201
|
Jiang B, Du P, Jia P, Liu E, Kudinha T, Zhang H, Li D, Xu Y, Xie L, Yang Q. Antimicrobial Susceptibility and Virulence of mcr-1-Positive Enterobacteriaceae in China, a Multicenter Longitudinal Epidemiological Study. Front Microbiol 2020; 11:1611. [PMID: 32849334 PMCID: PMC7399235 DOI: 10.3389/fmicb.2020.01611] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/19/2020] [Indexed: 11/26/2022] Open
Abstract
This study was to investigate the prevalence of mcr-1-positive Enterobacteriaceae (MPE) in intra-abdominal infections (IAIs), urinary tract infections (UTIs), and lower respiratory tract infections (LRTIs) in China. A total of 6,401 Enterobacteriaceae isolates were collected consecutively from IAI, UTI, and LRTI patients in 19 hospitals across mainland China during 2014–2016. MPE isolates were screened by PCR detection for the mcr gene. The resistance profiles were tested by antimicrobial susceptibility test. All MPE isolates were characterized by pulsed-field gel electrophoresis (PFGE), multi-locus-sequence typing, O and H serotyping, and whole-genome sequencing. Among the 6,401 Enterobacteriaceae isolates, 17 Escherichia coli strains (0.27%) were positive for the mcr-1 gene. The MPE prevalence rates in IAI, UTI, and LRTI patients were 0.34% (12/3502), 0.23% (5/2154), and 0% (0/745), respectively. The minimum inhibition concentrations (MICs) of colistin against 3 isolates were of 0.5–2 mg/L, and 4–8 mg/L against other 14 isolates. All the 17 isolates were susceptible to meropenem, imipenem, tigecycline, and ceftazidime/avibactam. The 17 MPE isolates belonged to 14 different ST types, and those that belonged to the same STs were not clonal by PFGE. The mcr-1-harboring plasmid of ten MPE isolates could transfer to the recipients by conjugation and the colistin MICs of the transconjugants ranged from 0.5 to 8 mg/L. Mcr-1-carrying plasmids from the 17 MPE isolates could be grouped into four clusters, including 8 IncX4 type, 4 IncI2 type, 4 IncHI2A type, and 1 p0111 type. Multiple-drug resistance genes and virulence genes were detected. In conclusion, the prevalence of MPE in IAI, UTI, and LRTI were low in China, and no clonal transmission was identified in our study. Most MPE isolates exhibited low-level colistin resistance. However, our study indicated that MPE isolates always carried a variety of drug resistance and virulence genes, which should be paid more attention.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Pengcheng Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Peiyao Jia
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Enbo Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Timothy Kudinha
- School of Biomedical Sciences, Charles Sturt University, Orange, NSW, Australia
| | - Hui Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongxue Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Liangyi Xie
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Qiwen Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
202
|
Campos M, San Millán Á, Sempere JM, Lanza VF, Coque TM, Llorens C, Baquero F. Simulating the Influence of Conjugative-Plasmid Kinetic Values on the Multilevel Dynamics of Antimicrobial Resistance in a Membrane Computing Model. Antimicrob Agents Chemother 2020; 64:e00593-20. [PMID: 32457104 PMCID: PMC7526830 DOI: 10.1128/aac.00593-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Bacterial plasmids harboring antibiotic resistance genes are critical in the spread of antibiotic resistance. It is known that plasmids differ in their kinetic values, i.e., conjugation rate, segregation rate by copy number incompatibility with related plasmids, and rate of stochastic loss during replication. They also differ in cost to the cell in terms of reducing fitness and in the frequency of compensatory mutations compensating plasmid cost. However, we do not know how variation in these values influences the success of a plasmid and its resistance genes in complex ecosystems, such as the microbiota. Genes are in plasmids, plasmids are in cells, and cells are in bacterial populations and microbiotas, which are inside hosts, and hosts are in human communities at the hospital or the community under various levels of cross-colonization and antibiotic exposure. Differences in plasmid kinetics might have consequences on the global spread of antibiotic resistance. New membrane computing methods help to predict these consequences. In our simulation, conjugation frequency of at least 10-3 influences the dominance of a strain with a resistance plasmid. Coexistence of different antibiotic resistances occurs if host strains can maintain two copies of similar plasmids. Plasmid loss rates of 10-4 or 10-5 or plasmid fitness costs of ≥0.06 favor plasmids located in the most abundant species. The beneficial effect of compensatory mutations for plasmid fitness cost is proportional to this cost at high mutation frequencies (10-3 to 10-5). The results of this computational model clearly show how changes in plasmid kinetics can modify the entire population ecology of antibiotic resistance in the hospital setting.
Collapse
Affiliation(s)
- Marcelino Campos
- Department of Microbiology, Ramón y Cajal University Hospital, IRYCIS, Madrid, Spain
- Valencian Research Institute for Artificial Intelligence (VRAIN), Universitat Politècnica de València, Valencia, Spain
| | - Álvaro San Millán
- Department of Microbiology, Ramón y Cajal University Hospital, IRYCIS, Madrid, Spain
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain
- Network Research Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - José M Sempere
- Valencian Research Institute for Artificial Intelligence (VRAIN), Universitat Politècnica de València, Valencia, Spain
| | - Val F Lanza
- Department of Microbiology, Ramón y Cajal University Hospital, IRYCIS, Madrid, Spain
- Bioinformatics Support Unit, IRYCIS, Madrid, Spain
- Network Research Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Teresa M Coque
- Department of Microbiology, Ramón y Cajal University Hospital, IRYCIS, Madrid, Spain
- Network Research Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Carlos Llorens
- Biotechvana, Valencia Technological Park, Paterna, Spain
| | - Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, IRYCIS, Madrid, Spain
- Network Research Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
203
|
Hall RJ, Whelan FJ, McInerney JO, Ou Y, Domingo-Sananes MR. Horizontal Gene Transfer as a Source of Conflict and Cooperation in Prokaryotes. Front Microbiol 2020; 11:1569. [PMID: 32849327 PMCID: PMC7396663 DOI: 10.3389/fmicb.2020.01569] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/17/2020] [Indexed: 02/01/2023] Open
Abstract
Horizontal gene transfer (HGT) is one of the most important processes in prokaryote evolution. The sharing of DNA can spread neutral or beneficial genes, as well as genetic parasites across populations and communities, creating a large proportion of the variability acted on by natural selection. Here, we highlight the role of HGT in enhancing the opportunities for conflict and cooperation within and between prokaryote genomes. We discuss how horizontally acquired genes can cooperate or conflict both with each other and with a recipient genome, resulting in signature patterns of gene co-occurrence, avoidance, and dependence. We then describe how interactions involving horizontally transferred genes may influence cooperation and conflict at higher levels (populations, communities, and symbioses). Finally, we consider the benefits and drawbacks of HGT for prokaryotes and its fundamental role in understanding conflict and cooperation from the gene-gene to the microbiome level.
Collapse
Affiliation(s)
- Rebecca J Hall
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Fiona J Whelan
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - James O McInerney
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Yaqing Ou
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
204
|
Horizontal Plasmid Transfer among Klebsiella pneumoniae Isolates Is the Key Factor for Dissemination of Extended-Spectrum β-Lactamases among Children in Tanzania. mSphere 2020; 5:5/4/e00428-20. [PMID: 32669470 PMCID: PMC7364214 DOI: 10.1128/msphere.00428-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Horizontal spread of plasmids carrying multiple resistance genes is considered an important mechanism behind the global health problem caused by multidrug-resistant bacteria. Nevertheless, knowledge about spread of plasmids in a community is limited. Our detailed molecular analyses of K. pneumoniae isolated from hospitalized and healthy children in Tanzania disclosed an epidemic spread of a resistance plasmid. In this study population, we revealed horizontal plasmid transfer among K. pneumoniae as the key factor for dissemination of ESBLs. Traditional outbreak investigation and surveillance focus on the spread of bacterial clones, and short-read sequencing can result in erroneous plasmid composition. Our approach using long-read sequencing reveals horizontal gene transfer of antimicrobial resistance, and therefore has a potential impact on outbreak investigations and approaches to limit spread of AMR. Increased knowledge about the role of horizontal gene transfer is key to improve our understanding of the spread of antimicrobial resistance (AMR) in human populations. We therefore studied the dissemination of the blaCTX-M-15 extended-spectrum-β-lactamase (ESBL) gene in Klebsiella pneumoniae isolates obtained from stool samples from hospitalized children and healthy controls below 2 years of age in Dar es Salaam, Tanzania, from August 2010 to July 2011. We performed Illumina whole-genome sequencing (WGS) to characterize resistance genes, multilocus sequence type (MLST), plasmid incompatibility group (Inc), and plasmid MLST of 128 isolates of K. pneumoniae with blaCTX-M-15 recovered from both healthy and hospitalized children. We assessed the phylogenetic relationship using single nucleotide polymorphism (SNP)-based analysis and resolved the sequences of five reference plasmids by Oxford Nanopore technology to investigate plasmid dissemination. The WGS analyses revealed the presence of a blaCTX-M-15-positive IncFIIK5/IncR plasmid with a highly conserved backbone in 70% (90/128) of the isolates. This plasmid, harboring genes encoding resistance to most β-lactams, aminoglycosides, trimethoprim-sulfamethoxazole, and chloramphenicol, was present in phylogenetically very diverse K. pneumoniae strains (48 different MLSTs) carried by both hospitalized and healthy children. Our data strongly suggest widespread horizontal transfer of this ESBL-carrying plasmid both in hospitals and in the general population. IMPORTANCE Horizontal spread of plasmids carrying multiple resistance genes is considered an important mechanism behind the global health problem caused by multidrug-resistant bacteria. Nevertheless, knowledge about spread of plasmids in a community is limited. Our detailed molecular analyses of K. pneumoniae isolated from hospitalized and healthy children in Tanzania disclosed an epidemic spread of a resistance plasmid. In this study population, we revealed horizontal plasmid transfer among K. pneumoniae as the key factor for dissemination of ESBLs. Traditional outbreak investigation and surveillance focus on the spread of bacterial clones, and short-read sequencing can result in erroneous plasmid composition. Our approach using long-read sequencing reveals horizontal gene transfer of antimicrobial resistance, and therefore has a potential impact on outbreak investigations and approaches to limit spread of AMR.
Collapse
|
205
|
Kawano H, Suzuki-Minakuchi C, Sugiyama D, Watanabe N, Takahashi Y, Okada K, Nojiri H. A Novel Small RNA on the Pseudomonas putida KT2440 Chromosome Is Involved in the Fitness Cost Imposed by IncP-1 Plasmid RP4. Front Microbiol 2020; 11:1328. [PMID: 32655527 PMCID: PMC7324555 DOI: 10.3389/fmicb.2020.01328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Plasmids can provide advantageous traits to host bacteria, although they may impose a fitness cost. Chromosome-encoded factors are important for regulating the expression of genes on plasmids, and host chromosomes may differ in terms of their interactions with a given plasmid. Accordingly, differences in fitness cost loading and compensatory co-evolution may occur for various host chromosome/plasmid combinations. However, the mechanisms of compensatory evolution are highly divergent and require further insights. Here, we reveal novel evolutionally mechanisms of Pseudomonas putida KT2440 to improve the fitness cost imposed by the incompatibility P-1 (IncP-1) multidrug resistance plasmid RP4. A mixed culture of RP4-harboring and -free KT2440 cells was serially transferred every 24 h under non-selective conditions. Initially, the proportion of RP4-harboring cells decreased rapidly, but it immediately recovered, suggesting that the fitness of RP4-harboring strains improved during cultivation. Larger-sized colonies appeared during 144-h mixed culture, and evolved strains isolated from larger-sized colonies showed higher growth rates and fitness than those of the ancestral strain. Whole-genome sequencing revealed that evolved strains had one of two mutations in the same intergenic region of the chromosome. Based on the research of another group, this region is predicted to contain a stress-inducible small RNA (sRNA). Identification of the transcriptional start site in this sRNA indicated that one mutation occurred within the sRNA region, whereas the other was in its promoter region. Quantitative reverse-transcription PCR showed that the expression of this sRNA was strongly induced by RP4 carriage in the ancestral strain but repressed in the evolved strains. When the sRNA region was overexpressed in the RP4-free strain, the fitness decreased, and the colony size became smaller. Using transcriptome analysis, we also showed that the genes involved in amino acid metabolism and stress responses were differentially transcribed by overexpression of the sRNA region. These results indicate that the RP4-inducible chromosomal sRNA was responsible for the fitness cost of RP4 on KT2440 cells, where this sRNA is of key importance in host evolution toward rapid amelioration of the cost.
