201
|
Crill WD, Hughes HR, Delorey MJ, Chang GJJ. Humoral immune responses of dengue fever patients using epitope-specific serotype-2 virus-like particle antigens. PLoS One 2009; 4:e4991. [PMID: 19337372 PMCID: PMC2659788 DOI: 10.1371/journal.pone.0004991] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 02/27/2009] [Indexed: 12/04/2022] Open
Abstract
Dengue virus (DENV) is a serious mosquito-borne pathogen causing significant global disease burden, either as classic dengue fever (DF) or in its most severe manifestation dengue hemorrhagic fever (DHF). Nearly half of the world's population is at risk of dengue disease and there are estimated to be millions of infections annually; a situation which will continue to worsen with increasing expansion of the mosquito vectors and epidemic DF/DHF. Currently there are no available licensed vaccines or antivirals for dengue, although significant effort has been directed toward the development of safe and efficacious dengue vaccines for over 30 years. Promising vaccine candidates are in development and testing phases, but a better understanding of immune responses to DENV infection and vaccination is needed. Humoral immune responses to DENV infection are complex and may exacerbate pathogenicity, yet are essential for immune protection. In this report, we develop DENV-2 envelope (E) protein epitope-specific antigens and measure immunoglobulin responses to three distinct epitopes in DENV-2 infected human serum samples. Immunoglobulin responses to DENV-2 infection exhibited significant levels of individual variation. Antibody populations targeting broadly cross-reactive epitopes centered on the fusion peptide in structural domain II were large, highly variable, and greater in primary than in secondary DENV-2 infected sera. E protein domain III cross-reactive immunoglobulin populations were similarly variable and much larger in IgM than in IgG. DENV-2 specific domain III IgG formed a very small proportion of the antibody response yet was significantly correlated with DENV-2 neutralization, suggesting that the highly protective IgG recognizing this epitope in murine studies plays a role in humans as well. This report begins to tease apart complex humoral immune responses to DENV infection and is thus important for improving our understanding of dengue disease and immunological correlates of protection, relevant to DENV vaccine development and testing.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antigens, Viral/chemistry
- Antigens, Viral/immunology
- Base Sequence
- DNA Primers
- Dengue/immunology
- Epitope Mapping
- Epitopes/chemistry
- Epitopes/immunology
- Humans
- Models, Molecular
- Molecular Sequence Data
- Protein Conformation
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Wayne D Crill
- Arbovirus Diseases Branch, Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, US Department of Health and Human Service, Fort Collins, CO, USA.
| | | | | | | |
Collapse
|
202
|
de Mora D, Andrea LD, Alvarez M, Regato M, Fajardo A, Recarey R, Colina R, Khan B, Cristina J. Evidence of diversification of dengue virus type 3 genotype III in the South American region. Arch Virol 2009; 154:699-707. [PMID: 19322636 DOI: 10.1007/s00705-009-0343-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 02/23/2009] [Indexed: 11/24/2022]
Abstract
In order to gain insight into the genetic variability of dengue virus type 3 (DENV-3) genotype III isolated in the Latin American region, phylogenetic analysis were carried out using envelope (E) gene sequences from 57 DENV-3 genotype III strains isolated in 11 Latin American countries. At least six different genotype III clades were observed. Amino acids substitutions were found in domain III E protein neutralization epitopes and in surface-exposed domain II and III E protein amino acid sequences.
