201
|
Guo Q, Kong W, Jin S, Chen L, Xu Y, Duan K. PqsR-dependent and PqsR-independent regulation of motility and biofilm formation by PQS in Pseudomonas aeruginosa PAO1. J Basic Microbiol 2013; 54:633-43. [PMID: 23996096 DOI: 10.1002/jobm.201300091] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/21/2013] [Indexed: 01/05/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen capable of group behaviors including swarming motility and biofilm formation. Swarming motility plays an important role in the bacterium's spread to new environments, attachment to surfaces, and biofilm formation. Bacterial biofilm is associated with many persistent infections and increased resistance to antibiotics. In this study, we tested the effect of a 2-alkyl-4(1H)-quinolone (AHQ) signal, the Pseudomonas quinolone signal (PQS) on P. aeruginosa swarming and biofilm formation. Our results show that PQS repressed the swarming motility of P. aeruginosa PAO1. Such repression was independent of its cognate receptor PqsR and was not related to changes in the flagellae, type IV pili or the production of the surface-wetting agent rhamnolipid surfactant. While PQS did not affect twitching motility in PAO1, a pqsR deletion abolished twitching motility, indicating that pqsR is required for twitching motility. Our results also indicate that the enhancement of biofilm formation by PQS is at least partially dependent on the GacAS-Rsm regulatory pathway but does not involve the las or rhl QS systems.
Collapse
Affiliation(s)
- Qiao Guo
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
202
|
van Ditmarsch D, Boyle KE, Sakhtah H, Oyler JE, Nadell CD, Déziel É, Dietrich LEP, Xavier JB. Convergent evolution of hyperswarming leads to impaired biofilm formation in pathogenic bacteria. Cell Rep 2013; 4:697-708. [PMID: 23954787 DOI: 10.1016/j.celrep.2013.07.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/01/2013] [Accepted: 07/24/2013] [Indexed: 12/16/2022] Open
Abstract
Most bacteria in nature live in surface-associated communities rather than planktonic populations. Nonetheless, how surface-associated environments shape bacterial evolutionary adaptation remains poorly understood. Here, we show that subjecting Pseudomonas aeruginosa to repeated rounds of swarming, a collective form of surface migration, drives remarkable parallel evolution toward a hyperswarmer phenotype. In all independently evolved hyperswarmers, the reproducible hyperswarming phenotype is caused by parallel point mutations in a flagellar synthesis regulator, FleN, which locks the naturally monoflagellated bacteria in a multiflagellated state and confers a growth rate-independent advantage in swarming. Although hyperswarmers outcompete the ancestral strain in swarming competitions, they are strongly outcompeted in biofilm formation, which is an essential trait for P. aeruginosa in environmental and clinical settings. The finding that evolution in swarming colonies reliably produces evolution of poor biofilm formers supports the existence of an evolutionary trade-off between motility and biofilm formation.
Collapse
Affiliation(s)
- Dave van Ditmarsch
- Program in Computational Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Kalivoda EJ, Brothers KM, Stella NA, Schmitt MJ, Shanks RMQ. Bacterial cyclic AMP-phosphodiesterase activity coordinates biofilm formation. PLoS One 2013; 8:e71267. [PMID: 23923059 PMCID: PMC3726613 DOI: 10.1371/journal.pone.0071267] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/27/2013] [Indexed: 12/26/2022] Open
Abstract
Biofilm-related infections are a major contributor to human disease, and the capacity for surface attachment and biofilm formation are key attributes for the pathogenesis of microbes. Serratia marcescens type I fimbriae-dependent biofilms are coordinated by the adenylate cyclase, CyaA, and the cyclic 3′,5′-adenosine monophosphate (cAMP)-cAMP receptor protein (CRP) complex. This study uses S. marcescens as a model system to test the role of cAMP-phosphodiesterase activity in controlling biofilm formation. Herein we describe the characterization of a putative S. marcescens cAMP-phosphodiesterase gene (SMA3506), designated as cpdS, and demonstrated to be a functional cAMP-phosphodiesterase both in vitro and in vivo. Deletion of cpdS resulted in defective biofilm formation and reduced type I fimbriae production, whereas multicopy expression of cpdS conferred a type I fimbriae-dependent hyper-biofilm. Together, these results support a model in which bacterial cAMP-phosphodiesterase activity modulates biofilm formation.
Collapse
Affiliation(s)
- Eric J. Kalivoda
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
| | - Kimberly M. Brothers
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
| | - Nicholas A. Stella
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
| | - Matthew J. Schmitt
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
| | - Robert M. Q. Shanks
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
- * E-mail:
| |
Collapse
|
204
|
Huang CJ, Wang ZC, Huang HY, Huang HD, Peng HL. YjcC, a c-di-GMP phosphodiesterase protein, regulates the oxidative stress response and virulence of Klebsiella pneumoniae CG43. PLoS One 2013; 8:e66740. [PMID: 23935824 PMCID: PMC3720812 DOI: 10.1371/journal.pone.0066740] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/10/2013] [Indexed: 12/20/2022] Open
Abstract
This study shows that the expression of yjcC, an in vivo expression (IVE) gene, and the stress response regulatory genes soxR, soxS, and rpoS are paraquat inducible in Klebsiella pneumoniae CG43. The deletion of rpoS or soxRS decreased yjcC expression, implying an RpoS- or SoxRS-dependent control. After paraquat or H2O2 treatment, the deletion of yjcC reduced bacterial survival. These effects could be complemented by introducing the ΔyjcC mutant with the YjcC-expression plasmid pJR1. The recombinant protein containing only the YjcC-EAL domain exhibited phosphodiesterase (PDE) activity; overexpression of yjcC has lower levels of cyclic di-GMP. The yjcC deletion mutant also exhibited increased reactive oxygen species (ROS) formation, oxidation damage, and oxidative stress scavenging activity. In addition, the yjcC deletion reduced capsular polysaccharide production in the bacteria, but increased the LD50 in mice, biofilm formation, and type 3 fimbriae major pilin MrkA production. Finally, a comparative transcriptome analysis showed 34 upregulated and 29 downregulated genes with the increased production of YjcC. The activated gene products include glutaredoxin I, thioredoxin, heat shock proteins, chaperone, and MrkHI, and proteins for energy metabolism (transporters, cell surface structure, and transcriptional regulation). In conclusion, the results of this study suggest that YjcC positively regulates the oxidative stress response and mouse virulence but negatively affects the biofilm formation and type 3 fimbriae expression by altering the c-di-GMP levels after receiving oxidative stress signaling inputs.
Collapse
Affiliation(s)
- Ching-Jou Huang
- Institute of Molecular Medicine and Biological Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| | - Zhe-Chong Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| | - Hsi-Yuan Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| | - Hsien-Da Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| | - Hwei-Ling Peng
- Institute of Molecular Medicine and Biological Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
- Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
205
|
NO-induced biofilm dispersion in Pseudomonas aeruginosa is mediated by an MHYT domain-coupled phosphodiesterase. J Bacteriol 2013; 195:3531-42. [PMID: 23729646 DOI: 10.1128/jb.01156-12] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Dispersion is a process used by bacteria to successfully transit from a biofilm to a planktonic growth state and to spawn novel communities in new locales. Alterations in bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) levels have been shown to be associated with biofilm dispersal in a number of different bacteria. The signaling molecule nitric oxide (NO) is known to induce biofilm dispersion through stimulation of c-di-GMP-degrading phosphodiesterase (PDE) activity. However, no c-di-GMP modulating enzyme directly involved in NO-induced dispersion has yet been described in the opportunistic pathogen Pseudomonas aeruginosa. Here, we characterized MucR (PA1727) and NbdA (PA3311, NO-induced biofilm dispersion locus A), two membrane-bound proteins with identical domain organization consisting of MHYT-GGDEF-EAL, with respect to their role in NO-induced dispersion. Inactivation of mucR impaired biofilm dispersion in response to NO and glutamate, whereas inactivation of nbdA only impaired biofilm dispersion upon exposure to NO. A specific role of NbdA in NO-induced dispersion was supported by increased PDE activity, resulting in decreased c-di-GMP levels in biofilms expressing nbdA upon exposure to NO, a response that was absent in the ΔnbdA strain. Moreover, increased PDE activity was mainly due to a transcriptional activation of nbdA upon addition of NO. Biochemical analyses of recombinant protein variants lacking the membrane-anchored MHYT domain support NbdA being an active PDE. In contrast, MucR displayed both diguanylate cyclase and PDE activity in vitro, which seemed regulated in a growth-dependent manner in vivo. This is the first description of a PDE specifically involved in NO-induced biofilm dispersion in P. aeruginosa.
Collapse
|
206
|
Wang ZC, Huang CJ, Huang YJ, Wu CC, Peng HL. FimK regulation on the expression of type 1 fimbriae in Klebsiella pneumoniae CG43S3. MICROBIOLOGY-SGM 2013; 159:1402-1415. [PMID: 23704787 DOI: 10.1099/mic.0.067793-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Klebsiella pneumoniae CG43, a heavy encapsulated liver abscess isolate, mainly expresses type 3 fimbriae. Type 1 fimbriae expression was only apparent in CG43S3ΔmrkA (the type 3 fimbriae-deficient strain). The expression of type 1 fimbriae in CG43S3ΔmrkA was reduced by deleting the fimK gene, but was unaffected by removing the 3' end of fimK encoding the C-terminal EIL domain (EILfimK). Quantitative RT-PCR and promoter activity analysis showed that the putative DNA-binding region at the N terminus, but not the C-terminal EIL domain, of FimK positively affects transcription of the type 1 fimbrial major subunit, fimA. An electrophoretic mobility shift assay demonstrated that the recombinant FimK could specifically bind to fimS, which is located upstream of fimA and contains a vegetative promoter for the fim operon, also reflecting possible transcriptional regulation. EILfimK was shown to encode a functional phosphodiesterase (PDE) via enhancing motility in Escherichia coli JM109 and in vitro using PDE activity assays. Moreover, EILfimK exhibited higher PDE activity than FimK, implying that the N-terminal DNA-binding domain may negatively affect the PDE activity of FimK. FimA expression was detected in CG43S3 expressing EILfimK or AILfimK, suggesting that FimA expression is not directly influenced by the c-di-GMP level. In summary, FimK influences type 1 fimbriation by binding to fimS at the N-terminal domain, and thereafter, the altered protein structure may activate C-terminal PDE activity to reduce the intracellular c-di-GMP level.
