201
|
Plotnikava D, Sidarenka A, Novik G. Antibiotic resistance in lactococci and enterococci: phenotypic and molecular-genetic aspects. THE EUROBIOTECH JOURNAL 2017. [DOI: 10.24190/issn2564-615x/2017/01.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Abstract
Extensive use of antibiotics in medicine, veterinary practice and animal husbandry has promoted the development and dissemination of bacterial drug resistance. The number of resistant pathogens causing common infectious diseases increases rapidly and creates worldwide public health problem. Commensal bacteria, including lactic acid bacteria of genera Enterococcus and Lactococcus colonizing gastrointestinal and urogenital tracts of humans and animals may act as vehicles of antibiotic resistance genes similar to those found in pathogens. Lactococci and enterococci are widely used in manufacturing of fermented products and as probiotics, therefore monitoring and control of transmissible antibiotic resistance determinants in industrial strains of these microorganisms is necessary to approve their Qualified Presumption of Safety status. Understanding the nature and molecular mechanisms of antibiotic resistance in enterococci and lactococci is essential, as intrinsic resistant bacteria pose no threat to environment and human health in contrast to bacteria with resistance acquired through horizontal transfer of resistance genes. The review summarizes current knowledge concerning intrinsic and acquired antibiotic resistance in Lactococcus and Enterococcus genera, and discusses role of enterococci and lactococci in distribution of this feature.
Collapse
Affiliation(s)
- Danuta Plotnikava
- Institute of Microbiology, National Academy of Sciences of Belarus, Kuprevich Street 2, 220141 Minsk , Belarus
| | - Anastasiya Sidarenka
- Institute of Microbiology, National Academy of Sciences of Belarus, Kuprevich Street 2, 220141 Minsk , Belarus
| | - Galina Novik
- Institute of Microbiology, National Academy of Sciences of Belarus, Kuprevich Street 2, 220141 Minsk , Belarus
| |
Collapse
|
202
|
Escandón-Vargas K, Reyes S, Gutiérrez S, Villegas MV. The epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev Anti Infect Ther 2016; 15:277-297. [PMID: 27915487 DOI: 10.1080/14787210.2017.1268918] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Enterobacteriaceae, Pseudomonas spp., and Acinetobacter spp. infections are major causes of morbidity and mortality, especially due to the emergence and spread of β-lactamases. Carbapenemases, which are β-lactamases with the capacity to hydrolyze or inactivate carbapenems, have become a serious concern as they have the largest hydrolytic spectrum and therefore limit the utility of most β-lactam antibiotics. Areas covered: Here, we present an update of the current status of carbapenemases in Latin America and the Caribbean. Expert commentary: The increased frequency of reports on carbapenemases in Latin America and the Caribbean shows that they have successfully spread and have even become endemic in some countries. Countries such as Brazil, Colombia, Argentina, and Mexico account for the majority of these reports. Early suspicion and detection along with implementation of antimicrobial stewardship programs in all healthcare settings are crucial for the control and prevention of carbapenemase-producing bacteria.