Collapse
Affiliation(s)
- Domenica de Mora
- Instituto Nacional de Higiene y Medicina Tropical "Leopoldo Inquieta Perez", Julian Coronel y Esmeraldas, Guayaquil, Ecuador
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Rajamanonmani R, Nkenfou C, Clancy P, Yau YH, Shochat SG, Sukupolvi-Petty S, Schul W, Diamond MS, Vasudevan SG, Lescar J. On a mouse monoclonal antibody that neutralizes all four dengue virus serotypes. J Gen Virol 2009; 90:799-809. [PMID: 19264660 DOI: 10.1099/vir.0.006874-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The flavivirus envelope glycoprotein (E) is responsible for viral attachment and entry by membrane fusion. Its ectodomain is the primary target of the humoral immune response. In particular, the C-terminal Ig-like domain III of E, which is exposed at the surface of the viral particle, forms an attractive antigen for raising protective monoclonal antibodies (mAb). 9F12, a mouse mAb raised against a dengue virus (DENV) serotype 2 recombinant domain III, cross-reacts with corresponding domains from the other three DENV serotypes and also with West Nile virus. mAb 9F12 binds with nanomolar affinity to a conserved epitope that maps to the viral surface comprising residues 305, 307, 310 and 330 of the E protein. mAb 9F12 neutralizes all four DENV serotypes in plaque reduction assays. We expressed a single-chain Fv from 9F12 that retains the binding activity of the parent mAb. Adsorption and fusion inhibition assays indicate that mAb 9F12 prevents early steps of viral entry. Its virus inhibition activity and broad cross-reactivity makes mAb 9F12 a suitable candidate for optimization and humanization into a therapeutic antibody to treat severe infections by dengue.
Collapse
Affiliation(s)
- Ravikumar Rajamanonmani
- Program in Emerging Infectious Diseases, Duke-NUS, Graduate Medical School, Singapore.,School of Biological Sciences, Nanyang Technological University, Biopolis, Singapore
| | - Celine Nkenfou
- Novartis Institute for Tropical Diseases, Biopolis, Singapore
| | - Paula Clancy
- Department of Biochemistry and Molecular Biology, James Cook University, Australia
| | - Yin Hoe Yau
- School of Biological Sciences, Nanyang Technological University, Biopolis, Singapore
| | | | - Soila Sukupolvi-Petty
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, Washington University School of Medicine, St Louis, USA
| | - Wouter Schul
- Novartis Institute for Tropical Diseases, Biopolis, Singapore
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, Washington University School of Medicine, St Louis, USA
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS, Graduate Medical School, Singapore.,Department of Biochemistry and Molecular Biology, James Cook University, Australia
| | - Julien Lescar
- AFMB CNRS UMR6098, Marseille, France.,School of Biological Sciences, Nanyang Technological University, Biopolis, Singapore
| |
Collapse
|
204
|
van der Schaar HM, Wilschut JC, Smit JM. Role of antibodies in controlling dengue virus infection. Immunobiology 2009; 214:613-29. [PMID: 19261353 DOI: 10.1016/j.imbio.2008.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 11/14/2008] [Indexed: 12/16/2022]
Abstract
The incidence and disease burden of arthropod-borne flavivirus infections have dramatically increased during the last decades due to major societal and economic changes, including massive urbanization, lack of vector control, travel, and international trade. Specifically, in the case of dengue virus (DENV), the geographical spread of all four serotypes throughout the subtropical regions of the world has led to larger and more severe outbreaks. Many studies have established that recovery from infection by one DENV serotype provides immunity against that serotype, whereas reinfection with another serotype may result in severe disease. Pre-existing antibodies thus play a critical role in controlling viral infection. Both neutralization and enhancement of DENV infection by antibodies are thought to be related to the natural route of viral entry into cells. In this review, we will describe the current knowlegde on the mechanisms involved in flavivirus cell entry and discuss how antibodies may influence the course of infection towards neutralization or enhancement of viral disease.
