201
|
Complete Genome Sequence of an Enterotoxigenic Bacteroides fragilis Clinical Isolate. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00450-15. [PMID: 25953165 PMCID: PMC4424316 DOI: 10.1128/genomea.00450-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here we present the complete genome sequence of Bacteroides fragilis isolate BOB25. It is an enterotoxigenic isolate that was obtained from a stool sample of a patient with dysbiosis.
Collapse
|
202
|
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide whose incidence has increased rapidly in recent years. There is growing evidence that the complex gut microbiota community plays an important role in the development of intestinal tumorigenesis. SUMMARY This review aimed to explore the correlation between gut microbiota and CRC as well as to identify the pathogens and their metabolites that affect CRC and the potential models of gut microbiota action. It promotes our understanding of the correlation between gut microbiota and CRC. KEY MESSAGE Our knowledge of the risk factors associated with gut microbiota for CRC development, as well as of the mechanism how intestinal bacteria act on colorectal tumorigenesis, has improved, leading to a better understanding of the correlation between gut microbiota and CRC. PRACTICAL IMPLICATIONS The intestinal microbiota community has a close relationship with CRC by influencing the mechanism of the body and by regulating the physiological function of the colorectum and even the entire digestive system. Gut microbiota have been linked to CRC based upon their toxic and genotoxic metabolites production by fermentation of dietary ingredients. These metabolites could bind specific intestinal cell surface receptors and subsequently affect intracellular signal transduction. The mechanisms by which gut microbiota affect CRC development include the 'Alpha-bug' model, the 'driver-passenger' model and the 'intestinal microbiota adaptions' model. This review promotes our understanding of the correlation between gut microbiota and CRC.
Collapse
Affiliation(s)
- Ya-Na Yu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing-Yua Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Digestive Disease, Shanghai, China ; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai, China ; State Key Laboratory of Oncogene and Related Genes, Shanghai, China
| |
Collapse
|
203
|
Allali I, Delgado S, Marron PI, Astudillo A, Yeh JJ, Ghazal H, Amzazi S, Keku T, Azcarate-Peril MA. Gut microbiome compositional and functional differences between tumor and non-tumor adjacent tissues from cohorts from the US and Spain. Gut Microbes 2015; 6:161-72. [PMID: 25875428 PMCID: PMC4615176 DOI: 10.1080/19490976.2015.1039223] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world and the second leading cause of cancer deaths in the US and Spain. The molecular mechanisms involved in the etiology of CRC are not yet elucidated due in part to the complexity of the human gut microbiota. In this study, we compared the microbiome composition of 90 tumor and matching adjacent tissue (adjacent) from cohorts from the US and Spain by 16S rRNA amplicon sequencing in order to determine the impact of the geographic origin on the CRC microbiome. Data showed a significantly (P < 0.05) higher Phylogenetic Diversity (PD) for the US (PD Adjacent = 26.3 ± 5.3, PD Tumor = 23.3 ± 6.2) compared to the Spanish cohort (PD Adjacent = 18.9 ± 5.9, PD Tumor = 18.7 ± 6.6) while no significant differences in bacterial diversity were observed between tumor and adjacent tissues for individuals from the same country. Adjacent tissues from the Spanish cohort were enriched in Firmicutes (SP = 43.9% and US = 22.2%, P = 0.0001) and Actinobacteria (SP = 1.6% and US = 0.5%, P = 0.0018) compared to US adjacent tissues, while adjacent tissues from the US had significantly higher abundances of Fusobacteria (US = 8.1% and SP = 1.5%, P = 0.0023) and Sinergistetes (US = 0.3% and SP = 0.1%, P = 0.0097). Comparisons between tumor and adjacent tissues in each cohort identified the genus Eikenella significantly over represented in US tumors (T = 0.024% and A = 0%, P = 0.03), and the genera Fusobacterium (T = 10.4% and A = 1.5%, P = <0.0001), Bulleida (T = 0.36% and A = 0.09%, P = 0.02), Gemella (T = 1.46% and A = 0.19%, P = 0.03), Parvimonas (T = 3.14% and A = 0.86%, P = 0.03), Campylobacter (T = 0.15% and A = 0.008%, P = 0.047), and Streptococcus (T = 2.84% and A = 2.19%, P = 0.05) significantly over represented in Spanish tumors. Predicted metagenome functional content from 16S rRNA surveys showed that bacterial motility proteins and proteins involved in flagellar assembly were over represented in adjacent tissues of both cohorts, while pathways involved in fatty acid biosynthesis, the MAPK signaling pathway, and bacterial toxins were over represented in tumors. Our study suggests that microbiome compositional and functional dissimilarities by geographic location should be taken in consideration when approaching CRC therapeutic options.
Collapse
Affiliation(s)
- Imane Allali
- Department of Cell Biology and Physiology, and Microbiome Core Facility; University of North Carolina School of Medicine; Chapel Hill, NC, USA,Laboratory of Biochemistry & Immunology; Faculty of Sciences; University Mohammed V; Rabat, Morocco,Laboratory of Genetics and Biotechnology; Faculty of Sciences of Oujda; University Mohammed Premier; Oujda, Morocco
| | - Susana Delgado
- Department of Microbiology and Biochemistry of Dairy Products; Instituto de Productos Lácteos de Asturias (IPLA-CSIC); Villaviciosa-Asturias, Spain
| | - Pablo Isidro Marron
- Instituto Universitario de Oncología del Principado de Asturias; Hospital Universitario Central de Asturias; Universidad de Oviedo; Asturias, Spain
| | - Aurora Astudillo
- Instituto Universitario de Oncología del Principado de Asturias; Hospital Universitario Central de Asturias; Universidad de Oviedo; Asturias, Spain
| | - Jen Jen Yeh
- Lineberger Comprehensive Cancer Center; Departments of Surgery and Pharmacology; University of North Carolina School of Medicine; Chapel Hill, NC, USA
| | - Hassan Ghazal
- Laboratory of Genetics and Biotechnology; Faculty of Sciences of Oujda; University Mohammed Premier; Oujda, Morocco,Polydisciplinary Faculty of Nador; University Mohammed Premier; Nador, Morocco
| | - Saaïd Amzazi
- Laboratory of Biochemistry & Immunology; Faculty of Sciences; University Mohammed V; Rabat, Morocco
| | - Temitope Keku
- Division of Gastroenterology & Hepatology; Department of Medicine; University of North Carolina School of Medicine; Chapel Hill, NC, USA
| | - M Andrea Azcarate-Peril
- Department of Cell Biology and Physiology, and Microbiome Core Facility; University of North Carolina School of Medicine; Chapel Hill, NC, USA,Correspondence to: M Andrea Azcarate-Peril
| |
Collapse
|
204
|
Abstract
A host's microbiota may increase, diminish, or have no effect at all on cancer susceptibility. Assigning causal roles in cancer to specific microbes and microbiotas, unraveling host-microbiota interactions with environmental factors in carcinogenesis, and exploiting such knowledge for cancer diagnosis and treatment are areas of intensive interest. This Review considers how microbes and the microbiota may amplify or mitigate carcinogenesis, responsiveness to cancer therapeutics, and cancer-associated complications.
Collapse
Affiliation(s)
- Wendy S Garrett
- Department of Immunology and Infectious Diseases and Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Department of Medicine, Harvard Medical School, Boston, MA 02115, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
205
|
Abstract
Inflammation has long been suspected to play a major role in the pathogenesis of cancer. Only recently, however, have some mechanisms of its tumor promoting effects become known. Microbes, both commensal and pathogenic, are critical regulators of the host immune system and, ultimately, of inflammation. Consequently, microbes have the potential power to influence tumor progression as well, through a wide variety of routes, including chronic activation of inflammation, alteration of tumor microenvironment, induction of genotoxic responses, and metabolism. In this review, we will provide a general overview of commensal microbiota, inflammation, and cancer, as well as how microbes fit into this emerging field.
Collapse
|
206
|
Abstract
The trillions of bacteria that naturally reside in the human gut collectively constitute the complex system known the gut microbiome, a vital player for the host's homeostasis and health. However, there is mounting evidence that dysbiosis, a state of pathological imbalance in the gut microbiome is present in many disease states. In this review, we present recent insights concerning the gut microbiome's contribution to the development of colorectal adenomas and the subsequent progression to colorectal cancer (CRC). In the United States alone, CRC is the second leading cause of cancer deaths. As a result, there is a high interest in identifying risk factors for adenomas, which are intermediate precursors to CRC. Recent research on CRC and the microbiome suggest that modulation of the gut bacterial composition and structure may be useful in preventing adenomas and CRC. We highlight the known risk factors for colorectal adenomas and the potential mechanisms by which microbial dysbiosis may contribute to the etiology of CRC. We also underscore novel findings from recent studies on the gut microbiota and colorectal adenomas along with current knowledge gaps. Understanding the microbiome may provide promising new directions towards novel diagnostic tools, biomarkers, and therapeutic interventions for CRC.