Collapse
Affiliation(s)
- Zhe-Chong Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| | - Ching-Jou Huang
- Institute of Molecular Medicine and Bioengineering, School of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| | - Ying-Jung Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| | - Chien-Chen Wu
- Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| | - Hwei-Ling Peng
- Institute of Molecular Medicine and Bioengineering, School of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China.,Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| |
Collapse
|
207
|
Abstract
The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field.
Collapse
Affiliation(s)
- Hannah H. Tuson
- Department of Biochemistry, University of Wisconsin-Madison, Madison,
WI 53706
| | - Douglas B. Weibel
- Department of Biochemistry, University of Wisconsin-Madison, Madison,
WI 53706
- Department of Biomedical Engineering, University of Wisconsin-Madison,
Madison, WI 53706
| |
Collapse
|
208
|
Guttenplan SB, Kearns DB. Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev 2013; 37:849-71. [PMID: 23480406 DOI: 10.1111/1574-6976.12018] [Citation(s) in RCA: 410] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/07/2013] [Accepted: 02/07/2013] [Indexed: 11/30/2022] Open
Abstract
Many bacteria swim in liquid or swarm over solid surfaces by synthesizing rotary flagella. The same bacteria that are motile also commonly form nonmotile multicellular aggregates called biofilms. Biofilms are an important part of the lifestyle of pathogenic bacteria, and it is assumed that there is a motility-to-biofilm transition wherein the inhibition of motility promotes biofilm formation. The transition is largely inferred from regulatory mutants that reveal the opposite regulation of the two phenotypes. Here, we review the regulation of motility during biofilm formation in Bacillus, Pseudomonas, Vibrio, and Escherichia, and we conclude that the motility-to-biofilm transition, if necessary, likely involves two steps. In the short term, flagella are functionally regulated to either inhibit rotation or modulate the basal flagellar reversal frequency. Over the long term, flagellar gene transcription is inhibited and in the absence of de novo synthesis, flagella are diluted to extinction through growth. Both short-term and long-term motility inhibition is likely important to stabilize cell aggregates and optimize resource investment. We emphasize the newly discovered flagellar functional regulators and speculate that others await discovery in the context of biofilm formation.
Collapse
|
209
|
Exoprotein production correlates with morphotype changes of nonmotile Shewanella oneidensis mutants. J Bacteriol 2013; 195:1463-74. [PMID: 23335418 DOI: 10.1128/jb.02187-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We report a previously undescribed mechanism for the rugose morphotype in Shewanella oneidensis, a research model for investigating redox transformations of environmental contaminants. Bacteria may form smooth or rugose colonies on agar plates. In general, conversion from the smooth to rugose colony morphotype is attributed to increased production of exopolysaccharide (EPS). In this work, we discovered that aflagellate S. oneidensis mutants grew into rugose colonies, whereas those with nonfunctional flagellar filaments remained smooth. EPS production was not altered in either case, but mutants with the rugose morphotype showed significantly reduced exoprotein secretion. The idea that exoproteins at a reduced level correlate with rugosity gained support from smooth suppressor strains of an aflagellate rugose fliD (encoding the capping protein) mutant, which restored the exoprotein level to the levels of the wild-type and mutant strains with a smooth morphotype. Further analyses revealed that SO1072 (a putative GlcNAc-binding protein) was one of the highly upregulated exoproteins in these suppressor strains. Most intriguingly, this study identified a compensatory mechanism of SO1072 to flagellins possibly mediated by bis-(3'-5')-cyclic dimeric GMP.
Collapse
|
210
|
Abstract
Movement over an agar surface via swarming motility is subject to formidable challenges not encountered during swimming. Bacteria display a great deal of flexibility in coping with these challenges, which include attracting water to the surface, overcoming frictional forces, and reducing surface tension. Bacteria that swarm on "hard" agar surfaces (robust swarmers) display a hyperflagellated and hyperelongated morphology. Bacteria requiring a "softer" agar surface (temperate swarmers) do not exhibit such a dramatic morphology. For polarly flagellated robust swarmers, there is good evidence that restriction of flagellar rotation somehow signals the induction of a large number of lateral flagella, but this scenario is apparently not relevant to temperate swarmers. Swarming bacteria can be further subdivided by their requirement for multiple stators (Mot proteins) or a stator-associated protein (FliL), secretion of essential polysaccharides, cell density-dependent gene regulation including surfactant synthesis, a functional chemotaxis signaling pathway, appropriate cyclic (c)-di-GMP levels, induction of virulence determinants, and various nutritional requirements such as iron limitation or nitrate availability. Swarming strategies are as diverse as the bacteria that utilize them. The strength of these numerous designs stems from the vantage point they offer for understanding mechanisms for effective colonization of surface niches, acquisition of pathogenic potential, and identification of environmental signals that regulate swarming. The signature swirling and streaming motion within a swarm is an interesting phenomenon in and of itself, an emergent behavior with properties similar to flocking behavior in diverse systems, including birds and fish, providing a convenient new avenue for modeling such behavior.
Collapse
|
211
|
Respiratory pathogens adopt a chronic lifestyle in response to bile. PLoS One 2012; 7:e45978. [PMID: 23049911 PMCID: PMC3458808 DOI: 10.1371/journal.pone.0045978] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/27/2012] [Indexed: 11/19/2022] Open
Abstract
Chronic respiratory infections are a major cause of morbidity and mortality, most particularly in Cystic Fibrosis (CF) patients. The recent finding that gastro-esophageal reflux (GER) frequently occurs in CF patients led us to investigate the impact of bile on the behaviour of Pseudomonas aeruginosa and other CF-associated respiratory pathogens. Bile increased biofilm formation, Type Six Secretion, and quorum sensing in P. aeruginosa, all of which are associated with the switch from acute to persistent infection. Furthermore, bile negatively influenced Type Three Secretion and swarming motility in P. aeruginosa, phenotypes associated with acute infection. Bile also modulated biofilm formation in a range of other CF-associated respiratory pathogens, including Burkholderia cepacia and Staphylococcus aureus. Therefore, our results suggest that GER-derived bile may be a host determinant contributing to chronic respiratory infection.
Collapse
|
212
|
Petrova OE, Schurr JR, Schurr MJ, Sauer K. Microcolony formation by the opportunistic pathogen Pseudomonas aeruginosa requires pyruvate and pyruvate fermentation. Mol Microbiol 2012; 86:819-35. [PMID: 22931250 DOI: 10.1111/mmi.12018] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2012] [Indexed: 12/30/2022]
Abstract
A hallmark of the biofilm architecture is the presence of microcolonies. However, little is known about the underlying mechanisms governing microcolony formation. In the pathogen Pseudomonas aeruginosa, microcolony formation is dependent on the two-component regulator MifR, with mifR mutant biofilms exhibiting an overall thin structure lacking microcolonies, and overexpression of mifR resulting in hyper-microcolony formation. Using global transcriptomic and proteomic approaches, we demonstrate that microcolony formation is associated with stressful, oxygen-limiting but electron-rich conditions, as indicated by the activation of stress response mechanisms and anaerobic and fermentative processes, in particular pyruvate fermentation. Inactivation of genes involved in pyruvate utilization including uspK, acnA and ldhA abrogated microcolony formation in a manner similar to mifR inactivation. Moreover, depletion of pyruvate from the growth medium impaired biofilm and microcolony formation, while addition of pyruvate significantly increased microcolony formation. Addition of pyruvate to or expression of mifR in lactate dehydrogenase (ldhA) mutant biofilms did not restore microcolony formation, while addition of pyruvate partly restored microcolony formation in mifR mutant biofilms. In contrast, expression of ldhA in mifR::Mar fully restored microcolony formation by this mutant strain. Our findings indicate the fermentative utilization of pyruvate to be a microcolony-specific adaptation of the P. aeruginosa biofilm environment.
Collapse
Affiliation(s)
- Olga E Petrova
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA
| | | | | | | |
Collapse
|
213
|
Caly DL, Coulthurst SJ, Geoghegan JA, Malone JG, Ryan RP. Socializing, networking and development: a report from the second 'Young Microbiologists Symposium on Microbe Signalling, Organization and Pathogenesis'. Mol Microbiol 2012; 86:501-12. [PMID: 22934780 DOI: 10.1111/mmi.12016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2012] [Indexed: 11/30/2022]
Abstract
In mid-June, the second Young Microbiologists Symposium took place under the broad title of 'Microbe signalling, organization and pathogenesis' on the picturesque campus of University College Cork, Ireland. The symposium attracted 150 microbiologists from 15 different countries. The key feature of this meeting was that it was specifically aimed at providing a platform for junior scientists to present their work to a broad audience. The meeting was principally supported by Science Foundation Ireland with further backing from the Society for General Microbiology, the American Society for Microbiology and the European Molecular Biology Organization. Sessions focused on microbial gene expression, biogenesis, pathogenicity and host interaction. In this MicroMeeting report, we highlight some of the most significant advances and exciting developments reported during various talks and poster presentations given by the young and talented microbiologists.
Collapse
Affiliation(s)
- Delphine L Caly
- Department of Microbiology, BioSciences Institute, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
214
|
PAS domain residues and prosthetic group involved in BdlA-dependent dispersion response by Pseudomonas aeruginosa biofilms. J Bacteriol 2012; 194:5817-28. [PMID: 22923587 DOI: 10.1128/jb.00780-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Biofilm dispersion by Pseudomonas aeruginosa in response to environmental cues is dependent on the cytoplasmic BdlA protein harboring two sensory PAS domains and a chemoreceptor domain, TarH. The closest known and previously characterized BdlA homolog is the flavin adenine dinucleotide (FAD)-binding Aer, the redox potential sensor and aerotaxis transducer in Escherichia coli. Here, we made use of alanine replacement mutagenesis of the BdlA PAS domain residues previously demonstrated to be essential for aerotaxis in Aer to determine whether BdlA is a potential sensory protein. Five substitutions (D14A, N23A, W60A, I109A, and W182A) resulted in a null phenotype for dispersion. One protein, the BdlA protein with the G31A mutation (BdlA-G31A), transmitted a constant signal-on bias as it rendered P. aeruginosa biofilms hyperdispersive. The hyperdispersive phenotype correlated with increased interaction of BdlA-G31A with the phosphodiesterase DipA under biofilm growth conditions, resulting in increased phosphodiesterase activity and reduced biofilm biomass accumulation. We furthermore demonstrate that BdlA is a heme-binding protein. None of the BdlA protein variants analyzed led to a loss of the heme prosthetic group. The N-terminal PASa domain was identified as the heme-binding domain of BdlA, with BdlA-dependent nutrient-induced dispersion requiring the PASa domain. The findings suggest that BdlA plays a role in intracellular sensing of dispersion-inducing conditions and together with DipA forms a regulatory network that modulates an intracellular cyclic d-GMP (c-di-GMP) pool to enable dispersion.