Collapse
Affiliation(s)
- Hilde M van der Schaar
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, PO Box 30.001, Ant. Deusinglaan 1, 9700 RB Groningen, The Netherlands
| | | | | |
Collapse
|
205
|
Matsui K, Gromowski GD, Li L, Schuh AJ, Lee JC, Barrett ADT. Characterization of dengue complex-reactive epitopes on dengue 3 virus envelope protein domain III. Virology 2008; 384:16-20. [PMID: 19101005 DOI: 10.1016/j.virol.2008.11.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/07/2008] [Accepted: 11/08/2008] [Indexed: 10/21/2022]
Abstract
The disease dengue (DEN) is caused by four genetically and serologically related viruses termed DENV-1, -2, -3, and -4. The DENV envelope (E) protein ectodomain can be divided into three structural domains designated ED1, ED2, and ED3. The ED3 contains the DENV type-specific and DENV complex-reactive (epitopes shared by DENV 1-4) antigenic sites. In this study the epitopes recognized by four DENV complex-reactive monoclonal antibodies (MAbs) with neutralizing activity were mapped on the DENV-3 ED3 using a combination of physical and biological techniques. Amino acid residues L306, K308, G381, I387, and W389 were critical for all four MAbs, with residues V305, E309, V310, K325, D382, A384, K386, and R391 being critical for various subsets of the MAbs. A previous study by our group (Gromowski, G.D., Barrett, N.D., Barrett, A.D., 2008. Characterization of dengue complex-specific neutralizing epitopes on the envelope protein domain III of dengue 2 virus. J. Virol 82, 8828-8837) characterized the same panel of MAbs with DENV-2. The location of the DENV complex-reactive antigenic site on the DENV-2 and DENV-3 ED3s is similar; however, the critical residues for binding are not identical. Overall, this indicates that the DENV complex-reactive antigenic site on ED3 may be similar in location, but the surprising result is that DENV 2 and 3 exhibit unique sets of residues defining the energetics of interaction to the same panel of MAbs. These results imply that the amino acid sequences of DENV define a unique interaction network among these residues in spite of the fact that all flavivirus ED3s to date assume the same structural fold.
Collapse
Affiliation(s)
- Kiyohiko Matsui
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | | | | | | | | | | |
Collapse
|
206
|
Huerta V, Chinea G, Fleitas N, Sarría M, Sánchez J, Toledo P, Padrón G. Characterization of the interaction of domain III of the envelope protein of dengue virus with putative receptors from CHO cells. Virus Res 2008; 137:225-34. [PMID: 18723056 DOI: 10.1016/j.virusres.2008.07.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 07/04/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
Abstract
Domain III (DIII) of the envelope protein of dengue virus (DENV) contains structural determinants for the interaction with cellular receptors. In the present study a solid phase assay and recombinant fusion proteins containing DENV-DIII of serotypes 1 and 2 were used to study structural features of the interaction of the envelope protein with putative receptors present in the microsomal fraction of CHO cells. Recombinant fusion proteins showed specific interaction with proteins present in the microsomal fraction. Binding of the fusion proteins across the pH range of 5.5-8.0 resembled that of virus particles, peaking at pH 6.0. This suggests that the interaction of DIII with cell receptor(s) is strengthened at endosomal pH. The effect of reduction and carbamidomethylation of cysteine residues on the binding to the microsomal fraction and in their recognition by antibodies suggests that the region of DIII that is interacting with putative receptor(s) overlaps only partially with a dominant epitope of the antibody response. The analysis of the residue conservation profile indicates that the surface of DIII is composed typically of specific sub-complex residues with an increased representation of specific type/subtype residues found at the surface that closely correlates with the dominant neutralizing epitope.
Collapse
Affiliation(s)
- Vivian Huerta
- Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Habana 10600, Cuba.
| | | | | | | | | | | | | |
Collapse
|
207
|
Pierson TC, Fremont DH, Kuhn RJ, Diamond MS. Structural insights into the mechanisms of antibody-mediated neutralization of flavivirus infection: implications for vaccine development. Cell Host Microbe 2008; 4:229-38. [PMID: 18779049 PMCID: PMC2678546 DOI: 10.1016/j.chom.2008.08.004] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 08/15/2008] [Indexed: 11/30/2022]
Abstract
Flaviviruses are a group of small RNA viruses that cause severe disease in humans worldwide and are the target of several vaccine development programs. A primary goal of these efforts is to elicit a protective humoral response directed against the envelope proteins arrayed on the surface of the flavivirus virion. Advances in the structural biology of these viruses has catalyzed rapid progress toward understanding the complexity of the flavivirus immunogen and the molecular basis of antibody-mediated neutralization. These insights have identified factors that govern the potency of neutralizing antibodies and will inform the design and evaluation of novel vaccines.
