye Joo
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jae-Yoon Sung
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sun-Mi Shin
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sun Jun Park
- Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Kyoung Su Kim
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ki Duk Park
- Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Seong-Bo Kim
- Bio-Living Engineering Major, Global Leaders College, Yonsei University, Seoul, Republic of Korea
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
222
|
Collias D, Vialetto E, Yu J, Co K, Almási ÉDH, Rüttiger AS, Achmedov T, Strowig T, Beisel CL. Systematically attenuating DNA targeting enables CRISPR-driven editing in bacteria. Nat Commun 2023; 14:680. [PMID: 36754958 PMCID: PMC9908933 DOI: 10.1038/s41467-023-36283-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
Bacterial genome editing commonly relies on chromosomal cleavage with Cas nucleases to counter-select against unedited cells. However, editing normally requires efficient recombination and high transformation efficiencies, which are unavailable in most strains. Here, we show that systematically attenuating DNA targeting activity enables RecA-mediated repair in different bacteria, allowing chromosomal cleavage to drive genome editing. Attenuation can be achieved by altering the format or expression strength of guide (g)RNAs; using nucleases with reduced cleavage activity; or engineering attenuated gRNAs (atgRNAs) with disruptive hairpins, perturbed nuclease-binding scaffolds, non-canonical PAMs, or guide mismatches. These modifications greatly increase cell counts and even improve the efficiency of different types of edits for Cas9 and Cas12a in Escherichia coli and Klebsiella oxytoca. We further apply atgRNAs to restore ampicillin sensitivity in Klebsiella pneumoniae, establishing a resistance marker for genetic studies. Attenuating DNA targeting thus offers a counterintuitive means to achieve CRISPR-driven editing across bacteria.
Collapse
Affiliation(s)
- Daphne Collias
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080, Würzburg, Germany
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 27695, Raleigh, NC, USA
| | - Elena Vialetto
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080, Würzburg, Germany
| | - Jiaqi Yu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080, Würzburg, Germany
| | - Khoa Co
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080, Würzburg, Germany
| | - Éva D H Almási
- Helmholtz Centre for Infection Research (HZI), 38124, Braunschweig, Germany
| | - Ann-Sophie Rüttiger
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080, Würzburg, Germany
| | - Tatjana Achmedov
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080, Würzburg, Germany
| | - Till Strowig
- Helmholtz Centre for Infection Research (HZI), 38124, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080, Würzburg, Germany.
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 27695, Raleigh, NC, USA.
- Medical Faculty, University of Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
223
|
Yuan X, Cao J, Wang R, Han Y, Zhu J, Lin J, Yang L, Wu M. Genetically Engineering Escherichia coli to Produce Xylitol from Corncob Hydrolysate without Lime Detoxification. Molecules 2023; 28:1550. [PMID: 36838538 PMCID: PMC9967598 DOI: 10.3390/molecules28041550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Before fermentation with hemicellulosic hydrolysate as a substrate, it is generally necessary to detoxify the toxic substances that are harmful to microorganism growth. Cyclic AMP receptor protein (CRP) is a global regulator, and mutation of its key sites may have an important impact on E. coli virulence tolerance. Using corncob hydrolysate without ion-exchange or lime detoxification as the substrate, shake flask fermentation experiments showed that CRP mutant IS5-dG (I112L, T127G, A144T) produced 18.4 g/L of xylitol within 34 h, and the OD600 was 9.7 at 24 h; these values were 41.5% and 21.3% higher than those of the starting strain, IS5-d, respectively. This mutant produced 82 g/L of xylitol from corncob hydrolysate without ion-exchange or lime detoxification during fed-batch fermentation in a 15-L bioreactor, with a productivity of 1.04 g/L/h; these values were 173% and 174% higher than the starting strain, respectively. To our knowledge, this is the highest xylitol concentration and productivity produced by microbial fermentation using completely non-detoxified hemicellulosic hydrolysate as the substrate to date. This study also showed that alkali neutralization, high temperature sterilization, and fermentation of the hydrolysate had important effects on the xylose loss rate and xylitol production.
Collapse
Affiliation(s)
- Xinsong Yuan
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiyun Cao
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, China
| | - Rui Wang
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, China
| | - Yu Han
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, China
| | - Jinmiao Zhu
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, China
| | - Jianping Lin
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Lirong Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mianbin Wu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
224
|
Cui Y, Ma X, Lee SH, He J, Yang KL, Zhou K. Production of butyl butyrate from lignocellulosic biomass through Escherichia coli-Clostridium beijerinckii G117 co-culture. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
225
|
Goojani HG, Besharati S, Chauhan P, Asseri AH, Lill H, Bald D. Cytochrome bd-I from Escherichia coli is catalytically active in the absence of the CydH subunit. FEBS Lett 2023; 597:547-556. [PMID: 36460943 DOI: 10.1002/1873-3468.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022]
Abstract
Cytochrome bd-I from Escherichia coli is a terminal oxidase in the respiratory chain that plays an important role under stress conditions. Cytochrome bd-I was thought to consist of the major subunits CydA and CydB plus the small CydX subunit. Recent high-resolution structures of cytochrome bd-I demonstrated the presence of an additional subunit, CydH/CydY (called CydH here), the function of which is unclear. In this report, we show that in the absence of CydH, cytochrome bd-I is catalytically active, can sustain bacterial growth and displays haem spectra and susceptibility for haem-binding inhibitors comparable to the wild-type enzyme. Removal of CydH did not elicit catalase activity of cytochrome bd-I in our experimental system. Taken together, in the absence of the CydH subunit cytochrome bd-I retained key enzymatic properties.