Collapse
|
215
|
Mavrodi DV, Parejko JA, Mavrodi OV, Kwak YS, Weller DM, Blankenfeldt W, Thomashow LS. Recent insights into the diversity, frequency and ecological roles of phenazines in fluorescent Pseudomonas spp. Environ Microbiol 2012; 15:675-86. [PMID: 22882648 DOI: 10.1111/j.1462-2920.2012.02846.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phenazine compounds represent a large class of bacterial metabolites that are produced by some fluorescent Pseudomonas spp. and a few other bacterial genera. Phenazines were first noted in the scientific literature over 100 years ago, but for a long time were considered to be pigments of uncertain function. Following evidence that phenazines act as virulence factors in the opportunistic human and animal pathogen Pseudomonas aeruginosa and are actively involved in the suppression of plant pathogens, interest in these compounds has broadened to include investigations of their genetics, biosynthesis, activity as electron shuttles, and contribution to the ecology and physiology of the cells that produce them. This minireview highlights some recent and exciting insights into the diversity, frequency and ecological roles of phenazines produced by fluorescent Pseudomonas spp.
Collapse
Affiliation(s)
- Dmitri V Mavrodi
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA.
| | | | | | | | | | | | | |
Collapse
|
216
|
Minor pilins of the type IV pilus system participate in the negative regulation of swarming motility. J Bacteriol 2012; 194:5388-403. [PMID: 22865844 DOI: 10.1128/jb.00899-12] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa exhibits distinct surface-associated behaviors, including biofilm formation, flagellum-mediated swarming motility, and type IV pilus-driven twitching. Here, we report a role for the minor pilins, PilW and PilX, components of the type IV pilus assembly machinery, in the repression of swarming motility. Mutating either the pilW or pilX gene alleviates the inhibition of swarming motility observed for strains with elevated levels of the intracellular signaling molecule cyclic di-GMP (c-di-GMP) due to loss of BifA, a c-di-GMP-degrading phosphodiesterase. Blocking PilD peptidase-mediated processing of PilW and PilX renders the unprocessed proteins defective for pilus assembly but still functional in c-di-GMP-mediated swarming repression, indicating our ability to separate these functions. Strains with mutations in pilW or pilX also fail to exhibit the increase in c-di-GMP levels observed when wild-type (WT) or bifA mutant cells are grown on a surface. We also provide data showing that c-di-GMP levels are increased upon PilY1 overexpression in surface-grown cells and that this c-di-GMP increase does not occur in the absence of the SadC diguanylate cyclase. Increased levels of endogenous PilY1, PilX, and PilA are observed when cells are grown on a surface compared to liquid growth, linking surface growth and enhanced signaling via SadC. Our data support a model wherein PilW, PilX, and PilY1, in addition to their role(s) in type IV pilus biogenesis, function to repress swarming via modulation of intracellular c-di-GMP levels. By doing so, these pilus assembly proteins contribute to P. aeruginosa's ability to coordinately regulate biofilm formation with its two surface motility systems.
Collapse
|
217
|
Abstract
Cyclic di-GMP (c-di-GMP) is a second messenger that regulates diverse cellular processes in bacteria, including motility, biofilm formation, cell-cell signaling, and host colonization. Studies of c-di-GMP signaling have chiefly focused on Gram-negative bacteria. Here, we investigated c-di-GMP signaling in the Gram-positive bacterium Bacillus subtilis by constructing deletion mutations in genes predicted to be involved in the synthesis, breakdown, or response to the second messenger. We found that a putative c-di-GMP-degrading phosphodiesterase, YuxH, and a putative c-di-GMP receptor, YpfA, had strong influences on motility and that these effects depended on sequences similar to canonical EAL and RxxxR-D/NxSxxG motifs, respectively. Evidence indicates that YpfA inhibits motility by interacting with the flagellar motor protein MotA and that yuxH is under the negative control of the master regulator Spo0A∼P. Based on these findings, we propose that YpfA inhibits motility in response to rising levels of c-di-GMP during entry into stationary phase due to the downregulation of yuxH by Spo0A∼P. We also present evidence that YpfA has a mild influence on biofilm formation. In toto, our results demonstrate the existence of a functional c-di-GMP signaling system in B. subtilis that directly inhibits motility and directly or indirectly influences biofilm formation.
Collapse
|
218
|
Wang KC, Hsu YH, Huang YN, Yeh KS. A previously uncharacterized gene stm0551 plays a repressive role in the regulation of type 1 fimbriae in Salmonella enterica serotype Typhimurium. BMC Microbiol 2012; 12:111. [PMID: 22716649 PMCID: PMC3487979 DOI: 10.1186/1471-2180-12-111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/07/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Salmonella enterica serotype Typhimurium produces surface-associated fimbriae that facilitate adherence of the bacteria to a variety of cells and tissues. Type 1 fimbriae with binding specificity to mannose residues are the most commonly found fimbrial type. In vitro, static-broth culture favors the growth of S. Typhimurium with type 1 fimbriae, whereas non-type 1 fimbriate bacteria are obtained by culture on solid-agar media. Previous studies demonstrated that the phenotypic expression of type 1 fimbriae is the result of the interaction and cooperation of the regulatory genes fimZ, fimY, fimW, and fimU within the fim gene cluster. Genome sequencing revealed a novel gene, stm0551, located between fimY and fimW that encodes an 11.4-kDa putative phosphodiesterase specific for the bacterial second messenger cyclic-diguanylate monophosphate (c-di-GMP). The role of stm0551 in the regulation of type 1 fimbriae in S. Typhimurium remains unclear. RESULTS A stm0551-deleted stain constructed by allelic exchange constitutively produced type 1 fimbriae in both static-broth and solid-agar medium conditions. Quantative RT-PCR revealed that expression of the fimbrial major subunit gene, fimA, and one of the regulatory genes, fimZ, were comparably increased in the stm0551-deleted strain compared with those of the parental strain when grown on the solid-agar medium, a condition that normally inhibits expression of type 1 fimbriae. Following transformation with a plasmid possessing the coding sequence of stm0551, expression of fimA and fimZ decreased in the stm0551 mutant strain in both culture conditions, whereas transformation with the control vector pACYC184 relieved this repression. A purified STM0551 protein exhibited a phosphodiesterase activity in vitro while a point mutation in the putative EAL domain, substituting glutamic acid (E) with alanine (A), of STM0551 or a FimY protein abolished this activity. CONCLUSIONS The finding that the stm0551 gene plays a negative regulatory role in the regulation of type 1 fimbriae in S. Typhimurium has not been reported previously. The possibility that degradation of c-di-GMP is a key step in the regulation of type 1 fimbriae warrants further investigation.
Collapse
Affiliation(s)
- Ke-Chuan Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taiwan
| | | | | | | |
Collapse
|
219
|
Pseudomonas aeruginosa exopolysaccharide Psl promotes resistance to the biofilm inhibitor polysorbate 80. Antimicrob Agents Chemother 2012; 56:4112-22. [PMID: 22585230 DOI: 10.1128/aac.00373-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Polysorbate 80 (PS80) is a nonionic surfactant and detergent that inhibits biofilm formation by Pseudomonas aeruginosa at concentrations as low as 0.001% and is well tolerated in human tissues. However, certain clinical and laboratory strains (PAO1) of P. aeruginosa are able to form biofilms in the presence of PS80. To better understand this resistance, we performed transposon mutagenesis with a PS80-resistant clinical isolate, PA738. This revealed that mutation of algC rendered PA738 sensitive to PS80 biofilm inhibition. AlgC contributes to the biosynthesis of the exopolysaccharides Psl and alginate, as well as lipopolysaccharide and rhamnolipid. Analysis of mutations downstream of AlgC in these biosynthetic pathways established that disruption of the psl operon was sufficient to render the PA738 and PAO1 strains sensitive to PS80-mediated biofilm inhibition. Increased levels of Psl production in the presence of arabinose in a strain with an arabinose-inducible psl promoter were correlated with increased biofilm formation in PS80. In P. aeruginosa strains MJK8 and ZK2870, known to produce both Pel and Psl, disruption of genes in the psl but not the pel operon conferred susceptibility to PS80-mediated biofilm inhibition. The laboratory strain PA14 does not produce Psl and does not form biofilms in PS80. However, when PA14 was transformed with a cosmid containing the psl operon, it formed biofilms in the presence of PS80. Taken together, these data suggest that production of the exopolysaccharide Psl by P. aeruginosa promotes resistance to the biofilm inhibitor PS80.
Collapse
|
220
|
The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion. J Bacteriol 2012; 194:2904-15. [PMID: 22493016 DOI: 10.1128/jb.05346-11] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although little is known regarding the mechanism of biofilm dispersion, it is becoming clear that this process coincides with alteration of cyclic di-GMP (c-di-GMP) levels. Here, we demonstrate that dispersion by Pseudomonas aeruginosa in response to sudden changes in nutrient concentrations resulted in increased phosphodiesterase activity and reduction of c-di-GMP levels compared to biofilm and planktonic cells. By screening mutants inactivated in genes encoding EAL domains for nutrient-induced dispersion, we identified in addition to the previously reported ΔrbdA mutant a second mutant, the ΔdipA strain (PA5017 [dispersion-induced phosphodiesterase A]), to be dispersion deficient in response to glutamate, nitric oxide, ammonium chloride, and mercury chloride. Using biochemical and in vivo studies, we show that DipA associates with the membrane and exhibits phosphodiesterase activity but no detectable diguanylate cyclase activity. Consistent with these data, a ΔdipA mutant exhibited reduced swarming motility, increased initial attachment, and polysaccharide production but only somewhat increased biofilm formation and c-di-GMP levels. DipA harbors an N-terminal GAF (cGMP-specific phosphodiesterases, adenylyl cyclases, and FhlA) domain and two EAL motifs within or near the C-terminal EAL domain. Mutational analyses of the two EAL motifs of DipA suggest that both are important for the observed phosphodiesterase activity and dispersion, while the GAF domain modulated DipA function both in vivo and in vitro without being required for phosphodiesterase activity. Dispersion was found to require protein synthesis and resulted in increased dipA expression and reduction of c-di-GMP levels. We propose a role of DipA in enabling dispersion in P. aeruginosa biofilms.