Collapse
Affiliation(s)
- Theodore C Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, 33 North Drive, Building 33, Room 1E19A.2, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
208
|
Falconar AKI. Use of synthetic peptides to represent surface-exposed epitopes defined by neutralizing dengue complex- and flavivirus group-reactive monoclonal antibodies on the native dengue type-2 virus envelope glycoprotein. J Gen Virol 2008; 89:1616-1621. [DOI: 10.1099/vir.0.83648-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The reactions of neutralizing monoclonal antibodies (mAbs) that defined dengue virus (DENV) complex, flavivirus subgroup or group neutralizing epitopes were tested against synthetic peptide sequences from domains I, II and III of the envelope (E) glycoproteins of different DENV-2 genotypes/strains. The DENV complex-reactive mAb identified the surface-exposed 304-GKFKV/IVKEIA-313 peptides and the DENV complex-conserved 393-KKGSSIGQ/KM-401 peptides in domain III, which were located adjacently in the native glycoprotein. Both flavivirus group-reactive mAbs reacted most strongly with fusion sequence peptides from domain II when they contained a cysteine (C) by glycine (G) substitution (underlined) (101-WGNGGGLFG-109) to represent the native rotated C side chain. The 393–401 sequence represents a newly identified epitope, present as a highly flexible coil located between the 385 and 393 cell-binding sequence and the 401 and 413 sequence involved in the E glycoprotein homo-trimer formation. The 101–109 sequence containing 105-C by G substitution and the 393–401 sequence are good candidates for diagnostic assays and cross-protection experiments.
Collapse
Affiliation(s)
- Andrew K. I. Falconar
- Grupo de Investigaciones en Enfermedades Tropicales, Departamento de Ciencias Basicas Medicas, Universidad del Norte, Km 5 Antigua via Puerto Colombia, Barranquilla, Colombia
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
209
|
Abd-Jamil J, Cheah CY, AbuBakar S. Dengue virus type 2 envelope protein displayed as recombinant phage attachment protein reveals potential cell binding sites. Protein Eng Des Sel 2008; 21:605-611. [DOI: 10.1093/protein/gzn041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
|
210
|
Characterization of dengue virus complex-specific neutralizing epitopes on envelope protein domain III of dengue 2 virus. J Virol 2008; 82:8828-37. [PMID: 18562544 DOI: 10.1128/jvi.00606-08] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The surface of the mature dengue virus (DENV) particle is covered with 180 envelope (E) proteins arranged as homodimers that lie relatively flat on the virion surface. Each monomer consists of three domains (ED1, ED2, and ED3), of which ED3 contains the critical neutralization determinant(s). In this study, a large panel of DENV-2 recombinant ED3 mutant proteins was used to physically and biologically map the epitopes of five DENV complex-specific monoclonal antibodies (MAbs). All five MAbs recognized a single antigenic site that includes residues K310, I312, P332, L389, and W391. The DENV complex antigenic site was located on an upper lateral surface of ED3 that was distinct but overlapped with a previously described DENV-2 type-specific antigenic site on ED3. The DENV complex-specific MAbs required significantly higher occupancy levels of available ED3 binding sites on the virion, compared to DENV-2 type-specific MAbs, in order to neutralize virus infectivity. Additionally, there was a great deal of variability in the neutralization efficacy of the DENV complex-specific MAbs with representative strains of the four DENVs. Overall, the differences in physical binding and potency of neutralization observed between DENV complex- and type-specific MAbs in this study demonstrate the critical role of the DENV type-specific antibodies in the neutralization of virus infectivity.