Collapse
Affiliation(s)
- Hojjat Ghasemi Goojani
- Faculty of Science, Amsterdam Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, The Netherlands
| | - Samira Besharati
- Faculty of Science, Amsterdam Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, The Netherlands
| | - Priyanka Chauhan
- Faculty of Science, Amsterdam Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, The Netherlands
| | - Amer H Asseri
- Faculty of Science, Amsterdam Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, The Netherlands.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Holger Lill
- Faculty of Science, Amsterdam Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, The Netherlands
| | - Dirk Bald
- Faculty of Science, Amsterdam Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
226
|
Zhang Y, Yun J, Zabed HM, Dou Y, Zhang G, Zhao M, Taherzadeh MJ, Ragauskas A, Qi X. High-level co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol: Metabolic engineering and process optimization. BIORESOURCE TECHNOLOGY 2023; 369:128438. [PMID: 36470488 DOI: 10.1016/j.biortech.2022.128438] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
3-Hydroxypropionic acid (3-HP) and 1,3-propanediol (1,3-PDO) are value-added chemicals with versatile applications in the chemical, pharmaceutical, and food industries. Nevertheless, sustainable production of 3-HP and 1,3-PDO is often limited by the lack of efficient strains and suitable fermentation configurations. Herein, attempts have been made to improve the co-production of both metabolites through metabolic engineering of Escherichia coli and process optimization. First, the 3-HP and 1,3-PDO co-biosynthetic pathways were recruited and optimized in E. coli, followed by coupling the pathways to the transhydrogenase-mediated cofactor regeneration systems that increased cofactor availability and product synthesis. Next, pathway rebalancing and block of by-product formation significantly improved 3-HP and 1,3-PDO net titer. Subsequently, glycerol flux toward 3-HP and 1,3-PDO synthesis was maximized by removing metabolic repression and fine-tuning the glycerol oxidation pathway. Lastly, the combined fermentation process optimization and two-stage pH-controlled fed-batch fermentation co-produced 140.50 g/L 3-HP and 1,3-PDO, with 0.85 mol/mol net yield.
Collapse
Affiliation(s)
- Yufei Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China
| | - Junhua Yun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China
| | - Hossain M Zabed
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China
| | - Yuan Dou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China
| | | | - Arthur Ragauskas
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN 37996, USA; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA; Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
227
|
Kolasinliler G, Aagre MM, Akkale C, Kaya HB. The use of CRISPR-Cas-based systems in bacterial cell factories. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
228
|
An N, Xie C, Zhou S, Wang J, Sun X, Yan Y, Shen X, Yuan Q. Establishing a growth-coupled mechanism for high-yield production of β-arbutin from glycerol in Escherichia coli. BIORESOURCE TECHNOLOGY 2023; 369:128491. [PMID: 36529444 DOI: 10.1016/j.biortech.2022.128491] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Biodiesel production has increased significantly in recent years, leading to an increase in the production of crude glycerol. In this study, a novel growth-coupled erythrose 4-phosphate (E4P) formation strategy that can be used to produce high levels of β-arbutin using engineered Escherichia coli and glycerol as the carbon source was developed. In the strategy, E4P formation was coupled with cell growth, and a growth-driving force made the E4P formation efficient. By applying this strategy, efficient microbial synthesis of β-arbutin was achieved, with 7.91 g/L β-arbutin produced in shaking flask, and 28.1 g/L produced in a fed batch fermentation with a yield of 0.20 g/g glycerol and a productivity of 0.39 g/L/h. This is the highest β-arbutin production through microbial fermentation ever reported to date. This study may have significant implications in the large-scale production of β-arbutin as well as other aromatic compounds of importance.
Collapse
Affiliation(s)
- Ning An
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chong Xie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shubin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
229
|
Ferrando J, Filluelo O, Zeigler DR, Picart P. Barriers to simultaneous multilocus integration in Bacillus subtilis tumble down: development of a straightforward screening method for the colorimetric detection of one-step multiple gene insertion using the CRISPR-Cas9 system. Microb Cell Fact 2023; 22:21. [PMID: 36721198 PMCID: PMC9890709 DOI: 10.1186/s12934-023-02032-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Despite recent advances in genetic engineering tools for effectively regulating and manipulating genes, efficient simultaneous multigene insertion methods have not been established in Bacillus subtilis. To date, multilocus integration systems in B. subtilis, which is one of the main industrial enzyme producers and a GRAS (generally regarded as safe) microbial host, rely on iterative rounds of plasmid construction for sequential insertions of genes into the B. subtilis chromosome, which is tedious and time consuming. RESULTS In this study, we present development and proof-of-concept of a novel CRISPR-Cas9-based genome-editing strategy for the colorimetric detection of one-step multiple gene insertion in B. subtilis. First, up to three copies of the crtMN operon from Staphylococcus aureus, encoding a yellow pigment, were incorporated at three ectopic sites within the B. subtilis chromosome, rendering engineered strains able to form yellow colonies. Second, a single CRISPR-Cas9-based plasmid carrying a highly specific single guide RNA (sgRNA) targeting crtMN operon and a changeable editing template was constructed to facilitate simultaneous insertion of multiple gene-copies through homology-directed repair (HDR). Upon transformation of engineered strains with engineered plasmids, strains harboring up to three gene copies integrated into the chromosome formed white colonies because of the removal of the crtMN operon, clearly distinguishable from yellow colonies harboring undesired genetic modifications. As a result, construction of a plasmid-less, marker-free, high-expression stable producer B. subtilis strain can be completed in only seven days, demonstrating the potential that the implementation of this technology may bring for biotechnology purposes. CONCLUSIONS The novel technology expands the genome-editing toolset for B. subtilis and means a substantial improvement over current methodology, offering new application possibilities that we envision should significantly boost the development of B. subtilis as a chassis in the field of synthetic biology.