Collapse
|
221
|
Sheng L, Pu M, Hegde M, Zhang Y, Jayaraman A, Wood TK. Interkingdom adenosine signal reduces Pseudomonas aeruginosa pathogenicity. Microb Biotechnol 2012; 5:560-72. [PMID: 22414222 PMCID: PMC3815332 DOI: 10.1111/j.1751-7915.2012.00338.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Pseudomonas aeruginosa is becoming recognized as an important pathogen in the gastrointestinal (GI) tract. Here we demonstrate that adenosine, derived from hydrolysis of ATP from the eucaryotic host, is a potent interkingdom signal in the GI tract for this pathogen. The addition of adenosine nearly abolished P. aeruginosa biofilm formation and abolished swarming by preventing production of rhamnolipids. Since the adenosine metabolite inosine did not affect biofilm formation and since a mutant unable to metabolize adenosine behaved like the wild-type strain, adenosine metabolism is not required to reduce pathogenicity. Adenosine also reduces production of the virulence factors pyocyanin, elastase, extracellular polysaccharide, siderophores and the Pseudomonas quinolone signal which led to reduced virulence with Caenorhabditis elegans. To provide insights into how adenosine reduces the virulence of P. aeruginosa, a whole-transcriptome analysis was conducted which revealed that adenosine addition represses genes similar to an iron-replete condition; however, adenosine did not directly bind Fur. Therefore, adenosine decreases P. aeruginosa pathogenicity as an interkingdom signal by causing genes related to iron acquisition to be repressed.
Collapse
Affiliation(s)
- Lili Sheng
- Department of Chemical Engineering, Texas A & M University, College Station, TX 77843-3122, USA
| | | | | | | | | | | |
Collapse
|
222
|
Sticky situations: key components that control bacterial surface attachment. J Bacteriol 2012; 194:2413-25. [PMID: 22389478 DOI: 10.1128/jb.00003-12] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The formation of bacterial biofilms is initiated by cells transitioning from the free-swimming mode of growth to a surface. This review is aimed at highlighting the common themes that have emerged in recent research regarding the key components, signals, and cues that aid in the transition and those involved in establishing a more permanent surface association during initial attachment.
Collapse
|
223
|
Pehl MJ, Jamieson WD, Kong K, Forbester JL, Fredendall RJ, Gregory GA, McFarland JE, Healy JM, Orwin PM. Genes that influence swarming motility and biofilm formation in Variovorax paradoxus EPS. PLoS One 2012; 7:e31832. [PMID: 22363744 PMCID: PMC3283707 DOI: 10.1371/journal.pone.0031832] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/12/2012] [Indexed: 11/25/2022] Open
Abstract
Background Variovorax paradoxus is an aerobic soil bacterium associated with important biodegradative processes in nature. We use V. paradoxus EPS to study multicellular behaviors on surfaces. Methodology We recovered flanking sequence from 123 clones in a Tn5 mutant library, with insertions in 29 different genes, selected based on observed surface behavior phenotypes. We identified three genes, Varpa_4665, Varpa_4680, and Varpa_5900, for further examination. These genes were cloned into pBBR1MCS2 and used to complement the insertion mutants. We also analyzed expression of Varpa_4680 and Varpa_5900 under different growth conditions by qPCR. Results The 29 genes we identified had diverse predicted functions, many in exopolysaccharide synthesis. Varpa_4680, the most commonly recovered insertion site, encodes a putative N-acetyl-L-fucosamine transferase similar to WbuB. Expression of this gene in trans complemented the mutant fully. Several unique insertions were identified in Varpa_5900, which is one of three predicted pilY1 homologs in the EPS genome. No insertions in the two other putative pilY1 homologs present in the genome were identified. Expression of Varpa_5900 altered the structure of the wild type swarm, as did disruption of the chromosomal gene. The swarming phenotype was complemented by expression of Varpa_5900 from a plasmid, but biofilm formation was not restored. Both Varpa_4680 and Varpa_5900 transcripts were downregulated in biofilms and upregulated during swarming when compared to log phase culture. We identified a putative two component system (Varpa_4664-4665) encoding a response regulator (shkR) and a sensor histidine kinase (shkS), respectively. Biofilm formation increased and swarming was strongly delayed in the Varpa_4665 (shkS) mutant. Complementation of shkS restored the biofilm phenotype but swarming was still delayed. Expression of shkR in trans suppressed biofilm formation in either genetic background, and partially restored swarming in the mutant. Conclusions The data presented here point to complex regulation of these surface behaviors.
Collapse
Affiliation(s)
- Michael J. Pehl
- Department of Biology, California State University San Bernardino, San Bernardino, California, United States of America
| | | | - Karen Kong
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Jessica L. Forbester
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Richard J. Fredendall
- Department of Biology, California State University San Bernardino, San Bernardino, California, United States of America
| | - Glenn A. Gregory
- Department of Biology, California State University San Bernardino, San Bernardino, California, United States of America
- Loma Linda University School of Dentistry, Loma Linda, California, United States of America
| | - Jacob E. McFarland
- Department of Biology, California State University San Bernardino, San Bernardino, California, United States of America
- UCSF School of Pharmacy, University of California San Francisco, San Francisco, California, United States of America
| | - Jessica M. Healy
- Department of Biology, California State University San Bernardino, San Bernardino, California, United States of America
- UCD Department of Public Health Sciences 5215 VM3A, Davis, California, United States of America
| | - Paul M. Orwin
- Department of Biology, California State University San Bernardino, San Bernardino, California, United States of America
- * E-mail:
| |
Collapse
|
224
|
Martínez-Granero F, Navazo A, Barahona E, Redondo-Nieto M, Rivilla R, Martín M. The Gac-Rsm and SadB signal transduction pathways converge on AlgU to downregulate motility in Pseudomonas fluorescens. PLoS One 2012; 7:e31765. [PMID: 22363726 PMCID: PMC3282751 DOI: 10.1371/journal.pone.0031765] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 01/13/2012] [Indexed: 12/20/2022] Open
Abstract
Flagella mediated motility in Pseudomonas fluorescens F113 is tightly regulated. We have previously shown that motility is repressed by the GacA/GacS system and by SadB through downregulation of the fleQ gene, encoding the master regulator of the synthesis of flagellar components, including the flagellin FliC. Here we show that both regulatory pathways converge in the regulation of transcription and possibly translation of the algU gene, which encodes a sigma factor. AlgU is required for multiple functions, including the expression of the amrZ gene which encodes a transcriptional repressor of fleQ. Gac regulation of algU occurs during exponential growth and is exerted through the RNA binding proteins RsmA and RsmE but not RsmI. RNA immunoprecipitation assays have shown that the RsmA protein binds to a polycistronic mRNA encoding algU, mucA, mucB and mucD, resulting in lower levels of algU. We propose a model for repression of the synthesis of the flagellar apparatus linking extracellular and intracellular signalling with the levels of AlgU and a new physiological role for the Gac system in the downregulation of flagella biosynthesis during exponential growth.
Collapse
Affiliation(s)
| | - Ana Navazo
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Emma Barahona
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Rafael Rivilla
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
225
|
Bharati BK, Sharma IM, Kasetty S, Kumar M, Mukherjee R, Chatterji D. A full-length bifunctional protein involved in c-di-GMP turnover is required for long-term survival under nutrient starvation in Mycobacterium smegmatis. MICROBIOLOGY-SGM 2012; 158:1415-1427. [PMID: 22343354 DOI: 10.1099/mic.0.053892-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The bacterial second messenger cyclic diguanosine monophosphate (c-di-GMP) plays an important role in a variety of cellular functions, including biofilm formation, alterations in the cell surface, host colonization and regulation of bacterial flagellar motility, which enable bacteria to survive changing environmental conditions. The cellular level of c-di-GMP is regulated by a balance between opposing activities of diguanylate cyclases (DGCs) and cognate phosphodiesterases (PDE-As). Here, we report the presence and importance of a protein, MSDGC-1 (an orthologue of Rv1354c in Mycobacterium tuberculosis), involved in c-di-GMP turnover in Mycobacterium smegmatis. MSDGC-1 is a multidomain protein, having GAF, GGDEF and EAL domains arranged in tandem, and exhibits both c-di-GMP synthesis and degradation activities. Most other proteins containing GGDEF and EAL domains have been demonstrated to have either DGC or PDE-A activity. Unlike other bacteria, which harbour several copies of the protein involved in c-di-GMP turnover, M. smegmatis has a single genomic copy, deletion of which severely affects long-term survival under conditions of nutrient starvation. Overexpression of MSDGC-1 alters the colony morphology and growth profile of M. smegmatis. In order to gain insights into the regulation of the c-di-GMP level, we cloned individual domains and tested their activities. We observed a loss of activity in the separated domains, indicating the importance of full-length MSDGC-1 for controlling bifunctionality.
Collapse
Affiliation(s)
- Binod K Bharati
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | - Indra Mani Sharma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | - Sanjay Kasetty
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | - Manish Kumar
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| | - Raju Mukherjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
226
|
Chrzanowski Ł, Ławniczak Ł, Czaczyk K. Why do microorganisms produce rhamnolipids? World J Microbiol Biotechnol 2012; 28:401-19. [PMID: 22347773 PMCID: PMC3270259 DOI: 10.1007/s11274-011-0854-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 07/25/2011] [Indexed: 11/13/2022]
Abstract
We review the environmental role of rhamnolipids in terms of microbial life and activity. A large number of previous research supports the idea that these glycolipids mediate the uptake of hydrophobic substrates by bacterial cells. This feature might be of highest priority for bioremediation of spilled hydrocarbons. However, current evidence confirms that rhamnolipids primarily play a role in surface-associated modes of bacterial motility and are involved in biofilm development. This might be an explanation why no direct pattern of hydrocarbon degradation was often observed after rhamnolipids supplementation. This review gives insight into the current state of knowledge on how rhamnolipids operate in the microbial world.
Collapse
Affiliation(s)
- Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 2, 60-965 Poznan, Poland.
| | | | | |
Collapse
|
227
|
Jakovleva J, Teppo A, Velts A, Saumaa S, Moor H, Kivisaar M, Teras R. Fis regulates the competitiveness of Pseudomonas putida on barley roots by inducing biofilm formation. MICROBIOLOGY-SGM 2012; 158:708-720. [PMID: 22222498 DOI: 10.1099/mic.0.053355-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An important link between the environment and the physiological state of bacteria is the regulation of the transcription of a large number of genes by global transcription factors. One of the global regulators, Fis (factor for inversion stimulation), is well studied in Escherichia coli, but the role of this protein in pseudomonads has only been examined briefly. According to studies in Enterobacteriaceae, Fis regulates positively the flagellar movement of bacteria. In pseudomonads, flagellar movement is an important trait for the colonization of plant roots. Therefore we were interested in the role of the Fis protein in Pseudomonas putida, especially the possible regulation of the colonization of plant roots. We observed that Fis reduced the migration of P. putida onto the apices of barley roots and thereby the competitiveness of bacteria on the roots. Moreover, we observed that overexpression of Fis drastically reduced swimming motility and facilitated P. putida biofilm formation, which could be the reason for the decreased migration of bacteria onto the root apices. It is possible that the elevated expression of Fis is important in the adaptation of P. putida during colonization of plant roots by promoting biofilm formation when the migration of bacteria is no longer favoured.
