201
|
Neisseria meningitidis serogroup B lipooligosaccharide genotyping reveals high prevalence of L2 strains in Spain and unexpected relationship with factor H-binding protein expression. Microbes Infect 2012; 14:979-88. [PMID: 22565133 DOI: 10.1016/j.micinf.2012.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 04/06/2012] [Accepted: 04/11/2012] [Indexed: 12/14/2022]
Abstract
Neisseria meningitidis may be classified according to the lipooligosaccharide immunotype. We show that this classification can be achieved by PCR genotyping of the genes involved in the lipooligosaccharide inner-core biosynthesis, lpt3, lpt6, lgtG and lot3. Genotyping data correlated well (90-100%) with mass spectrometry data and was, therefore, applied to screen a random subset of recent N. meningitidis serogroup B isolates from Europe. Analysis of the proportion of the different lipooligosaccharide types highlighted the predominance of L3 strains. Surprisingly, high rates of L2 type strains were found in Spain (17%, versus 2.5% in Germany and 1.9% in the United Kingdom). Therefore, we also investigated further these Spanish L2 strains in an attempt to explain such prevalence despite the known sensitivity of L2 immunotype to complement. We explored the hypothesis that these strains express high amounts of factor H-binding protein (fHbp), but we found, on the contrary, that L2 strains express low or undetectable amounts of fHbp. Our findings suggest that, in addition to a genetic analysis, a multivalent approach may be necessary to estimate the effectiveness of a N. meningitidis serogroup B vaccine.
Collapse
|
202
|
Vu DM, Pajon R, Reason DC, Granoff DM. A broadly cross-reactive monoclonal antibody against an epitope on the n-terminus of meningococcal fHbp. Sci Rep 2012; 2:341. [PMID: 22461972 PMCID: PMC3314305 DOI: 10.1038/srep00341] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/05/2012] [Indexed: 11/23/2022] Open
Abstract
Meningococcal factor H binding protein (fHbp) is an important vaccine antigen for prevention of disease caused by capsular group B strains. The protein has been sub-classified into three variant groups. Most anti-fHbp antibodies are variant group-specific and recognize epitopes on the C-terminal domain. We report a murine IgG1 mAb, JAR 41, which broadly cross-reacted with fHbp sequence variants from all variant groups. The mAb bound to the surface of live meningococci with fHbp from each of the three variant groups. In combination with second non-bactericidal anti-fHbp mAbs, JAR 41 elicited complement-mediated bactericidal activity in vitro, and augmented passive protection against meningococcal bacteremia in human fH transgenic rats. The epitope was located on a conserved region of the N-terminal portion of the fHbp molecule opposite that of fH contact residues. The data underscore the importance of broadly cross-reactive, surface-exposed epitopes on the N-terminal domain in the design of protective fHbp vaccines.
Collapse
Affiliation(s)
- David M Vu
- Children's Hospital Oakland Research Institute , Oakland, CA 94609, U.S.A
| | | | | | | |
Collapse
|
203
|
Giuntini S, Beernink PT, Reason DC, Granoff DM. Monoclonal antibodies to meningococcal factor H binding protein with overlapping epitopes and discordant functional activity. PLoS One 2012; 7:e34272. [PMID: 22461909 PMCID: PMC3312907 DOI: 10.1371/journal.pone.0034272] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 02/25/2012] [Indexed: 11/20/2022] Open
Abstract
Background Meningococcal factor H binding protein (fHbp) is a promising vaccine candidate. Anti-fHbp antibodies can bind to meningococci and elicit complement-mediated bactericidal activity directly. The antibodies also can block binding of the human complement down-regulator, factor H (fH). Without bound fH, the organism would be expected to have increased susceptibility to bacteriolysis. Here we describe bactericidal activity of two anti-fHbp mAbs with overlapping epitopes in relation to their different effects on fH binding and bactericidal activity. Methods and Principal Findings Both mAbs recognized prevalent fHbp sequence variants in variant group 1. Using yeast display and site-specific mutagenesis, binding of one of the mAbs (JAR 1, IgG3) to fHbp was eliminated by a single amino acid substitution, R204A, and was decreased by K143A but not by R204H or D142A. The JAR 1 epitope overlapped that of previously described mAb (mAb502, IgG2a) whose binding to fHbp was eliminated by R204A or R204H substitutions, and was decreased by D142A but not by K143A. Although JAR 1 and mAb502 appeared to have overlapping epitopes, only JAR 1 inhibited binding of fH to fHbp and had human complement-mediated bactericidal activity. mAb502 enhanced fH binding and lacked human complement-mediated bactericidal activity. To control for confounding effects of different mouse IgG subclasses on complement activation, we created chimeric mAbs in which the mouse mAb502 or JAR 1 paratopes were paired with human IgG1 constant regions. While both chimeric mAbs showed similar binding to fHbp, only JAR 1, which inhibited fH binding, had human complement-mediated bactericidal activity. Conclusions The lack of human complement-mediated bactericidal activity by anti-fHbp mAb502 appeared to result from an inability to inhibit binding of fH. These results underscore the importance of inhibition of fH binding for anti-fHbp mAb bactericidal activity.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibody Specificity/immunology
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Proteins/metabolism
- Bacteriolysis/immunology
- Complement Factor H/genetics
- Complement Factor H/immunology
- Complement Factor H/metabolism
- Enzyme-Linked Immunosorbent Assay
- Epitope Mapping
- Epitopes/genetics
- Epitopes/immunology
- Epitopes/metabolism
- Humans
- Meningococcal Vaccines/genetics
- Meningococcal Vaccines/immunology
- Meningococcal Vaccines/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Neisseria meningitidis, Serogroup B/immunology
- Protein Binding/immunology
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
Collapse
Affiliation(s)
| | | | | | - Dan M. Granoff
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
- * E-mail:
| |
Collapse
|
204
|
de Filippis I, de Lemos APS, Hostetler JB, Wollenberg K, Sacchi CT, Harrison LH, Bash MC, Prevots DR. Molecular epidemiology of Neisseria meningitidis serogroup B in Brazil. PLoS One 2012; 7:e33016. [PMID: 22431994 PMCID: PMC3303791 DOI: 10.1371/journal.pone.0033016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/03/2012] [Indexed: 11/23/2022] Open
Abstract
Background Neisseria meningitidis serogroup B has been predominant in Brazil, but no broadly effective vaccine is available to prevent endemic meningococcal disease. To understand genetic diversity among serogroup B strains in Brazil, we selected a nationally representative sample of clinical disease isolates from 2004, and a temporally representative sample for the state of São Paulo (1988–2006) for study (n = 372). Methods We performed multi-locus sequence typing (MLST) and sequence analysis of five outer membrane protein (OMP) genes, including novel vaccine targets fHbp and nadA. Results In 2004, strain B:4:P1.15,19 clonal complex ST-32/ET-5 (cc32) predominated throughout Brazil; regional variation in MLST sequence type (ST), fetA, and porB was significant but diversity was limited for nadA and fHbp. Between 1988 and 1996, the São Paulo isolates shifted from clonal complex ST-41/44/Lineage 3 (cc41/44) to cc32. OMP variation was associated with but not predicted by cc or ST. Overall, fHbp variant 1/subfamily B was present in 80% of isolates and showed little diversity. The majority of nadA were similar to reference allele 1. Conclusions A predominant serogroup B lineage has circulated in Brazil for over a decade with significant regional and temporal diversity in ST, fetA, and porB, but not in nadA and fHbp.
Collapse
Affiliation(s)
- Ivano de Filippis
- National Quality Control Institute (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Bethesda, Maryland, United States of America
- Epidemiology Unit, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | | | | | - Kurt Wollenberg
- Office of Cyberinfrastructure and Computational Biology (OCICB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | | | - Lee H. Harrison
- Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Margaret C. Bash
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Bethesda, Maryland, United States of America
| | - D. Rebecca Prevots
- Epidemiology Unit, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
205
|
Gorringe AR, Pajón R. Bexsero: a multicomponent vaccine for prevention of meningococcal disease. Hum Vaccin Immunother 2012; 8:174-83. [PMID: 22426368 DOI: 10.4161/hv.18500] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Serogroup B meningococcal (MenB) disease remains a serious public health problem for which a cross-protective vaccine effective against a wide range of MenB isolates has not been available. Novartis Vaccines has developed a vaccine for the prevention of MenB disease that contains four antigenic components: factor H binding protein (fHbp), neisserial adhesin A (NadA), Neisseria heparin binding antigen (NHBA) and outer membrane vesicles from a New Zealand epidemic strain (which provides PorA). This vaccine has been submitted for regulatory review in Europe so it is timely to review the design of the vaccine, results to date in clinical studies and the potential strain coverage provided by the vaccine. It is also critical to discuss the key issues for the long-term success of the vaccine which include strain coverage, potential persistence of protection, potential effects on carriage of MenB strains, potential for escape mutants and cost effectiveness.
Collapse
|
206
|
Abstract
Meningococcal disease is communicable by close contact or droplet aerosols. Striking features are high case fatality rates and peak incidences of invasive disease in infants, toddlers and adolescents. Vaccine development is hampered by bacterial immune evasion strategies including molecular mimicry.As for Haemophilus influenzae and Streptococcus pneumoniae, no vaccine has therefore been developed that targets all serogroups of Neisseria meningitidis. Polysaccharide vaccines available both in protein conjugated and non-conjugated form, have been introduced against capsular serogroups A, C,W-135 and Y, but are ineffective against serogroup B meningococci, which cause a significant burden of disease in many parts of the world. Detoxified outer membrane vesicles are used since decades to elicit protection against epidemic serogroup B disease. Genome mining and biochemical approaches have provided astounding progress recently in the identification of immunogenic, yet reasonably conserved outer membrane proteins. As subcapsular proteins nevertheless are unlikely to immunize against all serogroup B variants, thorough investigation by surrogate assays and molecular epidemiology approaches are needed prior to introduction and post-licensure of protein vaccines. Research currently addresses the analysis of life vaccines, meningococcus B polysaccharide modifications and mimotopes, as well as the use of N. lactamica outer membrane vesicles.