Collapse
Affiliation(s)
- Jordi Ferrando
- grid.5841.80000 0004 1937 0247Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Catalonia Spain
| | - Oriana Filluelo
- grid.5841.80000 0004 1937 0247Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Catalonia Spain
| | | | - Pere Picart
- grid.5841.80000 0004 1937 0247Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Catalonia Spain
| |
Collapse
|
230
|
Wang Z, Zhao A, Wang C, Huang D, Yu J, Yu L, Wu Y, Wang X. Metabolic engineering of Escherichia coli to efficiently produce monophosphoryl lipid A. Biotechnol Appl Biochem 2023. [PMID: 36659840 DOI: 10.1002/bab.2443] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/08/2023] [Indexed: 01/21/2023]
Abstract
Monophosphoryl lipid A (MPL), mainly isolated from Salmonella minnesota R595, has been used as adjuvant in several vaccines. In this study, an Escherichia coli strain that can efficiently produce the MPL has been constructed. The gene clusters related to the biosynthesis of O-antigen, core oligosaccharide, enterobacterial common antigen, and colanic acid were sequentially removed to save the carbon source and to increase the activity of PagP in E. coli MG1655. Then, the genes pldA, mlaA, and mlaC related to the phospholipid transport system were further deleted, resulting in the strain MW012. Finally, the genes lpxE from Francisella novicida and pagP and pagL from Salmonella were overexpressed in MW012 to modify the structure of lipid A, resulting in the strain MW012/pWEPL. Lipid A species were isolated from MW012/pWEPL and analyzed by thin-layer chromatography and liquid chromatography-mass spectrometry. The results showed that mainly two MPL species were produced in E. coli MW012/pWEPL, one is hexa-acylated, and the other is penta-acylated. More importantly, the proportion of the hexa-acylated MPL, which is the most effective component of lipid A vaccine adjuvant, reached 75%. E. coli MW012/pWEPL constructed in this study provided a good alternative for the production of lipid A vaccine adjuvant MPL.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Aizhen Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chenhui Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Danyang Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jing Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Letong Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yuanming Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
231
|
Fu B, Ying J, Chen Q, Zhang Q, Lu J, Zhu Z, Yu P. Enhancing the biosynthesis of riboflavin in the recombinant Escherichia coli BL21 strain by metabolic engineering. Front Microbiol 2023; 13:1111790. [PMID: 36726568 PMCID: PMC9885008 DOI: 10.3389/fmicb.2022.1111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
In this study, to construct the riboflavin-producing strain R1, five key genes, ribA, ribB, ribC, ribD, and ribE, were cloned and ligated to generate the plasmid pET-AE, which was overexpressed in Escherichia coli BL21. The R1 strain accumulated 182.65 ± 9.04 mg/l riboflavin. Subsequently, the R2 strain was constructed by the overexpression of zwf harboring the constructed plasmid pAC-Z in the R1 strain. Thus, the level of riboflavin in the R2 strain increased to 319.01 ± 20.65 mg/l (74.66% increase). To further enhance ribB transcript levels and riboflavin production, the FMN riboswitch was deleted from E. coli BL21 with CRISPR/Cas9 to generate the R3 strain. The R4 strain was constructed by cotransforming pET-AE and pAC-Z into the R3 strain. Compared to those of E. coli BL21, the ribB transcript levels of R2 and R4 improved 2.78 and 3.05-fold, respectively. The R4 strain accumulated 437.58 ± 14.36 mg/l riboflavin, increasing by 37.17% compared to the R2 strain. These results suggest that the deletion of the FMN riboswitch can improve the transcript level of ribB and facilitate riboflavin production. A riboflavin titer of 611.22 ± 11.25 mg/l was achieved under the optimal fermentation conditions. Ultimately, 1574.60 ± 109.32 mg/l riboflavin was produced through fed-batch fermentation with 40 g/l glucose. This study contributes to the industrial production of riboflavin by the recombinant E. coli BL21.
Collapse
Affiliation(s)
- Bing Fu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China,College of Forestry Science and Technology, Lishui Vocational and Technical College, Lishui, Zhejiang, China
| | - Junhui Ying
- College of Forestry Science and Technology, Lishui Vocational and Technical College, Lishui, Zhejiang, China
| | - Qingwei Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Qili Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Jiajie Lu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Zhiwen Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China,*Correspondence: Ping Yu,
| |
Collapse
|
232
|
Romeo L, Esposito A, Bernacchi A, Colazzo D, Vassallo A, Zaccaroni M, Fani R, Del Duca S. Application of Cloning-Free Genome Engineering to Escherichia coli. Microorganisms 2023; 11:microorganisms11010215. [PMID: 36677507 PMCID: PMC9866961 DOI: 10.3390/microorganisms11010215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The propagation of foreign DNA in Escherichia coli is central to molecular biology. Recent advances have dramatically expanded the ability to engineer (bacterial) cells; however, most of these techniques remain time-consuming. The aim of the present work was to explore the possibility to use the cloning-free genome editing (CFGE) approach, proposed by Döhlemann and coworkers (2016), for E. coli genetics, and to deepen the knowledge about the homologous recombination mechanism. The E. coli auxotrophic mutant strains FB182 (hisF892) and FB181 (hisI903) were transformed with the circularized wild-type E. coli (i) hisF gene and hisF gene fragments of decreasing length, and (ii) hisIE gene, respectively. His+ clones were selected based on their ability to grow in the absence of histidine, and their hisF/hisIE gene sequences were characterized. CFGE method allowed the recombination of wild-type his genes (or fragments of them) within the mutated chromosomal copy, with a different recombination frequency based on the fragment length, and the generation of clones with a variable number of in tandem his genes copies. Data obtained pave the way to further evolutionary studies concerning the homologous recombination mechanism and the fate of in tandem duplicated genes.
