201
|
Tedeschi A. Tuning the orchestra: transcriptional pathways controlling axon regeneration. Front Mol Neurosci 2012; 4:60. [PMID: 22294979 PMCID: PMC3257844 DOI: 10.3389/fnmol.2011.00060] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/23/2011] [Indexed: 12/13/2022] Open
Abstract
Trauma in the adult mammalian central nervous system leads to irreversible structural and functional impairment due to failed regeneration attempts. In contrast, neurons in the peripheral nervous system exhibit a greater regenerative ability. It has been proposed that an orchestrated sequence of transcriptional events controlling the expression of specific sets of genes may be the underlying basis of an early cell-autonomous regenerative response. Understanding whether transcriptional fine tuning, in parallel with strategies aimed at counteracting extrinsic impediments promotes axon re-growth following central nervous system injuries represents an exciting challenge for future studies. Transcriptional pathways controlling axon regeneration are presented and discussed in this review.
Collapse
Affiliation(s)
- Andrea Tedeschi
- Department of Neurology, F. M. Kirby Neurobiology Center, Children's Hospital Boston Boston, MA, USA
| |
Collapse
|
202
|
Quadrato G, Di Giovanni S. Gatekeeper between quiescence and differentiation: p53 in axonal outgrowth and neurogenesis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012. [PMID: 23206596 DOI: 10.1016/b978-0-12-398309-1.00005-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transcription factor and tumor suppressor gene p53 regulates a wide range of cellular processes including DNA damage/repair, cell cycle progression, apoptosis, and cell metabolism. In the past several years, a specific novel role for p53 in neuronal biology has emerged. p53 orchestrates the polarity of self-renewing divisions in neural stem cells both during embryonic development and in adulthood and coordinates the timing for cell fate specification. In postmitotic neurons, p53 regulates neurite outgrowth and postinjury axonal regeneration via neurotrophin-dependent and -independent signaling by both transcriptional and posttranslational control of growth cone remodeling. This review provides an insight into the molecular mechanisms upstream and downstream p53 both during neural development and following axonal injury. Their understanding may provide therapeutic targets to enhance neuroregeneration following nervous system injury.
Collapse
Affiliation(s)
- Giorgia Quadrato
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | | |
Collapse
|
203
|
Saha B, Mukherjee A, Samanta S, Paul S, Bhattacharya D, Santra CR, Karmakar P. A novel Cu(ii)–mal–picoline complex induces mitotic catastrophe mediated by deacetylation of histones and α-tubulin leading to apoptosis in human cell lines. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md00285j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
204
|
King JC, Lu QY, Li G, Moro A, Takahashi H, Chen M, Go VLW, Reber HA, Eibl G, Hines OJ. Evidence for activation of mutated p53 by apigenin in human pancreatic cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:593-604. [PMID: 22227579 DOI: 10.1016/j.bbamcr.2011.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 12/18/2011] [Accepted: 12/20/2011] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer is an exceedingly lethal disease with a five-year survival that ranks among the lowest of gastrointestinal malignancies. Part of its lethality is attributable to a generally poor response to existing chemotherapeutic regimens. New therapeutic approaches are urgently needed. We aimed to elucidate the anti-neoplastic mechanisms of apigenin-an abundant, naturally-occurring plant flavonoid-with a particular focus on p53 function. Pancreatic cancer cells (BxPC-3, MiaPaCa-2) experienced dose and time-dependent growth inhibition and increased apoptosis with apigenin treatment. p53 post-translational modification, nuclear translocation, DNA binding, and upregulation of p21 and PUMA were all enhanced by apigenin treatment despite mutated p53 in both cell lines. Transcription-dependent p53 activity was reversed by pifithrin-α, a specific DNA binding inhibitor of p53, but not growth inhibition or apoptosis suggesting transcription-independent p53 activity. This was supported by immunoprecipitation assays which demonstrated disassociation of p53/BclXL and PUMA/BclXL and formation of complexes with Bak followed by cytochrome c release. Treated animals grew smaller tumors with increased cellular apoptosis than those fed control diet. These results suggest that despite deactivating mutation, p53 retains some of its function which is augmented following treatment with apigenin. Cell cycle arrest and apoptosis induction may be mediated by transcription-independent p53 function via interactions with BclXL and PUMA. Further study of flavonoids as chemotherapeutics is warranted.
Collapse
Affiliation(s)
- Jonathan C King
- Department of Surgery, David Geffen School of Medicine at UCLA, 72-107 CHS, 10833 LeConte Ave, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Histone deacetylase inhibitors sensitize human non-small cell lung cancer cells to ionizing radiation through acetyl p53-mediated c-myc down-regulation. J Thorac Oncol 2011; 6:1313-9. [PMID: 21642861 DOI: 10.1097/jto.0b013e318220caff] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Histone deacetylase inhibitors (HDACIs) induce growth arrest and apoptosis in cancer cells. In addition to their intrinsic anticancer properties, HDACIs modulate cellular responses to ionizing radiation (IR). We examined the molecular mechanism(s) associated with the radiosensitizing effects of HDACIs in human lung cancer cells. METHODS Lung cancer cells were pretreated with the appropriate concentrations of suberoylanilide hydroxamic acid or trichostatin A. After 2 hours, cells were irradiated with various doses of γ-IR, and then we performed 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, fluorescence-activated cell sorting analysis, clonogenic assay, and Western blotting to detect cell viability or apoptosis and changes of specific proteins expression levels. RESULTS In this study, we showed that HDACIs (including suberoylanilide hydroxamic acid and trichostatin A) and IR synergistically trigger cell death in human non-small cell lung cancer cells. Cell viability and clonogenic survival were markedly decreased in cultures cotreated with HDACIs and IR. Interestingly, p53 acetylation at lysine 382 was significantly increased, and c-myc expression simultaneously down-regulated in cotreated cells. Radiosensitization by HDACIs was inhibited on transfection with small interfering RNA against p53 and c-myc overexpression, supporting the involvement of p53 and c-myc in this process. Furthermore, c-myc down-regulation and apoptotic cell death coinduced by IR and HDACI were suppressed in cells transfected with mutant K382R p53 and C135Y p53 displaying loss of acetylation at lysine 382 and DNA-binding activity, respectively. CONCLUSIONS Our results collectively demonstrate that the degree of radiosensitization by HDACIs is influenced by acetyl p53-mediated c-myc down-regulation.
Collapse
|
206
|
Mahata B, Sundqvist A, Xirodimas DP. Recruitment of RPL11 at promoter sites of p53-regulated genes upon nucleolar stress through NEDD8 and in an Mdm2-dependent manner. Oncogene 2011; 31:3060-71. [DOI: 10.1038/onc.2011.482] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
207
|
Li T, Du Y, Wang L, Huang L, Li W, Lu M, Zhang X, Zhu WG. Characterization and prediction of lysine (K)-acetyl-transferase specific acetylation sites. Mol Cell Proteomics 2011; 11:M111.011080. [PMID: 21964354 DOI: 10.1074/mcp.m111.011080] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysine acetylation is a well-studied post-translational modification on both histone and nonhistone proteins. More than 2000 acetylated proteins and 4000 lysine acetylation sites have been identified by large scale mass spectrometry or traditional experimental methods. Although over 20 lysine (K)-acetyl-transferases (KATs) have been characterized, which KAT is responsible for a given protein or lysine site acetylation is mostly unknown. In this work, we collected KAT-specific acetylation sites manually and analyzed sequence features surrounding the acetylated lysine of substrates from three main KAT families (CBP/p300, GCN5/PCAF, and the MYST family). We found that each of the three KAT families acetylates lysines with different sequence features. Based on these differences, we developed a computer program, Acetylation Set Enrichment Based method to predict which KAT-families are responsible for acetylation of a given protein or lysine site. Finally, we evaluated the efficiency of our method, and experimentally detected four proteins that were predicted to be acetylated by two KAT families when one representative member of the KAT family is over expressed. We conclude that our approach, combined with more traditional experimental methods, may be useful for identifying KAT families responsible for acetylated substrates proteome-wide.