Collapse
|
207
|
Wilson MM, Anderson DE, Bernstein HD. Analysis of the outer membrane proteome and secretome of Bacteroides fragilis reveals a multiplicity of secretion mechanisms. PLoS One 2015; 10:e0117732. [PMID: 25658944 PMCID: PMC4319957 DOI: 10.1371/journal.pone.0117732] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/31/2014] [Indexed: 01/28/2023] Open
Abstract
Bacteroides fragilis is a widely distributed member of the human gut microbiome and an opportunistic pathogen. Cell surface molecules produced by this organism likely play important roles in colonization, communication with other microbes, and pathogenicity, but the protein composition of the outer membrane (OM) and the mechanisms used to transport polypeptides into the extracellular space are poorly characterized. Here we used LC-MS/MS to analyze the OM proteome and secretome of B. fragilis NCTC 9343 grown under laboratory conditions. Of the 229 OM proteins that we identified, 108 are predicted to be lipoproteins, and 61 are predicted to be TonB-dependent transporters. Based on their proximity to genes encoding TonB-dependent transporters, many of the lipoprotein genes likely encode proteins involved in nutrient or small molecule uptake. Interestingly, protease accessibility and biotinylation experiments indicated that an unusually large fraction of the lipoproteins are cell-surface exposed. We also identified three proteins that are members of a novel family of autotransporters, multiple potential type I protein secretion systems, and proteins that appear to be components of a type VI secretion apparatus. The secretome consisted of lipoproteins and other proteins that might be substrates of the putative type I or type VI secretion systems. Our proteomic studies show that B. fragilis differs considerably from well-studied Gram-negative bacteria such as Escherichia coli in both the spectrum of OM proteins that it produces and the range of secretion strategies that it utilizes.
Collapse
Affiliation(s)
- Marlena M. Wilson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - D. Eric Anderson
- Advanced Mass Spectrometry Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Harris D. Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
208
|
Sarkar A, Pazhani GP, Dharanidharan R, Ghosh A, Ramamurthy T. Detection of integron-associated gene cassettes and other antimicrobial resistance genes in enterotoxigenic Bacteroides fragilis. Anaerobe 2015; 33:18-24. [PMID: 25634362 DOI: 10.1016/j.anaerobe.2015.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/23/2015] [Accepted: 01/25/2015] [Indexed: 12/31/2022]
Abstract
Twenty seven Enterotoxigenic Bacteroides fragilis (ETBF) strains isolated from children in Kolkata, India, were tested for their antimicrobial resistance, presence of integrons and resistance encoding genes. Almost all the strains (>90%) were resistant to two or more antimicrobials. About 59-92% of the strains were resistant to ampicillin, amoxicillin, streptomycin, tetracycline, ciprofloxacin and norfloxacin. Most of these antimicrobial agents have been used in the treatment of diarrhea and other infectious diseases. In addition, about half a number of strains (48-55%) were resistant to clindamycin, cefotaxime, ceftazidime, ampicillin/sulbactam and trimethoprim/sulfamethoxazole. Moxifloxacin and metronidazole resistance ranged from 30 to 40%. All strains however, were found to be susceptible to chloramphenicol and imipenem. Class 1 integrase (intI1) was detected in seven and class 2 integrase (intI2) in one of the twenty seven ETBF strains. Resistance gene cassettes carried by these integrons had different alleles of dfr or aad genes. Beside these integron-borne genes, other genes encoding different antimicrobial resistance were also detected. Resistance genes such as cep(A) and tet(Q) were detected in most of the ETBF strains. To the best of our knowledge, this work constituted the first extensive report from India on the detection of integrons and antimicrobial resistance genes in ETBF.
Collapse
Affiliation(s)
- Anirban Sarkar
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | | | - Amit Ghosh
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|
209
|
Abstract
The cause and pathogenesis of colorectal cancer are still not completely understood. The development of microbiology in recent years has increasingly provided more evidence for the importance of infectious agents in colorectal cancer. This review highlights investigations of four agents in relation to colorectal cancer: Escherichia coli, Helicobacter pylori, Bacterooides fragilis, and Streptococcus bovis. The possible mechanisms of carcinogenesis for each of these agents and epidemiologic evidence are discussed.
Collapse
|
210
|
Shiryaev SA, Remacle AG, Cieplak P, Strongin AY. Peptide Sequence Region That is Essential for the Interactions of the Enterotoxigenic Bacteroides fragilis Metalloproteinase II with E-cadherin. JOURNAL OF PROTEOLYSIS 2014; 1:3-14. [PMID: 25964952 PMCID: PMC4425422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bacteroides fragilis is a valuable anaerobic commensal and an essential component of the gut microbiome in humans. The presence of a short pathogenicity island in the genome is predominantly associated with the enterotoxigenic strains of B. fragilis. Metallopro-teinase II (MPII) and fragilysin (FRA) are the structurally related enzymes encoded by the pathogenicity island in the enterotoxigenic strains. Accordingly, there is a significant overlap between the cleavage preferences of MPII and FRA. These proteinases, however, are counter-transcribed in the bacterial genome suggesting their distinct and specialized functions in the course of infection. It is well established that FRA directly cleaves E-cadherin, a key protein of the cell-to-cell adhesion junctions in the intestinal epithelium. Counterintuitively, MPII directly binds to, rather than cleaves, E-cadherin. Structural modeling suggested that a potential E-cadherin binding site involves the C-terminal -helical region of the MPII catalytic domain. The sequence of this region is different in MPII and FRA. Here, we employed substitution mutagenesis of this C-terminal -helical region to isolate the MPII mutants with the potentially inactivated E-cadherin binding site. Overall, as a result of our modeling, mutagenesis and binding studies, we determined that the C-terminal ten residue segment is essential for the binding of MPII, but not of FRA3, to E-cadherin, and that the resulting MPII•E-cadherin complex does not impair E-cadherin-dependent cell-to-cell contacts. It is possible to envision that the putative cleavage targets of MPII should be explored not only on the host cell surface but also in B. fragilis.
Collapse
Affiliation(s)
- Sergey A. Shiryaev
- To whom correspondence should be addressed: , tel: 858-795-5271, fax: 858-795-5225
| | - Albert G. Remacle
- To whom correspondence should be addressed: , tel: 858-795-5271, fax: 858-795-5225
| | | | | |
Collapse
|
211
|
Remacle AG, Shiryaev SA, Strongin AY. Distinct interactions with cellular E-cadherin of the two virulent metalloproteinases encoded by a Bacteroides fragilis pathogenicity island. PLoS One 2014; 9:e113896. [PMID: 25411788 PMCID: PMC4239093 DOI: 10.1371/journal.pone.0113896] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/02/2014] [Indexed: 12/14/2022] Open
Abstract
Bacteroides fragilis causes the majority of Gram-negative anaerobic infections in the humans. The presence of a short, 6-kb, pathogenicity island in the genome is linked to enterotoxigenic B. fragilis (ETBF). The role of the enterotoxin in B. fragilis virulence, however, remains to be determined, as the majority of clinical isolates lack ETBF genes and healthy individuals carry enterotoxin-positive B. fragilis. The island encodes secretory metalloproteinase II (MPII) and one of three homologous enterotoxigenic fragilysin isoenzymes (FRA; also termed B. fragilis toxin or BFT). The secretory metalloproteinases expressed from the genes on the B. fragilis pathogenicity island may have pathological importance within the gut, not linked to diarrhea. MPII and FRA are counter-transcribed in the bacterial genome, implying that regardless of their structural similarity and overlapping cleavage preferences these proteases perform distinct and highly specialized functions in the course of B. fragilis infection. The earlier data by us and others have demonstrated that FRA cleaves cellular E-cadherin, an important adherens junction protein, and weakens cell-to-cell contacts. Using E-cadherin-positive and E-cadherin-deficient cancer cells, and the immunostaining, direct cell binding and pull-down approaches, we, however, demonstrated that MPII via its catalytic domain efficiently binds, rather than cleaves, E-cadherin. According to our results, E-cadherin is an adherens junction cellular receptor, rather than a proteolytic target, of the B. fragilis secretory MPII enzyme. As a result of the combined FRA and MPII proteolysis, cell-to-cell contacts and adherens junctions are likely to weaken further.