Collapse
Affiliation(s)
- Ulrich Vogel
- University of Würzburg, Institute for Hygiene and Microbiology, Reference Laboratory for Meningococci, Germany.
| | | |
Collapse
|
207
|
Claus H, Jördens MS, Kriz P, Musilek M, Jarva H, Pawlik MC, Meri S, Vogel U. Capsule null locus meningococci: Typing of antigens used in an investigational multicomponent meningococcus serogroup B vaccine. Vaccine 2012; 30:155-60. [DOI: 10.1016/j.vaccine.2011.11.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 06/22/2011] [Accepted: 11/13/2011] [Indexed: 01/13/2023]
|
208
|
Harrison BA, Fernández H, Chandan V, Schuster MW, Rademacher LO, Toledo C, Li J, Altman E. Characterization and functional activity of murine monoclonal antibodies specific for α1,6-glucan chain of Helicobacter pylori lipopolysaccharide. Helicobacter 2011; 16:459-67. [PMID: 22059397 DOI: 10.1111/j.1523-5378.2011.00860.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND The outer core region of H. pylori lipopolysaccharide (LPS) contains α1,6-glucan previously shown to contribute to colonizing efficiency of a mouse stomach. The aim of the present study was to generate monoclonal antibodies (mAbs) specific for α1,6-glucan and characterize their binding properties and functional activity. MATERIALS AND METHODS BALB/c mice were injected intraperitoneally with 10(8) formalin-fixed H. pylori O:3 0826::Kan cells 3× over 56 days to achieve significant titer. Anti-α1,6-glucan-producing hybridomas were screened by indirect ELISA using purified H. pylori O:3 0826::Kan LPS. One clone, 1C4F9, was selected for further characterization. The specificities of mAbs were determined by indirect and inhibition ELISA using structurally defined H. pylori LPS and synthetic oligosaccharides, and whole-cell indirect ELISA (WCE) of clinical isolates. They were further characterized by indirect immunofluorescent (IF) microscopy and their functional activity in vitro determined by serum bactericidal assays against wild-type and mutant strains of H. pylori. RESULTS The generated anti-α1,6-glucan IgM, 1C4F9, has demonstrated an excellent specificity for the glucan chain containing 5 to 6 α1,6-linked glucose residues and showed surface accessibility by IF microscopy with H. pylori cells adherent to gastric adenocarcinoma cells monolayers. Of 38 isolates from Chile, 17 strains reacted with antiglucan mAbs in WCE (OD450 ≥ 0.2). Bactericidal activity was observed against selective wild-type and mutant H. pylori strains exhibiting OD450 values of ≥ 0.45 in WCE. CONCLUSIONS Anti-α1,6-glucan mAbs could have potential application in typing and surveillance of H. pylori isolates as well as offer insights into structural requirements for the development of LPS-based vaccine against H. pylori infections.
Collapse
Affiliation(s)
- Blair A Harrison
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Esposito V, Musi V, de Chiara C, Veggi D, Serruto D, Scarselli M, Kelly G, Pizza M, Pastore A. Structure of the C-terminal domain of Neisseria heparin binding antigen (NHBA), one of the main antigens of a novel vaccine against Neisseria meningitidis. J Biol Chem 2011; 286:41767-41775. [PMID: 21965688 PMCID: PMC3308885 DOI: 10.1074/jbc.m111.289314] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Neisseria heparin binding antigen (NHBA), also known as GNA2132 (genome-derived Neisseria antigen 2132), is a surface-exposed lipoprotein from Neisseria meningitidis that was originally identified by reverse vaccinology. It is one the three main antigens of a multicomponent vaccine against serogroup B meningitis (4CMenB), which has just completed phase III clinical trials in infants. In contrast to the other two main vaccine components, little is known about the origin of the immunogenicity of this antigen, and about its ability to induce a strong cross-bactericidal response in animals and humans. To characterize NHBA in terms of its structural/immunogenic properties, we have analyzed its sequence and identified a C-terminal region that is highly conserved in all strains. We demonstrate experimentally that this region is independently folded, and solved its three-dimensional structure by nuclear magnetic resonance. Notably, we need detergents to observe a single species in solution. The NHBA domain fold consists of an 8-strand β-barrel that closely resembles the C-terminal domains of N. meningitidis factor H-binding protein and transferrin-binding protein B. This common fold together with more subtle structural similarities suggest a common ancestor for these important antigens and a role of the β-barrel fold in inducing immunogenicity against N. meningitidis. Our data represent the first step toward understanding the relationship between structural, functional, and immunological properties of this important vaccine component.
Collapse
Affiliation(s)
- Veronica Esposito
- MRC National Institute for Medical Research, The Ridgeway, London NW71AA, United Kingdom
| | - Valeria Musi
- MRC National Institute for Medical Research, The Ridgeway, London NW71AA, United Kingdom
| | - Cesira de Chiara
- MRC National Institute for Medical Research, The Ridgeway, London NW71AA, United Kingdom
| | - Daniele Veggi
- Novartis Vaccines and Diagnostics, via Fiorentina 1, 53100 Siena, Italy
| | - Davide Serruto
- Novartis Vaccines and Diagnostics, via Fiorentina 1, 53100 Siena, Italy
| | - Maria Scarselli
- Novartis Vaccines and Diagnostics, via Fiorentina 1, 53100 Siena, Italy
| | - Geoff Kelly
- MRC National Institute for Medical Research, The Ridgeway, London NW71AA, United Kingdom
| | - Mariagrazia Pizza
- Novartis Vaccines and Diagnostics, via Fiorentina 1, 53100 Siena, Italy
| | - Annalisa Pastore
- MRC National Institute for Medical Research, The Ridgeway, London NW71AA, United Kingdom.
| |
Collapse
|
210
|
Pajon R, Fergus AM, Koeberling O, Caugant DA, Granoff DM. Meningococcal factor H binding proteins in epidemic strains from Africa: implications for vaccine development. PLoS Negl Trop Dis 2011; 5:e1302. [PMID: 21909444 PMCID: PMC3167780 DOI: 10.1371/journal.pntd.0001302] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 07/21/2011] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Factor H binding protein (fHbp) is an important antigen for vaccines against meningococcal serogroup B disease. The protein binds human factor H (fH), which enables the bacteria to resist serum bactericidal activity. Little is known about the vaccine-potential of fHbp for control of meningococcal epidemics in Africa, which typically are caused by non-group B strains. METHODOLOGY/PRINCIPAL FINDINGS We investigated genes encoding fHbp in 106 serogroup A, W-135 and X case isolates from 17 African countries. We determined complement-mediated bactericidal activity of antisera from mice immunized with recombinant fHbp vaccines, or a prototype native outer membrane vesicle (NOMV) vaccine from a serogroup B mutant strain with over-expressed fHbp. Eighty-six of the isolates (81%) had one of four prevalent fHbp sequence variants, ID 4/5 (serogroup A isolates), 9 (W-135), or 74 (X) in variant group 1, or ID 22/23 (W-135) in variant group 2. More than one-third of serogroup A isolates and two-thirds of W-135 isolates tested had low fHbp expression while all X isolates tested had intermediate or high expression. Antisera to the recombinant fHbp vaccines were generally bactericidal only against isolates with fHbp sequence variants that closely matched the respective vaccine ID. Low fHbp expression also contributed to resistance to anti-fHbp bactericidal activity. In contrast to the recombinant vaccines, the NOMV fHbp ID 1 vaccine elicited broad anti-fHbp bactericidal activity, and the antibodies had greater ability to inhibit binding of fH to fHbp than antibodies elicited by the control recombinant fHbp ID 1 vaccine. CONCLUSION/SIGNIFICANCE NOMV vaccines from mutants with increased fHbp expression elicit an antibody repertoire with greater bactericidal activity than recombinant fHbp vaccines. NOMV vaccines are promising for prevention of meningococcal disease in Africa and could be used to supplement coverage conferred by a serogroup A polysaccharide-protein conjugate vaccine recently introduced in some sub-Saharan countries.