Collapse
Affiliation(s)
- Hibiki Kawano
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Chiho Suzuki-Minakuchi
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Daisuke Sugiyama
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Natsuki Watanabe
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Yurika Takahashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
206
|
Comparative Genomic Analysis of Third-Generation-Cephalosporin-Resistant Escherichia coli Harboring the bla CMY-2-Positive IncI1 Group, IncB/O/K/Z, and IncC Plasmids Isolated from Healthy Broilers in Japan. Antimicrob Agents Chemother 2020; 64:AAC.02385-19. [PMID: 32366721 DOI: 10.1128/aac.02385-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/09/2020] [Indexed: 12/20/2022] Open
Abstract
The off-label use of third-generation cephalosporins (3GCs) during in ovo vaccination or vaccination of newly hatched chicks has been a common practice worldwide. CMY-2-producing Escherichia coli strains have been disseminated in broiler chicken production. The objective of this study was to determine the epidemiological linkage of bla CMY-2-positive plasmids among broilers both within and outside Japan, because the grandparent stock and parent stock were imported into Japan. We examined the whole-genome sequences of 132 3GC-resistant E. coli isolates collected from healthy broilers during 2002 to 2014. The predominant 3GC resistance gene was bla CMY-2, which was detected in the plasmids of 87 (65.9%) isolates. The main plasmid replicon types were IncI1-Iγ (n = 21; 24.1%), IncI (n = 12; 13.8%), IncB/O/K/Z (n = 28; 32.2%), and IncC (n = 22; 25.3%). Those plasmids were subjected to gene clustering, network analyses, and plasmid multilocus sequence typing (pMLST). The chromosomal DNA of isolates was subjected to MLST and single-nucleotide variant (SNV)-based phylogenetic analysis. MLST and SNV-based phylogenetic analysis revealed high diversity of E. coli isolates. The sequence type 429 (ST429) cluster harboring bla CMY-2-positive IncB/O/K/Z was closely related to isolates from broilers in Germany harboring bla CMY-2-positive IncB/O/K/Z. pST55-IncI, pST12-IncI1-Iγ, and pST3-IncC were prevalent in western Japan. pST12-IncI1-Iγ and pST3-IncC were closely related to plasmids detected in E. coli isolates from chickens in North America, whereas 26 IncB/O/K/Z types were related to those in Europe. These data will be useful to reveal the whole picture of transmission of CMY-2-producing bacteria inside and outside Japan.
Collapse
|
207
|
Köbbing S, Blank LM, Wierckx N. Characterization of Context-Dependent Effects on Synthetic Promoters. Front Bioeng Biotechnol 2020; 8:551. [PMID: 32596224 PMCID: PMC7303508 DOI: 10.3389/fbioe.2020.00551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/07/2020] [Indexed: 11/13/2022] Open
Abstract
Understanding the composability of genetic elements is central to synthetic biology. Even for seemingly well-known elements such as a sigma 70 promoter the genetic context-dependent variability of promoter activity remains poorly understood. The lack of understanding of sequence to function results in highly limited de novo design of novel genetic element combinations. To address this issue, we characterized in detail concatenated "stacked" synthetic promoters including varying spacer sequence lengths and compared the transcription strength to the output of the individual promoters. The proxy for promoter activity, the msfGFP synthesis from stacked promoters was consistently lower than expected from the sum of the activities of the single promoters. While the spacer sequence itself had no activity, it drastically affected promoter activities when placed up- or downstream of a promoter. Single promoter-spacer combinations revealed a bivalent effect on msfGFP synthesis. By systematic analysis of promoter and spacer combinations, a semi-empirical correlation was developed to determine the combined activity of stacked promoters.
Collapse
Affiliation(s)
- Sebastian Köbbing
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Nick Wierckx
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany.,Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
208
|
Touchon M, Perrin A, de Sousa JAM, Vangchhia B, Burn S, O’Brien CL, Denamur E, Gordon D, Rocha EPC. Phylogenetic background and habitat drive the genetic diversification of Escherichia coli. PLoS Genet 2020; 16:e1008866. [PMID: 32530914 PMCID: PMC7314097 DOI: 10.1371/journal.pgen.1008866] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/24/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Escherichia coli is mostly a commensal of birds and mammals, including humans, where it can act as an opportunistic pathogen. It is also found in water and sediments. We investigated the phylogeny, genetic diversification, and habitat-association of 1,294 isolates representative of the phylogenetic diversity of more than 5,000 isolates from the Australian continent. Since many previous studies focused on clinical isolates, we investigated mostly other isolates originating from humans, poultry, wild animals and water. These strains represent the species genetic diversity and reveal widespread associations between phylogroups and isolation sources. The analysis of strains from the same sequence types revealed very rapid change of gene repertoires in the very early stages of divergence, driven by the acquisition of many different types of mobile genetic elements. These elements also lead to rapid variations in genome size, even if few of their genes rise to high frequency in the species. Variations in genome size are associated with phylogroup and isolation sources, but the latter determine the number of MGEs, a marker of recent transfer, suggesting that gene flow reinforces the association of certain genetic backgrounds with specific habitats. After a while, the divergence of gene repertoires becomes linear with phylogenetic distance, presumably reflecting the continuous turnover of mobile element and the occasional acquisition of adaptive genes. Surprisingly, the phylogroups with smallest genomes have the highest rates of gene repertoire diversification and fewer but more diverse mobile genetic elements. This suggests that smaller genomes are associated with higher, not lower, turnover of genetic information. Many of these genomes are from freshwater isolates and have peculiar traits, including a specific capsule, suggesting adaptation to this environment. Altogether, these data contribute to explain why epidemiological clones tend to emerge from specific phylogenetic groups in the presence of pervasive horizontal gene transfer across the species. Previous large scale studies on the evolution of E. coli focused on clinical isolates emphasizing virulence and antibiotic resistance in medically important lineages. Yet, most E. coli strains are either human commensals or not associated with humans at all. Here, we analyzed a large collection of non-clinical isolates of the species to assess the mechanisms of gene repertoire diversification in the light of isolation sources and phylogeny. We show that gene repertoires evolve so rapidly by the high turnover of mobile genetic elements that epidemiologically indistinguishable strains can be phenotypically extremely heterogeneous, illustrating the velocity of bacterial adaptation and the importance of accounting for the information on the whole genome at the epidemiological scale. Phylogeny and habitat shape the genetic diversification of E. coli to similar extents. Surprisingly, freshwater strains seem specifically adapted to this environment, breaking the paradigm that E. coli environmental isolates are systematically fecal contaminations. As a consequence, the evolution of this species is also shaped by environmental habitats, and it may diversify by acquiring genes and mobile elements from environmental bacteria (and not just from gut bacteria). This may facilitate the acquisition of virulence factors and antibiotic resistance in the strains that become pathogenic.
Collapse
Affiliation(s)
- Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 25-28 rue Dr Roux, Paris, 75015, France
- * E-mail:
| | - Amandine Perrin
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 25-28 rue Dr Roux, Paris, 75015, France
- Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Jorge André Moura de Sousa
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 25-28 rue Dr Roux, Paris, 75015, France
| | - Belinda Vangchhia
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
- Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, India
| | - Samantha Burn
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Claire L. O’Brien
- School of Medicine, University of Wollongong, Northfields Ave Wollongong, Australia
| | - Erick Denamur
- Université de Paris, IAME, UMR 1137, INSERM, Paris, 75018, France
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, 75018, Paris, France
| | - David Gordon
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Eduardo PC Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 25-28 rue Dr Roux, Paris, 75015, France
| |
Collapse
|
209
|
van Dijk B, Hogeweg P, Doekes HM, Takeuchi N. Slightly beneficial genes are retained by bacteria evolving DNA uptake despite selfish elements. eLife 2020; 9:e56801. [PMID: 32432548 PMCID: PMC7316506 DOI: 10.7554/elife.56801] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
Horizontal gene transfer (HGT) and gene loss result in rapid changes in the gene content of bacteria. While HGT aids bacteria to adapt to new environments, it also carries risks such as selfish genetic elements (SGEs). Here, we use modelling to study how HGT of slightly beneficial genes impacts growth rates of bacterial populations, and if bacterial collectives can evolve to take up DNA despite selfish elements. We find four classes of slightly beneficial genes: indispensable, enrichable, rescuable, and unrescuable genes. Rescuable genes - genes with small fitness benefits that are lost from the population without HGT - can be collectively retained by a community that engages in costly HGT. While this 'gene-sharing' cannot evolve in well-mixed cultures, it does evolve in a spatial population like a biofilm. Despite enabling infection by harmful SGEs, the uptake of foreign DNA is evolutionarily maintained by the hosts, explaining the coexistence of bacteria and SGEs.
Collapse
Affiliation(s)
- Bram van Dijk
- Utrecht University, Theoretical BiologyUtrechtNetherlands
| | | | - Hilje M Doekes
- Utrecht University, Theoretical BiologyUtrechtNetherlands
| | - Nobuto Takeuchi
- University of Auckland, Biological SciencesAucklandNew Zealand
| |
Collapse
|
210
|
Díaz-Jiménez D, García-Meniño I, Herrera A, García V, López-Beceiro AM, Alonso MP, Blanco J, Mora A. Genomic Characterization of Escherichia coli Isolates Belonging to a New Hybrid aEPEC/ExPEC Pathotype O153:H10-A-ST10 eae-beta1 Occurred in Meat, Poultry, Wildlife and Human Diarrheagenic Samples. Antibiotics (Basel) 2020; 9:antibiotics9040192. [PMID: 32316613 PMCID: PMC7235894 DOI: 10.3390/antibiotics9040192] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/20/2022] Open
Abstract
Different surveillance studies (2005–2015) in northwest Spain revealed the presence of eae-positive isolates of Escherichia coli O153:H10 in meat for human consumption, poultry farm, wildlife and human diarrheagenic samples. The aim of this study was to explore the genetic and genomic relatedness between human and animal/meat isolates, as well as the mechanism of its persistence. We also wanted to know whether it was a geographically restricted lineage, or whether it was also reported elsewhere. Conventional typing showed that 32 isolates were O153:H10-A-ST10 fimH54, fimAvMT78, traT and eae-beta1. Amongst these, 21 were CTX-M-32 or SHV-12 producers. The PFGE XbaI-macrorestriction comparison showed high similarity (>85%). The plasmidome analysis revealed a stable combination of IncF (F2:A-:B-), IncI1 (STunknown) and IncX1 plasmid types, together with non-conjugative Col-like plasmids. The core genome investigation based on the cgMLST scheme from EnteroBase proved close relatedness between isolates of human and animal origin. Our results demonstrate that a hybrid MDR aEPEC/ExPEC of the clonal group O153:H10-A-ST10 (CH11-54) is circulating in our region within different hosts, including wildlife. It seems implicated in human diarrhea via meat transmission, and in the spreading of ESBL genes (mainly of CTX-M-32 type). We found genomic evidence of a related hybrid aEPEC/ExPEC in at least one other country.
Collapse
Affiliation(s)
- Dafne Díaz-Jiménez
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (D.D.-J.); (I.G.-M.); (A.H.); (V.G.); (J.B.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago, Spain
| | - Isidro García-Meniño
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (D.D.-J.); (I.G.-M.); (A.H.); (V.G.); (J.B.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago, Spain
| | - Alexandra Herrera
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (D.D.-J.); (I.G.-M.); (A.H.); (V.G.); (J.B.)
| | - Vanesa García
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (D.D.-J.); (I.G.-M.); (A.H.); (V.G.); (J.B.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago, Spain
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Ana María López-Beceiro
- Departamento de Anatomía, Produción Animal e Ciencias Clínicas Veterinarias, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain;
| | - María Pilar Alonso
- Unidade de Microbioloxía, Hospital Universitario Lucus Augusti (HULA), 27003 Lugo, Spain;
| | - Jorge Blanco
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (D.D.-J.); (I.G.-M.); (A.H.); (V.G.); (J.B.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago, Spain
| | - Azucena Mora
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (D.D.-J.); (I.G.-M.); (A.H.); (V.G.); (J.B.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago, Spain
- Correspondence: ; Tel.: +34-982822110
| |
Collapse
|
211
|
Cazares A, Moore MP, Hall JPJ, Wright LL, Grimes M, Emond-Rhéault JG, Pongchaikul P, Santanirand P, Levesque RC, Fothergill JL, Winstanley C. A megaplasmid family driving dissemination of multidrug resistance in Pseudomonas. Nat Commun 2020; 11:1370. [PMID: 32170080 PMCID: PMC7070040 DOI: 10.1038/s41467-020-15081-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/13/2020] [Indexed: 11/10/2022] Open
Abstract
Multidrug resistance (MDR) represents a global threat to health. Here, we used whole genome sequencing to characterise Pseudomonas aeruginosa MDR clinical isolates from a hospital in Thailand. Using long-read sequence data we obtained complete sequences of two closely related megaplasmids (>420 kb) carrying large arrays of antibiotic resistance genes located in discrete, complex and dynamic resistance regions, and revealing evidence of extensive duplication and recombination events. A comprehensive pangenomic and phylogenomic analysis indicates that: 1) these large plasmids comprise an emerging family present in different members of the Pseudomonas genus, and associated with multiple sources (geographical, clinical or environmental); 2) the megaplasmids encode diverse niche-adaptive accessory traits, including multidrug resistance; 3) the accessory genome of the megaplasmid family is highly flexible and diverse. The history of the megaplasmid family, inferred from our analysis of the available database, suggests that members carrying multiple resistance genes date back to at least the 1970s.