Collapse
Affiliation(s)
- Albert G. Remacle
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Sergey A. Shiryaev
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Alex Y. Strongin
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| |
Collapse
|
212
|
Abstract
Colorectal cancer (CRC) presents a considerable disease burden worldwide. The human colon is also an anatomical location with the largest number of microbes. It is natural, therefore, to anticipate a role for microbes, particularly bacteria, in colorectal carcinogenesis. The increasing accessibility of microbial meta'omics is fueling a surge in our understanding of the role that microbes and the microbiota play in CRC. In this review, we will discuss recent insights into contributions of the microbiota to CRC and explore conceptual frameworks for evaluating the role of microbes in cancer causation. We also highlight new findings on candidate CRC-potentiating species and current knowledge gaps. Finally, we explore the roles of microbial metabolism as it relates to bile acids, xenobiotics, and diet in the etiology and therapeutics of CRC.
Collapse
Affiliation(s)
- Cynthia L Sears
- Department of Medicine, Johns Hopkins University School of Medicine and the Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine and the Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Medicine and the Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA; Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
213
|
Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev MG, Ellis B, Carroll KC, Albesiano E, Wick EC, Platz EA, Pardoll DM, Sears CL. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis 2014; 60:208-15. [PMID: 25305284 DOI: 10.1093/cid/ciu787] [Citation(s) in RCA: 407] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Enterotoxigenic Bacteroides fragilis (ETBF) produces the Bacteroides fragilis toxin, which has been associated with acute diarrheal disease, inflammatory bowel disease, and colorectal cancer (CRC). ETBF induces colon carcinogenesis in experimental models. Previous human studies have demonstrated frequent asymptomatic fecal colonization with ETBF, but no study has investigated mucosal colonization that is expected to impact colon carcinogenesis. METHODS We compared the presence of the bft gene in mucosal samples from colorectal neoplasia patients (cases, n = 49) to a control group undergoing outpatient colonoscopy for CRC screening or diagnostic workup (controls, n = 49). Single bacterial colonies isolated anaerobically from mucosal colon tissue were tested for the bft gene with touch-down polymerase chain reaction. RESULTS The mucosa of cases was significantly more often bft-positive on left (85.7%) and right (91.7%) tumor and/or paired normal tissues compared with left and right control biopsies (53.1%; P = .033 and 55.5%; P = .04, respectively). Detection of bft was concordant in most paired mucosal samples from individual cases or controls (75% cases; 67% controls). There was a trend toward increased bft positivity in mucosa from late- vs early-stage CRC patients (100% vs 72.7%, respectively; P = .093). In contrast to ETBF diarrheal disease where bft-1 detection dominates, bft-2 was the most frequent toxin isotype identified in both cases and controls, whereas multiple bft isotypes were detected more frequently in cases (P ≤ .02). CONCLUSIONS The bft gene is associated with colorectal neoplasia, especially in late-stage CRC. Our results suggest that mucosal bft exposure is common and may be a risk factor for developing CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Brandon Ellis
- Department of Pathology, Johns Hopkins University School of Medicine
| | - Karen C Carroll
- Department of Pathology, Johns Hopkins University School of Medicine
| | | | | | - Elizabeth A Platz
- Department of Oncology Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Drew M Pardoll
- Department of Medicine Department of Oncology Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cynthia L Sears
- Department of Medicine Department of Oncology Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
214
|
Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 2014; 12:661-72. [PMID: 25198138 DOI: 10.1038/nrmicro3344] [Citation(s) in RCA: 1793] [Impact Index Per Article: 179.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accumulating evidence suggests that the human intestinal microbiota contributes to the aetiology of colorectal cancer (CRC), not only via the pro-carcinogenic activities of specific pathogens but also via the influence of the wider microbial community, particularly its metabolome. Recent data have shown that the short-chain fatty acids acetate, propionate and butyrate function in the suppression of inflammation and cancer, whereas other microbial metabolites, such as secondary bile acids, promote carcinogenesis. In this Review, we discuss the relationship between diet, microbial metabolism and CRC and argue that the cumulative effects of microbial metabolites should be considered in order to better predict and prevent cancer progression.
Collapse
Affiliation(s)
- Petra Louis
- Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Georgina L Hold
- Gastrointestinal Research Group, Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Harry J Flint
- Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| |
Collapse
|
215
|
Exploring the influence of the gut microbiota and probiotics on health: a symposium report. Br J Nutr 2014; 112 Suppl 1:S1-18. [PMID: 24953670 PMCID: PMC4077244 DOI: 10.1017/s0007114514001275] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present report describes the presentations delivered at the 7th International Yakult Symposium, ‘The Intestinal Microbiota and Probiotics: Exploiting Their Influence on Health’, in London on 22–23 April 2013. The following two themes associated with health risks were covered: (1) the impact of age and diet on the gut microbiota and (2) the gut microbiota's interaction with the host. The strong influence of the maternal gut microbiota on neonatal colonisation was reported, as well as rapid changes in the gut microbiome of older people who move from community living to residential care. The effects of dietary changes on gut metabolism were described and the potential influence of inter-individual microbiota differences was noted, in particular the presence/absence of keystone species involved in butyrate metabolism. Several speakers highlighted the association between certain metabolic disorders and imbalanced or less diverse microbiota. Data from metagenomic analyses and novel techniques (including an ex vivo human mucosa model) provided new insights into the microbiota's influence on coeliac, obesity-related and inflammatory diseases, as well as the potential of probiotics. Akkermansia muciniphila and Faecalibacterium prausnitzii were suggested as targets for intervention. Host–microbiota interactions were explored in the context of gut barrier function, pathogenic bacteria recognition, and the ability of the immune system to induce either tolerogenic or inflammatory responses. There was speculation that the gut microbiota should be considered a separate organ, and whether analysis of an individual's microbiota could be useful in identifying their disease risk and/or therapy; however, more research is needed into specific diseases, different population groups and microbial interventions including probiotics.
Collapse
|
216
|
Sears CL, Geis AL, Housseau F. Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. J Clin Invest 2014; 124:4166-72. [PMID: 25105360 DOI: 10.1172/jci72334] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human body comprises fewer host cells than bacterial cells, most of which are obligate anaerobes residing in the gut. The symbiont Bacteroides fragilis constitutes a relatively small proportion (up to 1%-2%) of cultured fecal bacteria, but colonizes most humans. There are 2 classes of B. fragilis distinguished by their ability to secrete a zinc-dependent metalloprotease toxin, B. fragilis toxin (BFT). Strains that do not secrete BFT are nontoxigenic B. fragilis (NTBF), and those that do are called enterotoxigenic B. fragilis (ETBF). ETBF can induce clinical pathology, including inflammatory diarrhea, although asymptomatic colonization may be common. Intestinal inflammation is mediated by BFT, as yet the only known virulence factor of ETBF. Recent experimental evidence demonstrating that ETBF-driven colitis promotes colon tumorigenesis has generated interest in the potential contribution of ETBF to human colon carcinogenesis. Critical questions about the epidemiology of chronic, subclinical human colonization with ETBF and its impact on the biology of the colon need to be addressed.
Collapse
|
217
|
Robinson KM, Dunning Hotopp JC. Mobile elements and viral integrations prompt considerations for bacterial DNA integration as a novel carcinogen. Cancer Lett 2014; 352:137-44. [PMID: 24956175 DOI: 10.1016/j.canlet.2014.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 12/11/2022]
Abstract
Insertional mutagenesis has been repeatedly demonstrated in cancer genomes and has a role in oncogenesis. Mobile genetic elements can induce cancer development by random insertion into cancer related genes or by inducing translocations. L1s are typically implicated in cancers of an epithelial cell origin, while Alu elements have been implicated in leukemia as well as epithelial cell cancers. Likewise, viral infections have a significant role in cancer development predominantly through integration into the human genome and mutating or deregulating cancer related genes. Human papilloma virus is the best-known example of viral integrations contributing to carcinogenesis. However, hepatitis B virus, Epstein-Barr virus, and Merkel cell polyomavirus also integrate into the human genome and disrupt cancer related genes. Thus far, the role of microbes in cancer has primarily been attributed to mutations induced through chronic inflammation or toxins, as is the case with Helicobacter pylori and enterotoxigenic Bacteroides fragilis. We hypothesize that like mobile elements and viral DNA, bacterial and parasitic DNA may also integrate into the human somatic genome and be oncogenic. Until recently it was believed that bacterial DNA could not integrate into the human genome, but new evidence demonstrates that bacterial insertional mutagenesis may occur in cancer cells. Although this work does not show causation between bacterial insertions and cancer, it prompts more research in this area. Promising new sequencing technologies may reduce the risk of artifactual chimeric sequences, thus diminishing some of the challenges of identifying novel insertions in the somatic human genome.