Collapse
Affiliation(s)
- Rolando Pajon
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Andrew M. Fergus
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Oliver Koeberling
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Dominique A. Caugant
- Department of Bacteriology and Immunology, Norwegian Institute of Public Health, and Department of Community Medicine, University of Oslo, Oslo, Norway
| | - Dan M. Granoff
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
- * E-mail:
| |
Collapse
|
211
|
Hung MC, Salim O, Williams JN, Heckels JE, Christodoulides M. The Neisseria meningitidis macrophage infectivity potentiator protein induces cross-strain serum bactericidal activity and is a potential serogroup B vaccine candidate. Infect Immun 2011; 79:3784-91. [PMID: 21708989 PMCID: PMC3165472 DOI: 10.1128/iai.05019-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 06/17/2011] [Indexed: 01/08/2023] Open
Abstract
A gene encoding a 29-kDa protein from Neisseria meningitidis serogroup B strain MC58 with homology to the macrophage infectivity potentiator (MIP) protein of Legionella pneumophila was cloned and expressed in Escherichia coli, and the purified soluble recombinant protein (rMIP) was used for immunization studies. Analysis of the predicted amino acid sequences of MIP from 13 well-characterized meningococcal strains, isolated from carriers or patients and differing in serogroup, serotype, and subtype, showed that the protein was highly conserved (98 to 100%), with only three distinct sequence types (designated I, II, and III) found. Western blotting showed that the MIP protein was expressed at similar levels by all of these strains. Immunization of mice with type I MC58 rMIP in detergent micelles and liposomes containing monophosphoryl lipid A (MPLA) induced high levels of surface-reactive antibodies with serum bactericidal activity (SBA) titers of 1/1,024 against the homologous strain. Bactericidal antibodies were also induced with the protein in saline alone and liposomes alone (titers, 1/128) but not following adsorption to Al(OH)(3). Significantly, antisera raised against type I rMIP administered in saline or liposomes killed strains of heterologous sequence types II and III with similar SBA titers (1/128 to 1/256). Taken together, these findings suggest that rMIP can provide cross-strain protection against meningococci and should be considered a potential antigen for inclusion in new vaccines against meningococcal infection.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Antibodies, Bacterial/metabolism
- Bacterial Outer Membrane Proteins/chemistry
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/immunology
- Bacterial Outer Membrane Proteins/metabolism
- Blood Bactericidal Activity
- Blotting, Western
- Cross Reactions
- Enzyme-Linked Immunosorbent Assay
- Escherichia coli/genetics
- Macrophages
- Meningitis, Meningococcal/immunology
- Meningitis, Meningococcal/prevention & control
- Meningitis, Meningococcal/therapy
- Meningococcal Vaccines/immunology
- Mice
- Mice, Inbred BALB C
- Neisseria meningitidis, Serogroup B/genetics
- Neisseria meningitidis, Serogroup B/immunology
- Rabbits
- Recombinant Proteins/immunology
- Serum Bactericidal Antibody Assay
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Miao-Chiu Hung
- Neisseria Research Laboratory, Molecular Microbiology, Division of Infection, Inflammation and Immunity, Sir Henry Wellcome Research Laboratories, MP814, University of Southampton Medical School, Southampton SO16 6YD, United Kingdom
| | - Omar Salim
- Neisseria Research Laboratory, Molecular Microbiology, Division of Infection, Inflammation and Immunity, Sir Henry Wellcome Research Laboratories, MP814, University of Southampton Medical School, Southampton SO16 6YD, United Kingdom
| | - Jeannette N. Williams
- Neisseria Research Laboratory, Molecular Microbiology, Division of Infection, Inflammation and Immunity, Sir Henry Wellcome Research Laboratories, MP814, University of Southampton Medical School, Southampton SO16 6YD, United Kingdom
| | - John E. Heckels
- Neisseria Research Laboratory, Molecular Microbiology, Division of Infection, Inflammation and Immunity, Sir Henry Wellcome Research Laboratories, MP814, University of Southampton Medical School, Southampton SO16 6YD, United Kingdom
| | - Myron Christodoulides
- Neisseria Research Laboratory, Molecular Microbiology, Division of Infection, Inflammation and Immunity, Sir Henry Wellcome Research Laboratories, MP814, University of Southampton Medical School, Southampton SO16 6YD, United Kingdom
| |
Collapse
|
212
|
Su EL, Snape MD. A combination recombinant protein and outer membrane vesicle vaccine against serogroup B meningococcal disease. Expert Rev Vaccines 2011; 10:575-88. [PMID: 21604979 DOI: 10.1586/erv.11.32] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although meningococcal disease caused by serogroup B remains an important public health concern, a licensed vaccine providing broad protection against this pathogen is not yet available. Advances in genomics have paved the way for the discovery of new vaccine candidates for inclusion into a multicomponent serogroup B vaccine. In this article, we will review recent advances in the development of these vaccines, focussing particularly on one of the 'next generation' MenB vaccines, 4CMenB.
Collapse
Affiliation(s)
- Ee Lyn Su
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Australia
| | | |
Collapse
|
213
|
Marsh JW, Shutt KA, Pajon R, Tulenko MM, Liu S, Hollick RA, Kiehlbauch JA, Clark TA, Stephens DS, Arnold KE, Myers RA, Mayer LW, Harrison LH. Diversity of factor H-binding protein in Neisseria meningitidis carriage isolates. Vaccine 2011; 29:6049-58. [PMID: 21704667 PMCID: PMC4762365 DOI: 10.1016/j.vaccine.2011.06.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/07/2011] [Accepted: 06/09/2011] [Indexed: 11/17/2022]
Abstract
Several meningococcal vaccines under development for prevention of serogroup B disease target the factor H-binding protein (FHbp), an immunogenic lipoprotein expressed on the surface of Neisseria meningitidis. Based upon sequence and phylogenetic analyses, FHbp can be classified into 3 protein variants (1, 2 or 3) or 2 subfamilies (A or B). The potential effect of FHbp-containing vaccines on meningococcal carriage is not known. We determined the diversity of FHbp among a population of carriage isolates obtained from Georgia and Maryland high school students in 1998 and 2006-2007. Analysis of the fHbp gene sequence from 408 carriage isolates identified 30 different FHbp protein sequences. The majority of carriage isolates harbored FHbp proteins belonging to variant 2/subfamily A. Association between FHbp proteins and genetic lineage was observed among the carriage isolates. However, split decomposition analysis, together with tests of linkage disequilibrium and pairwise homoplasy suggest recombination at fHbp contribute to allelic diversity. Of note, the FHbp proteins in serogroup B vaccines under development are either absent or not well represented in this carriage population. The FHbp genetic repertoire observed in carriage isolate populations will be useful in understanding the potential impact of FHbp-containing vaccines on meningococcal carriage.
Collapse
Affiliation(s)
- Jane W Marsh
- Infectious Diseases Epidemiology Research Unit, University of Pittsburgh School of Medicine and Graduate School of Public Health, Pittsburgh, PA, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Harrison OB, Brueggemann AB, Caugant DA, van der Ende A, Frosch M, Gray S, Heuberger S, Krizova P, Olcen P, Slack M, Taha MK, Maiden MCJ. Molecular typing methods for outbreak detection and surveillance of invasive disease caused by Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae, a review. MICROBIOLOGY (READING, ENGLAND) 2011; 157:2181-2195. [PMID: 21622526 PMCID: PMC3980633 DOI: 10.1099/mic.0.050518-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Invasive disease caused by the encapsulated bacteria Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae remains an important cause of morbidity and mortality worldwide, despite the introduction of successful conjugate polysaccharide vaccines that target disease-associated strains. In addition, resistance, or more accurately reduced susceptibility, to therapeutic antibiotics is spreading in populations of these organisms. There is therefore a continuing requirement for the surveillance of vaccine and non-vaccine antigens and antibiotic susceptibilities among isolates from invasive disease, which is only partially met by conventional methods. This need can be met with molecular and especially nucleotide sequence-based typing methods, which are fully developed in the case of N. meningitidis and which could be more widely deployed in clinical laboratories for S. pneumoniae and H. influenzae.
Collapse
Affiliation(s)
- Odile B. Harrison
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | - Dominique A. Caugant
- Department of Bacteriology and Immunology, Norwegian Institute of Public Health, PO Box 4404 Nydalen, NO-0403 Oslo, Norway
| | - Arie van der Ende
- Academic Medical Center, Department of Medical Microbiology, Reference Laboratory for Bacterial Meningitis, PO Box 22660, 1100 DD Amsterdam, The Netherlands
| | - Matthias Frosch
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Josef-Schneider Strasse 2, 97080 Würzburg, Germany
| | - Stephen Gray
- Meningococcal Reference Unit, Health Protection Agency, PO Box 209, Clinical Sciences Building 2, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WZ, UK
| | - Sigrid Heuberger
- Österreichische Agentur für Gesundheit und Ernährungssicherheit GmbH, Bereich Humanmedizin, Institut für medizinische Mikrobiologie und Hygiene, Beethovenstraße 6, A-8010 Graz, Austria
| | - Paula Krizova
- National Reference Laboratory for Meningococcal Infections, National Institute of Public Health, Srobarova 48, Prague, Czech Republic
| | - Per Olcen
- Department of Laboratory Medicine, Clinical Microbiology and Immunology, Orebro University Hospital, SE-701 85 Orebro, Sweden
| | - Mary Slack
- Respiratory and Systemic Infection Laboratory, Health Protection Agency Centre for Infections, 61 Colindale Avenue, London NW9 5EQ, UK
| | | | - Martin C. J Maiden
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
215
|
Complement-mediated bactericidal activity of anti-factor H binding protein monoclonal antibodies against the meningococcus relies upon blocking factor H binding. Infect Immun 2011; 79:3751-9. [PMID: 21708990 DOI: 10.1128/iai.05182-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Binding of the complement-downregulating protein factor H (fH) to the surface of the meningococcus is important for survival of the organism in human serum. The meningococcal vaccine candidate factor H binding protein (fHbp) is an important ligand for human fH. While some fHbp-specific monoclonal antibodies (MAbs) block binding of fH to fHbp, the stoichiometry of blocking in the presence of high serum concentrations of fH and its effect on complement-mediated bactericidal activity are unknown. To investigate this question, we constructed chimeric antibodies in which the human IgG1 constant region was paired with three murine fHbp-specific binding domains designated JAR 3, JAR 5, and MAb502. By surface plasmon resonance, the association rates for binding of all three MAbs to immobilized fHbp were >50-fold higher than that for binding of fH to fHbp, and the MAb dissociation rates were >500-fold lower than that for fH. While all three MAbs elicited similar C1q-dependent C4b deposition on live bacteria (classical complement pathway), only those antibodies that inhibited binding of fH to fHbp (JAR 3 and JAR 5) had bactericidal activity with human complement. MAb502, which did not inhibit fH binding, had complement-mediated bactericidal activity only when tested with fH-depleted human complement. When an IgG1 anti-fHbp MAb binds to sparsely exposed fHbp on the bacterial surface, there appears to be insufficient complement activation for bacteriolysis unless fH binding also is inhibited. The ability of fHbp vaccines to elicit protective antibodies, therefore, is likely to be enhanced if the antibody repertoire is of high avidity and includes fH-blocking activity.