Collapse
Affiliation(s)
- Lucia Romeo
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Antonia Esposito
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Alberto Bernacchi
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Daniele Colazzo
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Alberto Vassallo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Marco Zaccaroni
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Renato Fani
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
- Correspondence: (R.F.); (S.D.D.)
| | - Sara Del Duca
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
- Correspondence: (R.F.); (S.D.D.)
| |
Collapse
|
233
|
Ebihara S, Yen H, Tobe T. A novel toxin-antitoxin system swpAB alters gene expression patterns and reduces virulence expression in enterohemorrhagic Escherichia coli. Microbiol Immunol 2023; 67:171-184. [PMID: 36636756 DOI: 10.1111/1348-0421.13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023]
Abstract
Toxin-antitoxin (TA) systems are found widely among many bacteria, including enterohemorrhagic Escherichia coli (EHEC), but their functions are still poorly understood. In this study, we identified and characterized a novel TA system belonging to the relBE family, classified as a type II TA system, found in EHEC. The protein encoded by the toxin gene is homologous to RelE ribonuclease. Using various conditions for increasing the toxin activity, high-level induction of a toxin gene, and repression of an antitoxin gene in wild-type EHEC, we showed that the TA system, named swpAB (switching of gene expression profile), is involved in selective repression of a set of genes, including some virulence genes, and in the reduction of adherence capacity, rather than in suppression of bacterial growth. A detailed analysis of the profiles of RNA levels along sequences at 15 min after high expression of swpA revealed that two virulence genes, espA and tir, were direct targets of the SwpA toxin. These results suggested that the swpAB system can alter gene expression patterns and change bacterial physiological activity without affecting bacterial growth.
Collapse
Affiliation(s)
- Shinya Ebihara
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hilo Yen
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toru Tobe
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
234
|
Aggarwal N, Kitano S, Puah GRY, Kittelmann S, Hwang IY, Chang MW. Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chem Rev 2023; 123:31-72. [PMID: 36317983 PMCID: PMC9837825 DOI: 10.1021/acs.chemrev.2c00431] [Citation(s) in RCA: 87] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/12/2023]
Abstract
The human microbiome is composed of a collection of dynamic microbial communities that inhabit various anatomical locations in the body. Accordingly, the coevolution of the microbiome with the host has resulted in these communities playing a profound role in promoting human health. Consequently, perturbations in the human microbiome can cause or exacerbate several diseases. In this Review, we present our current understanding of the relationship between human health and disease development, focusing on the microbiomes found across the digestive, respiratory, urinary, and reproductive systems as well as the skin. We further discuss various strategies by which the composition and function of the human microbiome can be modulated to exert a therapeutic effect on the host. Finally, we examine technologies such as multiomics approaches and cellular reprogramming of microbes that can enable significant advancements in microbiome research and engineering.
Collapse
Affiliation(s)
- Nikhil Aggarwal
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Shohei Kitano
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Ginette Ru Ying Puah
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - Sandra Kittelmann
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - In Young Hwang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Singapore
Institute of Technology, Singapore 138683, Singapore
| | - Matthew Wook Chang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
235
|
Hu W, Tong Y, Liu J, Chen P, Yang H, Feng S. Improving acid resistance of Escherichia coli base on the CfaS-mediated membrane engineering strategy derived from extreme acidophile. Front Bioeng Biotechnol 2023; 11:1158931. [PMID: 37025359 PMCID: PMC10070827 DOI: 10.3389/fbioe.2023.1158931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Abstract
Industrial microorganisms used for the production of organic acids often face challenges such as inhibited cell growth and reduced production efficiency due to the accumulation of acidic metabolites. One promising way for improving the acid resistance of microbial cells is to reconstruct their membranes. Herein, the overexpression of cfa2 from extreme acidophile endowed E. coli with high-performance on resistance to the acid stress. The engineered strain M1-93-Accfa2, constructed by CRISPR/Cas9-mediated chromosome integration, also exhibited a significantly higher resistance to severe acid stress. The analysis of fatty acid profiles indicated that the proportion of Cy-19:0 in the cell membrane of M1-93-Accfa2 increased by 5.26 times compared with the control, while the proportion of C18:1w9c decreased by 5.81 times. Correspondingly, the permeability and fluidity of the membrane decreased significantly. HPLC analysis demonstrated that the contents of intracellular glutamic acid, arginine, methionine and aspartic acid of M1-93-Accfa2 were 2.59, 2.04, 22.07 and 2.65 times that of the control after environmental acidification, respectively. Meanwhile, transmission electron microscopy observation indicated that M1-93-Accfa2 could maintain a plumper cell morphology after acid stimulation. M1-93-Accfa2 also exhibited higher-performance on the resistance to organic acids, especially succinic acid stress. These results together demonstrated the great potential of M1-93-Accfa2 constructed here in the production of organic acids.
Collapse
Affiliation(s)
- Wenbo Hu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yanjun Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Junjie Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Panyan Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, Jiangnan University, Wuxi, China
| | - Hailin Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, Jiangnan University, Wuxi, China
- *Correspondence: Hailin Yang, ; Shoushuai Feng,
| | - Shoushuai Feng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, Jiangnan University, Wuxi, China
- *Correspondence: Hailin Yang, ; Shoushuai Feng,
| |
Collapse
|
236
|
Müller T, Schick S, Beck J, Sprenger G, Takors R. Synthetic mutualism in engineered E. coli mutant strains as functional basis for microbial production consortia. Eng Life Sci 2023; 23:e2100158. [PMID: 36619882 PMCID: PMC9815082 DOI: 10.1002/elsc.202100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/02/2022] [Accepted: 04/25/2022] [Indexed: 01/11/2023] Open
Abstract
In nature, microorganisms often reside in symbiotic co-existence providing nutrition, stability, and protection for each partner by applying "division of labor." This principle may also be used for the overproduction of targeted compounds in bioprocesses. It requires the engineering of a synthetic co-culture with distributed tasks for each partner. Thereby, the competition on precursors, redox cofactors, and energy-which occurs in a single host-is prevented. Current applications often focus on unidirectional interactions, that is, the product of partner A is used for the completion of biosynthesis by partner B. Here, we present a synthetically engineered Escherichia coli co-culture of two engineered mutant strains marked by the essential interaction of the partners which is achieved by implemented auxotrophies. The tryptophan auxotrophic strain E. coli ANT-3, only requiring small amounts of the aromatic amino acid, provides the auxotrophic anthranilate for the tryptophan producer E. coli TRP-3. The latter produces a surplus of tryptophan which is used to showcase the suitability of the co-culture to access related products in future applications. Co-culture characterization revealed that the microbial consortium is remarkably functionally stable for a broad range of inoculation ratios. The range of robust and functional interaction may even be extended by proper glucose feeding which was shown in a two-compartment bioreactor setting with filtrate exchange. This system even enables the use of the co-culture in a parallel two-level temperature setting which opens the door to access temperature sensitive products via heterologous production in E. coli in a continuous manner.