Collapse
Affiliation(s)
- Kelly M Robinson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
218
|
Raisch J, Buc E, Bonnet M, Sauvanet P, Vazeille E, de Vallée A, Déchelotte P, Darcha C, Pezet D, Bonnet R, Bringer MA, Darfeuille-Michaud A. Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation. World J Gastroenterol 2014; 20:6560-6572. [PMID: 24914378 PMCID: PMC4047342 DOI: 10.3748/wjg.v20.i21.6560] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/10/2014] [Accepted: 03/10/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To provide further insight into the characterization of mucosa-associated Escherichia coli (E. coli) isolated from the colonic mucosa of cancer patients.
METHODS: Phylogroups and the presence of cyclomodulin-encoding genes of mucosa-associated E. coli from colon cancer and diverticulosis specimens were determined by PCR. Adhesion and invasion experiments were performed with I-407 intestinal epithelial cells using gentamicin protection assay. Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) expression in T84 intestinal epithelial cells was measured by enzyme-linked immunosorbent assay and by Western Blot. Gut colonization, inflammation and pro-carcinogenic potential were assessed in a chronic infection model using CEABAC10 transgenic mice. Cell proliferation was analyzed by real-time mRNA quantification of PCNA and immunohistochemistry staining of Ki67.
RESULTS: Analysis of mucosa-associated E. coli from colon cancer and diverticulosis specimens showed that whatever the origin of the E. coli strains, 86% of cyclomodulin-positive E. coli belonged to B2 phylogroup and most harbored polyketide synthase (pks) island, which encodes colibactin, and/or cytotoxic necrotizing factor (cnf) genes. In vitro assays using I-407 intestinal epithelial cells revealed that mucosa-associated B2 E. coli strains were poorly adherent and invasive. However, mucosa-associated B2 E. coli similarly to Crohn’s disease-associated E. coli are able to induce CEACAM6 expression in T84 intestinal epithelial cells. In addition, in vivo experiments using a chronic infection model of CEACAM6 expressing mice showed that B2 E. coli strain 11G5 isolated from colon cancer is able to highly persist in the gut, and to induce colon inflammation, epithelial damages and cell proliferation.
CONCLUSION: In conclusion, these data bring new insights into the ability of E. coli isolated from patients with colon cancer to establish persistent colonization, exacerbate inflammation and trigger carcinogenesis.
Collapse
|
219
|
Abstract
Increasing knowledge about the gut microbiota composition together with a resurgence in attention to the impact of the host immune system on tumor development triggered our interest in exploring how the interplay of the microbiota and the immune system represents an emerging area of interest. Determining how the immune system may alter gut microbiota composition, or the converse, and whether these interactions increase or reduce cancer risk may be relevant to generate more effective colon cancer preventive strategies.
Collapse
Affiliation(s)
- Florencia McAllister
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Franck Housseau
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Cynthia L. Sears
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
220
|
Wick EC, Rabizadeh S, Albesiano E, Wu X, Wu S, Chan J, Rhee KJ, Ortega G, Huso DL, Pardoll D, Housseau F, Sears CL. Stat3 activation in murine colitis induced by enterotoxigenic Bacteroides fragilis. Inflamm Bowel Dis 2014; 20:821-34. [PMID: 24704822 PMCID: PMC4121853 DOI: 10.1097/mib.0000000000000019] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Enterotoxigenic Bacteroides fragilis (ETBF), a molecular subclass of the common human commensal, B. fragilis, has been associated with inflammatory bowel disease. ETBF colitis is characterized by the activation of Stat3 and a Th17 immune response in the colonic mucosa. This study was designed to investigate the time course and cellular distribution of Stat3 activation in ETBF-colonized mice. METHODS C57BL/6 wild-type, C57BL/6, or Rag-1 mice were inoculated with saline, nontoxigenic B. fragilis or ETBF. Histologic diagnosis and mucosal Stat activation (immunohistochemistry, Western blot, and/or electrophorectic mobility shift assay) were evaluated over time (6-24 h, 1-7 d, and 1-18 mo after inoculation). Mucosal permeability was evaluated at 16 hours, 1 day, and 3 days. Mucosal immune responses were evaluated at 1 week, and 12 and 18 months. RESULTS ETBF induced rapid-onset colitis that persisted for up to 1 year. Stat3 activation (pStat3) was noted in the mucosal immune cells within 16 hours, with colonic epithelial cell activation evident at 24 hours after inoculation. ETBF-induced increased mucosal permeability was first observed at 24 hours after inoculation, after which the initial immune cell pStat3 activation was noted. Immune cell pStat3 was present in the absence of epithelial pStat3 (C57BL/6). Epithelial pStat3 was present in the absence of T and B cells (Rag-1 mice). pStat3 persisted in the epithelial and immune cells for 1 year, characterized by isolated pStat3-positive cell clusters, with varying intensity distributed through the proximal and distal colon. Similarly, mucosal Th17 immune responses persisted for up to 1 year. Loss of fecal ETBF colonization was associated with the loss of mucosal pStat3 and Th17 immune responses. CONCLUSIONS ETBF rapidly induces immune cell pStat3, which is independent of epithelial pStat3. This occurs before ETBF-induced mucosal permeability, suggesting that ETBF, likely through B. fragilis toxin and its action on the colonic epithelial cell, triggers mucosal immune cell Stat3 activation. Peak mucosal Stat3 activation (immune and epithelial cells) occurs subsequently when other colonic bacteria may contribute to the ETBF-initiated immune response due to barrier dysfunction. ETBF induces long-lived, focal colonic Stat3 activation and Th17 immune responses dependent on the ongoing ETBF colonization. Further study is needed to evaluate the early mucosal signaling events, resulting in epithelial Stat3 activation and the sequelae of long-term colonic Stat3 activation.
Collapse
Affiliation(s)
- Elizabeth C. Wick
- Department of Surgery, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Shervin Rabizadeh
- Department of Pediatrics, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Emilia Albesiano
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - XinQun Wu
- Department of Medicine, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Shaoguang Wu
- Department of Medicine, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - June Chan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Ki-Jong Rhee
- Department of Medicine, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Republic of Korea
| | - Guillermo Ortega
- Department of Medicine, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - David L. Huso
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Drew Pardoll
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Franck Housseau
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Cynthia L. Sears
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| |
Collapse
|
221
|
Shiryaev SA, Aleshin AE, Muranaka N, Kukreja M, Routenberg DA, Remacle AG, Liddington RC, Cieplak P, Kozlov IA, Strongin AY. Structural and functional diversity of metalloproteinases encoded by the Bacteroides fragilis pathogenicity island. FEBS J 2014; 281:2487-502. [PMID: 24698179 DOI: 10.1111/febs.12804] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 01/04/2023]
Abstract
Bacteroides fragilis causes the majority of anaerobic infections in humans. The presence of a pathogenicity island in the genome discriminates pathogenic and commensal B. fragilis strains. The island encodes metalloproteinase II (MPII), a potential virulence protein, and one of three homologous fragilysin isozymes (FRA; also termed B. fragilis toxin or BFT). Here, we report biochemical data on the structural-functional characteristics of the B. fragilis pathogenicity island proteases by reporting the crystal structure of MPII at 2.13 Å resolution, combined with detailed characterization of the cleavage preferences of MPII and FRA3 (as a representative of the FRA isoforms), identified using a high-throughput peptide cleavage assay with 18 583 substrate peptides. We suggest that the evolution of the MPII catalytic domain can be traced to human and archaebacterial proteinases, whereas the prodomain fold is a feature specific to MPII and FRA. We conclude that the catalytic domain of both MPII and FRA3 evolved differently relative to the prodomain, and that the prodomain evolved specifically to fit the B. fragilis pathogenicity. Overall, our data provide insights into the evolution of cleavage specificity and activation mechanisms in the virulent metalloproteinases.