Collapse
|
216
|
From tailor-made to ready-to-wear meningococcal B vaccines: longitudinal study of a clonal meningococcal B outbreak. THE LANCET INFECTIOUS DISEASES 2011; 11:455-63. [DOI: 10.1016/s1473-3099(11)70027-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
217
|
Bai X, Findlow J, Borrow R. Recombinant protein meningococcal serogroup B vaccine combined with outer membrane vesicles. Expert Opin Biol Ther 2011; 11:969-85. [PMID: 21615224 DOI: 10.1517/14712598.2011.585965] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Meningococcal infection is a major cause of morbidity and mortality worldwide. Infection with Neisseria meningitidis is most common in young children, teenagers and people with certain medical conditions. Effective polysaccharide and glycoconjugate vaccines for serogroups A, C, W135 and Y have been developed. A similar capsular polysaccharide approach for serogroup B (MenB) has by most been judged as unsuitable, hence, no broad coverage vaccine has been licensed to date. The novel vaccine Bexsero (previously 4CMenB) has been developed and proven safe and immunogenic in clinical trials. AREAS COVERED The authors outline the constituents of Bexsero and immunogenicity and safety data from preclinical and clinical trials published in peer-reviewed literature, meeting proceedings and publicly-available clinical trial websites from 2000 to 2010. EXPERT OPINION Bexsero is well tolerated with a proven safety profile, and has demonstrated a robust immune response across different age groups against a range of diverse MenB strains. These data suggest that Bexsero has the ability to provide protection in infants, who are at the greatest risk of developing meningococcal disease.
Collapse
Affiliation(s)
- Xilian Bai
- Vaccine Evaluation Unit, Health Protection Agency North West, Manchester Medical Microbiology Partnership, Manchester Royal Infirmary, Manchester, M13 9WZ, UK.
| | | | | |
Collapse
|
218
|
Prevalence and genetic diversity of candidate vaccine antigens among invasive Neisseria meningitidis isolates in the United States. Vaccine 2011; 29:4739-44. [PMID: 21571026 DOI: 10.1016/j.vaccine.2011.04.092] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/12/2011] [Accepted: 04/25/2011] [Indexed: 11/22/2022]
Abstract
Neisseria meningitidis (Nm) serogroups B, C and Y are the major causes of meningococcal diseases in the United States. NmB accounts for ∼1/3 of the disease but no licensed vaccine is yet available. Two candidate vaccines are being developed specifically to target NmB, but may also provide protection against other serogroups. To assess the potential impact of these vaccines on NmB and other serogroups causing disease in the US, we determined the prevalence, genetic diversity and epidemiological characteristics of three candidate antigen genes in Nm isolates collected through Active Bacterial Core surveillance (ABCs), a population-based active surveillance program. fHbp was detected in all NmB, NmY and NmW135 isolates. Eleven NmC isolates contain fHbp with a single base-pair deletion creating a frame shift in the C-terminal region. Among NmB, 59% were FHbp subfamily/variant B/v1 and 41% A/v2-3. Among NmC and NmY, 39% and 3% were B/v1, respectively. nadA was detected in 39% of NmB, 61% of NmC and 4% of NmY. Among isolates tested, nhbA was present in all NmB and 96% of non-B. For the subset of strains sequenced for NadA and NhbA, pairwise identity was greater than 93% and 78%, respectively. The proportion of FHbp subfamily/variant was different between ABCs site and year, but no linear temporal trend was observed. Although assessment of the vaccine coverage also requires understanding of the antigen expression and the ability to induce bactericidal activity, our finding that all isolates contain one or more antigen genes suggests these candidate vaccines may protect against multiple Nm serogroups.
Collapse
|
219
|
Cendron L, Veggi D, Girardi E, Zanotti G. Structure of the uncomplexed Neisseria meningitidis factor H-binding protein fHbp (rLP2086). Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:531-5. [PMID: 21543855 PMCID: PMC3087634 DOI: 10.1107/s1744309111006154] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/18/2011] [Indexed: 05/30/2023]
Abstract
fHbp, a highly immunogenic outer membrane protein of Neisseria meningitidis, is responsible for binding to human factor H, a multi-domain protein which is the central regulator of the alternative complement pathway. Here, the crystal structure of mature fHbp determined at 2 Å resolution is presented and is compared with the structure of the same protein in complex with factor H domains 6 and 7 recently solved using X-ray techniques. While the overall protein fold is well conserved, modifications are observed mainly in the loop regions involved in the interaction, reflecting a specific adaptation of fHbp in complexing factor H with high affinity. Such a comparison has to date been impaired by the fact that fHbp models determined by NMR show remarkable differences over the entire structure.
Collapse
Affiliation(s)
- Laura Cendron
- Department of Biological Chemistry, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy.
| | | | | | | |
Collapse
|
220
|
Characterization of Neisseria meningitidis isolates that do not express the virulence factor and vaccine antigen factor H binding protein. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1002-14. [PMID: 21508163 DOI: 10.1128/cvi.00055-11] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neisseria meningitidis remains a leading cause of bacterial sepsis and meningitis. Complement is a key component of natural immunity against this important human pathogen, which has evolved multiple mechanisms to evade complement-mediated lysis. One approach adopted by the meningococcus is to recruit a human negative regulator of the complement system, factor H (fH), to its surface via a lipoprotein, factor H binding protein (fHbp). Additionally, fHbp is a key antigen in vaccines currently being evaluated in clinical trials. Here we characterize strains of N. meningitidis from several distinct clonal complexes which do not express fHbp; all strains were recovered from patients with disseminated meningococcal disease. We demonstrate that these strains have either a frameshift mutation in the fHbp open reading frame or have entirely lost fHbp and some flanking sequences. No fH binding was detected to other ligands among the fHbp-negative strains. The implications of these findings for meningococcal pathogenesis and prevention are discussed.
Collapse
|
221
|
Fighting bacterial infections—Future treatment options. Drug Resist Updat 2011; 14:125-39. [DOI: 10.1016/j.drup.2011.02.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 01/31/2011] [Accepted: 01/31/2011] [Indexed: 12/13/2022]
|
222
|
Ray TD, Lewis LA, Gulati S, Rice PA, Ram S. Novel blocking human IgG directed against the pentapeptide repeat motifs of Neisseria meningitidis Lip/H.8 and Laz lipoproteins. THE JOURNAL OF IMMUNOLOGY 2011; 186:4881-94. [PMID: 21402895 DOI: 10.4049/jimmunol.1003623] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ab-initiated, complement-dependent killing contributes to host defenses against invasive meningococcal disease. Sera from nonimmunized individuals vary widely in their bactericidal activity against group B meningococci. We show that IgG isolated from select individuals can block killing of group B meningococci by human sera that are otherwise bactericidal. This IgG also reduced the bactericidal efficacy of Abs directed against the group B meningococcal protein vaccine candidates factor H-binding protein currently undergoing clinical trials and Neisserial surface protein A. Immunoblots revealed that the blocking IgG was directed against a meningococcal Ag called H.8. Killing of meningococci in reactions containing bactericidal mAbs and human blocking Abs was restored when binding of blocking Ab to meningococci was inhibited using either synthetic peptides corresponding to H.8 or a nonblocking mAb against H.8. Furthermore, genetic deletion of H.8 from target organisms abrogated blocking. The Fc region of the blocking IgG was required for blocking because F(ab')(2) fragments were ineffective. Blocking required IgG glycosylation because deglycosylation with peptide:N-glycanase eliminated blocking. C4b deposition mediated by an anti-factor H-binding protein mAb was reduced by intact blocking IgG, but not by peptide:N-glycanase-treated blocking IgG, suggesting that blocking resulted from inhibition of classical pathway of complement. In conclusion, we have identified H.8 as a meningococcal target for novel blocking Abs in human serum. Such blocking Abs may reduce the efficacy of select antigroup B meningococcal protein vaccines. We also propose that outer membrane vesicle-containing meningococcal vaccines may be more efficacious if purged of subversive immunogens such as H.8.