Collapse
|
211
|
Perera R, Khaliq M, Kuhn RJ. Closing the door on flaviviruses: entry as a target for antiviral drug design. Antiviral Res 2008; 80:11-22. [PMID: 18585795 DOI: 10.1016/j.antiviral.2008.05.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/09/2008] [Accepted: 05/14/2008] [Indexed: 01/14/2023]
Abstract
With the emergence and rapid spread of West Nile virus in the United States since 1999, and the 50-100 million infections per year caused by dengue virus globally, the threat of flaviviruses as re-emerging human pathogens has become a reality. To support the efforts that are currently being pursued to develop effective vaccines against these viruses, researchers are also actively pursuing the development of small molecule compounds that target various aspects of the virus life cycle. Recent advances in the structural characterization of the flaviviruses have provided a strong foundation towards these efforts. These studies have provided the pseudo-atomic structures of virions from several members of the genus as well as atomic resolution structures of several viral proteins. Most importantly, these studies have highlighted specific structural rearrangements that occur within the virion that are necessary for the virus to complete its life cycle. These rearrangements occur when the virus must transition from immature, to mature, to fusion-active states and rely heavily on the conformational flexibility of the envelope (E) protein that forms the outer glycoprotein shell of the virus. Analysis of these conformational changes can suggest promising targets for structure-based antiviral design. For instance, by targeting the flexibility of the E protein, it might be possible to inhibit required rearrangements of this protein and trap the virus in a specific state. This would interfere with a productive flaviviral infection. This review presents a structural perspective of the flavivirus life cycle and focuses on the role of the E protein as an opportune target for structure-based antiviral drug design.
Collapse
Affiliation(s)
- Rushika Perera
- Markey Center for Structural Biology and Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
212
|
Humanized monoclonal antibodies derived from chimpanzee Fabs protect against Japanese encephalitis virus in vitro and in vivo. J Virol 2008; 82:7009-21. [PMID: 18480437 DOI: 10.1128/jvi.00291-08] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Japanese encephalitis virus (JEV)-specific Fab antibodies were recovered by repertoire cloning from chimpanzees initially immunized with inactivated JE-VAX and then boosted with attenuated JEV SA14-14-2. From a panel of 11 Fabs recovered by different panning strategies, three highly potent neutralizing antibodies, termed Fabs A3, B2, and E3, which recognized spatially separated regions on the virion, were identified. These antibodies reacted with epitopes in different domains: the major determinant for Fab A3 was Lys(179) (domain I), that for Fab B2 was Ile(126) (domain II), and that for Fab E3 was Gly(302) (domain III) in the envelope protein, suggesting that these antibodies neutralize the virus by different mechanisms. Potent neutralizing antibodies reacted with a low number of binding sites available on the virion. These three Fabs and derived humanized monoclonal antibodies (MAbs) exhibited high neutralizing activities against a broad spectrum of JEV genotype strains. Demonstration of antibody-mediated protection of JEV infection in vivo is provided using the mouse encephalitis model. MAb B2 was most potent, with a 50% protective dose (ED(50)) of 0.84 microg, followed by MAb A3 (ED(50) of 5.8 microg) and then MAb E3 (ED(50) of 24.7 microg) for a 4-week-old mouse. Administration of 200 microg/mouse of MAb B2 1 day after otherwise lethal JEV infection protected 50% of mice and significantly prolonged the average survival time compared to that of mice in the unprotected group, suggesting a therapeutic potential for use of MAb B2 in humans.
Collapse
|
213
|
Abstract
Flaviviruses are a group of positive-stranded RNA viruses that cause a spectrum of severe illnesses globally in more than 50 million individuals each year. While effective vaccines exist for three members of this group (yellow fever, Japanese encephalitis, and tick-borne encephalitis viruses), safe and effective vaccines for several other flaviviruses of clinical importance, including West Nile and dengue viruses, remain in development. An effective humoral immune response is critical for protection against flaviviruses and an essential goal of vaccine development. The effectiveness of virus-specific antibodies in vivo reflects their capacity to inhibit virus entry and spread through several mechanisms, including the direct neutralisation of virus infection. Recent advances in our understanding of the structural biology of flaviviruses, coupled with the use of small-animal models of flavivirus infection, have promoted significant advances in our appreciation of the factors that govern antibody recognition and inhibition of flaviviruses in vitro and in vivo. In this review, we discuss the properties that define the potency of neutralising antibodies and the molecular mechanisms by which they inhibit virus infection. How recent advances in this area have the potential to improve the development of safe and effective vaccines and immunotherapeutics is also addressed.