Collapse
Affiliation(s)
- Tingting Li
- Department of Biomedical Informatics, Peking University Health Science Center, Beijing 100191, China; Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China.
| | - Yipeng Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Likun Wang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China; College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Lei Huang
- Advanced Computing Research Laboratory, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenlin Li
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China
| | - Ming Lu
- Department of Biomedical Informatics, Peking University Health Science Center, Beijing 100191, China
| | - Xuegong Zhang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China
| | - Wei-Guo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China; The Center for Life Science, Peking University, Beijing 100871, China.
| |
Collapse
|
208
|
Kim JY, Lee KS, Seol JE, Yu K, Chakravarti D, Seo SB. Inhibition of p53 acetylation by INHAT subunit SET/TAF-Iβ represses p53 activity. Nucleic Acids Res 2011; 40:75-87. [PMID: 21911363 PMCID: PMC3245910 DOI: 10.1093/nar/gkr614] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The tumor suppressor p53 responds to a wide variety of cellular stress signals. Among potential regulatory pathways, post-translational modifications such as acetylation by CBP/p300 and PCAF have been suggested for modulation of p53 activity. However, exactly how p53 acetylation is modulated remains poorly understood. Here, we found that SET/TAF-Iβ inhibited p300- and PCAF-mediated p53 acetylation in an INHAT (inhibitor of histone acetyltransferase) domain-dependent manner. SET/TAF-Iβ interacted with p53 and repressed transcription of p53 target genes. Consequently, SET/TAF-Iβ blocked both p53-mediated cell cycle arrest and apoptosis in response to cellular stress. Using different apoptosis analyses, including FACS, TUNEL and BrdU incorporation assays, we also found that SET/TAF-Iβ induced cellular proliferation via inhibition of p53 acetylation. Furthermore, we observed that apoptotic Drosophila eye phenotype induced by either dp53 overexpression or UV irradiation was rescued by expression of dSet. Inhibition of dp53 acetylation by dSet was observed in both cases. Our findings provide new insights into the regulation of stress-induced p53 activation by HAT-inhibiting histone chaperone SET/TAF-Iβ.
Collapse
Affiliation(s)
- Ji-Young Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Korea
| | | | | | | | | | | |
Collapse
|
209
|
Wu ZZ, Sun NK, Chao CCK. Knockdown of CITED2 using short-hairpin RNA sensitizes cancer cells to cisplatin through stabilization of p53 and enhancement of p53-dependent apoptosis. J Cell Physiol 2011; 226:2415-28. [PMID: 21660965 DOI: 10.1002/jcp.22589] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CITED2 is a transcriptional modulator which has been implicated in human oncogenesis. In the present study, we examined whether CITED2 is also involved in the resistance of cancer cells to the chemotherapeutic drug cisplatin. We first observed that knockdown of CITED2 using short-hairpin RNA sensitized non-tumorigenic HEK293 cells to cisplatin. Sensitization to cisplatin following knockdown of CITED2 was also observed in cervical carcinoma HeLa cells and in cisplatin-resistant HeLa cells, thereby showing that acquired cisplatin resistance could be reversed by CITED2 knockdown. This sensitization response was dependent on the status of p53 since efficient sensitization was observed in p53-positive hepatocellular carcinoma (HCC) Sk-Hep-1 cells, whereas a negligible response was produced in the two p53-defective cell lines HCC Mahlavu and lung cancer H1299. In contrast, overexpression of CITED2 decreased sensitivity of HEK293 cells to cisplatin, while moderate resistance was produced in HeLa cells. Overexpression of CITED2 also decreased sensitivity to cisplatin in p53-defective H1299 cells when exogenous p53 expression was re-introduced. We observed that knockdown of CITED2-induced CBP/p300-mediated p53 acetylation (Lys373) in HEK293 cells, thereby leading to a decrease of p53 ubiquitination and subsequent accumulation of the p53 protein. Notably, the effects of CITED2 knockdown on p53 accumulation and the increase of p53's target Bax were more pronounced after treatment with cisplatin. Based on these results, we propose that a combination of cisplatin and CITED2 shRNA may represent an effective treatment against p53-sensitive cancer cells.
Collapse
Affiliation(s)
- Zchong-Zcho Wu
- Tumor Biology Laboratory, Department of Biochemistry and Molecular Biology, Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China
| | | | | |
Collapse
|
210
|
RANKL induces NFATc1 acetylation and stability via histone acetyltransferases during osteoclast differentiation. Biochem J 2011; 436:253-62. [PMID: 21413932 DOI: 10.1042/bj20110062] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NFATc1 (nuclear factor of activated T-cells c1), a key transcription factor, plays a role in regulating expression of osteoclast-specific downstream target genes such as TRAP (tartrate-resistant acid phosphatase) and OSCAR (osteoclast-associated receptor). It has been shown that RANKL [receptor activator of NF-κB (nuclear factor κB) ligand] induces NFATc1 expression during osteoclastogenesis at a transcriptional level. In the present study, we demonstrate that RANKL increases NFATc1 protein levels by post-translational modification. RANKL stimulates NFATc1 acetylation via HATs (histone acetyltransferases), such as p300 and PCAF [p300/CREB (cAMP-response-element-binding protein)-binding protein-associated factor], thereby stabilizing NFATc1 proteins. PCAF physically interacts with NFATc1 and directly induces NFATc1 acetylation and stability, subsequently increasing the transcriptional activity of NFATc1. In addition, RANKL-mediated NFATc1 acetylation is increased by the HDAC (histone deacetylase) inhibitors sodium butyrate and scriptaid. Overexpression of HDAC5 reduces RANKL- or PCAF-mediated NFATc1 acetylation, stability and transactivation activity, suggesting that the balance between HAT and HDAC activities might play a role in the regulation of NFATc1 levels. Furthermore, RANKL and p300 induce PCAF acetylation and stability, thereby enhancing the transcriptional activity of NFATc1. Down-regulation of PCAF by siRNA (small interfering RNA) decreases NFATc1 acetylation and stability, as well as RANKL-induced osteoclastogenesis. Taken together, the results of the present study demonstrate that RANKL induces HAT-mediated NFATc1 acetylation and stability, and subsequently increases the transcriptional activity of NFATc1 during osteoclast differentiation.
Collapse
|
211
|
The impact of acetylation and deacetylation on the p53 pathway. Protein Cell 2011; 2:456-62. [PMID: 21748595 DOI: 10.1007/s13238-011-1063-9] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 01/24/2023] Open
Abstract
The p53 tumor suppressor is a sequence-specific transcription factor that undergoes an abundance of post-translational modifications for its regulation and activation. Acetylation of p53 is an important reversible enzymatic process that occurs in response to DNA damage and genotoxic stress and is indispensible for p53 transcriptional activity. p53 was the first non-histone protein shown to be acetylated by histone acetyl transferases, and a number of more recent in vivo models have underscored the importance of this type of modification for p53 activity. Here, we review the current knowledge and recent findings of p53 acetylation and deacetylation and discuss the implications of these processes for the p53 pathway.
Collapse
|
212
|
Wu H, Leng RP. UBE4B, a ubiquitin chain assembly factor, is required for MDM2-mediated p53 polyubiquitination and degradation. Cell Cycle 2011; 10:1912-5. [PMID: 21558803 DOI: 10.4161/cc.10.12.15882] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Although MDM2 is known to be a critical negative regulator of p53, MDM2 only catalyzes p53 mono- or multiple monoubiquitination in vitro and in vivo, which is insufficient for the initiation of proteasomal degradation. MDM2 does not polyubiquitinate p53 in vitro, however, which indicates that the activity of other ubiquitin ligase(s) or cofactor(s) is required for MDM2-mediated p53 polyubiquitination and degradation. In our recent study, we demonstrated that UBE4B, an E3 and E4 ubiquitin ligase with a U-box domain, interacts physically with both p53 and MDM2. Our findings revealed that UBE4B negatively regulates the level of p53 and inhibits p53-dependent transactivation and apoptosis. We propose that inhibition of MDM2 binding to UBE4B may provide another approach to inhibit MDM2 E3 ligase activity for tumor suppressor p53. It could lead to novel anticancer therapies, with the possibility of reducing the public health burden from cancer.