Collapse
Affiliation(s)
- Tathagat Dutta Ray
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
223
|
Mothibeli KM, du Plessis M, von Gottberg A, Murphy E, Hoiseth SK, Zlotnick G, Klugman KP. Distribution of factor H binding protein beyond serogroup B: Variation among five serogroups of invasive Neisseria meningitidis in South Africa. Vaccine 2011; 29:2187-92. [PMID: 21144918 DOI: 10.1016/j.vaccine.2010.11.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/11/2010] [Accepted: 11/20/2010] [Indexed: 10/18/2022]
|
224
|
Beernink PT, Shaughnessy J, Braga EM, Liu Q, Rice PA, Ram S, Granoff DM. A meningococcal factor H binding protein mutant that eliminates factor H binding enhances protective antibody responses to vaccination. THE JOURNAL OF IMMUNOLOGY 2011; 186:3606-14. [PMID: 21325619 DOI: 10.4049/jimmunol.1003470] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Certain pathogens recruit host complement inhibitors such as factor H (fH) to evade the immune system. Microbial complement inhibitor-binding molecules can be promising vaccine targets by eliciting Abs that neutralize this microbial defense mechanism. One such Ag, meningococcal factor H-binding protein (fHbp), was used in clinical trials before the protein was discovered to bind fH. The potential effect of fH binding on vaccine immunogenicity had not been assessed in experimental animals because fHbp binds human fH specifically. In this study, we developed a human fH transgenic mouse model. Transgenic mice immunized with fHbp vaccine had 4- to 8-fold lower serum bactericidal Ab responses than those of control mice whose native fH did not bind the vaccine. In contrast, Ab responses were unimpaired in transgenic mice immunized with a control meningococcal group C polysaccharide-protein conjugate vaccine. In transgenic mice, immunization with an fH nonbinding mutant of fHbp elicited Abs with higher bactericidal activity than that of fHbp vaccination itself. Abs elicited by the mutant fHbp more effectively blocked fH binding to wild-type fHbp than Abs elicited by fHbp that bound fH. Thus, a mutant fHbp vaccine that does not bind fH but that retains immunogenicity is predicted to be superior in humans to an fHbp vaccine that binds human fH. In the case of mutant fHbp vaccination, the resultant Ab responses may be directed more at epitopes in or near the fH binding site, which result in greater complement-mediated serum bactericidal activity; these epitopes may be obscured when human fH is bound to the wild-type fHbp vaccine.
Collapse
Affiliation(s)
- Peter T Beernink
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | | | | | | | | | | | | |
Collapse
|
225
|
Gasparini R, Panatto D. Meningococcal glycoconjugate vaccines. HUMAN VACCINES 2011; 7:170-82. [PMID: 21178398 PMCID: PMC3166476 DOI: 10.4161/hv.7.2.13717] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/13/2010] [Accepted: 09/22/2010] [Indexed: 12/20/2022]
Abstract
Neisseria meningitidis is a major cause of invasive bacterial infections worldwide. For this reason, efforts to control the disease have been directed at optimizing meningococcal vaccines and implementing appropriate vaccination policies. In the past, plain polysaccharide vaccines containing purified capsular polysaccharides A, C, Y and W135 were developed, but failed to protect infants, who are at greatest risk. Experience with the conjugate Haemophilus vaccine suggested that this approach might well empower meningococcal vaccines. Thus, a very efficacious vaccine against serogroup C Neisseria meningitis was optimized and has been widely used in developed nations since 1999. On the basis of epidemiological changes in the circulation of pathogenic serogroups in the United States, a quadrivalent conjugate vaccine against A, C, Y and W135 serogroups (Menactra™) has been developed and was approved by the U.S. FDA (Food and Drug Administration) in 2005. Recently, another tetravalent conjugate meningococcal vaccine (Menveo™) has been licensed and made available in the United States of America and in the European Union. Finally, in response to large epidemics caused by serogroup A meningococcus in Africa, a new, safe, immunogenic and affordable vaccine has been developed. This review highlights the evolution of conjugate meningococcal vaccines in general and discusses how this kind of vaccine can contribute to preventing meningococcal disease.
Collapse
|
226
|
Lucidarme J, Newbold LS, Findlow J, Gilchrist S, Gray SJ, Carr AD, Hewitt J, Kaczmarski EB, Borrow R. Molecular targets in meningococci: efficient routine characterization and optimal outbreak investigation in conjunction with routine surveillance of the meningococcal group B vaccine candidate, fHBP. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:194-202. [PMID: 21123522 PMCID: PMC3067353 DOI: 10.1128/cvi.00401-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/25/2010] [Accepted: 11/22/2010] [Indexed: 11/20/2022]
Abstract
In 2007, recommendations were proposed for the molecular typing of meningococci. Multilocus sequence typing (MLST) was recommended to guide national and international disease management and facilitate studies of population biology and evolution. Sequencing of porA variable regions (VRs) 1 and 2 and the fetA VR was recommended for monitoring antigenic distribution and investigating potential outbreaks. porB characterization was recommended if further resolution was required. Several investigational "group B" meningococcal vaccines, including two in the advanced stages of development, incorporate factor H-binding protein (fHBP). The requirement for routine surveillance of fhbp places additional pressure on reference laboratories, both financially and in terms of labor. This study investigated the optimal and most efficient molecular typing schemes for (i) routine meningococcal characterization and (ii) the investigation of potential outbreaks, in conjunction with routine surveillance of fhbp. All invasive disease isolates received by the Health Protection Agency Meningococcal Reference Unit between July 2007 and June 2008 (n = 613) were characterized in terms of capsular group, porA, fetA VR, fhbp, and sequence type (ST). Following capsular grouping and porA genosubtyping, several predominant capsular group-porA combinations were identified. The levels of additional resolution afforded by fetA and fhbp were comparable and partially complementary. fhbp constitutes an effective substitute for fetA as a routine marker of antigenic distribution, thereby reducing costs in conjunction with fhbp surveillance. MLST afforded markedly superior resolution overall and is the optimal scheme for investigating outbreaks in which (i) typing data are unavailable for the index case or (ii) the index case possesses a known, predominant capsular group-porA repertoire.
Collapse
Affiliation(s)
- Jay Lucidarme
- Vaccine Evaluation Unit, Health Protection Agency, PO Box 209, Floor 2, Clinical Sciences Building 2, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WZ, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Vu DM, Wong TT, Granoff DM. Cooperative serum bactericidal activity between human antibodies to meningococcal factor H binding protein and neisserial heparin binding antigen. Vaccine 2011; 29:1968-73. [PMID: 21241734 DOI: 10.1016/j.vaccine.2010.12.075] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/10/2010] [Accepted: 12/16/2010] [Indexed: 11/20/2022]
Abstract
A meningococcal group B vaccine containing multiple protein antigens including factor H binding protein (fHbp) and Neisserial heparin binding antigen (NHba) is in clinical development. The ability of antibodies against individual antigens to interact and augment protective immunity is unknown. We assayed human complement-mediated bactericidal activity (SBA) in stored sera from six immunized adults before and after depletion of antibodies to fHbp and/or NHba. All six subjects developed ≥ 4-fold increases in SBA titer against a test strain with fHbp in the variant 1 group with an amino acid sequence that matched the vaccine antigen (GMT <1:4 baseline, to 1:139 after 3 doses of vaccine). By adsorption 88 to >95% of the SBA was directed against fHbp. Four subjects developed ≥ 4-fold increases in SBA titer against a test strain with a heterologous fHbp variant 2 antigen and a homologous NHba amino acid sequence that matched the vaccine antigen (GMT <1:4 baseline, to 1:45). SBA was directed primarily against NHba in one subject, against fHbp in a second, while depletion of either anti-NHba or anti-fHbp antibody removed the majority of SBA in sera from two subjects. In all four subjects, depletion of both anti-fHbp and anti-NHba antibodies removed more SBA than depletion of either antibody individually. Mixing a mouse non-bactericidal anti-fHbp variant 1 antiserum with a mouse anti-NHba antiserum also augmented the anti-NHba SBA titer against this test strain. For meningococcal vaccines that target relatively sparsely exposed antigens such fHbp or NHba, non-bactericidal antibodies against individual antigens can cooperate and elicit SBA.
Collapse
Affiliation(s)
- David M Vu
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California, USA
| | | | | |
Collapse
|
228
|
Harris SL, Zhu D, Murphy E, McNeil LK, Wang X, Mayer LW, Harrison LH, Jansen KU, Anderson AS. Preclinical evidence for the potential of a bivalent fHBP vaccine to prevent Neisseria meningitidis Serogroup C Disease. HUMAN VACCINES 2011; 7 Suppl:68-74. [PMID: 21245657 DOI: 10.4161/hv.7.0.14564] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A bivalent factor H binding protein (fHBP) vaccine for the prevention of disease caused by Neisseria meningitidis serogroup B is currently in clinical development. Since fHBP is also expressed by other meningococcal serogroups, anti-fHBP antibodies may have bactericidal activity against meningococci independent of serogroup. To begin examining the susceptibility of other meningococcal serogroups to anti-fHBP antibodies, meningococcal serogroup C invasive isolates (n = 116) were collected from the Centers for Disease Control and Prevention's Active Bacterial Core surveillance (ABCs) sites during 2000-2001. These isolates were analyzed for the presence of the fhbp gene. All serogroup C isolates contained the gene, and sequence analysis grouped the proteins into two subfamilies, A and B. Flow cytometry analysis demonstrated that fHBP was expressed on the surface of ~70% of isolates in vitro with varying levels of expression. fHBP was accessible to antibodies on the cell surface even in the presence of the polysaccharide capsule. Nine isolates from different geographic regions were identified which harboured an identical single nucleotide deletion that could result in a truncated subfamily B fHBP. Analysis by flow cytometry using a polyclonal fHBP antibody preparation revealed that a subpopulation of each of these isolates expressed fHBP. Rabbit and non-human primate immune sera generated with bivalent fHBP vaccine were tested for bactericidal activity against a panel of diverse serogroup C clinical isolates using human complement. Sera from both species demonstrated serum bactericidal antibody activity against the serogroup C isolates tested. These promising findings suggest that a bivalent fHBP vaccine may be capable of providing protection against meningococcal disease caused by both serogroup C and B.