Collapse
Affiliation(s)
- Adrian Cazares
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| | - Matthew P Moore
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - James P J Hall
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| | - Laura L Wright
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Macauley Grimes
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | | | | | | - Roger C Levesque
- Institute for Integrative and Systems Biology (IBIS), University Laval, Quebec City, QC, Canada
| | - Joanne L Fothergill
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| |
Collapse
|
212
|
Goswami C, Fox S, Holden MTG, Connor M, Leanord A, Evans TJ. Origin, maintenance and spread of antibiotic resistance genes within plasmids and chromosomes of bloodstream isolates of Escherichia coli. Microb Genom 2020; 6. [PMID: 32160146 PMCID: PMC7276700 DOI: 10.1099/mgen.0.000353] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Blood stream invasion by Escherichia coli is the commonest cause of bacteremia in the UK and elsewhere with an attributable mortality of about 15-20 %; antibiotic resistance to multiple agents is common in this microbe and is associated with worse outcomes. Genes conferring antimicrobial resistance, and their frequent location on horizontally transferred genetic elements is well-recognised, but the origin of these determinants, and their ability to be maintained and spread within clinically-relevant bacterial populations is unclear. Here, we set out to examine the distribution of antimicrobial resistance genes in chromosomes and plasmids of 16 bloodstream isolates of E. coli from patients within Scotland, and how these genes are maintained and spread. Using a combination of short and long-read whole genome sequencing methods, we were able to assemble complete sequences of 44 plasmids, with 16 Inc group F and 20 col plasmids; antibiotic resistance genes located almost exclusively within the F group. bla CTX-M15 genes had re-arranged in some strains into the chromosome alone (five strains), while others contained plasmid copies alone (two strains). Integrons containing multiple antibiotic genes were widespread in plasmids, notably many with a dfrA7 gene encoding resistance to trimethoprim, thus linking trimethoprim resistance to the other antibiotic resistance genes within the plasmids. This will allow even narrow spectrum antibiotics such as trimethoprim to act as a selective agent for plasmids containing antibiotic resistance genes mediating much broader resistance, including blaCTX-M15. To our knowledge, this is the first analysis to provide complete sequence data of chromosomes and plasmids in a collection of pathogenic human bloodstream isolates of E. coli. Our findings reveal the interplay between plasmids and integrative and conjugative elements in the maintenance and spread of antibiotic resistance genes within pathogenic E. coli.
Collapse
Affiliation(s)
- Cosmika Goswami
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Stephen Fox
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | | | | - Alistair Leanord
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Thomas J Evans
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
213
|
Ma T, Fu J, Xie N, Ma S, Lei L, Zhai W, Shen Y, Sun C, Wang S, Shen Z, Wang Y, Walsh TR, Shen J. Fitness Cost of blaNDM-5-Carrying p3R-IncX3 Plasmids in Wild-Type NDM-Free Enterobacteriaceae. Microorganisms 2020; 8:microorganisms8030377. [PMID: 32156014 PMCID: PMC7143814 DOI: 10.3390/microorganisms8030377] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/31/2022] Open
Abstract
The wide dissemination of New Delhi metallo-β-lactamase genes (blaNDM) has resulted in the treatment failure of most available β-lactam antibiotics, with IncX3-type blaNDM-5-carrying plasmids recognised as having spread worldwide. In China, bacteria carrying these plasmids are increasingly being detected from diverse samples, including hospitals, communities, livestock and poultry, and the environment, suggesting that IncX3 plasmids are becoming a vital vehicle for blaNDM dissemination. To elucidate the fitness cost of these plasmids on the bacterial host, we collected blaNDM-negative strains from different sources and tested their ability to acquire the blaNDM-5-harboring p3R-IncX3 plasmid. We then measured changes in antimicrobial susceptibility, growth kinetics, and biofilm formation following plasmid acquisition. Overall, 70.7% (29/41) of our Enterobacteriaceae recipients successfully acquired the blaNDM-5-harboring p3R-IncX3 plasmid. Contrary to previous plasmid burden theory, 75.9% (22/29) of the transconjugates showed little fitness cost as a result of plasmid acquisition, with 6.9% (2/29) of strains exhibiting enhanced growth compared with their respective wild-type strains. Following plasmid acquisition, all transconjugates demonstrated resistance to most β-lactams, while several strains showed enhanced biofilm formation, further complicating treatment and prevention measures. Moreover, the highly virulent Escherichia coli sequence type 131 strain that already harbored mcr-1 also demonstrated the ability to acquire the blaNDM-5-carrying p3R-IncX3 plasmid, resulting in further limited therapeutic options. This low fitness cost may partly explain the rapid global dissemination of blaNDM-5-harboring IncX3 plasmids. Our study highlights the growing threat of IncX3 plasmids in spreading blaNDM-5.
Collapse
Affiliation(s)
- Tengfei Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Jiani Fu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Ning Xie
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Shizhen Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Lei Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Weishuai Zhai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Yingbo Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Chengtao Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Shaolin Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Zhangqi Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Timothy R. Walsh
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
- Department of Medical Microbiology and Infectious Disease, Institute of Infection & Immunity, Heath Park Hospital, Cardiff CF14 4XN, UK
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
- Correspondence:
| |
Collapse
|
214
|
Porse A, Jahn LJ, Ellabaan MMH, Sommer MOA. Dominant resistance and negative epistasis can limit the co-selection of de novo resistance mutations and antibiotic resistance genes. Nat Commun 2020; 11:1199. [PMID: 32139686 PMCID: PMC7057998 DOI: 10.1038/s41467-020-15080-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 02/12/2020] [Indexed: 01/24/2023] Open
Abstract
To tackle the global antibiotic resistance crisis, antibiotic resistance acquired either vertically by chromosomal mutations or horizontally through antibiotic resistance genes (ARGs) have been studied. Yet, little is known about the interactions between the two, which may impact the evolution of antibiotic resistance. Here, we develop a multiplexed barcoded approach to assess the fitness of 144 mutant-ARG combinations in Escherichia coli subjected to eight different antibiotics at 11 different concentrations. While most interactions are neutral, we identify significant interactions for 12% of the mutant-ARG combinations. The ability of most ARGs to confer high-level resistance at a low fitness cost shields the selective dynamics of mutants at low drug concentrations. Therefore, high-fitness mutants are often selected regardless of their resistance level. Finally, we identify strong negative epistasis between two unrelated resistance mechanisms: the tetA tetracycline resistance gene and loss-of-function nuo mutations involved in aminoglycoside tolerance. Our study highlights important constraints that may allow better prediction and control of antibiotic resistance evolution.
Collapse
Affiliation(s)
- Andreas Porse
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Leonie J Jahn
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Mostafa M H Ellabaan
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| |
Collapse
|
215
|
Cury J, Oliveira PH, de la Cruz F, Rocha EPC. Host Range and Genetic Plasticity Explain the Coexistence of Integrative and Extrachromosomal Mobile Genetic Elements. Mol Biol Evol 2020; 35:2230-2239. [PMID: 29905872 PMCID: PMC6107060 DOI: 10.1093/molbev/msy123] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Self-transmissible mobile genetic elements drive horizontal gene transfer between prokaryotes. Some of these elements integrate in the chromosome, whereas others replicate autonomously as plasmids. Recent works showed the existence of few differences, and occasional interconversion, between the two types of elements. Here, we enquired on why evolutionary processes have maintained the two types of mobile genetic elements by comparing integrative and conjugative elements (ICE) with extrachromosomal ones (conjugative plasmids) of the highly abundant MPFT conjugative type. We observed that plasmids encode more replicases, partition systems, and antibiotic resistance genes, whereas ICEs encode more integrases and metabolism-associated genes. ICEs and plasmids have similar average sizes, but plasmids are much more variable, have more DNA repeats, and exchange genes more frequently. On the other hand, we found that ICEs are more frequently transferred between distant taxa. We propose a model where the different genetic plasticity and amplitude of host range between elements explain the co-occurrence of integrative and extrachromosomal elements in microbial populations. In particular, the conversion from ICE to plasmid allows ICE to be more plastic, while the conversion from plasmid to ICE allows the expansion of the element's host range.
Collapse
Affiliation(s)
- Jean Cury
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France.,CNRS, UMR3525, Paris, France
| | - Pedro H Oliveira
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France.,CNRS, UMR3525, Paris, France
| | - Fernando de la Cruz
- Departamento de Biologia Molecular e Instituto de Biomedicina y Biotecnologia de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France.,CNRS, UMR3525, Paris, France
| |
Collapse
|
216
|
Cyriaque V, Jacquiod S, Riber L, Abu Al-Soud W, Gillan DC, Sørensen SJ, Wattiez R. Selection and propagation of IncP conjugative plasmids following long-term anthropogenic metal pollution in river sediments. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121173. [PMID: 31563088 DOI: 10.1016/j.jhazmat.2019.121173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/14/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
For a century, the MetalEurop foundry released metals into the river "La Deûle". Previous work revealed higher microbial diversity in metal impacted sediments, and horizontal gene transfer mediated by conjugative plasmids was suggested to drive the community adaptation to metals. We used an integrative state-of-the-art molecular approach coupling quantitative PCR, conjugation assays, flow cytometry, fluorescence activated cell sorting and 16S rRNA gene amplicon sequencing to investigate the presence of conjugative plasmids and their propagation patterns in sediment microbiomes. We highlighted the existence of a native broad-host range IncP conjugative plasmid population in polluted sediments, confirming their ecological importance for microbial adaptation. However, despite incompatibilities and decreased transfer frequencies with our own alien IncP plasmid, we evidenced that a wide diversity of bacterial members was still prone to uptake the plasmid, indicating that sediment microbial communities are still inclined to receive conjugative plasmids from the same group. We observed that metal pollution favoured exogenous plasmid transfer to specific metal-selected bacteria, which are likely coming from upstream sources (e.g. wastewater treatment plant, farms…). Altogether, our results suggest that MetalEurop sediments are hotspots for gene transfer via plasmids, acting as an "environmental reservoir" for microbes and mobile elements released by human activities.
Collapse
Affiliation(s)
- Valentine Cyriaque
- Proteomics and Microbiology Laboratory, Research Institute for Biosciences, UMONS, 20 place du parc, Mons, Belgium; Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, 1, Bygning, 1-1-215, Denmark.
| | - Samuel Jacquiod
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, 1, Bygning, 1-1-215, Denmark; Agroécologie, UMR 1347, INRA Centre Dijon, Dijon, France
| | - Leise Riber
- Section of Functional Genomics, Department of Biology, University of Copenhagen, Ole Maaløesvej 5, 2200 Copenhagen N, Denmark
| | - Waleed Abu Al-Soud
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, 1, Bygning, 1-1-215, Denmark; Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Qurayyat, Saudi Arabia
| | - David C Gillan
- Proteomics and Microbiology Laboratory, Research Institute for Biosciences, UMONS, 20 place du parc, Mons, Belgium
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, 1, Bygning, 1-1-215, Denmark
| | - Ruddy Wattiez
- Proteomics and Microbiology Laboratory, Research Institute for Biosciences, UMONS, 20 place du parc, Mons, Belgium
| |
Collapse
|
217
|
Kamruzzaman M, Iredell JR. CRISPR-Cas System in Antibiotic Resistance Plasmids in Klebsiella pneumoniae. Front Microbiol 2020; 10:2934. [PMID: 31998256 PMCID: PMC6965323 DOI: 10.3389/fmicb.2019.02934] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/06/2019] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas (clustered regularly interspersed short palindromic repeats-CRISPR-associated protein) is a microbial adaptive immune system involved in defense against different types of mobile genetic elements. CRISPR-Cas systems are usually found in bacterial and archaeal chromosomes but have also been reported in bacteriophage genomes and in a few mega-plasmids. Klebsiella pneumoniae is an important member of the Enterobacteriaceae with which they share a huge pool of antibiotic resistance genes, mostly via plasmids. CRISPR-Cas systems have been identified in K. pneumoniae chromosomes, but relatively little is known of CRISPR-Cas in the plasmids resident in this species. In this study, we searched for CRISPR-Cas system in 699 complete plasmid sequences (>50-kb) and 217 complete chromosomal sequences of K. pneumoniae from GenBank and analyzed the CRISPR-Cas systems and CRISPR spacers found in plasmids and chromosomes. We found a putative CRISPR-Cas system in the 44 plasmids from Klebsiella species and GenBank search also identified the identical system in three plasmids from other Enterobacteriaceae, with CRISPR spacers targeting different plasmid and chromosome sequences. 45 of 47 plasmids with putative type IV CRISPR had IncFIB replicon and 36 of them had an additional IncHI1B replicon. All plasmids except two are very large (>200 kb) and half of them carried multiple antibiotic resistance genes including bla CTX-M , bla NDM , bla OXA . To our knowledge, this is the first report of multi drug resistance plasmids from Enterobacteriaceae with their own CRISPR-Cas system and it is possible that the plasmid type IV CRISPR may depend on the chromosomal type I-E CRISPRs for their competence. Both chromosomal and plasmid CRISPRs target a large variety of plasmids from this species, further suggesting key roles in the epidemiology of large plasmids.