Collapse
Affiliation(s)
- Hong Wu
- Heritage Medical Research Centre, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB Canada
| | | |
Collapse
|
213
|
Sherman MH, Bassing CH, Teitell MA. Regulation of cell differentiation by the DNA damage response. Trends Cell Biol 2011; 21:312-9. [PMID: 21354798 PMCID: PMC3089693 DOI: 10.1016/j.tcb.2011.01.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/18/2011] [Accepted: 01/25/2011] [Indexed: 11/20/2022]
Abstract
When faced with DNA double-strand breaks (DSBs), vertebrate cells activate DNA damage response (DDR) programs that preserve genome integrity and suppress malignant transformation. Three established outcomes of the DDR include transient cell cycle arrest coupled with DNA repair, apoptosis, or senescence. However, recent studies in normal and cancer precursor or stem cells suggest that a fourth potential outcome, cell differentiation, is under the influence of DDR programs. Here we review and discuss the emerging evidence that supports the linkage of signaling from DSBs to the regulation of differentiation, including some of the molecular mechanisms driving this under-appreciated DDR outcome. We also consider the physiologic and pathologic consequences of defects in DDR signaling on cell differentiation and malignant transformation.
Collapse
Affiliation(s)
- Mara H. Sherman
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Craig H. Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Michael A. Teitell
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, Department of Pediatrics, Jonsson Comprehensive Cancer Center, Broad Stem Cell Research Center, California NanoSystems Institute, and Bioengineering Interdepartmental Program, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
214
|
Modifications of p53 and the DNA damage response in cells expressing mutant form of the protein huntingtin. J Mol Neurosci 2011; 45:256-68. [PMID: 21465263 DOI: 10.1007/s12031-011-9516-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/16/2011] [Indexed: 10/18/2022]
Abstract
Huntington's disease (HD) occurs through an expansion of the trinucleotide repeat in the HD gene resulting in the lengthening of the polyglutamine stretch within the N terminus of the protein, huntingtin (Htt). While the function of the protein is still being fully elucidated, we have shown that genomic DNA damage is associated with the expression of mutant Htt (mHtt) in a time-dependent fashion. With the accumulation of mHtt and its development into a micro-aggregated complex, the initiation of genomic damage engages a cellular stress signal that activates the DNA damage and stress response pathway. Here we explore the modifications and activation of p53 and keystone regulators of the cell stress response pathway using expression of a fragment of mHtt in HEK293T cells. We find an increase in phosphorylated p53 at serine 15 (S15), diminished acetylation at lysine 382 (K382), altered ubiquitination pattern, and oligomerization activity as a function of mHtt expression. As one might predict, upstream regulators of p53, such as CREB-binding protein/p300 and MDM2, are also seen to be affected by the expression of mHtt, albeit in different ways. These data suggest a possible relationship between p53 and the slow accumulation of DNA damage resulting from the expression of mHtt. The lack of a proper p53-mediated signaling cascade or its alteration in the presence of DNA damage may contribute to the slow progression of cellular dysfunction which is a hallmark of HD pathology.
Collapse
|
215
|
Camptothecin-induced downregulation of MLL5 contributes to the activation of tumor suppressor p53. Oncogene 2011; 30:3599-611. [PMID: 21423215 DOI: 10.1038/onc.2011.71] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mixed lineage leukemia 5 (MLL5) has been implicated in multiple aspects of cell physiology, such as hematopoiesis, cell cycle control and chromatin regulatory network. In this study, we present evidence that MLL5 is involved in the camptothecin (CPT)-induced p53 activation. CPT promoted the degradation of MLL5 protein in a time- and dose-dependent manner in actively replicating cells. The downregulation of MLL5 led to phosphorylation of p53 at Ser392, which was abrogated by exogenous overexpression of MLL5. In MLL5-knockdown cells, p53 protein was stabilized and bound to DNA with higher affinity, leading to activation of downstream genes. Co-immunoprecipitation showed that MLL5 preferentially interacted with the tetramerized form of p53, and knockdown of MLL5 promoted chromatin accumulation of p53 tetramers, suggesting that the association of MLL5 with p53 may prevent the p53 tetramers from binding to the chromatin target sites. The role of MLL5 in CPT-induced p53 activation was conserved in developing zebrafish, where CPT downregulated zebrafish Mll5 protein, and the microinjection of zebrafish mll5 mRNA substantially blocked the CPT-induced apoptosis. In summary, our study proposed MLL5 as a novel component in the regulation of p53 homeostasis and a new cellular determinant of CPT.
Collapse
|
216
|
Patel J, Pathak RR, Mujtaba S. The biology of lysine acetylation integrates transcriptional programming and metabolism. Nutr Metab (Lond) 2011; 8:12. [PMID: 21371315 PMCID: PMC3060110 DOI: 10.1186/1743-7075-8-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/03/2011] [Indexed: 11/18/2022] Open
Abstract
The biochemical landscape of lysine acetylation has expanded from a small number of proteins in the nucleus to a multitude of proteins in the cytoplasm. Since the first report confirming acetylation of the tumor suppressor protein p53 by a lysine acetyltransferase (KAT), there has been a surge in the identification of new, non-histone targets of KATs. Added to the known substrates of KATs are metabolic enzymes, cytoskeletal proteins, molecular chaperones, ribosomal proteins and nuclear import factors. Emerging studies demonstrate that no fewer than 2000 proteins in any particular cell type may undergo lysine acetylation. As described in this review, our analyses of cellular acetylated proteins using DAVID 6.7 bioinformatics resources have facilitated organization of acetylated proteins into functional clusters integral to cell signaling, the stress response, proteolysis, apoptosis, metabolism, and neuronal development. In addition, these clusters also depict association of acetylated proteins with human diseases. These findings not only support lysine acetylation as a widespread cellular phenomenon, but also impel questions to clarify the underlying molecular and cellular mechanisms governing target selectivity by KATs. Present challenges are to understand the molecular basis for the overlapping roles of KAT-containing co-activators, to differentiate between global versus dynamic acetylation marks, and to elucidate the physiological roles of acetylated proteins in biochemical pathways. In addition to discussing the cellular 'acetylome', a focus of this work is to present the widespread and dynamic nature of lysine acetylation and highlight the nexus that exists between epigenetic-directed transcriptional regulation and metabolism.
Collapse
Affiliation(s)
- Jigneshkumar Patel
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine New York, NY 10029 USA.
| | | | | |
Collapse
|
217
|
Chen X, Wong JYC, Wong P, Radany EH. Low-dose valproic acid enhances radiosensitivity of prostate cancer through acetylated p53-dependent modulation of mitochondrial membrane potential and apoptosis. Mol Cancer Res 2011; 9:448-61. [PMID: 21303901 DOI: 10.1158/1541-7786.mcr-10-0471] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Histone deacetylase inhibitors (HDI) have shown promise as candidate radiosensitizers for many types of cancers, including prostate cancer. However, the mechanisms of action are not well understood. In this study, we show in prostate cancer cells that valproic acid (VPA) at low concentrations has minimal cytotoxic effects yet can significantly increase radiation-induced apoptosis. VPA seems to stabilize a specific acetyl modification (lysine 120) of the p53 tumor suppressor protein, resulting in an increase in its proapoptotic function at the mitochondrial membrane. These effects of VPA are independent of any action of the p53 protein as a transcription factor in the nucleus, since these effects were also observed in native and engineered prostate cancer cells containing mutant forms of p53 protein having no transcription factor activity. Transcription levels of p53-related or Bcl-2 family member proapoptotic proteins were not affected by VPA exposure. The results of this study suggest that, in addition to nuclear-based pathways previously reported, HDIs may also result in radiosensitization at lower concentrations via a specific p53 acetylation and its mitochondrial-based pathway(s).