Collapse
|
229
|
Keiser PB, Biggs-Cicatelli S, Moran EE, Schmiel DH, Pinto VB, Burden RE, Miller LB, Moon JE, Bowden RA, Cummings JF, Zollinger WD. A phase 1 study of a meningococcal native outer membrane vesicle vaccine made from a group B strain with deleted lpxL1 and synX, over-expressed factor H binding protein, two PorAs and stabilized OpcA expression. Vaccine 2011; 29:1413-20. [PMID: 21199704 DOI: 10.1016/j.vaccine.2010.12.039] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 11/12/2010] [Accepted: 12/14/2010] [Indexed: 11/18/2022]
Abstract
This phase I clinical trial assessed the safety and immunogenicity of a native outer membrane vesicle (NOMV) vaccine prepared from an lpxL1(-) synX(-) mutant of strain 8570(B:4:P1.19,15:L8-5) of Neisseria meningitidis. Additional mutations enhance the expression of factor H binding protein variant 1 (fHbp v.1), stabilize expression of OpcA and introduce a second PorA (P1.22,14). Thirty-six volunteers were assigned to one of four dose groups (10, 25, 50 and 75 mcg, based on protein content) to receive three intramuscular injections at six week intervals with aluminum hydroxide adjuvant. Specific local and systemic adverse events were solicited by diary and at visits on days 2, 7, and 14 after each vaccination. Blood chemistries, complete blood count, and coagulation studies were measured on each vaccination day and again 2 and 14 days later. Blood for ELISA and serum bactericidal assays was drawn two and six weeks after each vaccination. The proportion of volunteers who developed a fourfold or greater increase in bactericidal activity to the wild type parent of the vaccine strain at two weeks after the third dose was 27 out of 34 (0.79, 95% C.I. 0.65-0.93). Against four other group B strains the response rate ranged from 41% to 82% indicating a good cross reactive antibody response. Depletion assays show contributions to bactericidal activity from antibodies to lipooligosaccharide (LOS), fHbp v.1 and OpcA.
Collapse
Affiliation(s)
- P B Keiser
- Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Influence of sequence variability on bactericidal activity sera induced by Factor H binding protein variant 1.1. Vaccine 2011; 29:1072-81. [PMID: 21130753 DOI: 10.1016/j.vaccine.2010.11.064] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/16/2010] [Accepted: 11/18/2010] [Indexed: 11/21/2022]
|
231
|
Characterization of diverse subvariants of the meningococcal factor H (fH) binding protein for their ability to bind fH, to mediate serum resistance, and to induce bactericidal antibodies. Infect Immun 2010; 79:970-81. [PMID: 21149595 DOI: 10.1128/iai.00891-10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis is a commensal of the human nasopharynx but is also a major cause of septicemia and meningitis. The meningococcal factor H binding protein (fHbp) binds human factor H (fH), enabling downregulation of complement activation on the bacterial surface. fHbp is a component of two serogroup B meningococcal vaccines currently in clinical development. Here we characterize 12 fHbp subvariants for their level of surface exposure and ability to bind fH, to mediate serum resistance, and to induce bactericidal antibodies. Flow cytometry and Western analysis revealed that all strains examined expressed fHbp on their surface to different extents and bound fH in an fHbp-dependent manner. However, differences in fH binding did not always correlate with the level of fHbp expression, indicating that this is not the only factor affecting the amount of fH bound. To overcome the issue of strain variability in fHbp expression, the MC58ΔfHbp strain was genetically engineered to express different subvariants from a constitutive heterologous promoter. These recombinant strains were characterized for fH binding, and the data confirmed that each subvariant binds different levels of fH. Surface plasmon resonance revealed differences in the stability of the fHbp-fH complexes that ranged over 2 orders of magnitude, indicating that differences in residues between and within variant groups can influence fH binding. Interestingly, the level of survival in human sera of recombinant MC58 strains expressing diverse subvariants did not correlate with the level of fH binding, suggesting that the interaction of fHbp with fH is not the only function of fHbp that influences serum resistance. Furthermore, cross-reactive bactericidal activity was seen within each variant group, although the degree of activity varied, suggesting that amino acid differences within each variant group influence the bactericidal antibody response.
Collapse
|
232
|
Human antibody responses to the meningococcal factor H binding protein (LP2086) during invasive disease, colonization and carriage. Vaccine 2010; 28:7667-75. [DOI: 10.1016/j.vaccine.2010.09.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 09/03/2010] [Accepted: 09/12/2010] [Indexed: 12/29/2022]
|
233
|
Immunogenicity of two investigational serogroup B meningococcal vaccines in the first year of life: a randomized comparative trial. Pediatr Infect Dis J 2010; 29:e71-9. [PMID: 20844462 DOI: 10.1097/inf.0b013e3181f59f6d] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND An investigational vaccine against serogroup B meningococcal (MenB) disease containing 3 main recombinant proteins (factor H-binding protein, Neisserial adhesion A, and Neisserial heparin-binding antigen) has been developed. We evaluated the immunogenicity and reactogenicity of a 3-dose course of this vaccine administered alone (recombinant MenB [rMenB]) or combined with the outer membrane vesicle (OMV) component of the vaccine used in New Zealand (rMenB+OMV). METHODS A randomized, single-blind, comparative study of 60 healthy infants enrolled at 6 to 8 months of age and immunized with rMenB or rMenB+OMV at day 0, day 60, and at age 12 months. Blood samples obtained at baseline and 1 month following the second and third doses of vaccine were analyzed for serum bactericidal antibody (SBA) using human complement (hSBA) against 7 MenB strains. The putative correlate of protection was an hSBA titer of ≥4. RESULTS The per-protocol analysis included 24 of 30 participants randomized to each group. After 3 doses of rMenB+OMV, 90% or more of participants had an hSBA titer ≥4 for 5 MenB strains, with 70% of participants having an hSBA titer ≥4 for a sixth strain. rMenB alone was immunogenic for only 3 strains. Both vaccines were well tolerated. CONCLUSIONS Three doses of rMenB+OMV in the second half of infancy induce bactericidal antibodies against strains expressing vaccine antigens, demonstrating the potential for broader vaccine prevention of MenB disease. This vaccine is now in phase III clinical trials.
Collapse
|
234
|
Effect of factor H-binding protein sequence variation on factor H binding and survival of Neisseria meningitidis in human blood. Infect Immun 2010; 79:353-9. [PMID: 21041484 DOI: 10.1128/iai.00849-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Binding of the complement inhibitor factor H (fH) to the surface of Neisseria meningitidis is critical for evasion of innate host defenses. The meningococcal vaccine candidate factor H-binding protein (fHbp) serves as an fH ligand. We prepared 16 recombinant fHbp natural sequence variants. By enzyme-linked immunosorbent assay (ELISA), the variants from a New Zealand epidemic strain (fHbp ID 14) and from an endemic United Kingdom strain (ID 15) showed 10-fold lower fH binding than a reference fHbp from an epidemic Norwegian strain (ID 1). By surface plasmon resonance, association rate constants (k(a)) for fHbp ID 14 and 15 were similar to those for ID 1, but dissociation rate constants (k(d)) were 4- to 10-fold higher than those for ID 1. To determine the effect of fH affinity on fHbp fitness, we prepared isogenic mutants of strain H44/76 that expressed fHbp ID 1, 14, or 15. By flow cytometry, mutants expressing fHbp ID 14 or 15 had lower fH binding than ID 1. When incubated in plasma or blood of nonimmune donors, all three mutants showed similar increases in CFU/ml. In contrast, an isogenic fHbp knockout mutant, which grew well in broth, was rapidly killed in plasma or blood. Thus, although fHbp expression was required for survival of strain H44/76 in blood or plasma, expression of two natural fHbp sequence variants with lower fH affinity had minimal or no effect on nonimmune clearance. One reason may be the high fH concentrations in normal serum, which favor saturation of fH binding to fHbp, even when dissociation rates varied over 10-fold.
Collapse
|
235
|
Lewis LA, Ngampasutadol J, Wallace R, Reid JEA, Vogel U, Ram S. The meningococcal vaccine candidate neisserial surface protein A (NspA) binds to factor H and enhances meningococcal resistance to complement. PLoS Pathog 2010; 6:e1001027. [PMID: 20686663 PMCID: PMC2912398 DOI: 10.1371/journal.ppat.1001027] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 06/30/2010] [Indexed: 12/13/2022] Open
Abstract
Complement forms an important arm of innate immunity against invasive meningococcal infections. Binding of the alternative complement pathway inhibitor factor H (fH) to fH-binding protein (fHbp) is one mechanism meningococci employ to limit complement activation on the bacterial surface. fHbp is a leading vaccine candidate against group B Neisseria meningitidis. Novel mechanisms that meningococci employ to bind fH could undermine the efficacy of fHbp-based vaccines. We observed that fHbp deletion mutants of some meningococcal strains showed residual fH binding suggesting the presence of a second receptor for fH. Ligand overlay immunoblotting using membrane fractions from one such strain showed that fH bound to a ∼17 kD protein, identified by MALDI-TOF analysis as Neisserial surface protein A (NspA), a meningococcal vaccine candidate whose function has not been defined. Deleting nspA, in the background of fHbp deletion mutants, abrogated fH binding and mAbs against NspA blocked fH binding, confirming NspA as a fH binding molecule on intact bacteria. NspA expression levels vary among strains and expression correlated with the level of fH binding; over-expressing NspA enhanced fH binding to bacteria. Progressive truncation of the heptose (Hep) I chain of lipooligosaccharide (LOS), or sialylation of lacto-N-neotetraose LOS both increased fH binding to NspA-expressing meningococci, while expression of capsule reduced fH binding to the strains tested. Similar to fHbp, binding of NspA to fH was human-specific and occurred through fH domains 6–7. Consistent with its ability to bind fH, deleting NspA increased C3 deposition and resulted in increased complement-dependent killing. Collectively, these data identify a key complement evasion mechanism with important implications for ongoing efforts to develop meningococcal vaccines that employ fHbp as one of its components. Neisseria meningitidis is an important cause of bacterial meningitis and sepsis worldwide. The complement system is a family of proteins that is critical for innate immune defenses against this pathogen. In order to successfully colonize humans and cause disease, the meningococcus must escape killing by the complement system. In this study we show that meningococci can use one of its surface proteins called Neisserial surface protein A (NspA) to bind to a host complement inhibitory protein called factor H (fH). NspA is a protein vaccine candidate against group B meningococcal disease. Binding of fH limits complement activation on the bacterial surface and enhances the ability of the meningococcus to resist complement-dependent killing. Capsular polysaccharide expression decreases fH binding to NspA, while truncation of the core glycan chain of lipooligosaccharide increases fH binding to meningococcal NspA. Loss of NspA results in enhanced complement activation on the bacterial surface and increased complement-dependent killing of meningococci. Our findings have disclosed a novel function for NspA and sheds further light on how this pathogen evades killing by the complement system.