Collapse
Affiliation(s)
- Tobias Müller
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Simon Schick
- Institute of MicrobiologyUniversity of StuttgartStuttgartGermany
| | - Jonathan Beck
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Georg Sprenger
- Institute of MicrobiologyUniversity of StuttgartStuttgartGermany
| | - Ralf Takors
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| |
Collapse
|
237
|
Omics-guided bacterial engineering of Escherichia coli ER2566 for recombinant protein expression. Appl Microbiol Biotechnol 2023; 107:853-865. [PMID: 36539564 PMCID: PMC9767853 DOI: 10.1007/s00253-022-12339-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
The goal of bacterial engineering is to rewire metabolic pathways to generate high-value molecules for various applications. However, the production of recombinant proteins is constrained by the complexity of the connections between cellular physiology and recombinant protein synthesis. Here, we used a rational and highly efficient approach to improve bacterial engineering. Based on the complete genome and annotation information of the Escherichia coli ER2566 strain, we compared the transcriptomic profiles of the strain under leaky expression and low temperature-induced stress. Combining the gene ontology (GO) enrichment terms and differentially expressed genes (DEGs) with higher expression, we selected and knocked out 36 genes to determine the potential impact of these genes on protein production. Deletion of bluF, cydA, mngR, and udp led to a significant decrease in soluble recombinant protein production. Moreover, at low-temperature induction, 4 DEGs (gntK, flgH, flgK, flgL) were associated with enhanced expression of the recombinant protein. Knocking out several motility-related DEGs (ER2666-ΔflgH-ΔflgL-ΔflgK) simultaneously improved the protein yield by 1.5-fold at 24 °C induction, and the recombinant strain had the potential to be applied in the expression studies of different exogenous proteins, aiming to improve the yields of soluble form to varying degrees in comparison to the ER2566 strain. Totally, this study focused on the anabolic and stress-responsive hub genes of the adaptation of E. coli to recombinant protein overexpression on the transcriptome level and constructs a series of engineering strains increasing the soluble protein yield of recombinant proteins which lays a solid foundation for the engineering of bacterial strains for recombinant technological advances. KEY POINTS: • Comparative transcriptome analysis shows host responses with altered induction stress. • Deletion of bluF, cydA, mngR, and udp genes was identified to significantly decrease the soluble recombinant protein productions. • Synchronal knockout of flagellar genes in E. coli can enhance recombinant protein yield up to ~ 1.5-fold at 24 °C induction. • Non-model bacterial strains can be re-engineered for recombinant protein expression.
Collapse
|
238
|
Shi Y, Li R, Zheng J, Xue Y, Tao Y, Yu B. High-Yield Production of Propionate from 1,2-Propanediol by Engineered Pseudomonas putida KT2440, a Robust Strain with Highly Oxidative Capacity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16263-16272. [PMID: 36511719 DOI: 10.1021/acs.jafc.2c06405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bio-based propionate attracts increasing attention owing to its green nature and specific food additive market. To date, the time-consuming and costly fermentation process by strict anaerobes makes propionate production not ideal. In this study, we designed a new route for propionate production, in which 1,2-propanediol was first dehydrated to propionaldehyde and then to propionate by taking advantage of the robust oxidization capacity of the Pseudomonas putida KT2440 strain. The high atom economy (0.97 g/g) in this proposed pathway is more advantageous than the previous l-threonine-derived route (0.62 g/g). The molecular mechanism of the extraordinary oxidation capacity of P. putida KT2440 was first deciphered. The propionate production was realized in P. putida KT2440 by screening suitable glycerol dehydratases and optimizing the expression to eliminate the formation of 1-propanol and the accumulation of the intermediate propionaldehyde. The engineered strain produced propionate with a molar conversion rate of >99% from 1,2-propanediol. A high titer of 46.5 g/L pure propionic acid with a productivity of 1.55 g/L/h and a mass yield of 0.96 g/g was achieved in fed-batch biotransformation. Thus, this study provides another idea for the production of high-purity bio-based propionate from renewable materials with high atom economy.
Collapse
Affiliation(s)
- Ya'nan Shi
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongshan Li
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Zheng
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yubin Xue
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS-TWAS Centre of Excellence for Biotechnology, Beijing 100101, China
| |
Collapse
|
239
|
Voedts H, Kennedy SP, Sezonov G, Arthur M, Hugonnet JE. Genome-wide identification of genes required for alternative peptidoglycan cross-linking in Escherichia coli revealed unexpected impacts of β-lactams. Nat Commun 2022; 13:7962. [PMID: 36575173 PMCID: PMC9794725 DOI: 10.1038/s41467-022-35528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/06/2022] [Indexed: 12/28/2022] Open
Abstract
The D,D-transpeptidase activity of penicillin-binding proteins (PBPs) is the well-known primary target of β-lactam antibiotics that block peptidoglycan polymerization. β-lactam-induced bacterial killing involves complex downstream responses whose causes and consequences are difficult to resolve. Here, we use the functional replacement of PBPs by a β-lactam-insensitive L,D-transpeptidase to identify genes essential to mitigate the effects of PBP inactivation by β-lactams in actively dividing bacteria. The functions of the 179 conditionally essential genes identified by this approach extend far beyond L,D-transpeptidase partners for peptidoglycan polymerization to include proteins involved in stress response and in the assembly of outer membrane polymers. The unsuspected effects of β-lactams include loss of the lipoprotein-mediated covalent bond that links the outer membrane to the peptidoglycan, destabilization of the cell envelope in spite of effective peptidoglycan cross-linking, and increased permeability of the outer membrane. The latter effect indicates that the mode of action of β-lactams involves self-promoted penetration through the outer membrane.