Collapse
Affiliation(s)
- Kevin Escandón-Vargas
- a Bacterial Resistance and Hospital Epidemiology Unit , International Center for Medical Research and Training (CIDEIM) , Cali , Colombia
| | - Sergio Reyes
- a Bacterial Resistance and Hospital Epidemiology Unit , International Center for Medical Research and Training (CIDEIM) , Cali , Colombia
| | - Sergio Gutiérrez
- a Bacterial Resistance and Hospital Epidemiology Unit , International Center for Medical Research and Training (CIDEIM) , Cali , Colombia
| | - María Virginia Villegas
- a Bacterial Resistance and Hospital Epidemiology Unit , International Center for Medical Research and Training (CIDEIM) , Cali , Colombia.,b Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics , Universidad El Bosque , Bogotá , Colombia
| |
Collapse
|
203
|
Zhang J, Sui Q, Tong J, Buhe C, Wang R, Chen M, Wei Y. Sludge bio-drying: Effective to reduce both antibiotic resistance genes and mobile genetic elements. WATER RESEARCH 2016; 106:62-70. [PMID: 27697685 DOI: 10.1016/j.watres.2016.09.055] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Sewage sludge is considered as one of major contributors to the increased environmental burden of ARGs. Sludge bio-drying was increasingly adopted due to its faster sludge reduction compared with composting. The fate of ARGs during full-scale sludge bio-drying was investigated to determine whether it could effectively reduce ARGs, and the contributions of bacterial community, horizontal gene transfer (HGT) through mobile genetic elements (MGEs) and co-selection from heavy metals to ARGs profiles were discussed in detail. Two piles with different aeration strategies (Pile I, the improved and Pile II, the control) were operated to elucidate effects of aeration strategy on ARGs profiles. Results showed that sludge bio-drying could effectively reduce both most of targeted ARGs (0.4-3.1 logs) and MGEs (0.8-3.3 logs) by the improved aeration strategy, which also enhanced both the sludge bio-drying performance and ARGs reduction. The enrichment of ARGs including ermF, tetX and sulII could be well explained by the evolution of bioavailable heavy metals, not HGT through MGEs, and their potential host bacteria mainly existed in Bacteroidetes. Although changes of bacterial community contributed the most to ARGs profiles, HGT through MGEs should be paid more attention especially in the thermophilic stage of sludge bio-drying.
Collapse
Affiliation(s)
- Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qianwen Sui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chulu Buhe
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meixue Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
204
|
Yu Z, He P, Shao L, Zhang H, Lü F. Co-occurrence of mobile genetic elements and antibiotic resistance genes in municipal solid waste landfill leachates: A preliminary insight into the role of landfill age. WATER RESEARCH 2016; 106:583-592. [PMID: 27776307 DOI: 10.1016/j.watres.2016.10.042] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/09/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
Since municipal solid waste (MSW) landfill harbours miscellaneous wastes, pollutants and microorganisms, it gradually becomes a huge potential reservoir for breeding antibiotic resistance genes (ARGs). The objective of this study was to determine the prevalence and diversity of ARGs associated with various mobile genetic elements (MGEs) in MSW landfill leachates. The relationship of ARGs with leachate characteristics was also studied to explore the influence of landfill age. Seven sulfonamides (sulfapyridine, sulfadiazine, sulfathiazole, sulfamethoxazole, sulfamerazine, sulfamethazine and sulfaquinoxaline), three encoded ARGs (sul-I, sul-II and sul-III) and four types of MGEs (plasmids, transposons, integrons and insertion sequences) were quantified in leachates with landfill ages ranging from 3 months-6 years. ARGs increased to an absolute concentration of 106 copies/μL and were positively correlated (p < 0.05) to MGEs. Significant correlations (p < 0.05) were also discovered among ARGs and the increasing humic acids, heavy metals (Zn, Cu and Co) and antibiotics (except for sulfathiazole and sulfaquinoxaline), implying landfilling might contribute to the enrichment of ARGs in the long-term. Non-target full scans revealed the role of persistent unknown compounds in stimulating the ARGs dissemination. Overall, this study demonstrates the exacerbation of ARGs pollution in landfill environment and a detailed delineation of the complex inter-relationships between ARGs and the substances harbouring in landfills is badly required.
Collapse
Affiliation(s)
- Zhuofeng Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China; Centre for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban-Rural Development of PR China (MOHURD), PR China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China; Centre for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban-Rural Development of PR China (MOHURD), PR China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Fan Lü
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
205
|
Oliva M, Monno R, D'Addabbo P, Pesole G, Dionisi AM, Scrascia M, Chiara M, Horner DS, Manzari C, Luzzi I, Calia C, D'Erchia AM, Pazzani C. A novel group of IncQ1 plasmids conferring multidrug resistance. Plasmid 2016; 89:22-26. [PMID: 27916622 DOI: 10.1016/j.plasmid.2016.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 11/28/2022]
Abstract
The IncQ is a group of non-conjugative but mobilisable plasmids that are found and stably maintained in a wide range of bacteria contributing to the spread of antimicrobial resistance genes and to the insurgence of multidrug resistant bacteria. Here we report the identification, in clinical Salmonella Typhimurium strains, of an IncQ1 plasmid (pNUC) which confers resistance to sulfamethoxazole, streptomycin and tetracycline through the presence of sul2, strAB and tetA genes, respectively. pNUC was detected in five multidrug resistant S. Typhimurium strains collected in Southern Italy from various hospitals and years of isolation. Bioinformatics analyses highlighted the presence of pNUC-like plasmids in pathogenic bacteria of various Enterobacteriaceae genera or species. Taken as a whole, these plasmids constitute a novel group of IncQ1 plasmids that might have originated through recombination events between a tetR-tetA gene cluster (possibly derived from a Tn1721) and a recipient IncQ1 plasmid related to RSF1010. Our findings raise concerns regarding the possible contribution of the newly identified group of IncQ1 plasmids to the spread of tetracycline resistance.