Collapse
Affiliation(s)
- Muhammad Kamruzzaman
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia.,Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
218
|
Meta-analysis of Pandemic Escherichia coli ST131 Plasmidome Proves Restricted Plasmid-clade Associations. Sci Rep 2020; 10:36. [PMID: 31913346 PMCID: PMC6949217 DOI: 10.1038/s41598-019-56763-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
Extraintestinal multidrug resistant Escherichia coli sequence type (ST) 131 is a worldwide pandemic pathogen and a major cause of urinary tract and bloodstream infections. The role of this pandemic lineage in multidrug resistance plasmid dissemination is still scarce. We herein performed a meta-analysis on E. coli ST131 whole-genome sequence (WGS) databases to unravel ST131 plasmidome and specifically to decipher CTX-M encoding plasmids-clade associations. We mined 880 ST131 WGS data and proved that CTX-M-27-encoding IncF[F1:A2:B20] (Group1) plasmids are strictly found in clade C1, whereas CTX-M-15-encoding IncF[F2:A1:B-] (Group2) plasmids exist only in clade C2 suggesting strong plasmid-clade adaptations. Specific Col-like replicons (Col156, Col(MG828), and Col8282) were also found to be clade C1-associated. BLAST-based search revealed that Group1 and Group2 plasmids are narrow-host-range and restricted to E.coli. Among a collection of 20 newly sequenced Israeli ST131 CTX-M-encoding plasmids (2003–2016), Group1 and Group2 plasmids were dominant and associated with the expected clades. We found, for the first time in ST131, a CTX-M-15-encoding phage-like plasmid group (Group3) and followed its spread in the WGS data. This study offers a comprehensive way to decipher plasmid-bacterium associations and demonstrates that the CTX-M-encoding ST131 Group1 and Group2 plasmids are clade-restricted and presumably less transmissible, potentially contributing to ST131 clonal superiority.
Collapse
|
219
|
DelaFuente J, Rodriguez-Beltran J, San Millan A. Methods to Study Fitness and Compensatory Adaptation in Plasmid-Carrying Bacteria. Methods Mol Biol 2020; 2075:371-382. [PMID: 31584176 DOI: 10.1007/978-1-4939-9877-7_26] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mobile genetic elements such as plasmids mediate horizontal gene transfer in prokaryotes, promoting bacterial adaptation and evolution. Despite the potential advantages conferred by these genetic elements, plasmids can also produce a fitness cost when they arrive to a new host. This initial burden is one of the main limits to the spread of plasmids in bacterial populations. However, plasmid costs can be ameliorated over time through compensatory mutations in the plasmid or the chromosome (compensatory adaptation). Understanding the origin of the cost produced by plasmids and the potential for compensatory adaptation is crucial to predict the spread and evolution of plasmid-mediated traits, such as antibiotic resistance. Here, we describe a simple protocol designed to analyze the fitness effects of a plasmid in a new host bacterium. We also provide a method to examine the potential for compensatory adaptation, using experimental evolution, and to elucidate if compensation originates in the plasmid, the bacterium, or both.
Collapse
Affiliation(s)
- Javier DelaFuente
- Department of Microbiology, Hospital Universitario Ramon y Cajal (IRYCIS), Madrid, Spain
- Network Research Centre for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Jeronimo Rodriguez-Beltran
- Department of Microbiology, Hospital Universitario Ramon y Cajal (IRYCIS), Madrid, Spain
- Network Research Centre for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Alvaro San Millan
- Department of Microbiology, Hospital Universitario Ramon y Cajal (IRYCIS), Madrid, Spain.
- Network Research Centre for Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| |
Collapse
|
220
|
Ben Maamar S, Hu J, Hartmann EM. Implications of indoor microbial ecology and evolution on antibiotic resistance. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:1-15. [PMID: 31591493 PMCID: PMC8075925 DOI: 10.1038/s41370-019-0171-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/17/2019] [Accepted: 08/18/2019] [Indexed: 05/19/2023]
Abstract
The indoor environment is an important source of microbial exposures for its human occupants. While we naturally want to favor positive health outcomes, built environment design and operation may counter-intuitively favor negative health outcomes, particularly with regard to antibiotic resistance. Indoor environments contain microbes from both human and non-human origins, providing a unique venue for microbial interactions, including horizontal gene transfer. Furthermore, stressors present in the built environment could favor the exchange of genetic material in general and the retention of antibiotic resistance genes in particular. Intrinsic and acquired antibiotic resistance both pose a potential threat to human health; these phenomena need to be considered and controlled separately. The presence of both environmental and human-associated microbes, along with their associated antibiotic resistance genes, in the face of stressors, including antimicrobial chemicals, creates a unique opportunity for the undesirable spread of antibiotic resistance. In this review, we summarize studies and findings related to various interactions between human-associated bacteria, environmental bacteria, and built environment conditions, and particularly their relation to antibiotic resistance, aiming to guide "healthy" building design.
Collapse
Affiliation(s)
- Sarah Ben Maamar
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Jinglin Hu
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
221
|
Evolution of satellite plasmids can prolong the maintenance of newly acquired accessory genes in bacteria. Nat Commun 2019; 10:5809. [PMID: 31863068 PMCID: PMC6925257 DOI: 10.1038/s41467-019-13709-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/21/2019] [Indexed: 01/07/2023] Open
Abstract
Transmissible plasmids spread genes encoding antibiotic resistance and other traits to new bacterial species. Here we report that laboratory populations of Escherichia coli with a newly acquired IncQ plasmid often evolve 'satellite plasmids' with deletions of accessory genes and genes required for plasmid replication. Satellite plasmids are molecular parasites: their presence reduces the copy number of the full-length plasmid on which they rely for their continued replication. Cells with satellite plasmids gain an immediate fitness advantage from reducing burdensome expression of accessory genes. Yet, they maintain copies of these genes and the complete plasmid, which potentially enables them to benefit from and transmit the traits they encode in the future. Evolution of satellite plasmids is transient. Cells that entirely lose accessory gene function or plasmid mobility dominate in the long run. Satellite plasmids also evolve in Snodgrassella alvi colonizing the honey bee gut, suggesting that this mechanism may broadly contribute to the importance of IncQ plasmids as agents of bacterial gene transfer in nature.
Collapse
|
222
|
Vial L, Hommais F. Plasmid-chromosome cross-talks. Environ Microbiol 2019; 22:540-556. [PMID: 31782608 DOI: 10.1111/1462-2920.14880] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022]
Abstract
Plasmids can be acquired by recipient bacteria at a significant cost while conferring them advantageous traits. To counterbalance the costs of plasmid carriage, both plasmids and host bacteria have developed a tight regulatory network that may involve a cross-talk between the chromosome and the plasmids. Although plasmid regulation by chromosomal regulators is generally well known, chromosome regulation by plasmid has been far less investigated. Yet, a growing number of studies have highlighted an impact of plasmids on their host bacteria. Here, we describe the plasmid-chromosome cross-talk from the plasmid point of view. We summarize data about the chromosomal adaptive mutations generated by plasmid carriage; the impact of the loss of a domesticated plasmid or the gain of a new plasmid. Then, we present the control of plasmid-encoded regulators on chromosomal gene expression. The involvement of regulators homologous to chromosome-encoded proteins is illustrated by the H-NS-like proteins, and by the Rap-Phr system. Finally, plasmid-specific regulators of chromosomal gene expression are presented, which highlight the involvement of transcription factors and sRNAs. A comprehensive analysis of the mechanisms that allow a given plasmid to impact the chromosome of bacterium will help to understand the tight cross-talk between plasmids and the chromosome.
Collapse
Affiliation(s)
- Ludovic Vial
- Université de Lyon, 69622, Lyon, France.,Université Lyon 1, 69622, Villeurbanne, France.,CNRS, UMR 5557 Ecologie Microbienne, 69622, Villeurbanne, France.,INRA, UMR1418 Ecologie Microbienne, 69622, Villeurbanne, France
| | - Florence Hommais
- Université de Lyon, 69622, Lyon, France.,Université Lyon 1, 69622, Villeurbanne, France.,CNRS, UMR 5240 Microbiologie Adaptation et Pathogénie, 69622, Villeurbanne, France
| |
Collapse
|
223
|
Botelho J, Lood C, Partridge SR, van Noort V, Lavigne R, Grosso F, Peixe L. Combining sequencing approaches to fully resolve a carbapenemase-encoding megaplasmid in a Pseudomonas shirazica clinical strain. Emerg Microbes Infect 2019; 8:1186-1194. [PMID: 31381486 PMCID: PMC6713103 DOI: 10.1080/22221751.2019.1648182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Horizontal transfer of plasmids plays a pivotal role in dissemination of antibiotic resistance genes and emergence of multidrug-resistant bacteria. Plasmid sequencing is thus paramount for accurate epidemiological tracking in hospitals and routine surveillance. Combining Nanopore and Illumina sequencing allowed full assembly of a carbapenemase-encoding megaplasmid carried by multidrug-resistant clinical isolate FFUP_PS_41. Average nucleotide identity analyses revealed that FFUP_PS_41 belongs to the recently proposed new species Pseudomonas shirazica, related to the P. putida phylogenetic group. FFUP_PS_41 harbours a 498,516-bp megaplasmid (pJBCL41) with limited similarity to publicly-available plasmids. pJBCL41 contains genes predicted to encode replication, conjugation, partitioning and maintenance functions and heavy metal resistance. The |aacA7|blaVIM-2|aacA4| cassette array (resistance to carbapenems and aminoglycosides) is located within a class 1 integron that is a defective Tn402 derivative. This transposon lies within a 50,273-bp region bound by Tn3-family 38-bp inverted repeats and flanked by 5-bp direct repeats (DR) that composes additional transposon fragments, five insertion sequences and a Tn3-Derived Inverted-Repeat Miniature Element. The hybrid Nanopore/Illumina approach allowed full resolution of a carbapenemase-encoding megaplasmid from P. shirazica. Identification of novel megaplasmids sheds new light on the evolutionary effects of gene transfer and the selective forces driving antibiotic resistance.
Collapse
Affiliation(s)
- João Botelho
- a UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto , Porto , Portugal
| | - Cédric Lood
- b Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven , Leuven , Belgium.,c Laboratory of Gene Technology, Department of Biosystems, KU Leuven , Leuven , Belgium
| | - Sally R Partridge
- d Centre for Microbiology and Infectious Diseases, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital , Sydney , Australia
| | - Vera van Noort
- b Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven , Leuven , Belgium.,e Institute of Biology, Leiden University , Leiden , The Netherlands
| | - Rob Lavigne
- c Laboratory of Gene Technology, Department of Biosystems, KU Leuven , Leuven , Belgium
| | - Filipa Grosso
- a UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto , Porto , Portugal
| | - Luísa Peixe
- a UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto , Porto , Portugal
| |
Collapse
|
224
|
Liao H, Zhao Q, Cui P, Chen Z, Yu Z, Geisen S, Friman VP, Zhou S. Efficient reduction of antibiotic residues and associated resistance genes in tylosin antibiotic fermentation waste using hyperthermophilic composting. ENVIRONMENT INTERNATIONAL 2019; 133:105203. [PMID: 31665678 DOI: 10.1016/j.envint.2019.105203] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
Insufficient removal of antibiotics and antibiotic resistance genes (ARGs) from waste products can increase the risk of selection for antibiotic resistance in non-clinical environments. While composting is an efficient way to reduce ARGs, most conventional methods are ineffective at processing highly contaminated antibiotic fermentation waste. Here we explored the efficacy and underlying mechanisms of hyperthermophilic composting at removing tylosin antibiotic fermentation residues (TFR) and associated ARGs and mobile genetic elements (MGEs; plasmids, integrons and transposon). Hyperthermophilic composting removed 95.0% of TFR, 75.8% of ARGs and 98.5% of MGEs and this reduction mainly occurred after extended exposure to temperatures above 60 °C for at least 6 days. Based on sequencing and culture-dependent experiments, reduction in ARGs and MGEs was strongly associated with a decrease in the number of bacterial taxa that were initially associated with ARGs and MGEs. Moreover, we found 94.1% reduction in plasmid genes abundances (ISCR1 and IncQ-oriV) that significantly correlated with reduced ARGs during the composting, which suggests that plasmids were the main carriers for ARGs. We verified this using direct culturing to show that ARGs were more often found in plasmids during the early phase of composting. Together these results suggest that hyperthermophilic composting is efficient at removing ARGs and associated resistance genes from antibiotic fermentation waste by decreasing the abundance of antibiotic resistance plasmids and associated host bacteria.