Collapse
|
222
|
Wedlake L, Slack N, Andreyev HJN, Whelan K. Fiber in the treatment and maintenance of inflammatory bowel disease: a systematic review of randomized controlled trials. Inflamm Bowel Dis 2014; 20:576-86. [PMID: 24445775 DOI: 10.1097/01.mib.0000437984.92565.31] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Dietary fiber may favorably influence fermentation, gastrointestinal inflammation, and disease progression in Crohn's disease, ulcerative colitis (UC), and pouchitis and offer an attractive therapeutic addition to pharmacological treatment. This systematic review appraised data from randomized controlled trials of fiber in the management of inflammatory bowel disease. METHODS The review followed Cochrane and PRISMA recommendations. Seven electronic databases were searched along with hand searching and contacting experts. Inclusion criteria were randomized controlled trials of the effects of fiber on clinical endpoints (primarily disease activity for treatment or maintenance) or physiological outcomes in patients with inflammatory bowel disease. RESULTS In total, 23 randomized controlled trials fulfilled the inclusion criteria (UC, 10; Crohn's disease, 12; and pouchitis, 1) recruiting 1296 patients. In UC, 3/10 studies reported fiber supplementation to benefit disease outcomes. In Crohn's disease, 0/12 studies and in pouchitis 1/1 study reported a benefit on disease activity. Despite this, a number of studies reported favorable intragroup effects on physiological outcomes including fecal butyrate, fecal calprotectin, inflammatory cytokines, microbiota, and gastrointestinal symptom indices. Meta-analysis was not possible. CONCLUSIONS There is limited weak evidence for the efficacy of fiber in improving disease outcomes in UC and pouchitis. The potential antiinflammatory role of fiber is intriguing and merits further investigation in adequately powered clinical trials. Excluding overt gastrointestinal obstruction, there was no evidence that fiber intake should be restricted in patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Linda Wedlake
- *Department of Nutrition and Dietetics, The Royal Marsden NHS Foundation Trust, London, United Kingdom; †Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London, United Kingdom; and ‡Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | | | | |
Collapse
|
223
|
Candela M, Turroni S, Biagi E, Carbonero F, Rampelli S, Fiorentini C, Brigidi P. Inflammation and colorectal cancer, when microbiota-host mutualism breaks. World J Gastroenterol 2014; 20:908-922. [PMID: 24574765 PMCID: PMC3921544 DOI: 10.3748/wjg.v20.i4.908] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/26/2013] [Accepted: 12/13/2013] [Indexed: 02/06/2023] Open
Abstract
Structural changes in the gut microbial community have been shown to accompany the progressive development of colorectal cancer. In this review we discuss recent hypotheses on the mechanisms involved in the bacteria-mediated carcinogenesis, as well as the triggering factors favoring the shift of the gut microbiota from a mutualistic to a pro-carcinogenic configuration. The possible role of inflammation, bacterial toxins and toxic microbiota metabolites in colorectal cancer onset is specifically discussed. On the other hand, the strategic role of inflammation as the keystone factor in driving microbiota to become carcinogenic is suggested. As a common outcome of different environmental and endogenous triggers, such as diet, aging, pathogen infection or genetic predisposition, inflammation can compromise the microbiota-host mutualism, forcing the increase of pathobionts at the expense of health-promoting groups, and allowing the microbiota to acquire an overall pro-inflammatory configuration. Consolidating inflammation in the gut, and favoring the bloom of toxigenic bacterial drivers, these changes in the gut microbial ecosystem have been suggested as pivotal in promoting carcinogenesis. In this context, it will become of primary importance to implement dietary or probiotics-based interventions aimed at preserving the microbiota-host mutualism along aging, counteracting deviations that favor a pro-carcinogenic microbiota asset.
Collapse
|
224
|
Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 2013; 155:1451-63. [PMID: 24315484 PMCID: PMC3897394 DOI: 10.1016/j.cell.2013.11.024] [Citation(s) in RCA: 2187] [Impact Index Per Article: 198.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/03/2013] [Accepted: 11/18/2013] [Indexed: 02/07/2023]
Abstract
Neurodevelopmental disorders, including autism spectrum disorder (ASD), are defined by core behavioral impairments; however, subsets of individuals display a spectrum of gastrointestinal (GI) abnormalities. We demonstrate GI barrier defects and microbiota alterations in the maternal immune activation (MIA) mouse model that is known to display features of ASD. Oral treatment of MIA offspring with the human commensal Bacteroides fragilis corrects gut permeability, alters microbial composition, and ameliorates defects in communicative, stereotypic, anxiety-like and sensorimotor behaviors. MIA offspring display an altered serum metabolomic profile, and B. fragilis modulates levels of several metabolites. Treating naive mice with a metabolite that is increased by MIA and restored by B. fragilis causes certain behavioral abnormalities, suggesting that gut bacterial effects on the host metabolome impact behavior. Taken together, these findings support a gut-microbiome-brain connection in a mouse model of ASD and identify a potential probiotic therapy for GI and particular behavioral symptoms in human neurodevelopmental disorders.
Collapse
|
225
|
Determination of Antibiotic Sensitivity of Bacteroid fragilis Isolated from Patients and Healthy Individuals in Imam Reza Center of Medical Teaching and Treatment-Tabriz. Jundishapur J Microbiol 2013. [DOI: 10.5812/jjm.7880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
226
|
Shiryaev SA, Remacle AG, Chernov AV, Golubkov VS, Motamedchaboki K, Muranaka N, Dambacher CM, Capek P, Kukreja M, Kozlov IA, Perucho M, Cieplak P, Strongin AY. Substrate cleavage profiling suggests a distinct function of Bacteroides fragilis metalloproteinases (fragilysin and metalloproteinase II) at the microbiome-inflammation-cancer interface. J Biol Chem 2013; 288:34956-67. [PMID: 24145028 DOI: 10.1074/jbc.m113.516153] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Enterotoxigenic anaerobic Bacteroides fragilis is a significant source of inflammatory diarrheal disease and a risk factor for colorectal cancer. Two distinct metalloproteinase types (the homologous 1, 2, and 3 isoforms of fragilysin (FRA1, FRA2, and FRA3, respectively) and metalloproteinase II (MPII)) are encoded by the B. fragilis pathogenicity island. FRA was demonstrated to be important to pathogenesis, whereas MPII, also a potential virulence protein, remained completely uncharacterized. Here, we, for the first time, extensively characterized MPII in comparison with FRA3, a representative of the FRA isoforms. We employed a series of multiplexed peptide cleavage assays to determine substrate specificity and proteolytic characteristics of MPII and FRA. These results enabled implementation of an efficient assay of MPII activity using a fluorescence-quenched peptide and contributed to structural evidence for the distinct substrate cleavage preferences of MPII and FRA. Our data imply that MPII specificity mimics the dibasic Arg↓Arg cleavage motif of furin-like proprotein convertases, whereas the cleavage motif of FRA (Pro-X-X-Leu-(Arg/Ala/Leu)↓) resembles that of human matrix metalloproteinases. To the best of our knowledge, MPII is the first zinc metalloproteinase with the dibasic cleavage preferences, suggesting a high level of versatility of metalloproteinase proteolysis. Based on these data, we now suggest that the combined (rather than individual) activity of MPII and FRA is required for the overall B. fragilis virulence in vivo.
Collapse
Affiliation(s)
- Sergey A Shiryaev
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037 and
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Sóki J, Eitel Z, Terhes G, Nagy E, Urbán E. Occurrence and analysis of rare cfiA–bft doubly positive Bacteroides fragilis strains. Anaerobe 2013; 23:70-3. [DOI: 10.1016/j.anaerobe.2013.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/07/2013] [Accepted: 06/13/2013] [Indexed: 10/26/2022]
|
228
|
Abstract
The human colon plays host to a diverse and metabolically complex community of microorganisms. While the colonic microbiome has been suggested to contribute to the development of colorectal cancer (CRC), a definitive link has not been made. The role in which the colon microflora could contribute to the initiation and/or progression of CRC is explored in this review. Potential mechanisms of bacterial oncogenesis are presented, along with lines of evidence derived from animal models of microbially induced CRC. Particular focus is given to the oncogenic capabilities of enterotoxigenic Bacteroides fragilis. Recent progress in defining the microbiome of CRC in the human population is evaluated, and the future challenges of linking specific etiologic agents to CRC are emphasized.
Collapse
Affiliation(s)
- Christine Dejea
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
229
|
Dennis KL, Wang Y, Blatner NR, Wang S, Saadalla A, Trudeau E, Roers A, Weaver CT, Lee JJ, Gilbert JA, Chang EB, Khazaie K. Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10-producing T cells. Cancer Res 2013; 73:5905-13. [PMID: 23955389 DOI: 10.1158/0008-5472.can-13-1511] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Interleukin (IL)-10 is elevated in cancer and is thought to contribute to immune tolerance and tumor growth. Defying these expectations, the adoptive transfer of IL-10-expressing T cells to mice with polyposis attenuates microbial-induced inflammation and suppresses polyposis. To gain better insights into how IL-10 impacts polyposis, we genetically ablated IL-10 in T cells in APC(Δ468) mice and compared the effects of treatment with broad-spectrum antibiotics. We found that T cells and regulatory T cells (Treg) were a major cellular source of IL-10 in both the healthy and polyp-bearing colon. Notably, T cell-specific ablation of IL-10 produced pathologies that were identical to mice with a systemic deficiency in IL-10, in both cases increasing the numbers and growth of colon polyps. Eosinophils were found to densely infiltrate colon polyps, which were enriched similarly for microbiota associated previously with colon cancer. In mice receiving broad-spectrum antibiotics, we observed reductions in microbiota, inflammation, and polyposis. Together, our findings establish that colon polyposis is driven by high densities of microbes that accumulate within polyps and trigger local inflammatory responses. Inflammation, local microbe densities, and polyp growth are suppressed by IL-10 derived specifically from T cells and Tregs.