Collapse
Affiliation(s)
- M Oliva
- Department of Biology, University of Bari, via Orabona, 4, 70125 Bari, Italy
| | - R Monno
- Department of Basic Medical Sciences Neurosciences and Sense Organs Medical Faculty, University of Bari Piazza G. Cesare Policlinico, 70124 Bari, Italy
| | - P D'Addabbo
- Department of Biology, University of Bari, via Orabona, 4, 70125 Bari, Italy
| | - G Pesole
- Institute of Biomembranes and Bioenergetics, National Research Council, via Amendola 165A, 70125 Bari, Italy; Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona, 4, 70125 Bari, Italy
| | - A M Dionisi
- Department of Infectious, Parasitic and Immuno-Mediated Diseases, Istituto Superiore di Sanità, Rome 00161, Italy
| | - M Scrascia
- Department of Biology, University of Bari, via Orabona, 4, 70125 Bari, Italy
| | - M Chiara
- Department of Biosciences, University of Milano, via Celoria 26, 20131 Milano, Italy
| | - D S Horner
- Department of Biosciences, University of Milano, via Celoria 26, 20131 Milano, Italy
| | - C Manzari
- Institute of Biomembranes and Bioenergetics, National Research Council, via Amendola 165A, 70125 Bari, Italy
| | - I Luzzi
- Department of Infectious, Parasitic and Immuno-Mediated Diseases, Istituto Superiore di Sanità, Rome 00161, Italy
| | - C Calia
- Department of Basic Medical Sciences Neurosciences and Sense Organs Medical Faculty, University of Bari Piazza G. Cesare Policlinico, 70124 Bari, Italy
| | - A M D'Erchia
- Institute of Biomembranes and Bioenergetics, National Research Council, via Amendola 165A, 70125 Bari, Italy; Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona, 4, 70125 Bari, Italy
| | - C Pazzani
- Department of Biology, University of Bari, via Orabona, 4, 70125 Bari, Italy.
| |
Collapse
|
206
|
Transposition of Tn125 Encoding the NDM-1 Carbapenemase in Acinetobacter baumannii. Antimicrob Agents Chemother 2016; 60:7245-7251. [PMID: 27671058 DOI: 10.1128/aac.01755-16] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022] Open
Abstract
The blaNDM-1 gene encodes a carbapenemase that confers resistance to almost all β-lactams, including last-resort carbapenems. This is increasingly reported worldwide in nosocomial and community-acquired Gram-negative bacteria. Acinetobacter baumannii is an important opportunistic pathogen that is considered an intermediate reservoir for the blaNDM-1 gene. In this species, the blaNDM-1 gene is located within the Tn125 composite transposon. The mechanism driving the mobility of Tn125 has not yet been elucidated. Here we experimentally demonstrated the transposition of Tn125 in A. baumannii Systematic 3-bp duplication of the target site, being the signature of transposition, was evidenced. The target site consensus sequence for Tn125 transposition was found to be GC enriched at the duplicated 3 bp and AT rich in the vicinity. Transposition frequency was not influenced by temperature changes or by exposure to subinhibitory concentrations of various antibiotics. This work is the first direct evidence of the functionality of a composite transposon in A. baumannii It provides a mechanistic clue for the dissemination of the blaNDM-1 gene in Acinetobacter spp. and subsequently among Enterobacteriaceae.