Collapse
Affiliation(s)
- Xufeng Chen
- Department of Radiation Oncology, City of Hope National Medical Center and Beckman Research Institute, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
218
|
Olmos Y, Brosens JJ, Lam EWF. Interplay between SIRT proteins and tumour suppressor transcription factors in chemotherapeutic resistance of cancer. Drug Resist Updat 2011; 14:35-44. [PMID: 21195657 DOI: 10.1016/j.drup.2010.12.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 12/20/2022]
Abstract
Sirtuins, commonly referred to as SIRTs, are a family of seven mammalian NAD+-dependent deacetylases implicated in the regulation of critical biological processes, including metabolism, cell division, differentiation, survival, and senescence. These diverse functions reflect the ability of SIRTs to target and modify a broad spectrum of protein substrates, including cytoskeletal proteins, signalling components, transcription factors, and histones. SIRTs are also implicated in tumorigenesis as well as in the response of the tumour to chemotherapy. In particular, SIRT1 has been found to be overexpressed in many drug resistant cancers. Emerging evidence suggests that the role of SIRTs in drug resistance may be foremost related to their ability to target and modulate the activity of tumour suppressors, including p53, p73, E2F1, and FOXO3a. In other words, while SIRT-dependent deacetylation of transcription factors is normally used to fine-tune gene expression, this function is hijacked by cancer cells to evade proliferative arrest and cell death in response to chemotherapy. Consequently, interventions predicated on disrupting the interactions between tumour suppressors and SIRTs may be effective in circumventing or reversing drug resistance in cancer.
Collapse
Affiliation(s)
- Yolanda Olmos
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W120NN, UK
| | | | | |
Collapse
|
219
|
Huang J, Zhang L, Xiao L, Xu L, Hu F, Shao W, Liu W, Mo X, Shi T, Qiu X. The role of human ADA2a in the regulation of p53 acetylation and stability. CHINESE SCIENCE BULLETIN-CHINESE 2011. [DOI: 10.1007/s11434-010-4311-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
220
|
Yoshida K, Miki Y. The cell death machinery governed by the p53 tumor suppressor in response to DNA damage. Cancer Sci 2011. [DOI: 10.1111/j.1349-7006.2009.01488.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
221
|
Draker R, Sarcinella E, Cheung P. USP10 deubiquitylates the histone variant H2A.Z and both are required for androgen receptor-mediated gene activation. Nucleic Acids Res 2011; 39:3529-42. [PMID: 21245042 PMCID: PMC3089478 DOI: 10.1093/nar/gkq1352] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
H2A.Z, a variant of H2A, is found at the promoters of inducible genes in both yeast and higher eukaryotes. However, its role in transcriptional regulation is complex since it has been reported to function both as a repressor and activator. We have previously found that mono-ubiquitylation of H2A.Z is linked to transcriptional silencing. Here, we provide new evidence linking H2A.Z deubiquitylation to transcription activation. We found that H2A.Z and ubiquitin-specific protease 10 (USP10) are each required for transcriptional activation of the androgen receptor (AR)-regulated PSA and KLK3 genes. USP10 directly deubiquitylates H2A.Z in vitro and in vivo, and reducing USP10 expression in prostate cancer cells results in elevated steady-state levels of mono-ubiquitylated H2A.Z (H2A.Zub1). Moreover, knockdown of USP10 ablates hormone-induced deubiquitylation of chromatin proteins at the AR-regulated genes. Finally, by sequential ChIP assays, we found that H2A.Zub1 is enriched at the PSA and KLK3 regulatory regions, and loss of H2A.Zub1 is associated with transcriptional activation of these genes. Together, these data provide novel insights into how H2A.Z ubiquitylation/deubiquitylation and USP10 function in AR-regulated gene expression.
Collapse
Affiliation(s)
- Ryan Draker
- Ontario Cancer Institute, 610 University Avenue, University of Toronto, Toronto, ON, Canada M5G 2M9
| | | | | |
Collapse
|
222
|
Abstract
Acetylation and deacetylation of lysine residues controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively, are among the most common posttranslational modifications of proteins. In addition to histones, a large number of nonhistone proteins that can undergo reversible acetylation have been identified. These nonhistone acetylated/deacetylated proteins are involved in a wide range of cellular processes including transcription, translation, DNA repair, metabolism, and cell structure. Aberrant deacetylation of nonhistone proteins is implicated in many human diseases, including cancer. In this chapter, we review and describe the involvement of HDACs in cancer-associated cellular processes via deacetylation of nonhistone proteins, and the possible implications for carcinogenesis and cancer development.
Collapse
|
223
|
Mehta KR, Yang CY, Montclare JK. Modulating substrate specificity of histone acetyltransferase with unnatural amino acids. MOLECULAR BIOSYSTEMS 2011; 7:3050-5. [DOI: 10.1039/c1mb05148b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
224
|
Characterization of a rabbit polyclonal antibody against threonine-AMPylation. J Biotechnol 2010; 151:251-4. [PMID: 21185336 DOI: 10.1016/j.jbiotec.2010.12.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022]
Abstract
An antibody against the posttranslational modification AMPylation was produced using a peptide corresponding to human Rac1 switch I region with AMPylated threonine-35 residue as an antigen. The resulting rabbit antiserum was tested for its abilities to recognize AMPylated proteins by western blot and immunoprecipitation. The antiserum is highly specific for threonine-AMPylated proteins and weakly recognizes tyrosine-AMPylated proteins. Depletion of serum with modified protein abolished its activity against tyrosine-AMPylated proteins. The antiserum also recognized native proteins with modification in an immunoprecipitation experiment. Interactions of the antiserum could be inhibited by competition with AMP but not with GMP or UMP. This antiserum had potential utility for the identification of unknown AMPylated proteins.
Collapse
|
225
|
Song L, Gao M, Dong W, Hu M, Li J, Shi X, Hao Y, Li Y, Huang C. p85α mediates p53 K370 acetylation by p300 and regulates its promoter-specific transactivity in the cellular UVB response. Oncogene 2010; 30:1360-71. [PMID: 21057544 DOI: 10.1038/onc.2010.506] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inducible acetylation of p53 at lysine residues has a great impact on regulating the transactivation of this protein, which is associated with cell growth arrest and/or apoptosis under various stress conditions. However, the factor(s) for regulating p53 acetylation remains largely unknown. In the current study, we have shown that p85α, the regulatory subunit of phosphatidylinositol-3-kinase, has a critical role in mediating p53 acetylation and promoter-specific transactivation in the ultraviolet B (UVB) response. Depletion of p85α in mouse embryonic fibroblasts significantly impairs UVB-induced apoptosis, as well as p53 transactivation and acetylation at Lys370 (Lys373 of human p53); however, the accumulation, nuclear translocation and phosphorylation of p53 are not affected. Interestingly, p85α binds to p300, promotes the p300-p53 interaction and the subsequent recruitment of the p53/p300 complex to the promoter region of the specific p53 target gene in response to UVB irradiation. Moreover, ablation of p53 acetylation at Lys370 by site-directed mutagenesis dramatically suppresses UVB-induced expression of the specific p53-responsive gene as well as cell apoptosis. Therefore, we conclude that p85α is a novel regulator of p53-mediated response under certain stress conditions, and targeting the p85α-dependent p53 pathway may be promising for cancer therapy.
Collapse
Affiliation(s)
- L Song
- Nelson Institute of Environmental Medicine, Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Oh ET, Park MT, Choi BH, Ro S, Choi EK, Jeong SY, Park HJ. Novel histone deacetylase inhibitor CG200745 induces clonogenic cell death by modulating acetylation of p53 in cancer cells. Invest New Drugs 2010; 30:435-42. [PMID: 20978925 DOI: 10.1007/s10637-010-9568-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 10/11/2010] [Indexed: 01/09/2023]
Abstract
Histone deacetylase (HDAC) plays an important role in cancer onset and progression. Therefore, inhibition of HDAC offers potential as an effective cancer treatment regimen. CG200745, (E)-N(1)-(3-(dimethylamino)propyl)-N(8)-hydroxy-2-((naphthalene-1-loxy)methyl)oct-2-enediamide, is a novel HDAC inhibitor presently undergoing a phase I clinical trial. Enhancement of p53 acetylation by HDAC inhibitors induces cell cycle arrest, differentiation, and apoptosis in cancer cells. The purpose of the present study was to investigate the role of p53 acetylation in the cancer cell death caused by CG200745. CG200745-induced clonogenic cell death was 2-fold greater in RKO cells expressing wild-type p53 than in p53-deficient RC10.1 cells. CG200745 treatment was also cytotoxic to PC-3 human prostate cancer cells, which express wild-type p53. CG200745 increased acetylation of p53 lysine residues K320, K373, and K382. CG200745 induced the accumulation of p53, promoted p53-dependent transactivation, and enhanced the expression of MDM2 and p21(Waf1/Cip1) proteins, which are encoded by p53 target genes. An examination of CG200745 effects on p53 acetylation using cells transfected with various p53 mutants showed that cells expressing p53 K382R mutants were significantly resistant to CG200745-induced clonogenic cell death compared with wild-type p53 cells. Moreover, p53 transactivation in response to CG200745 was suppressed in all cells carrying mutant forms of p53, especially K382R. Taken together, these results suggest that acetylation of p53 at K382 plays an important role in CG200745-induced p53 transactivation and clonogenic cell death.