Collapse
Affiliation(s)
- Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Zhao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peng Cui
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Yu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands
| | - Ville-Petri Friman
- Department of Biology, University of York, Wentworth Way, YO10 5DD York, UK
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
225
|
Pfeifer E, Hünnefeld M, Popa O, Frunzke J. Impact of Xenogeneic Silencing on Phage-Host Interactions. J Mol Biol 2019; 431:4670-4683. [PMID: 30796986 PMCID: PMC6925973 DOI: 10.1016/j.jmb.2019.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 01/21/2023]
Abstract
Phages, viruses that prey on bacteria, are the most abundant and diverse inhabitants of the Earth. Temperate bacteriophages can integrate into the host genome and, as so-called prophages, maintain a long-term association with their host. The close relationship between host and virus has significantly shaped microbial evolution and phage elements may benefit their host by providing new functions. Nevertheless, the strong activity of phage promoters and potentially toxic gene products may impose a severe fitness burden and must be tightly controlled. In this context, xenogeneic silencing (XS) proteins, which can recognize foreign DNA elements, play an important role in the acquisition of novel genetic information and facilitate the evolution of regulatory networks. Currently known XS proteins fall into four classes (H-NS, MvaT, Rok and Lsr2) and have been shown to follow a similar mode of action by binding to AT-rich DNA and forming an oligomeric nucleoprotein complex that silences gene expression. In this review, we focus on the role of XS proteins in phage-host interactions by highlighting the important function of XS proteins in maintaining the lysogenic state and by providing examples of how phages fight back by encoding inhibitory proteins that disrupt XS functions in the host. Sequence analysis of available phage genomes revealed the presence of genes encoding Lsr2-type proteins in the genomes of phages infecting Actinobacteria. These data provide an interesting perspective for future studies to elucidate the impact of phage-encoded XS homologs on the phage life cycle and phage-host interactions.
Collapse
Affiliation(s)
- Eugen Pfeifer
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany.
| | - Max Hünnefeld
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Ovidiu Popa
- Heinrich Heine Universität Düsseldorf, Institute for Quantitative and Theoretical Biology, 40223 Düsseldorf, Germany
| | - Julia Frunzke
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany.
| |
Collapse
|
226
|
Garcillán-Barcia MP, Cuartas-Lanza R, Cuevas A, de la Cruz F. Cis-Acting Relaxases Guarantee Independent Mobilization of MOB Q 4 Plasmids. Front Microbiol 2019; 10:2557. [PMID: 31781067 PMCID: PMC6856555 DOI: 10.3389/fmicb.2019.02557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
Plasmids are key vehicles of horizontal gene transfer and contribute greatly to bacterial genome plasticity. In this work, we studied a group of plasmids from enterobacteria that encode phylogenetically related mobilization functions that populate the previously non-described MOBQ4 relaxase family. These plasmids encode two transfer genes: mobA coding for the MOBQ4 relaxase; and mobC, which is non-essential but enhances the plasmid mobilization frequency. The origin of transfer is located between these two divergently transcribed mob genes. We found that MPFI conjugative plasmids were the most efficient helpers for MOBQ4 conjugative dissemination among clinically relevant enterobacteria. While highly similar in their mobilization module, two sub-groups with unrelated replicons (Rep_3 and ColE2) can be distinguished in this plasmid family. These subgroups can stably coexist (are compatible) and transfer independently, despite origin-of-transfer cross-recognition by their relaxases. Specific discrimination among their highly similar oriT sequences is guaranteed by the preferential cis activity of the MOBQ4 relaxases. Such a strategy would be biologically relevant in a scenario of co-residence of non-divergent elements to favor self-dissemination.
Collapse
Affiliation(s)
- M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria - Consejo Superior de Investigaciones Científicas), Santander, Spain
| | - Raquel Cuartas-Lanza
- Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria - Consejo Superior de Investigaciones Científicas), Santander, Spain
| | - Ana Cuevas
- Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria - Consejo Superior de Investigaciones Científicas), Santander, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria - Consejo Superior de Investigaciones Científicas), Santander, Spain
| |
Collapse
|
227
|
Tymensen L, Booker CW, Hannon SJ, Cook SR, Jokinen CC, Zaheer R, Read R, Boerlin P, McAllister TA. Plasmid Distribution among Escherichia coli from Livestock and Associated Wastewater: Unraveling Factors That Shape the Presence of Genes Conferring Third-Generation Cephalosporin Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11666-11674. [PMID: 31532641 DOI: 10.1021/acs.est.9b03486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A key concern with agricultural wastewater storage ponds is that they may provide an environment conducive for horizontal exchange of antibiotic resistance genes (ARGs), thereby facilitating the emergence of antibiotic resistant pathogens. Central to this exchange are mobile genetic elements like plasmids; yet, the factors shaping their presence in agricultural environments remain poorly understood. Here, using Escherichia coli as a model bacterium, we examined genetic backgrounds and plasmid profiles of generic fecal and wastewater isolates and those possessing blaCTX-M and blaCMY-2 genes (which confer resistance to third-generation cephalosporins) to delineate factors shaping the environmental persistence of plasmid-associated ARGs in beef cattle feedlots. The wastewater environment exerted minimal influence on plasmid repertoires, as the number of plasmids and distribution of different incompatibility groups did not differ between generic fecal and wastewater isolates. The blaCTX-M and blaCMY-2 genes were associated with IncF and IncA/C plasmids, respectively, and host isolates possessing these ARGs had fewer plasmids than generic isolates, suggesting ARG-bearing plasmids may associate predominantly with such hosts to compensate for the metabolic burden imposed by these plasmids. Phylogeny also appeared to be a factor for blaCTX-M genes, as their bacterial hosts were restricted to particular genetic lineages, including the environmentally adapted ET-1 clade, as noted previously for these genes. Ultimately, these findings have important implications for evaluating human health risks of agricultural wastewater with respect to environmental persistence of ARGs and may help identify options for improving wastewater treatment.
Collapse
Affiliation(s)
- Lisa Tymensen
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry , Lethbridge , Alberta Canada , T1J 4V6
| | - Calvin W Booker
- Feedlot Health Management Services, Ltd. , Okotoks , Alberta Canada , T1S 2A2
| | - Sherry J Hannon
- Feedlot Health Management Services, Ltd. , Okotoks , Alberta Canada , T1S 2A2
| | - Shaun R Cook
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry , Lethbridge , Alberta Canada , T1J 4V6
- Agriculture and Agri-Food Canada , Lethbridge , Alberta Canada , T1J 4B1
| | - Cassandra C Jokinen
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry , Lethbridge , Alberta Canada , T1J 4V6
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada , Lethbridge , Alberta Canada , T1J 4B1
| | - Ron Read
- Microbiology, Immunology and Infectious Diseases , University of Calgary , Calgary , Alberta Canada , T1Y 6J4
| | - Patrick Boerlin
- Department of Pathobiology , University of Guelph , 50 Stone Road East , Guelph , Ontario Canada , N1G 2W1
| | - Tim A McAllister
- Agriculture and Agri-Food Canada , Lethbridge , Alberta Canada , T1J 4B1
| |
Collapse
|
228
|
Rozwandowicz M, Brouwer MSM, Mughini-Gras L, Wagenaar JA, Gonzalez-Zorn B, Mevius DJ, Hordijk J. Successful Host Adaptation of IncK2 Plasmids. Front Microbiol 2019; 10:2384. [PMID: 31681238 PMCID: PMC6803427 DOI: 10.3389/fmicb.2019.02384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/01/2019] [Indexed: 01/15/2023] Open
Abstract
The IncK plasmid group can be divided into two separate lineages named IncK1 and IncK2. IncK2 is found predominantly in poultry while IncK1 was reported in various mammals, including animals and humans. The physiological basis of this distinction is not known. In this manuscript we examined fitness cost of IncK1 and IncK2 plasmids at 37 and 42°C, which resembles mammalian and chicken body temperatures, respectively. We analyzed conjugation frequency, plasmid copy number and plasmid fitness cost in direct competition. Additionally, we measured levels of σ-32 in Escherichia coli carrying either wild type or conjugation-deficient IncK plasmids. The results show that IncK2 plasmids have a higher conjugation frequency and lower copy number at 42°C compared to IncK1. While the overall fitness cost to the host bacterium of IncK2 plasmids was higher than that of IncK1, it was not affected by the temperature while the fitness cost of IncK1 was shown to increase at 42°C compared to 37°C. These differences correlate with an increased expression of σ-32, a regulator of heat-shock protein expression, in E. coli with IncK2 compared to cells containing IncK1. This effect was not seen in cells containing conjugation deficient plasmids. Therefore, it is hypothesized that the assembly of the functional T4S may lead to these increased levels of σ–32. Increased activation of CpxR at 42°C may explain why IncK2 plasmids, and not IncK1, are predominantly found in chicken isolates.
Collapse
Affiliation(s)
- Marta Rozwandowicz
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Lapo Mughini-Gras
- National Institute for Public Health and the Environment, Bilthoven, Netherlands.,Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Jaap A Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Bruno Gonzalez-Zorn
- Antimicrobial Resistance Unit, Department of Animal Health and VISAVET, Complutense University of Madrid, Madrid, Spain
| | - Dik J Mevius
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Joost Hordijk
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
229
|
Clonal Confinement of a Highly Mobile Resistance Element Driven by Combination Therapy in Rhodococcus equi. mBio 2019; 10:mBio.02260-19. [PMID: 31615959 PMCID: PMC6794481 DOI: 10.1128/mbio.02260-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
MDR clades arise upon acquisition of resistance traits, but the determinants of their clonal expansion remain largely undefined. Taking advantage of the unique features of Rhodococcus equi infection control in equine farms, involving the same dual antibiotic treatment since the 1980s (a macrolide and rifampin), this study sheds light into the determinants of multiresistance clonality and the importance of combination therapy in limiting the dissemination of mobile resistance elements. Clinically effective therapeutic alternatives against R. equi foal pneumonia are currently lacking, and the identified macrolide-rifampin MDR clone 2287 has serious implications. Still at early stages of evolution and local spread, R. equi 2287 may disseminate globally, posing a significant threat to the equine industry and, also, public health due to the risk of zoonotic transmission. The characterization of the 2287 clone and its resistance determinants will enable targeted surveillance and control interventions to tackle the emergence of MDR R. equi. Antibiotic use has been linked to changes in the population structure of human pathogens and the clonal expansion of multidrug-resistant (MDR) strains among healthcare- and community-acquired infections. Here we present a compelling example in a veterinary pathogen, Rhodococcus equi, the causative agent of a severe pulmonary infection affecting foals worldwide. We show that the erm(46) gene responsible for emerging macrolide resistance among equine R. equi isolates in the United States is part of a 6.9-kb transposable element, TnRErm46, actively mobilized by an IS481 family transposase. TnRErm46 is carried on an 87-kb conjugative plasmid, pRErm46, transferable between R. equi strains at frequencies up to 10−3. The erm(46) gene becomes stabilized in R. equi by pRErm46’s apparent fitness neutrality and wholesale TnRErm46 transposition onto the host genome. This includes the conjugally exchangeable pVAPA virulence plasmid, enabling the possibility of cotransfer of two essential traits for survival in macrolide-treated foals in a single mating event. Despite its high horizontal transfer potential, phylogenomic analyses show that erm(46) is paradoxically confined to a specific R. equi clone, 2287. R. equi 2287 also carries a unique rpoBS531F mutation conferring high-level resistance to rifampin, systematically administered together with macrolides against rhodococcal pneumonia on equine farms. Our data illustrate that under sustained combination therapy, several independent “founder” genetic events are concurrently required for resistance, limiting not only its emergence but also, crucially, horizontal spread, ultimately determining multiresistance clonality.