Collapse
Affiliation(s)
- Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
236
|
Jiang HQ, Hoiseth SK, Harris SL, McNeil LK, Zhu D, Tan C, Scott AA, Alexander K, Mason K, Miller L, DaSilva I, Mack M, Zhao XJ, Pride MW, Andrew L, Murphy E, Hagen M, French R, Arora A, Jones TR, Jansen KU, Zlotnick GW, Anderson AS. Broad vaccine coverage predicted for a bivalent recombinant factor H binding protein based vaccine to prevent serogroup B meningococcal disease. Vaccine 2010; 28:6086-93. [PMID: 20619376 DOI: 10.1016/j.vaccine.2010.06.083] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 06/18/2010] [Accepted: 06/25/2010] [Indexed: 10/19/2022]
Abstract
Factor H binding proteins (fHBP), are bacterial surface proteins currently undergoing human clinical trials as candidate serogroup B Neisseria meningitidis (MnB) vaccines. fHBP protein sequences segregate into two distinct subfamilies, designated A and B. Here, we report the specificity and vaccine potential of mono- or bivalent fHBP-containing vaccines. A bivalent fHBP vaccine composed of a member of each subfamily elicited substantially broader bactericidal activity against MnB strains expressing heterologous fHBP than did either of the monovalent vaccines. Bivalent rabbit immune sera tested in serum bactericidal antibody assays (SBAs) against a diverse panel of MnB clinical isolates killed 87 of the 100 isolates. Bivalent human immune sera killed 36 of 45 MnB isolates tested in SBAs. Factors such as fHBP protein variant, PorA subtype, or MLST were not predictive of whether the MnB strain could be killed by rabbit or human immune sera. Instead, the best predictor for killing in the SBA was the level of in vitro surface expression of fHBP. The bivalent fHBP vaccine candidate induced immune sera that killed MnB isolates representing the major MLST complexes, prevalent PorA subtypes, and fHBP variants that span the breadth of the fHBP phylogenetic tree. Importantly, epidemiologically prevalent fHBP variants from both subfamilies were killed.
Collapse
Affiliation(s)
- Han-Qing Jiang
- Pfizer Vaccine Research, 401N. Middletown Rd., Pearl River, NY 10965, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Association of meningococcal phenotypes and genotypes with clinical characteristics and mortality of meningitis in children. Pediatr Infect Dis J 2010; 29:618-23. [PMID: 20168263 DOI: 10.1097/inf.0b013e3181d3ce32] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Neisseria meningitidis meningitis represents approximately one-half of the meningococcal cases in French children. To explore the contribution of bacterial typing in improving the management of cases, we aimed to describe clinical characteristics and mortality of meningococcal meningitis in children reported to the multicenter survey system, GPIP/ACTIV, in association with phenotypes/genotypes of bacterial isolates. METHODS From 2001 to 2005, 259 pediatric wards and 168 microbiology laboratories enrolled all children with bacterial meningitis. Risk factors, vaccination status, signs and symptoms, cerebrospinal fluid analysis, treatments and case fatality rate were recorded. RESULTS A total of 962 cases of Neisseria meningitidis meningitis among a total of 2131 bacterial meningitis (45%) were recorded (mean age, 4.5 +/- 4.7 years). Serogroup distribution of the isolates was 62.3%, 33.7%, 2.9%, 0.6%, and 0.6% for serogroups B, C, W135, A and Y, respectively. The major clonal complexes were ST-41/44 (32.2%), ST-11 (21.9%), ST-32 (20.8%), ST-8 (8.2%), and ST-269 (4.9%). Despite global heterogeneity of the isolates, 2 phenotypes/genotypes were of interest. Isolates of the phenotype/genotype B:14:P1.7,16/ST-32 (56% clustered in the region of Haute Normandie) were observed in older children (8.6 years) and were associated with a higher case fatality rate (12%) than were other phenotypes of serogroup B. The phenotype/genotype C:2a:P1.5/ST-11 was found in 26.3% of serogroup C cases and was possibly associated with a higher mortality among serogroup C (9.9% for C and 5.9% for B, P = 0.04). CONCLUSIONS This large survey provides data that could be important for implementation of future vaccines. Typing of meningococcal isolates could contribute to an understanding of prognosis in meningococcal meningitis.
Collapse
|
238
|
Molecular mechanisms of complement evasion: learning from staphylococci and meningococci. Nat Rev Microbiol 2010; 8:393-9. [PMID: 20467445 DOI: 10.1038/nrmicro2366] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The complement system is a crucial component of the innate immune response in humans. Recent studies in Staphylococcus aureus and Neisseria meningitidis have revealed how these bacteria escape complement-mediated killing. In addition, new structural data have provided detailed insights into the molecular mechanisms of host defence mediated by the complement system and how bacterial proteins interfere with this process. This information is fundamental to our understanding of bacterial pathogenesis and may facilitate the design of better vaccines.
Collapse
|
239
|
Impaired immunogenicity of a meningococcal factor H-binding protein vaccine engineered to eliminate factor h binding. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1074-8. [PMID: 20519444 DOI: 10.1128/cvi.00103-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Meningococcal factor H-binding protein (fHbp) is a promising antigen that is part of two vaccines in clinical development. The protein specifically binds human complement factor H (fH), which downregulates complement activation on the bacterial surface and enables the organism to evade host defenses. In humans, the vaccine antigen forms a complex with fH, which may affect anti-fHbp antibody repertoire and decrease serum bactericidal activity by covering important fHbp epitopes. In a recent study, fHbp residues in contact with fH were identified from a crystal structure. Two fHbp glutamate residues that mediated ion-pair interactions with fH were replaced with alanine, and the resulting E218A/E239A mutant no longer bound the fH fragment. In the present study, we generated the E218A/E239A mutant recombinant protein and confirmed the lack of fH binding. By enzyme-linked immunosorbent assay (ELISA), the mutant fHbp showed similar respective concentration-dependent inhibition of binding of four bactericidal anti-fHbp monoclonal antibodies (MAbs) to fHbp, compared with inhibition by the soluble wild-type protein. In two mouse strains, the mutant fHbp elicited up to 4-fold-lower IgG anti-fHbp antibody titers and up to 20-fold-lower serum bactericidal titers than those elicited by the wild-type fHbp vaccine. Thus, although introduction of the two alanine substitutions to eliminate fH binding did not appear to destabilize the molecule globally, the mutations resulted in decreased immunogenicity in mouse models in which neither the mutant nor the wild-type control vaccine bound fH. These results cast doubt on the vaccine potential in humans of this mutant fHbp.
Collapse
|
240
|
Harrison LH, Mohan N, Kirkpatrick P. Meningococcal group A, C, Y and W-135 conjugate vaccine. Nat Rev Drug Discov 2010; 9:429-30. [DOI: 10.1038/nrd3194] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
241
|
Molecular epidemiology of meningococci: application of DNA sequence typing. Int J Med Microbiol 2010; 300:415-20. [PMID: 20537945 DOI: 10.1016/j.ijmm.2010.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 04/08/2010] [Accepted: 04/19/2010] [Indexed: 11/22/2022] Open
Abstract
Neisseria meningitidis is an invasive pathogen contributing significantly to childhood mortality worldwide. The organism is adapted to the human host and transmitted by close contact or droplet aerosols. In comparison to healthy carriage, invasive disease is a rare event. Nevertheless, due to a high case-fatality rate and the fact that meningococcal infection is a communicable disease, molecular typing of meningococci has been driven forward considerably in the past decades. Multilocus and antigen sequence typing data are assembled in large databases accessible via the internet. For epidemiological purposes, representative case ascertainment strategies are necessary if data are to be exploited for trend analysis, geographic visualization, detection of abnormalities such as outbreaks, and prediction of vaccine coverage. In Europe, a consensus for molecular typing has been achieved.
Collapse
|
242
|
Abstract
No broadly effective vaccines are available for prevention of group B meningococcal disease, which accounts for >50% of all cases. The group B capsule is an autoantigen and is not a suitable vaccine target. Outer-membrane vesicle vaccines appear to be safe and effective, but serum bactericidal responses in infants are specific for a porin protein, PorA, which is antigenically variable. To broaden protection, outer-membrane vesicle vaccines have been prepared from >1 strain, from mutants with >1 PorA, or from mutants with genetically detoxified endotoxin and overexpressed desirable antigens, such as factor H binding protein. Also, recombinant protein vaccines such as factor H binding protein, given alone or in combination with other antigens, are in late-stage clinical development and may be effective against the majority of group B strains. Thus, the prospects have never been better for developing vaccines for prevention of meningococcal disease, including that caused by group B strains.