Collapse
Affiliation(s)
- Julia Jakovleva
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Riia 23, 51010 Tartu, Estonia
| | - Annika Teppo
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Riia 23, 51010 Tartu, Estonia
| | - Anna Velts
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Riia 23, 51010 Tartu, Estonia
| | - Signe Saumaa
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Riia 23, 51010 Tartu, Estonia
| | - Hanna Moor
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Riia 23, 51010 Tartu, Estonia
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Riia 23, 51010 Tartu, Estonia
| | - Riho Teras
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Riia 23, 51010 Tartu, Estonia
| |
Collapse
|
228
|
O'May C, Ciobanu A, Lam H, Tufenkji N. Tannin derived materials can block swarming motility and enhance biofilm formation in Pseudomonas aeruginosa. BIOFOULING 2012; 28:1063-1076. [PMID: 23020753 DOI: 10.1080/08927014.2012.725130] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Surface-associated swarming motility is implicated in enhanced bacterial spreading and virulence, hence it follows that anti-swarming effectors could have clinical benefits. When investigating potential applications of anti-swarming materials it is important to consider whether the lack of swarming corresponds with an enhanced sessile biofilm lifestyle and resistance to antibiotics. In this study, well-defined tannins present in multiple plant materials (tannic acid (TA) and epigallocathecin gallate (EGCG)) and undefined cranberry powder (CP) were found to block swarming motility and enhance biofilm formation and resistance to tobramycin in Pseudomonas aeruginosa. In contrast, gallic acid (GA) did not completely block swarming motility and did not affect biofilm formation or tobramycin resistance. These data support the theory that nutritional conditions can elicit an inverse relationship between swarming motility and biofilm formation capacities. Although anti-swarmers exhibit the potential to yield clinical benefits, it is important to be aware of possible implications regarding biofilm formation and antibiotic resistance.
Collapse
Affiliation(s)
- Che O'May
- Department of Chemical Engineering, McGill University, Montreal, Canada
| | | | | | | |
Collapse
|
229
|
Cyclic dimeric GMP-mediated decisions in surface-grown Vibrio parahaemolyticus: a different kind of motile-to-sessile transition. J Bacteriol 2011; 194:911-3. [PMID: 22194446 DOI: 10.1128/jb.06695-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
230
|
Wei Q, Tarighi S, Dötsch A, Häussler S, Müsken M, Wright VJ, Cámara M, Williams P, Haenen S, Boerjan B, Bogaerts A, Vierstraete E, Verleyen P, Schoofs L, Willaert R, De Groote VN, Michiels J, Vercammen K, Crabbé A, Cornelis P. Phenotypic and genome-wide analysis of an antibiotic-resistant small colony variant (SCV) of Pseudomonas aeruginosa. PLoS One 2011; 6:e29276. [PMID: 22195037 PMCID: PMC3240657 DOI: 10.1371/journal.pone.0029276] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 11/23/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Small colony variants (SCVs) are slow-growing bacteria, which often show increased resistance to antibiotics and cause latent or recurrent infections. It is therefore important to understand the mechanisms at the basis of this phenotypic switch. METHODOLOGY/PRINCIPAL FINDINGS One SCV (termed PAO-SCV) was isolated, showing high resistance to gentamicin and to the cephalosporine cefotaxime. PAO-SCV was prone to reversion as evidenced by emergence of large colonies with a frequency of 10(-5) on media without antibiotics while it was stably maintained in presence of gentamicin. PAO-SCV showed a delayed growth, defective motility, and strongly reduced levels of the quorum sensing Pseudomonas quinolone signal (PQS). Whole genome expression analysis further suggested a multi-layered antibiotic resistance mechanism, including simultaneous over-expression of two drug efflux pumps (MexAB-OprM, MexXY-OprM), the LPS modification operon arnBCADTEF, and the PhoP-PhoQ two-component system. Conversely, the genes for the synthesis of PQS were strongly down-regulated in PAO-SCV. Finally, genomic analysis revealed the presence of mutations in phoP and phoQ genes as well as in the mexZ gene encoding a repressor of the mexXY and mexAB-oprM genes. Only one mutation occurred only in REV, at nucleotide 1020 of the tufA gene, a paralog of tufB, both encoding the elongation factor Tu, causing a change of the rarely used aspartic acid codon GAU to the more common GAC, possibly causing an increase of tufA mRNA translation. High expression of phoP and phoQ was confirmed for the SCV variant while the revertant showed expression levels reduced to wild-type levels. CONCLUSIONS By combining data coming from phenotypic, gene expression and proteome analysis, we could demonstrate that resistance to aminoglycosides in one SCV mutant is multifactorial including overexpression of efflux mechanisms, LPS modification and is accompanied by a drastic down-regulation of the Pseudomonas quinolone signal quorum sensing system.
Collapse
Affiliation(s)
- Qing Wei
- Research Group Microbiology, VIB Department of Structural Biology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Saeed Tarighi
- Research Group Microbiology, VIB Department of Structural Biology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andreas Dötsch
- Chronic Pseudomonas Infections, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Susanne Häussler
- Chronic Pseudomonas Infections, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Twincore, Center for Experimental and Clinical Infection Research, Helmholtz Center for Infection Research and the Medical School Hannover, Hannover, Germany
| | - Mathias Müsken
- Chronic Pseudomonas Infections, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Twincore, Center for Experimental and Clinical Infection Research, Helmholtz Center for Infection Research and the Medical School Hannover, Hannover, Germany
| | - Victoria J. Wright
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Miguel Cámara
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Paul Williams
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Steven Haenen
- Functional Genomics and Proteomics, Faculty of Sciences, K.U. Leuven, Leuven, Belgium
| | - Bart Boerjan
- Functional Genomics and Proteomics, Faculty of Sciences, K.U. Leuven, Leuven, Belgium
| | - Annelies Bogaerts
- Functional Genomics and Proteomics, Faculty of Sciences, K.U. Leuven, Leuven, Belgium
| | - Evy Vierstraete
- Functional Genomics and Proteomics, Faculty of Sciences, K.U. Leuven, Leuven, Belgium
| | - Peter Verleyen
- Functional Genomics and Proteomics, Faculty of Sciences, K.U. Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics, Faculty of Sciences, K.U. Leuven, Leuven, Belgium
| | - Ronnie Willaert
- Structural Biology Brussels, VIB Department of Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Jan Michiels
- Centre of Microbial and Plant Genetics, K.U. Leuven, Heverlee, Belgium
| | - Ken Vercammen
- Research Group Microbiology, VIB Department of Structural Biology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Aurélie Crabbé
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Pierre Cornelis
- Research Group Microbiology, VIB Department of Structural Biology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- * E-mail:
| |
Collapse
|
231
|
Ha DG, Merritt JH, Hampton TH, Hodgkinson JT, Janecek M, Spring DR, Welch M, O'Toole GA. 2-Heptyl-4-quinolone, a precursor of the Pseudomonas quinolone signal molecule, modulates swarming motility in Pseudomonas aeruginosa. J Bacteriol 2011; 193:6770-80. [PMID: 21965567 PMCID: PMC3232867 DOI: 10.1128/jb.05929-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/20/2011] [Indexed: 01/13/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen capable of group behaviors, including biofilm formation and swarming motility. These group behaviors are regulated by both the intracellular signaling molecule c-di-GMP and acylhomoserine lactone quorum-sensing systems. Here, we show that the Pseudomonas quinolone signal (PQS) system also contributes to the regulation of swarming motility. Specifically, our data indicate that 2-heptyl-4-quinolone (HHQ), a precursor of PQS, likely induces the production of the phenazine-1-carboxylic acid (PCA), which in turn acts via an as-yet-unknown downstream mechanism to repress swarming motility. We show that this HHQ- and PCA-dependent swarming repression is apparently independent of changes in global levels of c-di-GMP, suggesting complex regulation of this group behavior.
Collapse
Affiliation(s)
- Dae-Gon Ha
- Dartmouth Medical School, Department of Microbiology and Immunology, Hanover, New Hampshire 03755
| | - Judith H. Merritt
- Dartmouth Medical School, Department of Microbiology and Immunology, Hanover, New Hampshire 03755
| | - Thomas H. Hampton
- Dartmouth Medical School, Department of Microbiology and Immunology, Hanover, New Hampshire 03755
| | - James T. Hodgkinson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - Matej Janecek
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David R. Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - George A. O'Toole
- Dartmouth Medical School, Department of Microbiology and Immunology, Hanover, New Hampshire 03755
| |
Collapse
|
232
|
Bijtenhoorn P, Mayerhofer H, Müller-Dieckmann J, Utpatel C, Schipper C, Hornung C, Szesny M, Grond S, Thürmer A, Brzuszkiewicz E, Daniel R, Dierking K, Schulenburg H, Streit WR. A novel metagenomic short-chain dehydrogenase/reductase attenuates Pseudomonas aeruginosa biofilm formation and virulence on Caenorhabditis elegans. PLoS One 2011; 6:e26278. [PMID: 22046268 PMCID: PMC3202535 DOI: 10.1371/journal.pone.0026278] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 09/23/2011] [Indexed: 11/18/2022] Open
Abstract
In Pseudomonas aeruginosa, the expression of a number of virulence factors, as well as biofilm formation, are controlled by quorum sensing (QS). N-Acylhomoserine lactones (AHLs) are an important class of signaling molecules involved in bacterial QS and in many pathogenic bacteria infection and host colonization are AHL-dependent. The AHL signaling molecules are subject to inactivation mainly by hydrolases (Enzyme Commission class number EC 3) (i.e. N-acyl-homoserine lactonases and N-acyl-homoserine-lactone acylases). Only little is known on quorum quenching mechanisms of oxidoreductases (EC 1). Here we report on the identification and structural characterization of the first NADP-dependent short-chain dehydrogenase/reductase (SDR) involved in inactivation of N-(3-oxo-dodecanoyl)-L-homoserine lactone (3-oxo-C(12)-HSL) and derived from a metagenome library. The corresponding gene was isolated from a soil metagenome and designated bpiB09. Heterologous expression and crystallographic studies established BpiB09 as an NADP-dependent reductase. Although AHLs are probably not the native substrate of this metagenome-derived enzyme, its expression in P. aeruginosa PAO1 resulted in significantly reduced pyocyanin production, decreased motility, poor biofilm formation and absent paralysis of Caenorhabditis elegans. Furthermore, a genome-wide transcriptome study suggested that the level of lasI and rhlI transcription together with 36 well known QS regulated genes was significantly (≥10-fold) affected in P. aeruginosa strains expressing the bpiB09 gene in pBBR1MCS-5. Thus AHL oxidoreductases could be considered as potent tools for the development of quorum quenching strategies.