Collapse
|
230
|
Abstract
Horizontal gene transfer (HGT) is the movement of genetic material between organisms other than by reproduction, which plays an important role in bacterial evolution. Often, mobile genetic elements such as plasmids are involved in HGT. In this study, we present phylogenetic, biogeographic, and functional analyses of a previously unrecognized plasmid that is found with 100% sequence identity in multiple distinct bacterial genera obtained from geographically separated locations. This is the only known instance where actual nucleotide identity and not only high synteny has been described for plasmids in environmental organisms. Furthermore, we provide experimental evidence for the potential of this plasmid to be transmitted across bacterial orders, thereby increasing our understanding of evolution and microbial niche adaptation in the environment. Horizontal gene transfer (HGT) plays an important role in bacterial evolution and serves as a driving force for bacterial diversity and versatility. HGT events often involve mobile genetic elements like plasmids, which can promote their own dissemination by associating with adaptive traits in the gene pool of the so-called mobilome. Novel traits that evolve through HGT can therefore lead to the exploitation of new ecological niches, prompting an adaptive radiation of bacterial species. In this study, we present phylogenetic, biogeographic, and functional analyses of a previously unrecognized RepL-type plasmid found in diverse members of the marine Roseobacter group across the globe. Noteworthy, 100% identical plasmids were detected in phylogenetically and geographically distant bacteria, revealing a so-far overlooked, but environmentally highly relevant vector for HGT. The genomic and functional characterization of this plasmid showed a completely conserved backbone dedicated to replication, stability, and mobilization as well as an interchangeable gene cassette with highly diverse, but recurring motifs. The majority of the latter appear to be involved in mechanisms coping with toxins and/or pollutants in the marine environment. Furthermore, we provide experimental evidence that the plasmid has the potential to be transmitted across bacterial orders, thereby increasing our understanding of evolution and microbial niche adaptation in the environment.
Collapse
|
231
|
The bla NDM-1-Carrying IncA/C 2 Plasmid Underlies Structural Alterations and Cointegrate Formation In Vivo. Antimicrob Agents Chemother 2019; 63:AAC.00380-19. [PMID: 31109975 PMCID: PMC6658791 DOI: 10.1128/aac.00380-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/09/2019] [Indexed: 01/04/2023] Open
Abstract
In 2012, a carbapenemase-producing Salmonella enterica serovar Corvallis isolate carrying a bla NDM-1 multiresistance IncA/C2 plasmid, apart from IncHI2 and ColE-like plasmids, was detected in a wild bird in Germany. In a recent broiler chicken infection study, we observed transfer of this bla NDM-1-carrying IncA/C2 plasmid to other Enterobacteriaceae Here, we focused on the stability of this plasmid and gained insight into the type and frequency of its structural alterations after an in vivo passage in a broiler chicken infection study.
Collapse
|
232
|
Antibiotic resistance in Pseudomonas aeruginosa - Mechanisms, epidemiology and evolution. Drug Resist Updat 2019; 44:100640. [PMID: 31492517 DOI: 10.1016/j.drup.2019.07.002] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Antibiotics are powerful drugs used in the treatment of bacterial infections. The inappropriate use of these medicines has driven the dissemination of antibiotic resistance (AR) in most bacteria. Pseudomonas aeruginosa is an opportunistic pathogen commonly involved in environmental- and difficult-to-treat hospital-acquired infections. This species is frequently resistant to several antibiotics, being in the "critical" category of the WHO's priority pathogens list for research and development of new antibiotics. In addition to a remarkable intrinsic resistance to several antibiotics, P. aeruginosa can acquire resistance through chromosomal mutations and acquisition of AR genes. P. aeruginosa has one of the largest bacterial genomes and possesses a significant assortment of genes acquired by horizontal gene transfer (HGT), which are frequently localized within integrons and mobile genetic elements (MGEs), such as transposons, insertion sequences, genomic islands, phages, plasmids and integrative and conjugative elements (ICEs). This genomic diversity results in a non-clonal population structure, punctuated by specific clones that are associated with significant morbidity and mortality worldwide, the so-called high-risk clones. Acquisition of MGEs produces a fitness cost in the host, that can be eased over time by compensatory mutations during MGE-host coevolution. Even though plasmids and ICEs are important drivers of AR, the underlying evolutionary traits that promote this dissemination are poorly understood. In this review, we provide a comprehensive description of the main strategies involved in AR in P. aeruginosa and the leading drivers of HGT in this species. The most recently developed genomic tools that allowed a better understanding of the features contributing for the success of P. aeruginosa are discussed.
Collapse
|
233
|
Tan L, Wang F, Liang M, Wang X, Das R, Mao D, Luo Y. Antibiotic resistance genes attenuated with salt accumulation in saline soil. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:35-42. [PMID: 30978628 DOI: 10.1016/j.jhazmat.2019.04.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Salt accumulation on the surface of the soil layer driven by the strong evaporation is a natural phenomenon that usually happens in the dry season, particularly on the coastal lands reclaimed from tidal flats. However, the influence of salt accumulation on the distribution profile of antibiotic resistance genes (ARGs) and mobile gene elements (MGEs) remains unclear. In this study, we sampled a wild saline soil where the salt accumulation was frequently observed to investigate the vertical distribution profiles of ARGs and MGEs. The results showed that an increasing gradient of ARGs and MGEs was observed from the top to deep layer with the decreasing of electrical conductivity (EC1:5 values) indicating the salt-influenced attenuation of ARGs in the saline soil. The competing test suggested that the attenuation of ARGs in response to salinity gradient was attributable to the elimination of the ARG-harboring plasmids, due to the reduction of the relative fitness of plasmid-harboring strains. Additionally, the network analyses showed that the attenuation of ARGs might be associated with decreased abundance of Actinobacteria. Overall, this study identifies that salinity as an abiotic stress could re-shape the distribution of ARGs, which may influence the dissemination of ARGs in the environment.
Collapse
Affiliation(s)
- Lu Tan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Fu Wang
- Tianjin Center of Geological Survey, China Geological Survey (CGS), Tianjin, China; Key Laboratory of Muddy Coast Geo-Environment, China Geological Survey, CGS, Tianjin, China
| | - Minmin Liang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Xiaolong Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Ranjit Das
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin, China.
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
234
|
Smith BA, Leligdon C, Baltrus DA. Just the Two of Us? A Family of Pseudomonas Megaplasmids Offers a Rare Glimpse into the Evolution of Large Mobile Elements. Genome Biol Evol 2019; 11:1192-1206. [PMID: 30918968 PMCID: PMC6482414 DOI: 10.1093/gbe/evz066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Pseudomonads are ubiquitous group of environmental proteobacteria, well known for their roles in biogeochemical cycling, in the breakdown of xenobiotic materials, as plant growth promoters, and as pathogens of a variety of host organisms. We have previously identified a large megaplasmid present within one isolate of the plant pathogen Pseudomonas syringae, and here we report that a second member of this megaplasmid family is found within an environmental Pseudomonad isolate most closely related to Pseudomonas putida. Many of the shared genes are involved in critical cellular processes like replication, transcription, translation, and DNA repair. We argue that presence of these shared pathways sheds new light on discussions about the types of genes that undergo horizontal gene transfer (i.e., the complexity hypothesis) as well as the evolution of pangenomes. Furthermore, although both megaplasmids display a high level of synteny, genes that are shared differ by over 50% on average at the amino acid level. This combination of conservation in gene order despite divergence in gene sequence suggests that this Pseudomonad megaplasmid family is relatively old, that gene order is under strong selection within this family, and that there are likely many more members of this megaplasmid family waiting to be found in nature.
Collapse
Affiliation(s)
| | | | - David A Baltrus
- School of Plant Sciences, University of Arizona.,School of Animal and Comparative Biomedical Sciences, University of Arizona
| |
Collapse
|
235
|
Kohler V, Goessweiner-Mohr N, Aufschnaiter A, Fercher C, Probst I, Pavkov-Keller T, Hunger K, Wolinski H, Büttner S, Grohmann E, Keller W. TraN: A novel repressor of an Enterococcus conjugative type IV secretion system. Nucleic Acids Res 2019; 46:9201-9219. [PMID: 30060171 PMCID: PMC6158623 DOI: 10.1093/nar/gky671] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/18/2018] [Indexed: 11/19/2022] Open
Abstract
The dissemination of multi-resistant bacteria represents an enormous burden on modern healthcare. Plasmid-borne conjugative transfer is the most prevalent mechanism, requiring a type IV secretion system that enables bacteria to spread beneficial traits, such as resistance to last-line antibiotics, among different genera. Inc18 plasmids, like the Gram-positive broad host-range plasmid pIP501, are substantially involved in propagation of vancomycin resistance from Enterococci to methicillin-resistant strains of Staphylococcus aureus. Here, we identified the small cytosolic protein TraN as a repressor of the pIP501-encoded conjugative transfer system, since deletion of traN resulted in upregulation of transfer factors, leading to highly enhanced conjugative transfer. Furthermore, we report the complex structure of TraN with DNA and define the exact sequence of its binding motif. Targeting this protein–DNA interaction might represent a novel therapeutic approach against the spreading of antibiotic resistances.
Collapse
Affiliation(s)
- Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Nikolaus Goessweiner-Mohr
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria.,Institute of Biophysics, Johannes Kepler University, Linz 4020, Austria
| | | | - Christian Fercher
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Ines Probst
- Division of Infectious Diseases, University Medical Center Freiburg, Freiburg 79106, Germany
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Kristin Hunger
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 10691, Sweden
| | - Elisabeth Grohmann
- Division of Infectious Diseases, University Medical Center Freiburg, Freiburg 79106, Germany.,Life Sciences and Technology, Beuth University of Applied Sciences, Berlin 13353, Germany
| | - Walter Keller
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria.,BioTechMed-Graz, Austria
| |
Collapse
|
236
|
León-Sampedro R, Fernández-de-Bobadilla MD, San Millán Á, Baquero F, Coque TM. Transfer dynamics of Tn6648, a composite integrative conjugative element generated by tandem accretion of Tn5801 and Tn6647 in Enterococcus faecalis. J Antimicrob Chemother 2019; 74:2517-2523. [DOI: 10.1093/jac/dkz239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
Tn5801 [tet(M)], a Tn916-like element with site-specific affinity for the 3′ end of the housekeeping gene guaA, may integrate at different chromosomal sites.
Objectives
To characterize the genetic context of Tn5801 to define its transfer dynamics and impact on the evolution of Enterococcus faecalis (Efs).
Methods
WGS (Illumina HiSeq 2500) was performed on the Efs clinical strain Ef1 and primary and secondary transconjugants of Efs strains JH2-2 [which naturally contains Tn5801.B23, an unusual variant that lacks tet(M)], OG1RF and OG1SS carrying different copies of Tn5801-like elements. The transposon structures were analysed using a range of bioinformatics tools allowing us to identify the context of Tn5801-like elements. Growth rates at different tetracycline concentrations (0.5–20 mg/L) were estimated using a Synergy HTX plate reader.
Results
Tn5801.B15 [tet(M), 20.3 kb] exists and can be transferred either singly or within Tn6648 (53.2 kb), a composite element that comprises Tn5801.B15 and Tn6647, a newly identified 32.8 kb transposon that contains the prgABCT operon of pheromone-responsive plasmids. These transposons are able to integrate at specific 11 nt sequences at the 3′ end of guaA and at other chromosomal sites in Efs genomes, thus being able to generate tandem accretions. These events may increase the number of tet(M) copies, enhancing tetracycline resistance in the recipient strain.
Conclusions
This study describes Tn6647 and Tn6648 (comprising Tn6647 and Tn5801.B15) and highlights the diversity of mechanisms for conjugative mobilization and chromosomal insertion of these elements, which can result in tandem accretion. This strategy would facilitate the adaptation of Efs clones to environmental challenges.