Collapse
|
214
|
Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. J Virol 2008; 82:6631-43. [PMID: 18448542 DOI: 10.1128/jvi.00316-08] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antibody response to the envelope (E) glycoprotein of dengue virus (DENV) is known to play a critical role in both protection from and enhancement of disease, especially after primary infection. However, the relative amounts of homologous and heterologous anti-E antibodies and their epitopes remain unclear. In this study, we examined the antibody responses to E protein as well as to precursor membrane (PrM), capsid, and nonstructural protein 1 (NS1) of four serotypes of DENV by Western blot analysis of DENV serotype 2-infected patients with different disease severity and immune status during an outbreak in southern Taiwan in 2002. Based on the early-convalescent-phase sera tested, the rates of antibody responses to PrM and NS1 proteins were significantly higher in patients with secondary infection than in those with primary infection. A blocking experiment and neutralization assay showed that more than 90% of anti-E antibodies after primary infection were cross-reactive and nonneutralizing against heterologous serotypes and that only a minor proportion were type specific, which may account for the type-specific neutralization activity. Moreover, the E-binding activity in sera of 10 patients with primary infection was greatly reduced by amino acid replacements of three fusion loop residues, tryptophan at position 101, leucine at position 107, and phenylalanine at position 108, but not by replacements of those outside the fusion loop of domain II, suggesting that the predominantly cross-reactive anti-E antibodies recognized epitopes involving the highly conserved residues at the fusion loop of domain II. These findings have implications for our understanding of the pathogenesis of dengue and for the future design of subunit vaccine against DENV as well.
Collapse
|
215
|
Enzyme-linked immunosorbent assays using novel Japanese encephalitis virus antigen improve the accuracy of clinical diagnosis of flavivirus infections. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:825-35. [PMID: 18337381 DOI: 10.1128/cvi.00004-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cross-reactive antibodies induced by flavivirus infections confound serodiagnosis and pathogenesis, especially in secondary infections caused by antigenically closely related yet distinct flaviviruses. The envelope (E) glycoprotein fusion peptide contains immunodominant cross-reactive determinants. Using a recombinant Japanese encephalitis virus (JEV) premembrane and E expression plasmid producing JEV virus-like particles (VLPs), dramatic reductions in cross-reactivity were produced by the G106K-L107D (KD) double-mutant VLP against a panel of flavivirus murine monoclonal antibodies. Human serum panels from patients with recent flavivirus infections were analyzed to compare the accuracy of JEV wild-type (WT) and KD VLPs as serodiagnostic antigens in enzyme-linked immunosorbent assays. Statistical analysis demonstrated significant differences in assay performances for accurate determination of current JEV infections between WT and KD antigens by detecting immunoglobulin M antibodies at a serum dilution of 1:4,000 (likelihood ratios = 2.74 [WT] and 22 [KD]). The application and continued development of cross-reactivity-reduced antigens should improve both flavivirus infection serodiagnosis and estimates of disease burden.
Collapse
|
216
|
Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins. Nat Struct Mol Biol 2008; 15:312-7. [PMID: 18264114 DOI: 10.1038/nsmb.1382] [Citation(s) in RCA: 279] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 01/04/2008] [Indexed: 01/04/2023]
Abstract
The monoclonal antibody 1A1D-2 has been shown to strongly neutralize dengue virus serotypes 1, 2 and 3, primarily by inhibiting attachment to host cells. A crystal structure of its antigen binding fragment (Fab) complexed with domain III of the viral envelope glycoprotein, E, showed that the epitope would be partially occluded in the known structure of the mature dengue virus. Nevertheless, antibody could bind to the virus at 37 degrees C, suggesting that the virus is in dynamic motion making hidden epitopes briefly available. A cryo-electron microscope image reconstruction of the virus:Fab complex showed large changes in the organization of the E protein that exposed the epitopes on two of the three E molecules in each of the 60 icosahedral asymmetric units of the virus. The changes in the structure of the viral surface are presumably responsible for inhibiting attachment to cells.
Collapse
|