Collapse
Affiliation(s)
- Dan M Granoff
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California, USA.
| |
Collapse
|
243
|
Harrison LH. Epidemiological profile of meningococcal disease in the United States. Clin Infect Dis 2010; 50 Suppl 2:S37-44. [PMID: 20144015 DOI: 10.1086/648963] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neisseria meningitidis is a leading cause of bacterial meningitis and other serious infections worldwide. The epidemiological profile of N. meningitidis is highly changeable, with great differences in disease incidence and serogroup distribution. Six serogroups (namely serogroups A, B, C, W-135, X, and Y) are responsible for most cases of meningococcal disease worldwide; the epidemiological profile of disease caused by each serogroup is unique. No vaccine is available for endemic disease caused by serogroup B strains. Two tetravalent (A/C/Y/W-135) meningococcal vaccines are licensed in the United States: a purified polysaccharide product and a polysaccharide-protein conjugate vaccine. The conjugate vaccine is recommended for all adolescents, although vaccine coverage remains low, and other groups at high risk of infection. A comprehensive program to prevent invasive meningococcal disease in the United States will require vaccination of infants; several conjugate vaccines for infants may become available in the near future. Broadly protective vaccines for endemic serogroup B disease are also needed.
Collapse
Affiliation(s)
- Lee H Harrison
- University of Pittsburgh Graduate School of Public Health and School of Medicine, Pennsylvania, USA.
| |
Collapse
|
244
|
Affiliation(s)
- Lionel K K Tan
- Centre for Molecular Microbiology and Infection, Imperial College London, London, United Kingdom
| | | | | |
Collapse
|
245
|
Characterization of fHbp, nhba (gna2132), nadA, porA, and sequence type in group B meningococcal case isolates collected in England and Wales during January 2008 and potential coverage of an investigational group B meningococcal vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:919-29. [PMID: 20375242 DOI: 10.1128/cvi.00027-10] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Invasive disease caused by meningococcal capsular groups A, C, W-135, and Y is now preventable by means of glycoconjugate vaccines that target their respective polysaccharide capsules. The capsule of group B meningococci (MenB) is poorly immunogenic and may induce autoimmunity. Vaccines based on the major immunodominant surface porin, PorA, are effective against clonal epidemics but, thus far, have a limited scope of coverage against the wider MenB population at large. In an alternative approach, the first-generation, investigational, recombinant MenB (rMenB) plus outer membrane vesicle (OMV) (rMenB-OMV) vaccine contains a number of relatively conserved surface proteins, fHBP, NHBA (previously GNA2132), and NadA, alongside PorA P1.4-containing OMVs from the New Zealand MeNZB vaccine. MenB currently accounts for approximately 90% of cases of meningococcal disease in England and Wales. To assess potential rMenB-OMV vaccine coverage of pathogenic MenB isolates within this region, all English and Welsh MenB case isolates from January 2008 (n = 87) were genetically characterized with respect to fHBP, NHBA, NadA, and PorA. Alleles for fHbp, nhba, and porA were identified in all of the isolates, of which 22% were also found to harbor nadA alleles. On the basis of genotypic data and predicted immunological cross-reactivity, the potential level of rMenB-OMV vaccine coverage in England and Wales ranges from 66% to 100%.
Collapse
|
246
|
Sadarangani M, Pollard AJ. Serogroup B meningococcal vaccines—an unfinished story. THE LANCET. INFECTIOUS DISEASES 2010; 10:112-24. [DOI: 10.1016/s1473-3099(09)70324-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
247
|
Mascioni A, Moy FJ, McNeil LK, Murphy E, Bentley BE, Camarda R, Dilts DA, Fink PS, Gusarova V, Hoiseth SK, Malakian K, Mininni T, Novikova E, Lin S, Sigethy S, Zlotnick GW, Tsao DH. NMR dynamics and antibody recognition of the meningococcal lipidated outer membrane protein LP2086 in micellar solution. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:87-93. [DOI: 10.1016/j.bbamem.2009.09.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 09/24/2009] [Accepted: 09/29/2009] [Indexed: 11/16/2022]
|
248
|
Frequency of factor H-binding protein modular groups and susceptibility to cross-reactive bactericidal activity in invasive meningococcal isolates. Vaccine 2009; 28:2122-9. [PMID: 20044056 DOI: 10.1016/j.vaccine.2009.12.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/03/2009] [Accepted: 12/14/2009] [Indexed: 11/22/2022]
Abstract
Meningococcal factor H-binding protein (fHbp) is a promising vaccine candidate that elicits serum bactericidal antibodies in humans. Based on sequence variability of the entire protein, fHbp has been divided into three variant groups or two sub-families. We recently reported that the fHbp architecture was modular, consisting of five variable segments, each encoded by genes from one of two lineages. Based on combinations of segments from different lineages, all 70 known fHbp sequence variants could be classified into one of six modular groups. In this study, we analyzed sequences of 172 new fHbp variants that were available from public databases. All but three variants could be classified into one of the six previously described modular groups. Among systematically collected invasive group B isolates from the U.S. and Europe, modular group I overall was most common (60%) but group IV (natural chimeras) accounted for 23% of UK isolates and <1% of U.S. isolates (P<0.0001). Mouse antisera to recombinant fHbp from each of the modular groups showed modular group-specific bactericidal activity against strains with low fHbp expression but had broader activity against strains with higher fHbp expression. Thus both modular group and relative expression of fHbp affected strain susceptibility to anti-fHbp bactericidal activity. The results confirmed the modular architecture of fHbp and underscored its importance for the design of broadly protective group B vaccines in different regions.
Collapse
|
249
|
Brehony C, Wilson DJ, Maiden MCJ. Variation of the factor H-binding protein of Neisseria meningitidis. MICROBIOLOGY (READING, ENGLAND) 2009; 155:4155-4169. [PMID: 19729409 PMCID: PMC2801853 DOI: 10.1099/mic.0.027995-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 08/13/2009] [Accepted: 08/27/2009] [Indexed: 12/29/2022]
Abstract
There is currently no comprehensive meningococcal vaccine, due to difficulties in immunizing against organisms expressing serogroup B capsules. To address this problem, subcapsular antigens, particularly the outer-membrane proteins (OMPs), are being investigated as candidate vaccine components. If immunogenic, however, such antigens are often antigenically variable, and knowledge of the extent and structuring of this diversity is an essential part of vaccine formulation. Factor H-binding protein (fHbp) is one such protein and is included in two vaccines under development. A survey of the diversity of the fHbp gene and the encoded protein in a representative sample of meningococcal isolates confirmed that variability in this protein is structured into two or three major groups, each with a substantial number of alleles that have some association with meningococcal clonal complexes and serogroups. A unified nomenclature scheme was devised to catalogue this diversity. Analysis of recombination and selection on the allele sequences demonstrated that parts of the gene are subject to positive selection, consistent with immune selection on the protein generating antigenic variation, particularly in the C-terminal region of the peptide sequence. The highest levels of selection were observed in regions corresponding to epitopes recognized by previously described bactericidal monoclonal antibodies.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Base Sequence
- DNA Primers/genetics
- DNA, Bacterial/genetics
- Genes, Bacterial
- Genetic Variation
- Humans
- Meningococcal Infections/microbiology
- Meningococcal Vaccines/genetics
- Meningococcal Vaccines/immunology
- Models, Molecular
- Molecular Sequence Data
- Neisseria meningitidis/classification
- Neisseria meningitidis/genetics
- Neisseria meningitidis/immunology
- Neisseria meningitidis, Serogroup A/classification
- Neisseria meningitidis, Serogroup A/genetics
- Neisseria meningitidis, Serogroup A/immunology
- Neisseria meningitidis, Serogroup B/classification
- Neisseria meningitidis, Serogroup B/genetics
- Neisseria meningitidis, Serogroup B/immunology
- Recombination, Genetic
- Selection, Genetic
- Sequence Homology, Amino Acid
- Serotyping
Collapse
Affiliation(s)
- Carina Brehony
- Department of Zoology, University of Oxford, OX1 3PS, UK
| | - Daniel J. Wilson
- Department of Human Genetics, University of Chicago, 920 East 58th Street, CLSC #410, Chicago, IL 60637, USA
| | | |
Collapse
|
250
|
Expression of factor H binding protein of meningococcus responds to oxygen limitation through a dedicated FNR-regulated promoter. J Bacteriol 2009; 192:691-701. [PMID: 19948796 DOI: 10.1128/jb.01308-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Factor H binding protein (fHBP) is a surface-exposed lipoprotein in Neisseria meningitidis, which is a component of several investigational vaccines against serogroup B meningococcus (MenB) currently in development. fHBP enables the bacterium to evade complement-mediated killing by binding factor H, a key downregulator of the complement alternative pathway, and, in addition, fHBP is important for meningococcal survival in the presence of the antimicrobial peptide LL-37. In this study, we investigate the molecular mechanisms involved in transcription and regulation of the fHBP-encoding gene, fhbp. We show that the fHBP protein is expressed from two independent transcripts: one bicistronic transcript that includes the upstream gene and a second shorter monocistronic transcript from its own dedicated promoter, P(fhbp). Transcription from the promoter P(fhbp) responds to oxygen limitation in an FNR-dependent manner, and, accordingly, the FNR protein binds to a P(fhbp) probe in vitro. Furthermore, expression in meningococci of a constitutively active FNR mutant results in the overexpression of the fHBP protein. Finally, the analysis of fHBP regulation was extended to a panel of strains expressing different fHBP allelic variants at different levels, and we demonstrate that FNR is involved in the regulation of this antigen in all but one of the strains tested. Our data suggest that oxygen limitation may play an important role in inducing the expression of fHBP from a dedicated FNR-regulated promoter. This implies a role for this protein in microenvironments lacking oxygen, for instance in the submucosa or intracellularly, in addition to its demonstrated role in serum resistance in the blood.
Collapse
|