Collapse
Affiliation(s)
- Henri Voedts
- grid.417925.cCentre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France
| | - Sean P. Kennedy
- Institut Pasteur, Université Paris Cité, Département Biologie Computationnelle, F-75015 Paris, France
| | - Guennadi Sezonov
- grid.417925.cCentre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France
| | - Michel Arthur
- grid.417925.cCentre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France
| | - Jean-Emmanuel Hugonnet
- grid.417925.cCentre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France
| |
Collapse
|
240
|
A Toolkit for Effective and Successive Genome Engineering of Escherichia coli. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation9010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The bacterium Escherichia coli has been well-justified as an effective workhorse for industrial applications. In this study, we developed a toolkit for flexible genome engineering of this microorganism, including site-specific insertion of heterologous genes and inactivation of endogenous genes, such that bacterial hosts can be effectively engineered for biomanufacturing. We first constructed a base strain by genomic implementation of the cas9 and λRed recombineering genes. Then, we constructed plasmids for expressing gRNA, DNA cargo, and the Vibrio cholerae Tn6677 transposon and type I-F CRISPR-Cas machinery. Genomic insertion of a DNA cargo up to 5.5 kb was conducted using a transposon-associated CRISPR-Cas system, whereas gene inactivation was mediated by a classic CRISPR-Cas9 system coupled with λRed recombineering. With this toolkit, we can exploit the synergistic functions of CRISPR-Cas, λRed recombineering, and Tn6677 transposon for successive genomic manipulations. As a demonstration, we used the developed toolkit to derive a plasmid-free strain for heterologous production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by genomic knock-in and knockout of several key genes with high editing efficiencies.
Collapse
|
241
|
Abstract
Antibiotic resistance is increasingly becoming a challenge to public health. The regulation of bacterial metabolism by post-translational modifications (PTMs) has been widely studied. However, the mechanism underlying the regulation of acetylation in bacterial resistance to antibiotics is still unknown. Here, we performed a quantitative analysis of the acetylated proteome of a wild-type (WT) Escherichia coli (E. coli) sensitive strain and ampicillin- (Re-Amp), kanamycin- (Re-Kan), and polymyxin B-resistant (Re-Pol) strains. Based on bioinformatics analysis combined with biochemical validations, we found a common regulatory mechanism between the different resistant strains. Our results showed that protein acetylation negatively regulates bacterial metabolism to regulate antibiotic resistance and positively regulates bacterial motility. Further analyses revealed that key enzymes in various metabolic pathways were differentially acetylated. In particular, pyruvate kinase (PykF), a glycolytic enzyme that regulates bacterial metabolism, and its acetylated form were highly expressed in the three resistant strains and were identified as reversibly acetylated by the deacetylase CobB and the acetyl-transferase PatZ (peptidyl-lysine N-acetyltransferase). Results showed that PykF also could be acetylated by nonenzymatic acetyl phosphatase (AcP) in vitro. Furthermore, the deacetylation of Lys413 in PykF increased PykF enzymatic activity by changing the conformation of its ATP binding site, resulting in an increase in energy production which, in turn, increased the sensitivity of drug-resistant strains to antibiotics. This study provides novel insights for understanding bacterial resistance and lays the foundation for future research on the regulation of acetylation in antibiotic-resistant strains. IMPORTANCE The misuse of antibiotics has resulted in the emergence of many antibiotic-resistant strains which seriously threaten human health. Protein post-translational modifications, especially acetylation, tightly control bacterial metabolism. However, the comprehensive mechanism underlying the regulation of acetylation in bacterial resistance remains unexplored. Here, acetylation was found to positively regulate bacterial motility and negatively regulate energy metabolism, which was common in all antibiotic-resistant strains. Moreover, the acetylation and deacetylation process of PykF was uncovered, and deacetylation of the Lys 413 in PykF was found to contribute to bacterial sensitivity to antibiotics. This study provides a new direction for research on the development of bacterial resistance through post-translational modifications and a theoretical basis for developing antibacterial drugs.
Collapse
|
242
|
Wang D, Zhu L, Zhen X, Yang D, Li C, Chen Y, Wang H, Qu Y, Liu X, Yin Y, Gu H, Xu L, Wan C, Wang Y, Ouyang S, Shen X. A secreted effector with a dual role as a toxin and as a transcriptional factor. Nat Commun 2022; 13:7779. [PMID: 36522324 PMCID: PMC9755527 DOI: 10.1038/s41467-022-35522-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Bacteria have evolved multiple secretion systems for delivering effector proteins into the cytosol of neighboring cells, but the roles of many of these effectors remain unknown. Here, we show that Yersinia pseudotuberculosis secretes an effector, CccR, that can act both as a toxin and as a transcriptional factor. The effector is secreted by a type VI secretion system (T6SS) and can enter nearby cells of the same species and other species (such as Escherichia coli) via cell-cell contact and in a contact-independent manner. CccR contains an N-terminal FIC domain and a C-terminal DNA-binding domain. In Y. pseudotuberculosis cells, CccR inhibits its own expression by binding through its DNA-binding domain to the cccR promoter, and affects the expression of other genes through unclear mechanisms. In E. coli cells, the FIC domain of CccR AMPylates the cell division protein FtsZ, inducing cell filamentation and growth arrest. Thus, our results indicate that CccR has a dual role, modulating gene expression in neighboring cells of the same species, and inhibiting the growth of competitors.