Collapse
Affiliation(s)
- Kristen L Dennis
- Authors' Affiliations: Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine; Department of Medicine, Knapp Center for Biomedical Discovery; Department of Ecology and Evolution, University of Chicago, Chicago; Argonne National Laboratory, Argonne, Illinois; Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; Department of Biochemistry and Molecular Biology, Mayo Clinic Scottsdale, Scottsdale, Arkansas; and Institute for Immunology, Technical University Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Kharlampieva DD, Manuvera VA, Podgorny OV, Kovalchuk SI, Pobeguts OV, Altukhov IA, Alexeev DG, Lazarev VN, Govorun VM. Purification and characterisation of recombinant Bacteroides fragilis toxin-2. Biochimie 2013; 95:2123-31. [PMID: 23954621 DOI: 10.1016/j.biochi.2013.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/06/2013] [Indexed: 12/21/2022]
Abstract
Fragilysin (BFT) is metalloprotease that is secreted by enterotoxigenic Bacteroides fragilis. Studying the mechanism of BFT interaction with intestinal epithelial cells requires a pure protein sample. In this study, we cloned DNA-fragments coding for the catalytic domain of fragilysin-2 and profragilysin-2 into an E. coli expression vector. Purification methods for the recombinant fragilysin-2 catalytic domain and profragilysin-2 were developed. In addition, we obtained mature active fragilysin-2 from recombinant proprotein by limited tryptic digestion. We tested the biological activity of the recombinant protein samples and revealed that E-cadherin was cleaved when HT-29 cells were treated with mature fragilysin-2 but not with profragilysin-2. Azocoll, azocasein and gelatin were not proteolytically cleaved by mature fragilysin-2. Proteins released in culture medium after HT-29 cells treatment with mature active BFT-2 were identified.
Collapse
Affiliation(s)
- D D Kharlampieva
- Research Institute for Physico-Chemical Medicine of the Federal Medical and Biological Agency of Russian Federation, Malaya Pirogovskaya Str. 1a, Moscow 119435, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Zitomersky NL, Atkinson BJ, Franklin SW, Mitchell PD, Snapper SB, Comstock LE, Bousvaros A. Characterization of adherent bacteroidales from intestinal biopsies of children and young adults with inflammatory bowel disease. PLoS One 2013; 8:e63686. [PMID: 23776434 PMCID: PMC3679120 DOI: 10.1371/journal.pone.0063686] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/08/2013] [Indexed: 12/14/2022] Open
Abstract
There is extensive evidence implicating the intestinal microbiota in inflammatory bowel disease [IBD], but no microbial agent has been identified as a sole causative agent. Bacteroidales are numerically dominant intestinal organisms that associate with the mucosal surface and have properties that both positively and negatively affect the host. To determine precise numbers and species of Bacteroidales adherent to the mucosal surface in IBD patients, we performed a comprehensive culture based analysis of intestinal biopsies from pediatric Crohn's disease [CD], ulcerative colitis [UC], and control subjects. We obtained biopsies from 94 patients and used multiplex PCR or 16S rDNA sequencing of Bacteroidales isolates for species identification. Eighteen different Bacteroidales species were identified in the study group, with up to ten different species per biopsy, a number higher than demonstrated using 16S rRNA gene sequencing methods. Species diversity was decreased in IBD compared to controls and with increasingly inflamed tissue. There were significant differences in predominant Bacteroidales species between biopsies from the three groups and from inflamed and uninflamed sites. Parabacteroides distasonis significantly decreased in inflamed tissue. All 373 Bacteroidales isolates collected in this study grew with mucin as the only utilizable carbon source suggesting this is a non-pathogenic feature of this bacterial order. Bacteroides fragilis isolates with the enterotoxin gene [bft], previously associated with flares of colitis, were not found more often at inflamed colonic sites or within IBD subjects. B. fragilis isolates with the ability to synthesize the immunomodulatory polysaccharide A [PSA], previously shown to be protective in murine models of colitis, were not detected more often from healthy versus inflamed tissue.
Collapse
Affiliation(s)
- Naamah L Zitomersky
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | |
Collapse
|
232
|
García-Sánchez JE, García-Sánchez E, Martín-Del-Rey Á, García-Merino E. [Anaerobic bacteria 150 years after their discovery by Pasteur]. Enferm Infecc Microbiol Clin 2013; 33:119-28. [PMID: 23648369 DOI: 10.1016/j.eimc.2013.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 01/05/2023]
Abstract
In 2011 we celebrated the 150th anniversary of the discovery of anaerobic bacteria by Louis Pasteur. The interest of the biomedical community on such bacteria is still maintained, and is particularly focused on Clostridium difficile. In the past few years important advances in taxonomy have been made due to the genetic, technological and computing developments. Thus, a significant number of new species related to human infections have been characterised, and some already known have been reclassified. At pathogenic level some specimens of anaerobic microflora, that had not been isolated from human infections, have been now isolated in some clinical conditions. There was emergence (or re-emergence) of some species and clinical conditions. Certain anaerobic bacteria have been associated with established infectious syndromes. The virulence of certain strains has increased, and some hypotheses on their participation in certain diseases have been given. In terms of diagnosis, the routine use of MALDI-TOF has led to a shortening of time and a cost reduction in the identification, with an improvement directly related to the improvement of data bases. The application of real-time PCR has been another major progress, and the sequencing of 16srRNA gene and others is currently a reality for several laboratories. Anaerobes have increased their resistance to antimicrobial agents, and the emergence of resistance to carbapenems and metronidazole, and multi-resistance is a current reality. In this situation, linezolid could be an effective alternative for Bacteroides. Fidaxomicin is the only anti-anaerobic agent introduced in the recent years, specifically for the diarrhoea caused by C.difficile. Moreover, some mathematical models have also been proposed in relation with this species.
Collapse
Affiliation(s)
- José Elías García-Sánchez
- Departamento de Medicina Preventiva, Salud Pública y Microbiología Médica, Facultad de Medicina, Universidad de Salamanca, Salamanca, España.
| | - Enrique García-Sánchez
- Departamento de Medicina Preventiva, Salud Pública y Microbiología Médica, Facultad de Medicina, Universidad de Salamanca, Salamanca, España
| | - Ángel Martín-Del-Rey
- Departamento de Matemática Aplicada, Escuela Politécnica Superior de Ávila, Universidad de Salamanca, Ávila, España
| | - Enrique García-Merino
- Departamento de Salud, Instituto de Educación Secundaria Ramón y Cajal, Valladolid, España
| |
Collapse
|
233
|
Arshad N, Visweswariah SS. Cyclic nucleotide signaling in intestinal epithelia: getting to the gut of the matter. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:409-24. [PMID: 23610087 DOI: 10.1002/wsbm.1223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The intestine is the primary site of nutrient absorption, fluid-ion secretion, and home to trillions of symbiotic microbiota. The high turnover of the intestinal epithelia also renders it susceptible to neoplastic growth. These diverse processes are carefully regulated by an intricate signaling network. Among the myriad molecules involved in intestinal epithelial cell homeostasis are the second messengers, cyclic AMP (cAMP) and cyclic GMP (cGMP). These cyclic nucleotides are synthesized by nucleotidyl cyclases whose activities are regulated by extrinsic and intrinsic cues. Downstream effectors of cAMP and cGMP include protein kinases, cyclic nucleotide gated ion channels, and transcription factors, which modulate key processes such as ion-balance, immune response, and cell proliferation. The web of interaction involving the major signaling pathways of cAMP and cGMP in the intestinal epithelial cell, and possible cross-talk among the pathways, are highlighted in this review. Deregulation of these pathways occurs during infection by pathogens, intestinal inflammation, and cancer. Thus, an appreciation of the importance of cyclic nucleotide signaling in the intestine furthers our understanding of bowel disease, thereby aiding in the development of therapeutic approaches.