Collapse
Affiliation(s)
- Patrick Bijtenhoorn
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | | | | | - Christian Utpatel
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Christina Schipper
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Claudia Hornung
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Matthias Szesny
- Institut für Organische Chemie, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Stephanie Grond
- Institut für Organische Chemie, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Andrea Thürmer
- Laboratorium für Genomanalyse, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Elzbieta Brzuszkiewicz
- Laboratorium für Genomanalyse, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Laboratorium für Genomanalyse, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Katja Dierking
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Wolfgang R. Streit
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
- * E-mail:
| |
Collapse
|
233
|
SagS contributes to the motile-sessile switch and acts in concert with BfiSR to enable Pseudomonas aeruginosa biofilm formation. J Bacteriol 2011; 193:6614-28. [PMID: 21949078 DOI: 10.1128/jb.00305-11] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The interaction of Pseudomonas aeruginosa with surfaces has been described as a two-stage process requiring distinct signaling events and the reciprocal modulation of small RNAs (sRNAs). However, little is known regarding the relationship between sRNA-modulating pathways active under planktonic or surface-associated growth conditions. Here, we demonstrate that SagS (PA2824), the cognate sensor of HptB, links sRNA-modulating activities via the Gac/HptB/Rsm system postattachment to the signal transduction network BfiSR, previously demonstrated to be required for the development of P. aeruginosa. Consistent with the role of SagS in the GacA-dependent HtpB signaling pathway, inactivation of sagS resulted in hyperattachment, an HptB-dependent increase in rsmYZ, increased Psl polysaccharide production, and increased virulence. Moreover, sagS inactivation rescued attachment but abrogated biofilm formation by the ΔgacA and ΔhptB mutant strains. The ΔsagS strain was impaired in biofilm formation at a stage similar to that of the previously described two-component system BfiSR. Expression of bfiR but not bfiS restored ΔsagS biofilm formation independently of rsmYZ. We demonstrate that SagS interacts directly with BfiS and only indirectly with BfiR, with the direct and specific interaction between these two membrane-bound sensors resulting in the modulation of the phosphorylation state of BfiS in a growth-mode-dependent manner. SagS plays an important role in P. aeruginosa virulence in a manner opposite to that of BfiS. Our findings indicate that SagS acts as a switch by linking the GacA-dependent sensory system under planktonic conditions to the suppression of sRNAs postattachment and to BfiSR, required for the development of P. aeruginosa biofilms, in a sequential and stage-specific manner.
Collapse
|
234
|
Abstract
Quorum sensing (QS) is the regulation of gene expression in response to the concentration of small signal molecules, and its inactivation has been suggested to have great potential to attenuate microbial virulence. It is assumed that unlike antimicrobials, inhibition of QS should cause less Darwinian selection pressure for bacterial resistance. Using the opportunistic pathogen Pseudomonas aeruginosa, we demonstrate here that bacterial resistance arises rapidly to the best-characterized compound that inhibits QS (brominated furanone C-30) due to mutations that increase the efflux of C-30. Critically, the C-30-resistant mutant mexR was more pathogenic to Caenorhabditis elegans in the presence of C-30, and the same mutation arises in bacteria responsible for chronic cystic fibrosis infections. Therefore, bacteria may evolve resistance to many new pharmaceuticals thought impervious to resistance.
Collapse
|
235
|
Khan W, Bernier SP, Kuchma SL, Hammond JH, Hasan F, O'Toole GA. Aminoglycoside resistance of Pseudomonas aeruginosa biofilms modulated by extracellular polysaccharide. Int Microbiol 2011; 13:207-12. [PMID: 21404215 DOI: 10.2436/20.1501.01.127] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that produces sessile communities known as biofilms that are highly resistant to antibiotic treatment. Limited information is available on the exact role of various components of the matrix in biofilm-associated antibiotic resistance. Here we show that the presence of extracellular polysaccharide reduced the extent of biofilm-associated antibiotic resistance for one class of antibiotics. Minimal bactericidal concentration (MBC) for planktonic and biofilm cells of P. aeruginosa PA14 was measured using a 96 well microtiter plate assay. The MBC of biofilm-grown ΔpelA mutant, which does not produce the Pel polysaccharide, was 4-fold higher for tobramycin and gentamicin, and unchanged for ΔbifA mutant, which overproduces Pel, when compared to the wild type. Biofilms of pelA mutants in two clinical isolates of P. aeruginosa showed 4- and 8-fold higher MBC for tobramycin as compared to wild type. There was no difference in the biofilm resistance of any of these strains when tested with fluoroquinolones. This work forms a basis for future studies revealing the mechanisms of biofilm-associated antibiotic resistance to aminoglycoside antibiotics by P. aeruginosa.
Collapse
Affiliation(s)
- Wajiha Khan
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03775, USA
| | | | | | | | | | | |
Collapse
|
236
|
Bernier SP, Ha DG, Khan W, Merritt JH, O’Toole GA. Modulation of Pseudomonas aeruginosa surface-associated group behaviors by individual amino acids through c-di-GMP signaling. Res Microbiol 2011; 162:680-8. [PMID: 21554951 PMCID: PMC3716369 DOI: 10.1016/j.resmic.2011.04.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 04/06/2011] [Indexed: 11/19/2022]
Abstract
To colonize the cystic fibrosis lung, Pseudomonas aeruginosa establishes sessile communities referred to as biofilms. Although the signaling molecule c-di-GMP governs the transition from motile to sessile growth, the environmental signal(s) required to modulate biofilm formation remain unclear. Using relevant in vivo concentrations of the 19 amino acids previously identified in cystic fibrosis sputum, we demonstrated that arginine, ornithine, isoleucine, leucine, valine, phenylalanine and tyrosine robustly promoted biofilm formation in vitro. Among the seven biofilm-promoting amino acids, only arginine also completely repressed the ability of P. aeruginosa to swarm over semi-solid surfaces, suggesting that arginine may be an environmental cue favoring a sessile lifestyle. Mutating two documented diguanylate cyclases required for biofilm formation (SadC and RoeA) reduced biofilm formation and restored swarming motility on arginine-containing medium. Growth on arginine increased the intracellular levels of c-di-GMP, and this increase was dependent on the SadC and RoeA diguanylate cyclases. Strains mutated in sadC, roeA or both also showed a reduction in biofilm formation when grown with the other biofilm-promoting amino acids. Taken together, these results suggest that amino acids can modulate biofilm formation and swarming motility, at least in part, by controlling the intracellular levels of c-di-GMP.
Collapse
Affiliation(s)
- Steve P. Bernier
- Department of Microbiology & Immunology, Dartmouth Medical School, North College St., Hanover, NH 03755, USA
| | - Dae-Gon Ha
- Department of Microbiology & Immunology, Dartmouth Medical School, North College St., Hanover, NH 03755, USA
| | - Wajiha Khan
- Department of Microbiology & Immunology, Dartmouth Medical School, North College St., Hanover, NH 03755, USA
- Microbiology Research Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Judith H. Merritt
- Department of Microbiology & Immunology, Dartmouth Medical School, North College St., Hanover, NH 03755, USA
| | - George A. O’Toole
- Department of Microbiology & Immunology, Dartmouth Medical School, North College St., Hanover, NH 03755, USA
| |
Collapse
|
237
|
Tsai YH, Wei JR, Lin CS, Chen PH, Huang S, Lin YC, Wei CF, Lu CC, Lai HC. RssAB signaling coordinates early development of surface multicellularity in Serratia marcescens. PLoS One 2011; 6:e24154. [PMID: 21887380 PMCID: PMC3162612 DOI: 10.1371/journal.pone.0024154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 08/01/2011] [Indexed: 11/18/2022] Open
Abstract
Bacteria can coordinate several multicellular behaviors in response to environmental changes. Among these, swarming and biofilm formation have attracted significant attention for their correlation with bacterial pathogenicity. However, little is known about when and where the signaling occurs to trigger either swarming or biofilm formation. We have previously identified an RssAB two-component system involved in the regulation of swarming motility and biofilm formation in Serratia marcescens. Here we monitored the RssAB signaling status within single cells by tracing the location of the translational fusion protein EGFP-RssB following development of swarming or biofilm formation. RssAB signaling is specifically activated before surface migration in swarming development and during the early stage of biofilm formation. The activation results in the release of RssB from its cognate inner membrane sensor kinase, RssA, to the cytoplasm where the downstream gene promoters are located. Such dynamic localization of RssB requires phosphorylation of this regulator. By revealing the temporal activation of RssAB signaling following development of surface multicellular behavior, our findings contribute to an improved understanding of how bacteria coordinate their lifestyle on a surface.
Collapse
Affiliation(s)
- Yu-Huan Tsai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| | - Jun-Rong Wei
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Chuan-Sheng Lin
- Department of Biochemistry and Molecular Biology, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
| | - Po-Han Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| | - Stella Huang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| | - Yu-Ching Lin
- Department of Medical Biotechnology and Laboratory Science, and Research Center for Pathogenic Bacteria, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan, Republic of China
| | - Chia-Fong Wei
- Department of Medical Biotechnology and Laboratory Science, and Research Center for Pathogenic Bacteria, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan, Republic of China
| | - Chia-Chen Lu
- Department of Respiratory Therapy, Fu Jen Catholic University, Sinjhuang, Taipei, Taiwan, Republic of China
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, and Research Center for Pathogenic Bacteria, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
238
|
Brucella melitensis cyclic di-GMP phosphodiesterase BpdA controls expression of flagellar genes. J Bacteriol 2011; 193:5683-91. [PMID: 21856843 DOI: 10.1128/jb.00428-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Brucella melitensis encounters a variety of conditions and stimuli during its life cycle--including environmental growth, intracellular infection, and extracellular dissemination--which necessitates flexibility of bacterial signaling to promote virulence. Cyclic-di-GMP is a bacterial secondary signaling molecule that plays an important role in adaptation to changing environments and altering virulence in a number of bacteria. To investigate the role of cyclic-di-GMP in B. melitensis, all 11 predicted cyclic-di-GMP-metabolizing proteins were separately deleted and the effect on virulence was determined. Three of these cyclic-di-GMP-metabolizing proteins were found to alter virulence. Deletion of the bpdA and bpdB genes resulted in attenuation of virulence of the bacterium, while deletion of the cgsB gene produced a hypervirulent strain. In a Vibrio reporter system to monitor apparent alteration in levels of cyclic-di-GMP, both BpdA and BpdB displayed a phenotype consistent with cyclic-di-GMP-specific phosphodiesterases, while CgsB displayed a cyclic-di-GMP synthase phenotype. Further analysis found that deletion of bpdA resulted in a dramatic decrease in flagellar promoter activities, and a flagellar mutant showed similar phenotypes to the bpdA and bpdB mutant strains in mouse models of infection. These data indicate a potential role for regulation of flagella in Brucella melitensis via cyclic-di-GMP.