Collapse
Affiliation(s)
- Dandan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lingfang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiangkai Zhen
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Daoyan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Changfu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yating Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huannan Wang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Yichen Qu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaozhen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanling Yin
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar, 843300, Xinjiang, China
| | - Huawei Gu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chuanxing Wan
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar, 843300, Xinjiang, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
243
|
Gu S, Zhang J, Li L, Zhong J. Repurposing the Endogenous CRISPR-Cas9 System for High-Efficiency Genome Editing in Lacticaseibacillus paracasei. ACS Synth Biol 2022; 11:4031-4042. [PMID: 36414383 DOI: 10.1021/acssynbio.2c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lactobacilli such as Lacticaseibacillus (Lcb) paracasei are generally regarded as safe and health-promoting microbes, and have been widely applied in food and pharmaceutical industries. However, the genetic bases of their beneficial properties were mostly uncertain because of the lack of effective genetic manipulation tools. The type II CRISPR-Cas9 system is the largest family present in lactobacilli, but none of them yet have been developed for genetic modifications. Here, we establish the first endogenous CRISPR-Cas9 genome-editing system in lactobacilli. With a validated protospacer adjacent motif (PAM) and customized single guide RNA (sgRNA) expression cassette, the native CRISPR-Cas9 system was reprogrammed to achieve gene deletion and chromosomal insertion at over 90% efficiency, as well as nucleotide substitution at ≥50% efficiency. We also effectively accomplished deletions of large genomic fragments (5-10 kb) and simultaneous deletion of multiple genes at distal loci, both of which are the first cases in lactobacilli when either endogenous or exogenous CRISPR-Cas systems were employed. In addition, we designed a controllable plasmid-targeting sgRNA expression module and integrated it into the editing plasmid. The all-in-one vector realized gene deletion and plasmid curing at high efficiency (>90%). Collectively, the present study develops a convenient and precise genetic tool in Lcb. paracasei and contributes to the genetics and engineering of lactobacilli.
Collapse
Affiliation(s)
- Shujie Gu
- University of Chinese Academy of Sciences, Beijing 100039, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lili Li
- University of Chinese Academy of Sciences, Beijing 100039, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin Zhong
- University of Chinese Academy of Sciences, Beijing 100039, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
244
|
Yuan S, Shi J, Jiang J, Ma Y. Genome-scale top-down strategy to generate viable genome-reduced phages. Nucleic Acids Res 2022; 50:13183-13197. [PMID: 36511873 PMCID: PMC9825161 DOI: 10.1093/nar/gkac1168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Efforts have been made to reduce the genomes of living cells, but phage genome reduction remains challenging. It is of great interest to investigate whether genome reduction can make phages obtain new infectious properties. We developed a CRISPR/Cas9-based iterative phage genome reduction (CiPGr) approach and applied this to four distinct phages, thereby obtaining heterogeneous genome-reduced mutants. We isolated and sequenced 200 mutants with loss of up to 8-23% (3.3-35 kbp) of the original sequences. This allowed the identification of non-essential genes for phage propagation, although loss of these genes is mostly detrimental to phage fitness to various degrees. Notwithstanding this, mutants with higher infectious efficiency than their parental strains were characterized, indicating a trade-off between genome reduction and infectious fitness for phages. In conclusion, this study provides a foundation for future work to leverage the information generated by CiPGr in phage synthetic biology research.
Collapse
Affiliation(s)
- Shengjian Yuan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Shi
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianrong Jiang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yingfei Ma
- To whom correspondence should be addressed. Tel: +86 755 8639 2674;
| |
Collapse
|
245
|
Vallée M, Harding C, Hall J, Aldridge PD, TAN A. Exploring the in situ evolution of nitrofurantoin resistance in clinically derived uropathogenic Escherichia coli isolates. J Antimicrob Chemother 2022; 78:373-379. [PMID: 36480295 PMCID: PMC9890214 DOI: 10.1093/jac/dkac398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/30/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nitrofurantoin has been re-introduced as a first-choice antibiotic to treat uncomplicated acute urinary tract infections in England and Wales. Highly effective against common uropathogens such as Escherichia coli, its use is accompanied by a low incidence (<10%) of antimicrobial resistance. Resistance to nitrofurantoin is predominantly via the acquisition of loss-of-function, step-wise mutations in the nitroreductase genes nfsA and nfsB. OBJECTIVE To explore the in situ evolution of NitR in E. coli isolates from 17 patients participating in AnTIC, a 12-month open label randomized controlled trial assessing the efficacy of antibiotic prophylaxis in reducing urinary tract infections (UTIs) incidence in clean intermittent self-catheterizing patients. METHODS The investigation of NitR evolution in E. coli used general microbiology techniques and genetics to model known NitR mutations in NitSE. coli strains. RESULTS Growth rate analysis identified a 2%-10% slower doubling time for nitrofurantoin resistant strains: NitS: 20.8 ± 0.7 min compared to NitR: 23 ± 0.8 min. Statistically, these data indicated no fitness advantage of evolved strains compared to the sensitive predecessor (P-value = 0.13). Genetic manipulation of E. coli to mimic NitR evolution, supported no fitness advantage (P-value = 0.22). In contrast, data argued that a first-step mutant gained a selective advantage, at sub-MIC (4-8 mg/L) nitrofurantoin concentrations. CONCLUSION Correlation of these findings to nitrofurantoin pharmacokinetic data suggests that the low incidence of E. coli NitR, within the community, is driven by urine-based nitrofurantoin concentrations that selectively inhibit the growth of E. coli strains carrying the key first-step loss-of-function mutation.