Collapse
Affiliation(s)
- Najla Arshad
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
234
|
Ramamurthy D, Pazhani GP, Sarkar A, Nandy RK, Rajendran K, Sur D, Manna B, Ramamurthy T. Case-control study on the role of enterotoxigenic Bacteroides fragilis as a cause of diarrhea among children in Kolkata, India. PLoS One 2013; 8:e60622. [PMID: 23577134 PMCID: PMC3618056 DOI: 10.1371/journal.pone.0060622] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 02/28/2013] [Indexed: 02/02/2023] Open
Abstract
A total of 874 fecal specimens (446 diarrheal cases and 428 controls) from diarrheal children admitted in the Infectious Diseases Hospital, Kolkata and age and sex matched asymptomatic subjects from an urban community were assessed for the prevalence of enterotoxigenic Bacteroides fragilis (ETBF). Isolates of B. fragilis were tested for the presence of enterotoxin gene (bft) by PCR. The detection rate of ETBF was 7.2% (63 of 874 specimens) that prevailed equally in diarrheal cases and controls (7.2% each; 32 of 446 cases and 31 of 428 controls). Male children up to one year age group was significantly (p<0.05) associated with ETBF infection as compared to children > 2 years of age in cases and controls. In 25 ETBF isolates, the bft gene was genotyped using PCR-RFLP and only two alleles were identified with prevalence rate of 40% and 60% for bft-1 and bft-3, respectively. All the ETBF isolates were susceptible for chloramphenicol and imipenem but resistant to clindamycin (48%), moxifloxacin (44%) and metronidazole (32%). Resistance of ETBF to moxifloxacin (44%) and metronidazole is an emerging trend. Pulsed-field gel electrophoresis (PFGE) revealed that majority of the ETBF isolates are genetically diverse. In the dendrogram analysis, two clusters were identified, one with ETBF resistant to 5–8 antimicrobials and the other cluster with metronidazole and moxifloxacin susceptible isolates from diarrheal cases. To our knowledge, this is the first detailed report on ETBF from India indicating its clinical importance and molecular characteristics.
Collapse
Affiliation(s)
| | | | - Anirban Sarkar
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ranjan K. Nandy
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | - Dipika Sur
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Bamkesh Manna
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|
235
|
Bacteroides fragilis enterotoxin upregulates lipocalin-2 expression in intestinal epithelial cells. J Transl Med 2013; 93:384-96. [PMID: 23381626 DOI: 10.1038/labinvest.2013.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) produces an ≈ 20 kDa B. fragilis enterotoxin (BFT), which plays an essential role in mucosal inflammation. Lipocalin (Lcn)-2, a siderophore-binding antimicrobial protein, is critical for control of bacterial infection; however, expression of Lcn-2 in BFT-exposed intestinal epithelial cells has not been elucidated. In the present study, stimulation of human intestinal epithelial cells with BFT resulted in the upregulation of Lcn-2 expression that was a relatively late response of intestinal epithelial cells compared with human β-defensin (hBD)-2 expression. The upregulation of Lcn-2 was dependent on AP-1 but not on NF-κB signaling. Lcn-2 induction via AP-1 was regulated by mitogen-activated protein kinases (MAPKs) including ERK and p38. Lcn-2 was secreted from the apical and basolateral surfaces in BFT-treated cells. These results suggest that a signaling pathway involving MAPKs and AP-1 is required for Lcn-2 induction in intestinal epithelial cells exposed to BFT, after which the secreted Lcn-2 may facilitate antimicrobial activity within ETBF-infected mucosa.
Collapse
|
236
|
Jia SJ, Wang LL, Yu XJ, Dong KX, Tian ZB, Dong QJ. Mechanisms underlying the role of intestinal microbiota in pathogenesis of colorectal cancer. Shijie Huaren Xiaohua Zazhi 2013; 21:779-784. [DOI: 10.11569/wcjd.v21.i9.779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The homeostatic equilibrium of the intestinal microbiota plays a key role in digestion, assimilation, immuno-inflammatory reactions, regulation of intestinal epithelial proliferation, and resistance to infection. Under the influence of internal and external factors, some pathogens alter in number and functions. This directly or indirectly affects the intestinal epithelium and the enteric environment, which is closely associated with the pathogenesis of colorectal cancer. This paper summarizes the characteristics of the normal intestinal microbiota, describes the "alpha-bug" hypothesis and the "driver-passenger" model, and discusses the adaptive alteration of the intestinal microbiota from a dynamic perspective. This will aid us in understanding the pathogenesis of colorectal cancer, providing a theoretical basis for the prevention and treatment of this disease.
Collapse
|
237
|
Stecher B, Maier L, Hardt WD. 'Blooming' in the gut: how dysbiosis might contribute to pathogen evolution. Nat Rev Microbiol 2013; 11:277-84. [DOI: 10.1038/nrmicro2989] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
238
|
Sóki J. Extended role for insertion sequence elements in the antibiotic resistance of Bacteroides. World J Clin Infect Dis 2013; 3:1-12. [DOI: 10.5495/wjcid.v3.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/04/2012] [Accepted: 12/17/2012] [Indexed: 02/06/2023] Open
Abstract
The Bacteroides species are important micro-organisms, both in the normal physiology of the intestines and as frequent opportunistic anaerobic pathogens, with a deeply-rooted phylogenetic origin endowing them with some interesting biological features. Their prevalence in anaerobic clinical specimens is around 60%-80%, and they display the most numerous and highest rates of antibiotic resistance among all pathogenic anaerobes. In these antibiotic resistance mechanisms there is a noteworthy role for the insertion sequence (IS) elements, which are usually regarded as representatives of ‘selfish’ genes; the IS elements of Bacteroides are usually capable of up-regulating the antibiotic resistance genes. These include the cepA (penicillin and cephalosporin), cfxA (cephamycin), cfiA (carbapenem), nim (metronidazole) and ermF (clindamycin) resistance genes. This is achieved by outward-oriented promoter sequences on the ISs. Although some representatives are well characterized, e.g., the resistance gene-IS element pairs in certain resistant strains, open questions remain in this field concerning a better understanding of the molecular biology of the antibiotic resistance mechanisms of Bacteroides, which will have clinical implications.
Collapse
|
239
|
Dutilh BE, Backus L, van Hijum SAFT, Tjalsma H. Screening metatranscriptomes for toxin genes as functional drivers of human colorectal cancer. Best Pract Res Clin Gastroenterol 2013; 27:85-99. [PMID: 23768555 DOI: 10.1016/j.bpg.2013.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/14/2013] [Indexed: 02/06/2023]
Abstract
The colonic mucosa is in constant physical interaction with a dense and complex bacterial community that comprises health-promoting and pathogenic microbes. Here, we highlight important clinical studies and experimental models that have linked the intestinal microbiota to the development of colorectal cancer (CRC). Moreover, we use recently published metatranscriptome sequencing data to test whether potentially carcinogenic toxin genes exhibit higher expression levels in human CRC tissue compared to adjacent non-malignant mucosa. Our analyses show a large variation in expression of toxin(-related) genes from different species. Surprisingly, Enterobacterial toxins were among the highest expressed, while Enterobacteria were not among the most abundant species in these samples. Although we can differentiate on- and off-tumour sites based on toxin reads, the read depth profiles are quite similar and show only limited coverage of the toxin genes. Thus, extended metagenomic studies are needed to obtain a high-resolution picture of host-pathogen interactions during human CRC.
Collapse
Affiliation(s)
- Bas E Dutilh
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
240
|
Kutikhin AG, Yuzhalin AE, Brusina EB. Organ Microbiota in Cancer Development: The Holy Grail of Biological Carcinogenesis. Infect Agent Cancer 2013. [DOI: 10.1007/978-94-007-5955-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
241
|
Garcia GD, Carvalho MAR, Diniz CG, Marques JL, Nicoli JR, Farias LM. Isolation, identification and antimicrobial susceptibility of Bacteroides fragilis group strains recovered from broiler faeces. Br Poult Sci 2012; 53:71-6. [PMID: 22404807 DOI: 10.1080/00071668.2012.662272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
1. The objective was to evaluate the occurrence of cultivable components of the Bacteroides fragilis group in faeces of broiler chickens and their antimicrobial susceptibility patterns. 2. Faecal samples of 36 × 45-d-old Cobb broilers of both sexes from 15 different flocks on one farm were diluted 10-fold and plated on to Bacteroides-bile-esculin agar for colony count and isolation. Identification was by molecular methods and antimicrobial susceptibility in the agar dilution assay. 3. A total of 236 isolates was recovered from a mean population of 3·32 × 10(7 )colony-forming units/g of faeces. B. fragilis was shown to be the predominant Bacteroides species (45·3%), followed by B. distasonis (35·6%), B. vulgatus (8·9%), B. ovatus (2·5%) and B. stercoris (1·3%). 4. Among 204 bacterial isolates tested, high resistance to ampicillin (98·5%), norfloxacin (95·1%) and tetracycline (88·2%) were observed. High (89·7%) multi-drug resistance was observed to 3-7 of the tested drugs. 5. Components of the B. fragilis group were sub-dominant in broiler faecal microbiota, with a different species pattern compared with human and high antimicrobial multi-drug resistance.
Collapse
Affiliation(s)
- G D Garcia
- Departamento de Microbiologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | |
Collapse
|
242
|
Blumberg R, Powrie F. Microbiota, disease, and back to health: a metastable journey. Sci Transl Med 2012; 4:137rv7. [PMID: 22674557 PMCID: PMC5020897 DOI: 10.1126/scitranslmed.3004184] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alterations in the composition of the commensal microbiota have been observed in many complex diseases. Understanding the basis for these changes, how they relate to disease risk or activity, and the mechanisms by which the symbiotic state of colonization resistance and host homeostasis is restored is critical for future therapies aimed at manipulating the microbiota.