Collapse
Affiliation(s)
- Eun-Taex Oh
- Department of Microbiology, Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University, Shinheung-Dong, Jung-Gu, Inchoen 400-712, South Korea
| | | | | | | | | | | | | |
Collapse
|
227
|
Perez RE, Knights CD, Sahu G, Catania J, Kolukula VK, Stoler D, Graessmann A, Ogryzko V, Pishvaian M, Albanese C, Avantaggiati ML. Restoration of DNA-binding and growth-suppressive activity of mutant forms of p53 via a PCAF-mediated acetylation pathway. J Cell Physiol 2010; 225:394-405. [PMID: 20589832 DOI: 10.1002/jcp.22285] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tumor-derived mutant forms of p53 compromise its DNA binding, transcriptional, and growth regulatory activity in a manner that is dependent upon the cell-type and the type of mutation. Given the high frequency of p53 mutations in human tumors, reactivation of the p53 pathway has been widely proposed as beneficial for cancer therapy. In support of this possibility p53 mutants possess a certain degree of conformational flexibility that allows for re-induction of function by a number of structurally different artificial compounds or by short peptides. This raises the question of whether physiological pathways for p53 mutant reactivation also exist and can be exploited therapeutically. The activity of wild-type p53 is modulated by various acetyl-transferases and deacetylases, but whether acetylation influences signaling by p53 mutant is still unknown. Here, we show that the PCAF acetyl-transferase is down-regulated in tumors harboring p53 mutants, where its re-expression leads to p53 acetylation and to cell death. Furthermore, acetylation restores the DNA-binding ability of p53 mutants in vitro and expression of PCAF, or treatment with deacetylase inhibitors, promotes their binding to p53-regulated promoters and transcriptional activity in vivo. These data suggest that PCAF-mediated acetylation rescues activity of at least a set of p53 mutations. Therefore, we propose that dis-regulation of PCAF activity is a pre-requisite for p53 mutant loss of function and for the oncogenic potential acquired by neoplastic cells expressing these proteins. Our findings offer a new rationale for therapeutic targeting of PCAF activity in tumors harboring oncogenic versions of p53.
Collapse
Affiliation(s)
- Ricardo E Perez
- Department of Oncology, School of Medicine, Georgetown University, Lombardi Comprehensive Cancer Center, Washington, District of Columbia 20057, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Extra-virgin olive oil-enriched diet modulates DSS-colitis-associated colon carcinogenesis in mice. Clin Nutr 2010; 29:663-73. [DOI: 10.1016/j.clnu.2010.03.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 02/25/2010] [Accepted: 03/03/2010] [Indexed: 02/07/2023]
|
229
|
Abstract
The functions of p53 most highly associated with the well-studied tumor suppressor are its abilities to induce cell cycle arrest and apoptosis in response to cellular stresses. Recent progress underscores that p53 is a multi-functional protein with activities that range beyond tumor suppression to normal homeostasis, metabolism, fertility and differentiation. A unifying theme of these studies is that p53 is first and foremost a transcription factor; and control of p53 protein stability determines its ability to carry out this task. There are an expanding number of E3-ubiquitin ligase proteins that target p53 for ubiquitin tagging and protein degradation. This review discusses these many effectors of p53 protein degradation, and our task is to provide some level of understanding as to their differences and their similarities. Further, we propose how some degree of specialization may be assigned to the E3-ligases, in their navigation toward a common goal of regulating p53 protein levels, and emphasize that better understanding of the mechanisms involved in E3-ligase functions is needed to further their potential as therapeutic targets.
Collapse
Affiliation(s)
- Abhinav K Jain
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center; Houston, TX, USA
| | | |
Collapse
|
230
|
Shiota M, Yokomizo A, Tada Y, Uchiumi T, Inokuchi J, Tatsugami K, Kuroiwa K, Yamamoto K, Seki N, Naito S. P300/CBP-associated factor regulates Y-box binding protein-1 expression and promotes cancer cell growth, cancer invasion and drug resistance. Cancer Sci 2010; 101:1797-806. [PMID: 20491776 PMCID: PMC11158634 DOI: 10.1111/j.1349-7006.2010.01598.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Twist1 has been proposed to have oncogenic properties. Although Twist1 was reported to interact with p300/CBP-associated factor (PCAF) and to inhibit the functions of PCAF, it remains unclear how PCAF affects the functions of Twist1, cell growth, invasive ability, and cellular sensitivity to anticancer agents. We found that PCAF, Twist1, and Y-box binding protein-1 (YB-1) expressions were elevated in cisplatin- and doxorubicin-resistant cancer cells. Luciferase reporter assays revealed that PCAF manipulation modulated YB-1 transcription in a Twist1-dependent manner. In addition, PCAF regulated the Twist1 intracellular localization and the Twist1 transcriptional activity through its acetylation function to the Twist1. Suppression of PCAF expression reduced YB-1 expression in human urothelial cancer KK47 cells. As a result, the cell growth and invasive ability of KK47 cells was retarded by PCAF knockdown, and PCAF knockdown rendered KK47 cells sensitive to cisplatin and doxorubicin, but not to 5-fluorouracil. The present data suggest that Twist1 and YB-1 as well as PCAF may be promising molecular therapeutic targets.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Fenton TR, Gwalter J, Cramer R, Gout IT. S6K1 is acetylated at lysine 516 in response to growth factor stimulation. Biochem Biophys Res Commun 2010; 398:400-5. [PMID: 20599721 DOI: 10.1016/j.bbrc.2010.06.081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 06/20/2010] [Indexed: 10/19/2022]
Abstract
The 70kDa ribosomal protein S6 kinase 1 (S6K1) plays important roles in the regulation of protein synthesis, cell growth and metabolism. S6K1 is activated by the phosphorylation of multiple serine and threonine residues in response to stimulation by a variety of growth factors and cytokines. In addition to phosphorylation, we have recently shown that S6K1 is also targeted by lysine acetylation. Here, using tandem mass spectrometry we have mapped acetylation of S6K1 to lysine 516, a site close to the C-terminus of the kinase that is highly conserved amongst vertebrate S6K1 orthologues. Using acetyl-specific K516 antibodies, we show that acetylation of endogenous S6K1 at this site is potently induced upon growth factor stimulation. Although S6K1 acetylation and phosphorylation are both induced by growth factor stimulation, these events appear to be functionally independent. Indeed, experiments using inhibitors of S6K1 activation and exposure of cells to various stresses indicate that S6K1 acetylation can occur in the absence of phosphorylation and vice versa. We propose that K516 acetylation may serve to modulate important kinase-independent functions of S6K1 in response to growth factor signalling.
Collapse
Affiliation(s)
- Tim R Fenton
- Department of Structural and Molecular Biology, University College London, Gower Street, Darwin Building, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
232
|
Khan SN, Khan AU. Role of histone acetylation in cell physiology and diseases: An update. Clin Chim Acta 2010; 411:1401-11. [PMID: 20598676 DOI: 10.1016/j.cca.2010.06.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/04/2010] [Accepted: 06/16/2010] [Indexed: 01/06/2023]
Abstract
Although the role of histone acetylation in gene regulation has been the subject of many reviews, their impact on cell physiology and pathological states of proliferation, differentiation and genome stability in eukaryotic cells remain to be elucidated. Therefore, this review will discuss the molecular, physiological and biochemical aspects of histone acetylation and focus on the interplay of histone acetyltransferases (HATs) and histone deacetylases (HDACs) in different disease states. Current treatment strategies are mostly limited to enzyme inhibitors, though potential lies in targeting other imperative chromatin remodeling factors involved in gene regulation.