Collapse
Affiliation(s)
| | - Chris Harding
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
- Urology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
| | - Judith Hall
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | | | - Aaron TAN
- Current address: SCELSE, Nanyang Technological University, SBS-01N-27, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
246
|
Matsumoto T, Higuma K, Yamada R, Ogino H. Mevalonate production by Electro-fermentation in Escherichia coli via Mtr-based electron transfer system. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
247
|
Surface display of (R)-carbonyl reductase on Escherichia coli as biocatalyst for recycling biotransformation of 2-hydroxyacetophenone. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
248
|
DelaFuente J, Toribio-Celestino L, Santos-Lopez A, León-Sampedro R, Alonso-Del Valle A, Costas C, Hernández-García M, Cui L, Rodríguez-Beltrán J, Bikard D, Cantón R, San Millan A. Within-patient evolution of plasmid-mediated antimicrobial resistance. Nat Ecol Evol 2022; 6:1980-1991. [PMID: 36303001 PMCID: PMC7613874 DOI: 10.1038/s41559-022-01908-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022]
Abstract
Antimicrobial resistance (AMR) in bacteria is a major threat to public health; one of the key elements in the spread and evolution of AMR in clinical pathogens is the transfer of conjugative plasmids. The drivers of AMR evolution have been studied extensively in vitro but the evolution of plasmid-mediated AMR in vivo remains poorly explored. Here, we tracked the evolution of the clinically relevant plasmid pOXA-48, which confers resistance to the last-resort antibiotics carbapenems, in a large collection of enterobacterial clones isolated from the gut of hospitalized patients. Combining genomic and experimental approaches, we first characterized plasmid diversity and the genotypic and phenotypic effects of multiple plasmid mutations on a common genetic background. Second, using cutting-edge genomic editing in wild-type multidrug-resistant enterobacteria, we dissected three cases of within-patient plasmid-mediated AMR evolution. Our results revealed compensatory evolution of plasmid-associated fitness cost and the evolution of enhanced plasmid-mediated AMR in bacteria evolving in the gut of hospitalized patients. Crucially, we observed that the evolution of pOXA-48-mediated AMR in vivo involves a pivotal trade-off between resistance levels and bacterial fitness. This study highlights the need to develop new evolution-informed approaches to tackle plasmid-mediated AMR dissemination.
Collapse
Affiliation(s)
- Javier DelaFuente
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain.
| | - Laura Toribio-Celestino
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Alfonso Santos-Lopez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo León-Sampedro
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
- Institute of Integrative Biology, Department of Environmental Systems Science, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | - Aida Alonso-Del Valle
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Coloma Costas
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Lun Cui
- Institut Pasteur, Universite de Paris Cité, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6047, Synthetic Biology, Paris, France
| | - Jerónimo Rodríguez-Beltrán
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - David Bikard
- Institut Pasteur, Universite de Paris Cité, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6047, Synthetic Biology, Paris, France
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Alvaro San Millan
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain.
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
249
|
Modulating co-translational protein folding by rational design and ribosome engineering. Nat Commun 2022; 13:4243. [PMID: 35869078 PMCID: PMC9307626 DOI: 10.1038/s41467-022-31906-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/08/2022] [Indexed: 12/23/2022] Open
Abstract
Co-translational folding is a fundamental process for the efficient biosynthesis of nascent polypeptides that emerge through the ribosome exit tunnel. To understand how this process is modulated by the shape and surface of the narrow tunnel, we have rationally engineered three exit tunnel protein loops (uL22, uL23 and uL24) of the 70S ribosome by CRISPR/Cas9 gene editing, and studied the co-translational folding of an immunoglobulin-like filamin domain (FLN5). Our thermodynamics measurements employing 19F/15N/methyl-TROSY NMR spectroscopy together with cryo-EM and molecular dynamics simulations reveal how the variations in the lengths of the loops present across species exert their distinct effects on the free energy of FLN5 folding. A concerted interplay of the uL23 and uL24 loops is sufficient to alter co-translational folding energetics, which we highlight by the opposite folding outcomes resulting from their extensions. These subtle modulations occur through a combination of the steric effects relating to the shape of the tunnel, the dynamic interactions between the ribosome surface and the unfolded nascent chain, and its altered exit pathway within the vestibule. These results illustrate the role of the exit tunnel structure in co-translational folding, and provide principles for how to remodel it to elicit a desired folding outcome. The narrow exit tunnel of the ribosome is important for cotranslational protein folding. Here, authors show that their rationally designed and engineered exit tunnel protein loops modulate the free energy of nascent chain dynamics and folding.
Collapse
|
250
|
Lou J, Cai J, Hu X, Liang Y, Sun Y, Zhu Y, Meng Q, Zhu T, Gao H, Yu Z, Yin J. The stringent starvation protein SspA modulates peptidoglycan synthesis by regulating the expression of peptidoglycan synthases. Mol Microbiol 2022; 118:716-730. [PMID: 36308522 DOI: 10.1111/mmi.14996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 01/18/2023]
Abstract
The peptidoglycan (PG) layer of bacterial cells is essential for maintaining the cell shape and survival of cells; therefore, the synthesis of PG needs to be spatiotemporally controlled. While it is well established that PG synthesis is mediated posttranslationally through interactions between PG synthases and their cognate partners, much less is known about the transcriptional regulation of genes encoding these synthases. Based on a previous finding that the Gram-negative bacterium Shewanella oneidensis lacking the prominent PG synthase exhibits impaired cell wall integrity, we performed genetic selections to isolate the suppressors. We discovered that disrupting the sspA gene encoding stringent starvation protein A (SspA) is sufficient to suppress compromised PG. SspA serves as a transcriptional repressor that regulates the expression of the two types of PG synthases, class A penicillin-binding proteins and SEDS/bPBP protein complexes. SspA is an RNA polymerase-associated protein, and its regulation involves interactions with the σ70 -RNAP complex and an antagonistic effect of H-NS, a global nucleoid-associated protein. We also present evidence that the regulation of PG synthases by SspA is conserved in Escherichia coli, adding a new dimension to the current understanding of PG synthesis and its regulation.
Collapse
Affiliation(s)
- Jie Lou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jingxiao Cai
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiao Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yanqun Liang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yijuan Sun
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yiling Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiu Meng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Tingheng Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Haichun Gao
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhiliang Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jianhua Yin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|