Collapse
Affiliation(s)
- Richard Blumberg
- Gastroenterology Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | | |
Collapse
|
243
|
Abstract
Recent studies have highlighted the importance of the human microbiome in health and disease. However, for the most part the mechanisms by which the microbiome mediates disease, or protection from it, remain poorly understood. The keystone-pathogen hypothesis holds that certain low-abundance microbial pathogens can orchestrate inflammatory disease by remodelling a normally benign microbiota into a dysbiotic one. In this Opinion article, we critically assess the available literature that supports this hypothesis, which may provide a novel conceptual basis for the development of targeted diagnostics and treatments for complex dysbiotic diseases.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
244
|
Collins J, van Pijkeren JP, Svensson L, Claesson MJ, Sturme M, Li Y, Cooney JC, van Sinderen D, Walker AW, Parkhill J, Shannon O, O'Toole PW. Fibrinogen-binding and platelet-aggregation activities of a Lactobacillus salivarius septicaemia isolate are mediated by a novel fibrinogen-binding protein. Mol Microbiol 2012; 85:862-77. [PMID: 22724453 DOI: 10.1111/j.1365-2958.2012.08148.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The marketplace for probiotic foods is burgeoning, measured in billions of euro per annum. It is imperative, however, that all bacterial strains are fully assessed for human safety. The ability to bind fibrinogen is considered a potential pathogenicity trait that can lead to platelet aggregation, serious medical complications, and in some instances, death. Here we examined strains from species frequently used as probiotics for their ability to bind human fibrinogen. Only one strain (CCUG 47825), a Lactobacillus salivarius isolate from a case of septicaemia, was found to strongly adhere to fibrinogen. Furthermore, this strain was found to aggregate human platelets at a level comparable to the human pathogen Staphylococcus aureus. By sequencing the genome of CCUG 47825, we were able to identify candidate genes responsible for fibrinogen binding. Complementing the genetic analysis with traditional molecular microbiological techniques enabled the identification of the novel fibrinogen receptor, CCUG_2371. Although only strain CCUG 47825 bound fibrinogen under laboratory conditions, homologues of the novel fibrinogen binding gene CCUG_2371 are widespread among L. salivarius strains, maintaining their potential to bind fibrinogen if expressed. We highlight the fact that without a full genetic analysis of strains for human consumption, potential pathogenicity traits may go undetected.
Collapse
Affiliation(s)
- James Collins
- Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Discerning the role of Bacteroides fragilis in celiac disease pathogenesis. Appl Environ Microbiol 2012; 78:6507-15. [PMID: 22773639 DOI: 10.1128/aem.00563-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Celiac disease (CD) is associated with intestinal dysbiosis, which can theoretically lead to dysfunctions in host-microbe interactions and contribute to the disease. In the present study, possible differences in Bacteroides spp. and their pathogenic features between CD patients and controls were investigated. Bacteroides clones (n = 274) were isolated, identified, and screened for the presence of the virulence genes (bft and mpII) coding for metalloproteases. The proteolytic activity of selected Bacteroides fragilis strains was evaluated by zymography and, after gastrointestinal digestion of gliadin, by high-pressure liquid chromatography/electrospray ionization/tandem mass spectrometry. The effects of B. fragilis strains on Caco-2 cell culture permeability and inflammatory response to digested gliadin were determined. B. fragilis was more frequently identified in CD patients than in healthy controls, in contrast to Bacteroides ovatus. B. fragilis clones carrying virulence genes coding for metalloproteases were more abundant in CD patients than in controls. B. fragilis strains, representing the isolated clones and carrying metalloprotease genes, showed gelatinase activity and exerted the strongest adverse effects on the integrity of the Caco-2 cell monolayer. All B. fragilis strains also showed gliadin-hydrolyzing activity, and some of them generated immunogenic peptides that preserved or increased inflammatory cytokine production (tumor necrosis factor alpha) and showed increased ability to permeate through Caco-2 cell cultures. These findings suggest that increased abundance of B. fragilis strains with metalloprotease activities could play a role in CD pathogenesis, although further in vivo studies are required to support this hypothesis.
Collapse
|
246
|
A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol 2012; 10:575-82. [PMID: 22728587 DOI: 10.1038/nrmicro2819] [Citation(s) in RCA: 607] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer has long been considered a genetic disease. However, accumulating evidence supports the involvement of infectious agents in the development of cancer, especially in those organs that are continuously exposed to microorganisms, such as the large intestine. Recent next-generation sequencing studies of the intestinal microbiota now offer an unprecedented view of the aetiology of sporadic colorectal cancer and have revealed that the microbiota associated with colorectal cancer contains bacterial species that differ in their temporal associations with developing tumours. Here, we propose a bacterial driver-passenger model for microbial involvement in the development of colorectal cancer and suggest that this model be incorporated into the genetic paradigm of cancer progression.
Collapse
|
247
|
Polage CR, Solnick JV, Cohen SH. Nosocomial diarrhea: evaluation and treatment of causes other than Clostridium difficile. Clin Infect Dis 2012; 55:982-9. [PMID: 22700831 DOI: 10.1093/cid/cis551] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Diarrhea is common among hospitalized patients but the causes are distinct from those of diarrhea in the community. We review existing data about the epidemiology of nosocomial diarrhea and summarize recent progress in understanding the mechanisms of diarrhea. Clinicians should recognize that most cases of nosocomial diarrhea have a noninfectious etiology, including medications, underlying illness, and enteral feeding. Apart from Clostridium difficile, the frequency of infectious causes such as norovirus and toxigenic strains of Clostridium perfringens, Klebsiella oxytoca, Staphylococcus aureus, and Bacteroides fragilis remains largely undefined and test availability is limited. Here we provide a practical approach to the evaluation and management of nosocomial diarrhea when tests for C. difficile are negative.
Collapse
Affiliation(s)
- Christopher R Polage
- Department of Pathology and Laboratory Medicine, Division of Infectious Diseases, University of California, Davis Medical Center, Sacramento, USA.
| | | | | |
Collapse
|
248
|
Gustafsson RJ, Ohlsson B, Benoni C, Jeppsson B, Olsson C. Mucosa-associated bacteria in two middle-aged women diagnosed with collagenous colitis. World J Gastroenterol 2012; 18:1628-34. [PMID: 22529692 PMCID: PMC3325529 DOI: 10.3748/wjg.v18.i14.1628] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 02/06/2012] [Accepted: 02/16/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To characterize the colon microbiota in two women histologically diagnosed with collagenous colitis using a culture-independent method.
METHODS: Biopsies were taken from the ascending colon and the total DNA was extracted. Universal bacterial primers were used to amplify the bacterial 16S rRNA genes. The amplicons were then cloned into competent Escherichia coli cells. The clones were sequenced and identified by comparison to known sequences.
RESULTS: The clones could be divided into 44 different phylotypes. The microbiota was dominated by Firmicutes and Bacteroidetes. Seven phylotypes were found in both patients and constituted 47.5% of the total number of clones. Of these, the most dominating were clones similar to Bacteroides cellulosilyticus, Bacteroides caccae, Bacteroides thetaiotaomicron, Bacteroides uniformis and Bacteroides dorei within Bacteroidetes. Sequences similar to Faecalibacterium prausnitzii and Clostridium citroniae were also found in both patients.
CONCLUSION: A predominance of potentially pathogenic Bacteroides spp., and the presence of clones showing similarity to Clostridium clostridioforme were found but the overall colon microbiota showed similarities to a healthy one. Etiologies for collagenous colitis other than an adverse bacterial flora must also be considered.
Collapse
|
249
|
In celebration of Sydney M. Finegold, M.D.: Bacteroides fragilis in the colon: The good & the bad. Anaerobe 2012; 18:192-6. [DOI: 10.1016/j.anaerobe.2012.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/16/2012] [Accepted: 01/18/2012] [Indexed: 11/19/2022]
|
250
|
Tam CC, O'Brien SJ, Tompkins DS, Bolton FJ, Berry L, Dodds J, Choudhury D, Halstead F, Iturriza-Gomara M, Mather K, Rait G, Ridge A, Rodrigues LC, Wain J, Wood B, Gray JJ. Changes in Causes of Acute Gastroenteritis in the United Kingdom Over 15 Years: Microbiologic Findings From 2 Prospective, Population-Based Studies of Infectious Intestinal Disease. Clin Infect Dis 2012; 54:1275-86. [DOI: 10.1093/cid/cis028] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|