Collapse
Affiliation(s)
- Ricardo León-Sampedro
- Servicio de Microbiologia, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain
| | - Miguel D Fernández-de-Bobadilla
- Servicio de Microbiologia, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Álvaro San Millán
- Servicio de Microbiologia, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain
| | - Fernando Baquero
- Servicio de Microbiologia, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Teresa M Coque
- Servicio de Microbiologia, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
237
|
Yang R, Santos Garcia D, Pérez Montaño F, da Silva GM, Zhao M, Jiménez Guerrero I, Rosenberg T, Chen G, Plaschkes I, Morin S, Walcott R, Burdman S. Complete Assembly of the Genome of an Acidovorax citrulli Strain Reveals a Naturally Occurring Plasmid in This Species. Front Microbiol 2019; 10:1400. [PMID: 31281298 PMCID: PMC6595937 DOI: 10.3389/fmicb.2019.01400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 06/04/2019] [Indexed: 11/13/2022] Open
Abstract
Acidovorax citrulli is the causal agent of bacterial fruit blotch (BFB), a serious threat to cucurbit crop production worldwide. Based on genetic and phenotypic properties, A. citrulli strains are divided into two major groups: group I strains have been generally isolated from melon and other non-watermelon cucurbits, while group II strains are closely associated with watermelon. In a previous study, we reported the genome of the group I model strain, M6. At that time, the M6 genome was sequenced by MiSeq Illumina technology, with reads assembled into 139 contigs. Here, we report the assembly of the M6 genome following sequencing with PacBio technology. This approach not only allowed full assembly of the M6 genome, but it also revealed the occurrence of a ∼53 kb plasmid. The M6 plasmid, named pACM6, was further confirmed by plasmid extraction, Southern-blot analysis of restricted fragments and obtention of M6-derivative cured strains. pACM6 occurs at low copy numbers (average of ∼4.1 ± 1.3 chromosome equivalents) in A. citrulli M6 and contains 63 open reading frames (ORFs), most of which (55.6%) encoding hypothetical proteins. The plasmid contains several genes encoding type IV secretion components, and typical plasmid-borne genes involved in plasmid maintenance, replication and transfer. The plasmid also carries an operon encoding homologs of a Fic-VbhA toxin-antitoxin (TA) module. Transcriptome data from A. citrulli M6 revealed that, under the tested conditions, the genes encoding the components of this TA system are among the highest expressed genes in pACM6. Whether this TA module plays a role in pACM6 maintenance is still to be determined. Leaf infiltration and seed transmission assays revealed that, under tested conditions, the loss of pACM6 did not affect the virulence of A. citrulli M6. We also show that pACM6 or similar plasmids are present in several group I strains, but absent in all tested group II strains of A. citrulli.
Collapse
Affiliation(s)
- Rongzhi Yang
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Diego Santos Garcia
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Francisco Pérez Montaño
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Department of Microbiology, University of Seville, Seville, Spain
| | - Gustavo Mateus da Silva
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mei Zhao
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Irene Jiménez Guerrero
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tally Rosenberg
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Gong Chen
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Inbar Plaschkes
- Bioinformatics Unit, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shai Morin
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ron Walcott
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
238
|
Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance. Nat Commun 2019; 10:2595. [PMID: 31197163 PMCID: PMC6565834 DOI: 10.1038/s41467-019-10600-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/21/2019] [Indexed: 01/21/2023] Open
Abstract
Plasmid acquisition is an important mechanism of rapid adaptation and niche expansion in prokaryotes. Positive selection for plasmid-coded functions is a major driver of plasmid evolution, while plasmids that do not confer a selective advantage are considered costly and expected to go extinct. Yet, plasmids are ubiquitous in nature, and their persistence remains an evolutionary paradox. Here, we demonstrate that non-mobile plasmids persist over evolutionary timescales without selection for the plasmid function. Evolving a minimal plasmid encoding for antibiotics resistance in Escherichia coli, we discover that plasmid stability emerges in the absence of antibiotics and that plasmid loss is determined by transcription-replication conflicts. We further find that environmental conditions modulate these conflicts and plasmid persistence. Silencing the transcription of the resistance gene results in stable plasmids that become fixed in the population. Evolution of plasmid stability under non-selective conditions provides an evolutionary explanation for the ubiquity of plasmids in nature. It is expected that plasmids are costly and therefore that selection is required to maintain them within bacterial populations. Here, Wein et al. show that plasmid stability can emerge even in the absence of positive selection and that loss may be determined by transcription-replication conflict.
Collapse
|
239
|
Jung CM, Carr M, Blakeney GA, Indest KJ. Enhanced plasmid-mediated bioaugmentation of RDX-contaminated matrices in column studies using donor strain Gordonia sp. KTR9. J Ind Microbiol Biotechnol 2019; 46:1273-1281. [PMID: 31119503 DOI: 10.1007/s10295-019-02185-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/29/2019] [Indexed: 11/30/2022]
Abstract
Horizontal gene transfer (HGT) is the lateral movement of genetic material between organisms. The RDX explosive-degrading bacterium Gordonia sp. KTR9 has been shown previously to transfer the pGKT2 plasmid containing the RDX degradative genes (xplAB) by HGT. Overall, fitness costs to the transconjugants to maintain pGKT2 was determined through growth and survivability assessments. Rhodococcus jostii RHA1 transconjugants demonstrated a fitness cost while other strains showed minimal cost. Biogeochemical parameters that stimulate HGT of pGKT2 were evaluated in soil slurry mating experiments and the absence of nitrogen was found to increase HGT events three orders of magnitude. Experiments evaluating RDX degradation in flow-through soil columns containing mating pairs showed 20% greater degradation than columns with only the donor KTR9 strain. Understanding the factors governing HGT will benefit bioaugmentation efforts where beneficial bacteria with transferrable traits could be used to more efficiently degrade contaminants through gene transfer to native populations.
Collapse
Affiliation(s)
- Carina M Jung
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA.
| | - Matthew Carr
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - G Alon Blakeney
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - Karl J Indest
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA.
| |
Collapse
|
240
|
Harrison E, Hall JPJ, Brockhurst MA. Migration promotes plasmid stability under spatially heterogeneous positive selection. Proc Biol Sci 2019; 285:rspb.2018.0324. [PMID: 29794045 DOI: 10.1098/rspb.2018.0324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/25/2018] [Indexed: 01/01/2023] Open
Abstract
Bacteria-plasmid associations can be mutualistic or antagonistic depending on the strength of positive selection for plasmid-encoded genes, with contrasting outcomes for plasmid stability. In mutualistic environments, plasmids are swept to high frequency by positive selection, increasing the likelihood of compensatory evolution to ameliorate the plasmid cost, which promotes long-term stability. In antagonistic environments, plasmids are purged by negative selection, reducing the probability of compensatory evolution and driving their extinction. Here we show, using experimental evolution of Pseudomonas fluorescens and the mercury-resistance plasmid, pQBR103, that migration promotes plasmid stability in spatially heterogeneous selection environments. Specifically, migration from mutualistic environments, by increasing both the frequency of the plasmid and the supply of compensatory mutations, stabilized plasmids in antagonistic environments where, without migration, they approached extinction. These data suggest that spatially heterogeneous positive selection, which is common in natural environments, coupled with migration helps to explain the stability of plasmids and the ecologically important genes that they encode.
Collapse
Affiliation(s)
- Ellie Harrison
- P3 Institute, Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 1AE, UK
| | - James P J Hall
- Department of Animal and Plant Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Michael A Brockhurst
- Department of Animal and Plant Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
241
|
Dionisio F, Zilhão R, Gama JA. Interactions between plasmids and other mobile genetic elements affect their transmission and persistence. Plasmid 2019; 102:29-36. [DOI: 10.1016/j.plasmid.2019.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
|
242
|
Bardaji L, Añorga M, Echeverría M, Ramos C, Murillo J. The toxic guardians - multiple toxin-antitoxin systems provide stability, avoid deletions and maintain virulence genes of Pseudomonas syringae virulence plasmids. Mob DNA 2019; 10:7. [PMID: 30728866 PMCID: PMC6354349 DOI: 10.1186/s13100-019-0149-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/18/2019] [Indexed: 02/05/2023] Open
Abstract
Background Pseudomonas syringae is a γ-proteobacterium causing economically relevant diseases in practically all cultivated plants. Most isolates of this pathogen contain native plasmids collectively carrying many pathogenicity and virulence genes. However, P. syringae is generally an opportunistic pathogen primarily inhabiting environmental reservoirs, which could exert a low selective pressure for virulence plasmids. Additionally, these plasmids usually contain a large proportion of repeated sequences, which could compromise plasmid integrity. Therefore, the identification of plasmid stability determinants and mechanisms to preserve virulence genes is essential to understand the evolution of this pathogen and its adaptability to agroecosystems. Results The three virulence plasmids of P. syringae pv. savastanoi NCPPB 3335 contain from one to seven functional stability determinants, including three highly active toxin-antitoxin systems (TA) in both pPsv48A and pPsv48C. The TA systems reduced loss frequency of pPsv48A by two orders of magnitude, whereas one of the two replicons of pPsv48C likely confers stable inheritance by itself. Notably, inactivation of the TA systems from pPsv48C exposed the plasmid to high-frequency deletions promoted by mobile genetic elements. Thus, recombination between two copies of MITEPsy2 caused the deletion of an 8.3 kb fragment, with a frequency of 3.8 ± 0.3 × 10− 3. Likewise, one-ended transposition of IS801 generated plasmids containing deletions of variable size, with a frequency of 5.5 ± 2.1 × 10− 4, of which 80% had lost virulence gene idi. These deletion derivatives were stably maintained in the population by replication mediated by repJ, which is adjacent to IS801. IS801 also promoted deletions in plasmid pPsv48A, either by recombination or one-ended transposition. In all cases, functional TA systems contributed significantly to reduce the occurrence of plasmid deletions in vivo. Conclusions Virulence plasmids from P. syringae harbour a diverse array of stability determinants with a variable contribution to plasmid persistence. Importantly, we showed that multiple plasmid-borne TA systems have a prominent role in preserving plasmid integrity and ensuring the maintenance of virulence genes in free-living conditions. This strategy is likely widespread amongst native plasmids of P. syringae and other bacteria. Electronic supplementary material The online version of this article (10.1186/s13100-019-0149-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leire Bardaji
- 1Institute for Multidisciplinary Applied Biology, Universidad Pública de Navarra, 31192 Mutilva, Spain
| | - Maite Añorga
- 1Institute for Multidisciplinary Applied Biology, Universidad Pública de Navarra, 31192 Mutilva, Spain
| | - Myriam Echeverría
- 1Institute for Multidisciplinary Applied Biology, Universidad Pública de Navarra, 31192 Mutilva, Spain
| | - Cayo Ramos
- 2Instituto de Hortofruticultura Subtropical y Mediterránea «La Mayora», Universidad de Málaga-CSIC, Área de Genética, Universidad de Málaga, Campus de Teatinos s/n, 29010 Málaga, Spain
| | - Jesús Murillo
- 1Institute for Multidisciplinary Applied Biology, Universidad Pública de Navarra, 31192 Mutilva, Spain
| |
Collapse
|
243
|
Kwapong AA, Stapleton P, Gibbons S. Inhibiting plasmid mobility: The effect of isothiocyanates on bacterial conjugation. Int J Antimicrob Agents 2019; 53:629-636. [PMID: 30685311 DOI: 10.1016/j.ijantimicag.2019.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/12/2018] [Accepted: 01/20/2019] [Indexed: 01/13/2023]
Abstract
Bacterial conjugation is the main mechanism for the transfer of multiple antimicrobial resistance genes among pathogenic micro-organisms. This process may be controlled by compounds that inhibit bacterial conjugation. In this study, the effects of allyl isothiocyanate, l-sulforaphane, benzyl isothiocyanate, phenylethyl isothiocyanate and 4-methoxyphenyl isothiocyanate on the conjugation of broad-host-range plasmids harbouring various antimicrobial resistance genes in Escherichia coli were investigated, namely plasmids pKM101 (IncN), TP114 (IncI2), pUB307 (IncP) and the low-copy-number plasmid R7K (IncW). Benzyl isothiocyanate (32 mg/L) significantly reduced conjugal transfer of pKM101, TP114 and pUB307 to 0.3 ± 0.6%, 10.7 ± 3.3% and 6.5 ± 1.0%, respectively. l-sulforaphane (16 mg/L; transfer frequency 21.5 ± 5.1%) and 4-methoxyphenyl isothiocyanate (100 mg/L; transfer frequency 5.2 ± 2.8%) were the only compounds showing anti-conjugal specificity by actively reducing the transfer of R7K and pUB307, respectively.