Collapse
Affiliation(s)
- Shahper N Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | | |
Collapse
|
233
|
Hirano G, Izumi H, Kidani A, Yasuniwa Y, Han B, Kusaba H, Akashi K, Kuwano M, Kohno K. Enhanced expression of PCAF endows apoptosis resistance in cisplatin-resistant cells. Mol Cancer Res 2010; 8:864-72. [PMID: 20530585 DOI: 10.1158/1541-7786.mcr-09-0458] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histone acetyltransferase (HAT) regulates transcription. We have previously shown that two HAT genes, Clock and Tip60, are overexpressed, and upregulate glutathione biosynthesis and the expression of DNA repair genes in cisplatin-resistant cells. To better understand the mechanism of HAT-related drug resistance, we investigated the role of another HAT gene, p300/CBP-associated factor (PCAF), and found that PCAF was also overexpressed in cisplatin-resistant cells and endowed an antiapoptotic phenotype through enhanced E2F1 expression. PCAF-overexpressing cells showed enhanced expression of E2F1 and conferred cell resistance to chemotherapeutic agents. Downregulation of PCAF decreased E2F1 expression and sensitized cells to chemotherapeutic agents. Moreover, knockdown of PCAF induced G(1) arrest and apoptosis. These results suggest that PCAF is one of pleiotropic factors for drug resistance and seems to be critical for cancer cell growth.
Collapse
Affiliation(s)
- Gen Hirano
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Regulation of p53 activity by HIPK2: molecular mechanisms and therapeutical implications in human cancer cells. Oncogene 2010; 29:4378-87. [PMID: 20514025 DOI: 10.1038/onc.2010.183] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The p53 protein is the most studied tumor suppressor and the p53 pathway has been shown to mediate cellular stress responses that are disrupted when cancer develops. After DNA damage, p53 is activated as transcription factor to directly induce the expression of target genes involved in cell-cycle arrest, DNA repair, senescence and, importantly, apoptosis. Post-translational modifications of p53 are essential for the activation of p53 and for selection of target genes. The tumor suppressor homeodomain-interacting protein kinase-2 (HIPK2) is a crucial regulator of p53 apoptotic function by phosphorylating its N-terminal serine 46 (Ser46) and facilitating Lys382 acetylation at the C-terminus. HIPK2 is activated by numerous genotoxic agents and can be deregulated in tumors by several conditions including hypoxia. Recent findings suggest that HIPK2 active/inactive protein can affect p53 function in multiple and unexpected ways. This makes p53 as well as HIPK2 interesting targets for cancer therapy. Hence, understanding the role of HIPK2 as p53 activator may provide important insights in the process of tumor progression, and may also serve as the crucial point in the diagnostic and therapeutical aspects of cancer.
Collapse
|
235
|
Morimoto T, Sunagawa Y, Fujita M, Hasegawa K. Novel heart failure therapy targeting transcriptional pathway in cardiomyocytes by a natural compound, curcumin. Circ J 2010; 74:1059-66. [PMID: 20467147 DOI: 10.1253/circj.cj-09-1012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hypertensive heart disease and post-myocardial-infarction heart failure (HF) are leading causes of cardiovascular mortality in industrialized countries. To date, pharmacological agents that block cell surface receptors for neurohormonal factors have been used, but despite such conventional therapy, HF is increasing in incidence worldwide. During the development and deterioration process of HF, cardiomyocytes undergo maladaptive hypertrophy, which markedly influences their gene expression. Regulation of histone acetylation by histone acetyltransferase (eg, p300) and histone deacetylase plays an important role in this process. Increasing evidence suggests that the excessive acetylation of cardiomyocyte nuclei is a hallmark of maladaptive cardiomyocyte hypertrophy. Curcumin inhibits p300-mediated nuclear acetylation, suggesting its usefulness in HF treatment. Clinical application of this natural compound, which is inexpensive and safe, should be established in the near future.
Collapse
Affiliation(s)
- Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| | | | | | | |
Collapse
|
236
|
Abstract
Inactivation of p53 is critical for the formation of most tumors. Illumination of the key function(s) of p53 protein in protecting cells from becoming cancerous is therefore a worthy goal. Arguably p53's most important function is to act as a transcription factor that directly regulates perhaps several hundred of the cell's RNA polymerase II (RNAP II)-transcribed genes, and indirectly regulates thousands of others. Indeed p53 is the most well studied mammalian transcription factor. The p53 tetramer binds to its response element where it can recruit diverse transcriptional coregulators such as histone modifying enzymes, chromatin remodeling factors, subunits of the mediator complex, and components of general transcription machinery and preinitiation complex (PIC) to modulate RNAPII activity at target loci (Laptenko and Prives 2006). The p53 transcriptional program is regulated in a stimulus-specific fashion (Murray-Zmijewski et al. 2008; Vousden and Prives 2009), whereby distinct subsets of p53 target genes are induced in response to different p53-activating agents, likely allowing cells to tailor their response to different types of stress. How p53 is able to discriminate between these different loci is the subject of intense research. Here, we describe key aspects of the fundamentals of p53-mediated transcriptional regulation and target gene promoter selectivity.
Collapse
Affiliation(s)
- Rachel Beckerman
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
237
|
Jin W, Liu Y, Chen L, Zhu H, Di GH, Ling H, Wu J, Shao ZM. Involvement of MyoD and c-myb in regulation of basal and estrogen-induced transcription activity of the BRCA1 gene. Breast Cancer Res Treat 2010; 125:699-713. [PMID: 20364308 DOI: 10.1007/s10549-010-0876-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 03/25/2010] [Indexed: 01/12/2023]
Abstract
BRCA1 is closely related to the pathogenesis of breast cancer, BRCA1 mRNA is reduced in sporadic breast cancer cells despite the lack of mutations. In the present report, we find that MyoD expression and BRCA1 expression is correlated in sporadic breast tumors, overexpression of MyoD and c-myb stimulates BRCA1 expression, knockdown of MyoD and c-myb attenuates BRCA1 expression and attenuates the ability of BRCA1 to protect cells against hydrogen peroxide. MyoD and c-myb interact with p300 and PCAF, forming activating transcriptional complexes which bind to E-box and c-myb sites on the BRCA1 promoter and activate its transcription by inducing histone acetylation. Regulation of BRCA1 expression by MyoD and c-myb complexes may be part of an integral signaling pathway that determines and explains breast cancer susceptibility. Detection expression status of the various proteins in these complexes may predispose to the onset of sporadic breast cancer.
Collapse
Affiliation(s)
- Wei Jin
- Department of Breast Surgery, Breast Cancer Institute, Cancer Hospital/Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road Road, Shanghai, 200032, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Yoshida K, Miki Y. The cell death machinery governed by the p53 tumor suppressor in response to DNA damage. Cancer Sci 2010; 101:831-5. [PMID: 20132225 PMCID: PMC11158978 DOI: 10.1111/j.1349-7006.2010.01488.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The cellular response to genotoxic stress that damages DNA includes cell cycle arrest, activation of DNA repair, and in the event of irreparable damage, induction of apoptosis. However, the signals that determine cell fate, that is, survival or apoptosis, are largely unclear. The tumor suppressor p53 has been implicated in many important cellular processes, including regulation of apoptotic cell death. When cells encounter genotoxic stress, certain sensors for DNA lesions eventually stabilize and activate p53. Subsequently, p53 exerts its tumor suppressor function by transactivating numerous target genes. Active p53 is subjected to a complex and diverse array of covalent post-translational modifications, which selectively influence the expression of p53 target genes. In this regard, the molecular basis for how p53 induces apoptosis has been extensively studied; however, the relative contribution of each downstream effector is still to be explored. Moreover, little is known about precise mechanisms by which modified p53 is capable of apoptosis induction. A thorough understanding for the whole picture of p53 modification in apoptosis will be extremely valuable in the development of highly effective and specific therapies for cancer patients. This review is focused on the current views regarding the regulation of cell fate by p53 in the apoptotic response to DNA damage.