Collapse
|
239
|
Yousef-Coronado F, Soriano MI, Yang L, Molin S, Espinosa-Urgel M. Selection of hyperadherent mutants in Pseudomonas putida biofilms. Microbiology (Reading) 2011; 157:2257-2265. [DOI: 10.1099/mic.0.047787-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A number of genetic determinants required for bacterial colonization of solid surfaces and biofilm formation have been identified in different micro-organisms. There are fewer accounts of mutations that favour the transition to a sessile mode of life. Here we report the isolation of random transposon Pseudomonas putida KT2440 mutants showing increased biofilm formation, and the detailed characterization of one of them. This mutant exhibits a complex phenotype, including altered colony morphology, increased production of extracellular polymeric substances and enhanced swarming motility, along with the formation of denser and more complex biofilms than the parental strain. Sequence analysis revealed that the pleiotropic phenotype exhibited by the mutant resulted from the accumulation of two mutations: a transposon insertion, which disrupted a predicted outer membrane lipoprotein, and a point mutation in lapG, a gene involved in the turnover of the large adhesin LapA. The contribution of each alteration to the phenotype and the possibility that prolonged sessile growth results in the selection of hyperadherent mutants are discussed.
Collapse
Affiliation(s)
- Fátima Yousef-Coronado
- Center for Systems Microbiology, Technical University of Denmark, Lyngby, Denmark
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - María Isabel Soriano
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Liang Yang
- Center for Systems Microbiology, Technical University of Denmark, Lyngby, Denmark
| | - Søren Molin
- Center for Systems Microbiology, Technical University of Denmark, Lyngby, Denmark
| | - Manuel Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
240
|
Breidenstein EBM, de la Fuente-Núñez C, Hancock REW. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 2011; 19:419-26. [PMID: 21664819 DOI: 10.1016/j.tim.2011.04.005] [Citation(s) in RCA: 813] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/12/2011] [Accepted: 04/29/2011] [Indexed: 11/30/2022]
Affiliation(s)
- Elena B M Breidenstein
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
241
|
He M, Ouyang Z, Troxell B, Xu H, Moh A, Piesman J, Norgard MV, Gomelsky M, Yang XF. Cyclic di-GMP is essential for the survival of the lyme disease spirochete in ticks. PLoS Pathog 2011; 7:e1002133. [PMID: 21738477 PMCID: PMC3128128 DOI: 10.1371/journal.ppat.1002133] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 05/18/2011] [Indexed: 11/19/2022] Open
Abstract
Cyclic dimeric GMP (c-di-GMP) is a bacterial second messenger that modulates many biological processes. Although its role in bacterial pathogenesis during mammalian infection has been documented, the role of c-di-GMP in a pathogen's life cycle within a vector host is less understood. The enzootic cycle of the Lyme disease pathogen Borrelia burgdorferi involves both a mammalian host and an Ixodes tick vector. The B. burgdorferi genome encodes a single copy of the diguanylate cyclase gene (rrp1), which is responsible for c-di-GMP synthesis. To determine the role of c-di-GMP in the life cycle of B. burgdorferi, an Rrp1-deficient B. burgdorferi strain was generated. The rrp1 mutant remains infectious in the mammalian host but cannot survive in the tick vector. Microarray analyses revealed that expression of a four-gene operon involved in glycerol transport and metabolism, bb0240-bb0243, was significantly downregulated by abrogation of Rrp1. In vitro, the rrp1 mutant is impaired in growth in the media containing glycerol as the carbon source (BSK-glycerol). To determine the contribution of the glycerol metabolic pathway to the rrp1 mutant phenotype, a glp mutant, in which the entire bb0240-bb0243 operon is not expressed, was generated. Similar to the rrp1 mutant, the glp mutant has a growth defect in BSK-glycerol medium. In vivo, the glp mutant is also infectious in mice but has reduced survival in ticks. Constitutive expression of the bb0240-bb0243 operon in the rrp1 mutant fully rescues the growth defect in BSK-glycerol medium and partially restores survival of the rrp1 mutant in ticks. Thus, c-di-GMP appears to govern a catabolic switch in B. burgdorferi and plays a vital role in the tick part of the spirochetal enzootic cycle. This work provides the first evidence that c-di-GMP is essential for a pathogen's survival in its vector host.
Collapse
Affiliation(s)
- Ming He
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Zhiming Ouyang
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, Unites States of America
| | - Bryan Troxell
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Haijun Xu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Akira Moh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Joseph Piesman
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Michael V. Norgard
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, Unites States of America
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
242
|
Matilla MA, Travieso ML, Ramos JL, Ramos-González MI. Cyclic diguanylate turnover mediated by the sole GGDEF/EAL response regulator in Pseudomonas putida: its role in the rhizosphere and an analysis of its target processes. Environ Microbiol 2011; 13:1745-66. [PMID: 21554519 DOI: 10.1111/j.1462-2920.2011.02499.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
GGDEF and EAL/HD-GYP protein domains are responsible for the synthesis and hydrolysis of the bacterial secondary messenger cyclic diguanylate (c-di-GMP) through their diguanylate cyclase and phosphodiesterase activities, respectively. Forty-three genes in Pseudomonas putida KT2440 are putatively involved in the turnover of c-di-GMP. Of them only rup4959 (locus PP4959) encodes a GGDEF/EAL response regulator, which was identified in a genome wide analysis as preferentially induced while this bacterium colonizes roots and adjacent soil areas (the rhizosphere). By using fusions to reporter genes it was confirmed that the rup4959 promoter is active in the rhizosphere and inducible by corn plant root exudates and microaerobiosis. Transcription of rup4959 was strictly dependent on the alternative transcriptional factor σ(S) . The inactivation of the rup4959-4957 operon altered the expression of 22 genes in the rhizosphere and had a negative effect upon oligopeptide utilization and biofilm formation. In multicopy or when overexpressed, rup4959 enhanced adhesin LapA-dependent biofilm formation, the development of wrinkly colony morphology, and increased Calcofluor stainable exopolysaccharides (EPS). Under these conditions the inhibition of swarming motility was total and plant root tip colonization considerably less efficient, whereas swimming was partially diminished. This pleiotropic phenotype, which correlated with an increase in the global level of c-di-GMP, was not acquired with increased levels of Rup4959 catalytic mutant at GGDEF as a proof of this response regulator exhibiting diguanylate cyclase activity. A screen for mutants in putative targets of c-di-GMP led to the identification of a surface polysaccharide specific to KT2440, which is encoded by the genes cluster PP3133-PP3141, as essential for phenotypes associated with increased c-di-GMP. Cellulose and alginate were discarded as the overproduced EPS, and lipopolysaccharide (LPS) core and O-antigen were found to be essential for the development of wrinkly colony morphology.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, Granada 18008, Spain
| | | | | | | |
Collapse
|
243
|
Linares JF, Moreno R, Fajardo A, Martínez-Solano L, Escalante R, Rojo F, Martínez JL. The global regulator Crc modulates metabolism, susceptibility to antibiotics and virulence in Pseudomonas aeruginosa. Environ Microbiol 2011; 12:3196-212. [PMID: 20626455 DOI: 10.1111/j.1462-2920.2010.02292.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The capacity of a bacterial pathogen to produce a disease in a treated host depends on the former's virulence and resistance to antibiotics. Several scattered pieces of evidence suggest that these two characteristics can be influenced by bacterial metabolism. This potential relationship is particularly important upon infection of a host, a situation that demands bacteria adapt their physiology to their new environment, making use of newly available nutrients. To explore the potential cross-talk between bacterial metabolism, antibiotic resistance and virulence, a Pseudomonas aeruginosa model was used. This species is an important opportunistic pathogen intrinsically resistant to many antibiotics. The role of Crc, a global regulator that controls the metabolism of carbon sources and catabolite repression in Pseudomonas, was analysed to determine its contribution to the intrinsic antibiotic resistance and virulence of P. aeruginosa. Using proteomic analyses, high-throughput metabolic tests and functional assays, the present work shows the virulence and antibiotic resistance of this pathogen to be linked to its physiology, and to be under the control (directly or indirectly) of Crc. A P. aeruginosa strain lacking the Crc regulator showed defects in type III secretion, motility, expression of quorum sensing-regulated virulence factors, and was less virulent in a Dictyostelium discoideum model. In addition, this mutant strain was more susceptible to beta-lactams, aminoglycosides, fosfomycin and rifampin. Crc might therefore be a good target in the search for new antibiotics.
Collapse
Affiliation(s)
- Juan F Linares
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
244
|
Bobrov AG, Kirillina O, Ryjenkov DA, Waters CM, Price PA, Fetherston JD, Mack D, Goldman WE, Gomelsky M, Perry RD. Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol Microbiol 2011; 79:533-51. [PMID: 21219468 PMCID: PMC3058942 DOI: 10.1111/j.1365-2958.2010.07470.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cyclic di-GMP (c-di-GMP) is a signalling molecule that governs the transition between planktonic and biofilm states. Previously, we showed that the diguanylate cyclase HmsT and the putative c-di-GMP phosphodiesterase HmsP inversely regulate biofilm formation through control of HmsHFRS-dependent poly-β-1,6-N-acetylglucosamine synthesis. Here, we systematically examine the functionality of the genes encoding putative c-di-GMP metabolic enzymes in Yersinia pestis. We determine that, in addition to hmsT and hmsP, only the gene y3730 encodes a functional enzyme capable of synthesizing c-di-GMP. The seven remaining genes are pseudogenes or encode proteins that do not function catalytically or are not expressed. Furthermore, we show that HmsP has c-di-GMP-specific phosphodiesterase activity. We report that a mutant incapable of c-di-GMP synthesis is unaffected in virulence in plague mouse models. Conversely, an hmsP mutant, unable to degrade c-di-GMP, is defective in virulence by a subcutaneous route of infection due to poly-β-1,6-N-acetylglucosamine overproduction. This suggests that c-di-GMP signalling is not only dispensable but deleterious for Y. pestis virulence. Our results show that a key event in the evolution of Y. pestis from the ancestral Yersinia pseudotuberculosis was a significant reduction in the complexity of its c-di-GMP signalling network likely resulting from the different disease cycles of these human pathogens.