Collapse
Affiliation(s)
- Awo Afi Kwapong
- Research Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Department of Pharmaceutics and Microbiology, School of Pharmacy, University of Ghana, Accra, Ghana
| | - Paul Stapleton
- Research Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Simon Gibbons
- Research Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
244
|
Mobile Compensatory Mutations Promote Plasmid Survival. mSystems 2019; 4:mSystems00186-18. [PMID: 30944871 PMCID: PMC6446977 DOI: 10.1128/msystems.00186-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/13/2018] [Indexed: 01/15/2023] Open
Abstract
The global dissemination of plasmids encoding antibiotic resistance represents an urgent issue for human health and society. While the fitness costs for host cells associated with plasmid acquisition are expected to limit plasmid dissemination in the absence of positive selection of plasmid traits, compensatory evolution can reduce this burden. Experimental data suggest that compensatory mutations can be located on either the chromosome or the plasmid, and these are likely to have contrasting effects on plasmid dynamics. Whereas chromosomal mutations are inherited vertically through bacterial fission, plasmid mutations can be inherited both vertically and horizontally and potentially reduce the initial cost of the plasmid in new host cells. Here we show using mathematical models and simulations that the dynamics of plasmids depends critically on the genomic location of the compensatory mutation. We demonstrate that plasmid-located compensatory evolution is better at enhancing plasmid persistence, even when its effects are smaller than those provided by chromosomal compensation. Moreover, either type of compensatory evolution facilitates the survival of resistance plasmids at low drug concentrations. These insights contribute to an improved understanding of the conditions and mechanisms driving the spread and the evolution of antibiotic resistance plasmids. IMPORTANCE Understanding the evolutionary forces that maintain antibiotic resistance genes in a population, especially when antibiotics are not used, is an important problem for human health and society. The most common platform for the dissemination of antibiotic resistance genes is conjugative plasmids. Experimental studies showed that mutations located on the plasmid or the bacterial chromosome can reduce the costs plasmids impose on their hosts, resulting in antibiotic resistance plasmids being maintained even in the absence of antibiotics. While chromosomal mutations are only vertically inherited by the daughter cells, plasmid mutations are also provided to bacteria that acquire the plasmid through conjugation. Here we demonstrate how the mode of inheritance of a compensatory mutation crucially influences the ability of plasmids to spread and persist in a bacterial population.
Collapse
|
245
|
Ma K, Feng Y, Zong Z. Fitness cost of a mcr-1-carrying IncHI2 plasmid. PLoS One 2018; 13:e0209706. [PMID: 30586457 PMCID: PMC6306219 DOI: 10.1371/journal.pone.0209706] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/10/2018] [Indexed: 02/05/2023] Open
Abstract
IncHI2 is a common type of large mcr-1-carrying plasmids that have been found worldwide. Large plasmids could impose metabolic burden for host bacterial strains, we therefore examine the stability and fitness cost of a mcr-1-carrying 265.5-kb IncHI2 plasmid, pMCR1_1943, in Escherichia coli in nutrient-rich LB and nutrient-restricted M9 broth. Stability tests revealed that pMCR1_1943 was stably maintained with a stability frequency of 0.99±0.01 (mean ± standard deviation) after 880 generations in LB and 0.97±0.00 after 220 generations in M9 broth. Relative fitness (expressed as w, defined as relative fitness of the plasmid-carrying strain compared to the plasmid-free progenitor strain) was examined using the 24-h head to head competitions. pMCR1_1943 initially imposed costs (w, 0.88±0.03 in LB, 0.87±0.01 in M9) but such costs were largely reduced after 14-day cultures (w, 0.97±0.03 in LB, 0.95±0.03 in M9). The stable maintenance and the largely compensated cost after passage may contribute to the wide spread of mcr-1-carrying IncHI2 plasmids. To investigate potential mechanisms for the reduced fitness cost, we performed whole genome sequencing and single nucleotide polymorphism calling for the competitor strains. We identified that molecular chaperone-encoding dnaK, cell division protein-encoding cpoB and repeat protein-encoding rhsC were associated with the cost reduction for pMCR1_1943, which may represent new mechanisms for host bacterial strains to compensate fitness costs imposed by large plasmids and warrant further studies.
Collapse
Affiliation(s)
- Ke Ma
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
246
|
O'Neill CE, Skilton RJ, Pearson SA, Filardo S, Andersson P, Clarke IN. Genetic Transformation of a C. trachomatis Ocular Isolate With the Functional Tryptophan Synthase Operon Confers an Indole-Rescuable Phenotype. Front Cell Infect Microbiol 2018; 8:434. [PMID: 30619780 PMCID: PMC6302012 DOI: 10.3389/fcimb.2018.00434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/30/2018] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis is the leading cause of preventable blindness and the most common bacterial sexually transmitted infection. Different strains are associated with ocular or urogenital infections, and a proposed mechanism that may explain this tissue tropism is the active tryptophan biosynthesis pathway encoded by the genomic trpRBA operon in urogenital strains. Here we describe genetic complementation studies that are essential to confirm the role of tryptophan synthase in the context of an ocular C. trachomatis genomic background. Ocular strain A2497 was transformed with the (urogenital) pSW2::GFP shuttle vector showing that there is no strain tropism barrier to this plasmid vector; moreover, transformation had no detrimental effect on the growth kinetics of A2497, which is important given the low transformation efficiency of C. trachomatis. A derivative of the pSW2::GFP vector was used to deliver the active tryptophan biosynthesis genes from a urogenital strain of C. trachomatis (Soton D1) to A2497 with the aim of complementing the truncated trpA gene common to most ocular strains. After confirmation of intact TrpA protein expression in the transformed A2497, the resulting transformants were cultivated in tryptophan-depleted medium with and without indole or tryptophan, showing that complementation of the truncated trpA gene by the intact and functional urogenital trpRBA operon was sufficient to bestow an indole rescuable phenotype upon A2497. This study proves that pSW2::GFP derived vectors do not conform to the cross-strain transformation barrier reported for other chlamydia shuttle vectors, suggesting these as a universal vector for transformation of all C. trachomatis strains. This vector promiscuity enabled us to test the indole rescue hypothesis by transforming ocular strain A2497 with the functional urogenital trpRBA operon, which complemented the non-functional tryptophan synthase. These data confirm that the trpRBA operon is necessary and sufficient for chlamydia to survive in tryptophan-limited environments such as the female urogenital tract.
Collapse
Affiliation(s)
- Colette Elizabeth O'Neill
- Molecular Microbiology Group, Department of Clinical and Experimental Science, Southampton General Hospital, University Medical School, Southampton, United Kingdom
| | - Rachel Jane Skilton
- Molecular Microbiology Group, Department of Clinical and Experimental Science, Southampton General Hospital, University Medical School, Southampton, United Kingdom
| | - Sarah Ann Pearson
- Molecular Microbiology Group, Department of Clinical and Experimental Science, Southampton General Hospital, University Medical School, Southampton, United Kingdom
| | - Simone Filardo
- Section of Microbiology, Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Patiyan Andersson
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Ian Nicholas Clarke
- Molecular Microbiology Group, Department of Clinical and Experimental Science, Southampton General Hospital, University Medical School, Southampton, United Kingdom
| |
Collapse
|
247
|
San Millan A, Toll-Riera M, Qi Q, Betts A, Hopkinson RJ, McCullagh J, MacLean RC. Integrative analysis of fitness and metabolic effects of plasmids in Pseudomonas aeruginosa PAO1. THE ISME JOURNAL 2018; 12:3014-3024. [PMID: 30097663 PMCID: PMC6246594 DOI: 10.1038/s41396-018-0224-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/09/2018] [Accepted: 05/25/2018] [Indexed: 01/25/2023]
Abstract
Horizontal gene transfer (HGT) mediated by the spread of plasmids fuels evolution in prokaryotes. Although plasmids provide bacteria with new adaptive genes, they also produce physiological alterations that often translate into a reduction in bacterial fitness. The fitness costs associated with plasmids represent an important limit to plasmid maintenance in bacterial communities, but their molecular origins remain largely unknown. In this work, we combine phenomics, transcriptomics and metabolomics to study the fitness effects produced by a collection of diverse plasmids in the opportunistic pathogen Pseudomonas aeruginosa PAO1. Using this approach, we scan the physiological changes imposed by plasmids and test the generality of some main mechanisms that have been proposed to explain the cost of HGT, including increased biosynthetic burden, reduced translational efficiency, and impaired chromosomal replication. Our results suggest that the fitness effects of plasmids have a complex origin, since none of these mechanisms could individually provide a general explanation for the cost of plasmid carriage. Interestingly, our results also showed that plasmids alter the expression of a common set of metabolic genes in PAO1, and produce convergent changes in host cell metabolism. These surprising results suggest that there is a common metabolic response to plasmids in P. aeruginosa PAO1.
Collapse
Affiliation(s)
- Alvaro San Millan
- Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK.
- Department of Microbiology, Hospital Universitario Ramon y Cajal (IRYCIS) and Network Research Centre for Epidemiology and Public Health (CIBERESP), 28034, Madrid, Spain.
| | - Macarena Toll-Riera
- Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK.
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Quartier Sorge-Bâtiment Génopode, 1015, Lausanne, Switzerland.
| | - Qin Qi
- Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK
| | - Alex Betts
- Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK
| | - Richard J Hopkinson
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
- Leicester Institute of Structural and Chemical Biology and Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - James McCullagh
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - R Craig MacLean
- Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
248
|
Nogueira T, David PHC, Pothier J. Antibiotics as both friends and foes of the human gut microbiome: The microbial community approach. Drug Dev Res 2018; 80:86-97. [PMID: 30370682 DOI: 10.1002/ddr.21466] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 12/28/2022]
Abstract
The exposure of the human gut to antibiotics can have a great impact on human health. Antibiotics pertain to the preservation of human health and are useful tools for fighting bacterial infections. They can be used for curing infections and can play a critical role in immunocompromised or chronic patients, or in fighting childhood severe malnutrition. Yet, the genomic and phylogenetic diversity of the human gut changes under antibiotic exposure. Antibiotics can also have severe side effects on human gut health, due to the spreading of potential antibiotic resistance genetic traits and to their correlation with virulence of some bacterial pathogens. They can shape, and even disrupt, the composition and functioning diversity of the human gut microbiome. Traditionally bacterial antibiotic resistances have been evaluated at clone or population level. However, the understanding of these two apparently disparate perspectives as both friends and foes may come from the study of microbiomes as a whole and from the evaluation of both positive and negative effects of antibiotics on microbial community dynamics and diversity. In this review we present some metagenomic tools and databases that enable the studying of antibiotic resistance in human gut metagenomes, promoting the development of personalized medicine strategies, new antimicrobial therapy protocols and patient follow-up.
Collapse
Affiliation(s)
- Teresa Nogueira
- cE3c - Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro H C David
- cE3c - Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Joël Pothier
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, Muséum National d'Histoire naturelle, CNRS, EPHE, CP, Paris, France
| |
Collapse
|
249
|
Impact of plasmid interactions with the chromosome and other plasmids on the spread of antibiotic resistance. Plasmid 2018; 99:82-88. [PMID: 30240700 DOI: 10.1016/j.plasmid.2018.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 01/03/2023]
Abstract
Naturally occurring plasmids have medical importance given that they frequently code for virulence or antibiotic resistance. In many cases, plasmids impose a fitness cost to their hosts, meaning that the growth rate of plasmid-bearing cells is lower than that of plasmid-free cells. However, this does not fit with the fact that plasmids are ubiquitous in nature nor that plasmids and their hosts adapt to each other very fast - as has been shown in laboratory evolutionary assays. Even when plasmids are costly, they seem to largely interact in such a way that the cost of two plasmids is lower than the cost of one of them alone. Moreover, it has been argued that transfer rates are too low to compensate for plasmid costs and segregation. Several mechanisms involving interactions between plasmids and other replicons could overcome this limitation, hence contributing to the maintenance of plasmids in bacterial populations. We examine the importance of these mechanisms from a clinical point of view, particularly the spread of antibiotic resistance genes.
Collapse
|
250
|
Temporal dynamics of bacteria-plasmid coevolution under antibiotic selection. ISME JOURNAL 2018; 13:559-562. [PMID: 30209344 PMCID: PMC6330079 DOI: 10.1038/s41396-018-0276-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 11/12/2022]
Abstract
Horizontally acquired genes can be costly to express even if they encode useful traits, such as antibiotic resistance. We previously showed that when selected with tetracycline, Escherichia coli carrying the tetracycline-resistance plasmid RK2 evolved mutations on both replicons that together provided increased tetracycline resistance at reduced cost. Here we investigate the temporal dynamics of this intragenomic coevolution. Using genome sequencing we show that the order of adaptive mutations was highly repeatable across three independently evolving populations. Each population first gained a chromosomal mutation in ompF which shortened lag phase and increased tetracycline resistance. This was followed by mutations impairing the plasmid-encoded tetracycline efflux pump, and finally, additional resistance-associated chromosomal mutations. Thus, reducing the cost of the horizontally acquired tetracycline resistance was contingent on first evolving a degree of chromosomally encoded resistance. We conclude therefore that the trajectory of bacteria-plasmid coevolution was constrained to a single repeatable path.
Collapse
|