Collapse
Affiliation(s)
- Kiyotsugu Yoshida
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| | | |
Collapse
|
239
|
Lessons from interconnected ubiquitylation and acetylation of p53: think metastable networks. Biochem Soc Trans 2010; 38:98-103. [PMID: 20074043 DOI: 10.1042/bst0380098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The critical tumour suppressor p53 plays a major role in response to DNA damage and, more generally, to genotoxic stress. The regulation of its expression and functions is under very tight controls, and involves, in particular, an extremely complex set of post-translational modifications, thanks to a variety of 'modifiers', including ubiquitylation E3s and acetyltransferases, that fine-tune the stability and activity of the protein. Work of the last few years has revealed that, in addition to targeting p53, these modifiers also modify each other, forming an intricate network of regulatory molecules and events that must be taken into account to understand p53 regulation. We propose that this network allows a metastable equilibrium that confers both sensitivity and robustness on the p53 pathway, two properties that allow the pathway to respectively answer to a variety of stimuli and return to its initial stage when the stimuli disappear.
Collapse
|
240
|
Wierda RJ, Geutskens SB, Jukema JW, Quax PHA, van den Elsen PJ. Epigenetics in atherosclerosis and inflammation. J Cell Mol Med 2010; 14:1225-40. [PMID: 20132414 PMCID: PMC3828841 DOI: 10.1111/j.1582-4934.2010.01022.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis is a multifactorial disease with a severe burden on western society. Recent insights into the pathogenesis of atherosclerosis underscore the importance of chronic inflammation in both the initiation and progression of vascular remodelling. Expression of immunoregulatory molecules by vascular wall components within the atherosclerotic lesions is accordingly thought to contribute to the ongoing inflammatory process. Besides gene regulatory proteins (transcription factors), epigenetic mechanisms also play an essential and fundamental role in the transcriptional control of gene expression. These epigenetic mechanisms change the accessibility of chromatin by DNA methylation and histone modifications. Epigenetic modulators are thus critically involved in the regulation of vascular, immune and tissue-specific gene expression within the atherosclerotic lesion. Importantly, epigenetic processes are reversible and may provide an excellent therapeutic target. The concept of epigenetic regulation is gradually being recognized as an important factor in the pathogenesis of atherosclerosis. Recent research provides an essential link between inflammation and reprogramming of the epigenome. In this review we therefore discuss the basis of epigenetic regulation – and the contribution thereof in the regulation of inflammatory processes in general and during atherosclerosis in particular. Moreover we highlight potential therapeutic interventions based on epigenetic mechanisms.
Collapse
Affiliation(s)
- Rutger J Wierda
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
241
|
Mateo F, Vidal-Laliena M, Canela N, Zecchin A, Martínez-Balbás M, Agell N, Giacca M, Pujol MJ, Bachs O. The transcriptional co-activator PCAF regulates cdk2 activity. Nucleic Acids Res 2010; 37:7072-84. [PMID: 19773423 PMCID: PMC2790897 DOI: 10.1093/nar/gkp777] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cyclin dependent kinases (cdks) regulate cell cycle progression and transcription. We report here that the transcriptional co-activator PCAF directly interacts with cdk2. This interaction is mainly produced during S and G2/M phases of the cell cycle. As a consequence of this association, PCAF inhibits the activity of cyclin/cdk2 complexes. This effect is specific for cdk2 because PCAF does not inhibit either cyclin D3/cdk6 or cyclin B/cdk1 activities. The inhibition is neither competitive with ATP, nor with the substrate histone H1 suggesting that somehow PCAF disturbs cyclin/cdk2 complexes. We also demonstrate that overexpression of PCAF in the cells inhibits cdk2 activity and arrests cell cycle progression at S and G2/M. This blockade is dependent on cdk2 because it is rescued by the simultaneous overexpression of this kinase. Moreover, we also observed that PCAF acetylates cdk2 at lysine 33. As this lysine is essential for the interaction with ATP, acetylation of this residue inhibits cdk2 activity. Thus, we report here that PCAF inhibits cyclin/cdk2 activity by two different mechanisms: (i) by somehow affecting cyclin/cdk2 interaction and (ii) by acetylating K33 at the catalytic pocket of cdk2. These findings identify a previously unknown mechanism that regulates cdk2 activity.
Collapse
Affiliation(s)
- Francesca Mateo
- Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, University of Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Jiang L, Sheikh MS, Huang Y. Decision Making by p53: Life versus Death. MOLECULAR AND CELLULAR PHARMACOLOGY 2010; 2:69-77. [PMID: 20514355 PMCID: PMC2877278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cellular response to DNA damage is multifacted in nature and involves a complex signaling network in which p53 functions as a "molecular node" for converging signals. p53 has been implicated in a variety of cellular processes primarily functioning as a transcription factor and also in a transcription-independent manner. It is rapidly activated following DNA damage with phosphorylation as one of the initial signals. Cellular context as well as the type and severity of DNA damage determine p53 activation code, and its activities are regulated predominantly through protein degradation, post-translational modification and interactions with various cellular co-factors. These events are crucial in decision making by p53 as it has the ability to receive, assess and integrate different signals and route them accordingly to induce cell death or promote cell survival. In this decision making process, its transcriptional role to activate a specific subset of target genes linked to inducing cell cycle arrest or apoptosis is critical that is further fine-tuned by its transcription-independent function. This article reviews the current state of knowledge about the role of p53 in determining the fate of cells that have incurred DNA damage.
Collapse
Affiliation(s)
- Lingyan Jiang
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York
| | | | | |
Collapse
|
243
|
Yoshimochi K, Daitoku H, Fukamizu A. PCAF represses transactivation function of FOXO1 in an acetyltransferase-independent manner. J Recept Signal Transduct Res 2009; 30:43-9. [DOI: 10.3109/10799890903517947] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
244
|
Coley W, Kehn-Hall K, Van Duyne R, Kashanchi F. Novel HIV-1 therapeutics through targeting altered host cell pathways. Expert Opin Biol Ther 2009; 9:1369-82. [PMID: 19732026 DOI: 10.1517/14712590903257781] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The emergence of drug-resistant HIV-1 strains presents a challenge for the design of new drugs. Anti-HIV compounds currently in use are the subject of advanced clinical trials using either HIV-1 reverse transcriptase, viral protease or integrase inhibitors. Recent studies show an increase in the number of HIV-1 variants resistant to anti-retroviral agents in newly infected individuals. Targeting host cell factors involved in the regulation of HIV-1 replication might be one way to combat HIV-1 resistance to the currently available anti-viral agents. A specific inhibition of HIV-1 gene expression could be expected from the development of compounds targeting host cell factors that participate in the activation of the HIV-1 LTR promoter. Here we discuss how targeting the host can be accomplished either by using small molecules to alter the function of the host's proteins such as p53 or cdk9, or by utilizing new advances in siRNA therapies to knock down essential host factors such as CCR5 and CXCR4. Finally, we will discuss how the viral protein interactomes should be used to better design therapeutics against HIV-1.
Collapse
Affiliation(s)
- William Coley
- George Washington University, School of Medicine, Department of Microbiology, Immunology and Tropical Medicine, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
245
|
Abstract
The p53 protein is one of the most important tumor suppressor proteins. Normally, the p53 protein is in a latent state. However, when its activity is required, e.g. upon DNA damage, nucleotide depletion or hypoxia, p53 becomes rapidly activated and initiates transcription of pro-apoptotic and cell cycle arrest-inducing target genes. The activity of p53 is regulated both by protein abundance and by post-translational modifications of pre-existing p53 molecules. In the 30 years of p53 research, a plethora of modifications and interaction partners that modulate p53's abundance and activity have been identified and new ones are continuously discovered. This review will summarize our current knowledge on the regulation of p53 abundance and activity.