Collapse
Affiliation(s)
- Alexander G Bobrov
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
The sensor kinase CbrA is a global regulator that modulates metabolism, virulence, and antibiotic resistance in Pseudomonas aeruginosa. J Bacteriol 2010; 193:918-31. [PMID: 21169488 DOI: 10.1128/jb.00911-10] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that possesses a large arsenal of virulence factors enabling the pathogen to cause serious infections in immunocompromised patients, burn victims, and cystic fibrosis patients. CbrA is a sensor kinase that has previously been implied to play a role with its cognate response regulator CbrB in the metabolic regulation of carbon and nitrogen utilization in P. aeruginosa. Here it is demonstrated that CbrA and CbrB play an important role in various virulence and virulence-related processes of the bacteria, including swarming, biofilm formation, cytotoxicity, and antibiotic resistance. The cbrA deletion mutant was completely unable to swarm while exhibiting an increase in biofilm formation, supporting the inverse regulation of swarming and biofilm formation in P. aeruginosa. The cbrA mutant also exhibited increased cytotoxicity to human lung epithelial cells as early as 4 and 6 h postinfection. Furthermore, the cbrA mutant demonstrated increased resistance toward a variety of clinically important antibiotics, including polymyxin B, ciprofloxacin, and tobramycin. Microarray analysis revealed that under swarming conditions, CbrA regulated the expression of many genes, including phoPQ, pmrAB, arnBCADTEF, dnaK, and pvdQ, consistent with the antibiotic resistance and swarming impairment phenotypes of the cbrA mutant. Phenotypic and real-time quantitative PCR (RT-qPCR) analyses of a PA14 cbrB mutant suggested that CbrA may be modulating swarming, biofilm formation, and cytotoxicity via CbrB and that the CrcZ small RNA is likely downstream of this two-component regulator. However, as CbrB did not have a resistance phenotype, CbrA likely modulates antibiotic resistance in a manner independent of CbrB.
Collapse
|
246
|
Barahona E, Navazo A, Yousef-Coronado F, Aguirre de Cárcer D, Martínez-Granero F, Espinosa-Urgel M, Martín M, Rivilla R. Efficient rhizosphere colonization by Pseudomonas fluorescens f113 mutants unable to form biofilms on abiotic surfaces. Environ Microbiol 2010; 12:3185-95. [DOI: 10.1111/j.1462-2920.2010.02291.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
247
|
Modulation of Pseudomonas aeruginosa biofilm dispersal by a cyclic-Di-GMP phosphodiesterase with a putative hypoxia-sensing domain. Appl Environ Microbiol 2010; 76:8160-73. [PMID: 20971871 DOI: 10.1128/aem.01233-10] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa encodes many enzymes that are potentially associated with the synthesis or degradation of the widely conserved second messenger cyclic-di-GMP (c-di-GMP). In this study, we show that mutation of rbdA, which encodes a fusion protein consisting of PAS-PAC-GGDEF-EAL multidomains, results in decreased biofilm dispersal. RbdA contains a highly conserved GGDEF domain and EAL domain, which are involved in the synthesis and degradation of c-di-GMP, respectively. However, in vivo and in vitro analyses show that the full-length RbdA protein only displays phosphodiesterase activity, causing c-di-GMP degradation. Further analysis reveals that the GGDEF domain of RbdA plays a role in activating the phosphodiesterase activity of the EAL domain in the presence of GTP. Moreover, we show that deletion of the PAS domain or substitution of the key residues implicated in sensing low-oxygen stress abrogates the functionality of RbdA. Subsequent study showed that RbdA is involved in positive regulation of bacterial motility and production of rhamnolipids, which are associated with biofilm dispersal, and in negative regulation of production of exopolysaccharides, which are required for biofilm formation. These data indicate that the c-di-GMP-degrading regulatory protein RbdA promotes biofilm dispersal through its two-pronged effects on biofilm development, i.e., downregulating biofilm formation and upregulating production of the factors associated with biofilm dispersal.
Collapse
|
248
|
Tremblay J, Déziel E. Gene expression in Pseudomonas aeruginosa swarming motility. BMC Genomics 2010; 11:587. [PMID: 20961425 PMCID: PMC3091734 DOI: 10.1186/1471-2164-11-587] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 10/20/2010] [Indexed: 12/25/2022] Open
Abstract
Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14). Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center). Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to swarm center cells, tendril tip populations of a swarming colony displays general down-regulation of genes associated with virulence and up-regulation of genes involved in energy metabolism. These results allow us to propose a model where tendril tip cells function as «scouts» whose main purpose is to rapidly spread on uncolonized surfaces while swarm center population are in a state allowing a permanent settlement of the colonized area (biofilm-like).
Collapse
Affiliation(s)
- Julien Tremblay
- INRS-Institut Armand-Frappier, Laval (Québec), H7V 1B7, Canada
| | | |
Collapse
|
249
|
Merritt JH, Ha DG, Cowles KN, Lu W, Morales DK, Rabinowitz J, Gitai Z, O’Toole GA. Specific control of Pseudomonas aeruginosa surface-associated behaviors by two c-di-GMP diguanylate cyclases. mBio 2010; 1:e00183-10. [PMID: 20978535 PMCID: PMC2957078 DOI: 10.1128/mbio.00183-10] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/17/2010] [Indexed: 01/15/2023] Open
Abstract
The signaling nucleotide cyclic diguanylate (c-di-GMP) regulates the transition between motile and sessile growth in a wide range of bacteria. Understanding how microbes control c-di-GMP metabolism to activate specific pathways is complicated by the apparent multifold redundancy of enzymes that synthesize and degrade this dinucleotide, and several models have been proposed to explain how bacteria coordinate the actions of these many enzymes. Here we report the identification of a diguanylate cyclase (DGC), RoeA, of Pseudomonas aeruginosa that promotes the production of extracellular polysaccharide (EPS) and contributes to biofilm formation, that is, the transition from planktonic to surface-dwelling cells. Our studies reveal that RoeA and the previously described DGC SadC make distinct contributions to biofilm formation, controlling polysaccharide production and flagellar motility, respectively. Measurement of total cellular levels of c-di-GMP in ∆roeA and ∆sadC mutants in two different genetic backgrounds revealed no correlation between levels of c-di-GMP and the observed phenotypic output with regard to swarming motility and EPS production. Our data strongly argue against a model wherein changes in total levels of c-di-GMP can account for the specific surface-related phenotypes of P. aeruginosa.
Collapse
Affiliation(s)
- Judith H. Merritt
- Dartmouth Medical School, Department of Microbiology and Immunology, Hanover, New Hampshire, USA
| | - Dae-Gon Ha
- Dartmouth Medical School, Department of Microbiology and Immunology, Hanover, New Hampshire, USA
| | - Kimberly N. Cowles
- Princeton University, Department of Molecular Biology, Princeton, New Jersey, USA; and
| | - Wenyun Lu
- Princeton University, Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton, New Jersey, USA
| | - Diana K. Morales
- Dartmouth Medical School, Department of Microbiology and Immunology, Hanover, New Hampshire, USA
| | - Joshua Rabinowitz
- Princeton University, Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton, New Jersey, USA
| | - Zemer Gitai
- Princeton University, Department of Molecular Biology, Princeton, New Jersey, USA; and
| | - George A. O’Toole
- Dartmouth Medical School, Department of Microbiology and Immunology, Hanover, New Hampshire, USA
| |
Collapse
|
250
|
Tchigvintsev A, Xu X, Singer A, Chang C, Brown G, Proudfoot M, Cui H, Flick R, Anderson WF, Joachimiak A, Galperin MY, Savchenko A, Yakunin AF. Structural insight into the mechanism of c-di-GMP hydrolysis by EAL domain phosphodiesterases. J Mol Biol 2010; 402:524-38. [PMID: 20691189 PMCID: PMC2945410 DOI: 10.1016/j.jmb.2010.07.050] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/22/2010] [Accepted: 07/25/2010] [Indexed: 11/19/2022]
Abstract
Cyclic diguanylate (or bis-(3'-5') cyclic dimeric guanosine monophosphate; c-di-GMP) is a ubiquitous second messenger that regulates diverse cellular functions, including motility, biofilm formation, cell cycle progression, and virulence in bacteria. In the cell, degradation of c-di-GMP is catalyzed by highly specific EAL domain phosphodiesterases whose catalytic mechanism is still unclear. Here, we purified 13 EAL domain proteins from various organisms and demonstrated that their catalytic activity is associated with the presence of 10 conserved EAL domain residues. The crystal structure of the TBD1265 EAL domain was determined in free state (1.8 Å) and in complex with c-di-GMP (2.35 A), and unveiled the role of conserved residues in substrate binding and catalysis. The structure revealed the presence of two metal ions directly coordinated by six conserved residues, two oxygens of c-di-GMP phosphate, and potential catalytic water molecule. Our results support a two-metal-ion catalytic mechanism of c-di-GMP hydrolysis by EAL domain phosphodiesterases.
Collapse
Affiliation(s)
- Anatoli Tchigvintsev
- Banting and Best Department of Medical Research and Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Xiaohui Xu
- Banting and Best Department of Medical Research and Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Alexander Singer
- Banting and Best Department of Medical Research and Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Changsoo Chang
- Biosciences Division, Argonne National Laboratory, Midwest Center for Structural Genomics and Structural Biology Center, Argonne, Illinois 60439, USA
| | - Greg Brown
- Banting and Best Department of Medical Research and Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Michael Proudfoot
- Banting and Best Department of Medical Research and Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Hong Cui
- Banting and Best Department of Medical Research and Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Robert Flick
- Banting and Best Department of Medical Research and Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Wayne F. Anderson
- Department of Molecular Pharmacology and Biological Chemistry and Midwest Center for Structural Genomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Andrzej Joachimiak
- Biosciences Division, Argonne National Laboratory, Midwest Center for Structural Genomics and Structural Biology Center, Argonne, Illinois 60439, USA
| | - Michael Y. Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Alexei Savchenko
- Banting and Best Department of Medical Research and Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Alexander F. Yakunin
- Banting and Best Department of Medical Research and Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| |
Collapse
|