Collapse
Affiliation(s)
- Karen A Boehme
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Karlsruhe, Germany
| | | |
Collapse
|
246
|
Gerlitz G. HMGNs, DNA repair and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1799:80-5. [PMID: 20004154 DOI: 10.1016/j.bbagrm.2009.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/21/2009] [Accepted: 10/26/2009] [Indexed: 12/28/2022]
Abstract
DNA lesions threaten the integrity of the genome and are a major factor in cancer formation and progression. Eukaryotic DNA is organized in nucleosome-based higher order structures, which form the chromatin fiber. In recent years, considerable knowledge has been gained on the importance of chromatin dynamics for the cellular response to DNA damage and for the ability to repair DNA lesions. High Mobility Group N1 (HMGN1) protein is an emerging factor that is important for chromatin alterations in response to DNA damage originated from both ultra violet light (UV) and ionizing irradiation (IR). HMGN1 is a member in the HMGN family of chromatin architectural proteins. HMGNs bind directly to nucleosomes and modulate the structure of the chromatin fiber in a highly dynamic manner. This review focuses mainly on the roles of HMGN1 in the cellular response pathways to different types of DNA lesions and in transcriptional regulation of cancer-related genes. In addition, emerging roles for HMGN5 in cancer progression and for HMGN2 as a potential tool in cancer therapy will be discussed.
Collapse
Affiliation(s)
- Gabi Gerlitz
- Protein Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Building 37/ Room 3122, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
247
|
Yamamori T, DeRicco J, Naqvi A, Hoffman TA, Mattagajasingh I, Kasuno K, Jung SB, Kim CS, Irani K. SIRT1 deacetylates APE1 and regulates cellular base excision repair. Nucleic Acids Res 2009; 38:832-45. [PMID: 19934257 PMCID: PMC2817463 DOI: 10.1093/nar/gkp1039] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease-1 (APE1) is an essential enzyme in the base excision repair (BER) pathway. Here, we show that APE1 is a target of the SIRTUIN1 (SIRT1) protein deacetylase. SIRT1 associates with APE1, and this association is increased with genotoxic stress. SIRT1 deacetylates APE1 in vitro and in vivo targeting lysines 6 and 7. Genotoxic insults stimulate lysine acetylation of APE1 which is antagonized by transcriptional upregulation of SIRT1. Knockdown of SIRT1 increases cellular abasic DNA content, sensitizing cells to death induced by genotoxic stress, and this vulnerability is rescued by overexpression of APE1. Activation of SIRT1 with resveratrol promotes binding of APE1 to the BER protein X-ray cross-complementing-1 (XRCC1), while inhibition of SIRT1 with nicotinamide (NAM) decreases this interaction. Genotoxic insult also increases binding of APE1 to XRCC1, and this increase is suppressed by NAM or knockdown of SIRT1. Finally, resveratrol increases APE activity in XRCC1-associated protein complexes, while NAM or knockdown of SIRT1 suppresses this DNA repair activity. These findings identify APE1 as a novel protein target of SIRT1, and suggest that SIRT1 plays a vital role in maintaining genomic integrity through regulation of the BER pathway.
Collapse
Affiliation(s)
- Tohru Yamamori
- University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Fazi B, Melino S, De Rubeis S, Bagni C, Paci M, Piacentini M, Di Sano F. Acetylation of RTN-1C regulates the induction of ER stress by the inhibition of HDAC activity in neuroectodermal tumors. Oncogene 2009; 28:3814-24. [PMID: 19668229 DOI: 10.1038/onc.2009.233] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/08/2009] [Accepted: 06/26/2009] [Indexed: 12/24/2022]
Abstract
Reticulons are a family of highly conserved proteins, localized in the endoplasmic reticulum (ER) and involved in different cellular functions, such as intracellular membrane trafficking, apoptosis and nuclear envelope formation. The reticulon protein family consists of four members, but their specific functions are presently poorly understood. RTN-1C overexpression triggers apoptosis, regulating ER stress versus DNA damage-induced cell death in a mutually exclusive way. The different RTN isoforms share a C-terminal reticulon homology domain containing two hydrophobic segments and a 66-amino acid hydrophilic loop. In the C-terminal region of RTN-1C, a unique consensus sequence (GAKRH) has recently been identified, showing 100% identity with the DNA-binding domain of histone H4. In this study, we show that this sequence is essential for RTN-1C-mediated apoptosis. It is noteworthy that the lysine 204 present in this region is post-translationally modified by acetylation and that this event is associated with a significant decrease in histone deacetylase activity and contributes to RTN-1C binding to DNA. These data demonstrate a molecular mechanism by which RTN-1C controls apoptosis and indicate this protein to be a novel potential target for cancer therapy.
Collapse
Affiliation(s)
- B Fazi
- Department of Biology, University of Rome Tor Vergata, Rome 133, Italy
| | | | | | | | | | | | | |
Collapse
|
249
|
Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 2009; 1:a000950. [PMID: 20457558 DOI: 10.1101/cshperspect.a000950] [Citation(s) in RCA: 348] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The p53 protein is modified by as many as 50 individual posttranslational modifications. Many of these occur in response to genotoxic or nongenotoxic stresses and show interdependence, such that one or more modifications can nucleate subsequent events. This interdependent nature suggests a pathway that operates through multiple cooperative events as opposed to distinct functions for individual, isolated modifications. This concept, supported by recent investigations, which provide exquisite detail as to how various modifications mediate precise protein-protein interactions in a cooperative manner, may explain why knockin mice expressing p53 proteins substituted at one or just a few sites of modification typically show only subtle effects on p53 function. The present article focuses on recent, exciting progress and develops the idea that the impact of modification on p53 function is achieved through collective and integrated events.
Collapse
|
250
|
Puca R, Nardinocchi L, Sacchi A, Rechavi G, Givol D, D'Orazi G. HIPK2 modulates p53 activity towards pro-apoptotic transcription. Mol Cancer 2009; 8:85. [PMID: 19828042 PMCID: PMC2768676 DOI: 10.1186/1476-4598-8-85] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Accepted: 10/14/2009] [Indexed: 01/10/2023] Open
Abstract
Background Activation of p53-mediated gene transcription is a critical cellular response to DNA damage and involves a phosphorylation-acetylation cascade of p53. The discovery of differences in the response to different agents raises the question whether some of the p53 oncosuppressor functions might be exerted by different posttranslational modifications. Stress-induced homeodomain-interacting protein kinase-2 (HIPK2) phosphorylates p53 at serine-46 (Ser46) for p53 apoptotic activity; p53 acetylation at different C-terminus lysines including p300-mediated lysine-382 (Lys382) is also required for full activation of p53 transcriptional activity. The purpose of the current study was to evaluate the interplay among HIPK2, p300, and p53 in p53 acetylation and apoptotic transcriptional activity in response to drug by using siRNA interference, p300 overexpression or deacetylase inhibitors, in cancer cells. Results Knockdown of HIPK2 inhibited both adriamycin-induced Ser46 phosphorylation and Lys382 acetylation in p53 protein; however, while combination of ADR and zinc restored Ser46 phosphorylation it did not recover Lys382 acetylation. Chromatin immunoprecipitation studies showed that HIPK2 was required in vivo for efficient p300/p53 co-recruitment onto apoptotic promoters and that both p53 modifications at Ser46 and Lys382 were necessary for p53 apoptotic transcription. Thus, p53Lys382 acetylation in HIPK2 knockdown as well as p53 apoptotic activity in response to drug could be rescued by p300 overexpression. Similar effect was obtained with the Sirt1-inhibitor nicotinamide. Interestingly trichostatin A (TSA), the inhibitor of histone deacetylase complexes (HDAC) did not have effect, suggesting that Sirt1 was the deacetylase involved in p53 deacetylation in HIPK2 knockdown. Conclusion These results reveal a novel role for HIPK2 in activating p53 apoptotic transcription. Our results indicate that HIPK2 may regulate the balance between p53 acetylation and deacetylation, by stimulating on one hand co-recruitment of p300 and p53Lys382 on apoptotic promoters and on the other hand by inhibiting Sirt1 deacetylase activity. We attempted to reactivate p53 apoptotic transcriptional activity by rescuing both Ser46 and Lys382 modification in response to drug. Our data propose combination strategies for the treatment of tumors with dysfunctional p53 and/or HIPK2 that include classical chemotherapy with pharmacological or natural agents such as Sirt1-deacetylase inhibitors or zinc, respectively.
Collapse
Affiliation(s)
- Rosa Puca
- Department of Experimental Oncology, Molecular Oncogenesis Laboratory, National Cancer Institute Regina Elena, Rome, Italy.
| | | | | | | | | | | |
Collapse
|