Collapse
|
207
|
Leclercq SO, Wang C, Zhu Y, Wu H, Du X, Liu Z, Feng J. Diversity of the Tetracycline Mobilome within a Chinese Pig Manure Sample. Appl Environ Microbiol 2016; 82:6454-6462. [PMID: 27565618 PMCID: PMC5066362 DOI: 10.1128/aem.01754-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/20/2016] [Indexed: 11/20/2022] Open
Abstract
Tetracycline antibiotics are widely used in livestock, and tetracycline resistance genes (TRG) are frequently reported in the manure of farmed animals. However, the diversity of TRG-carrying transposons in manure has still been rarely investigated. Using a culture-free functional metagenomic procedure, combined with large-insert library construction and sequencing, bioinformatic analyses, and functional experiments, we identified 17 distinct TRGs in a single pig manure sample, including two new tet genes: tet(59), encoding a tetracycline efflux pump, and tet(W/N/W), encoding mosaic ribosomal protection. Our study also revealed six new TRG-carrying putative nonconjugative transposons: Tn5706-like transposon Tn6298, IS200/605-related transposon Tn6303, Tn3 family transposon Tn6299, and three ISCR2-related transposons, Tn62300, Tn62301, and Tn62302 IMPORTANCE: Fertilization of agricultural fields with animal manure is believed to play a major role in antibiotic resistance dissemination in the environment. There is growing concern for the possible spread of antibiotic resistance from the environment to humans since genetic resistance determinants may be located in transposons and other mobile genetic elements potentially transferable to pathogens. Among the various antibiotic resistance genes found in manure, tetracycline resistance genes (TRGs) are some of the most common. The present study provides a detailed snapshot of the tetracycline mobilome in a single pig manure sample, revealing an unappreciated diversity of TRGs and potential TRG mobility vectors. Our precise identification of the TRG-carrying units will enable us to investigate in more details their mobility effectiveness.
Collapse
Affiliation(s)
- Sébastien Olivier Leclercq
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yaxin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hai Wu
- College of Life Sciences, Hebei University, Baoding, China
| | - Xiaochen Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhipei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
208
|
Beyrouthy R, Robin F, Hamze M, Bonnet R. IncFIIk plasmid harbouring an amplification of 16S rRNA methyltransferase-encoding gene rmtH associated with mobile element ISCR2. J Antimicrob Chemother 2016; 72:402-406. [PMID: 27793962 DOI: 10.1093/jac/dkw435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/02/2016] [Accepted: 09/17/2016] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To investigate the resistance mechanisms and genetic support underlying the high resistance level of the Klebsiella pneumoniae strain CMUL78 to aminoglycoside and β-lactam antibiotics. METHODS Antibiotic susceptibility was assessed by the disc diffusion method and MICs were determined by the microdilution method. Antibiotic resistance genes and their genetic environment were characterized by PCR and Sanger sequencing. Plasmid contents were analysed in the clinical strain and transconjugants obtained by mating-out assays. Complete plasmid sequencing was performed with PacBio and Illumina technology. RESULTS Strain CMUL78 co-produced the 16S rRNA methyltransferase (RMTase) RmtH, carbapenemase OXA-48 and ESBL SHV-12. The rmtH- and blaSHV-12-encoding genes were harboured by a novel ∼115 kb IncFIIk plasmid designated pRmtH, and blaOXA-48 by a ∼62 kb IncL/M plasmid related to pOXA-48a. pRmtH plasmid possessed seven different stability modules, one of which is a novel hybrid toxin-antitoxin system. Interestingly, pRmtH plasmid harboured a 4-fold amplification of an rmtH-ISCR2 unit arranged in tandem and inserted within a novel IS26-based composite transposon designated Tn6329. CONCLUSIONS This is the first known report of the 16S RMTase-encoding gene rmtH in a plasmid. The rmtH-ISCR2 unit was inserted in a composite transposon as a 4-fold tandem repeat, a scarcely reported organization.
Collapse
Affiliation(s)
- Racha Beyrouthy
- CHU Clermont-Ferrand, Laboratoire de Bactériologie Clinique, Clermont-Ferrand, France.,Centre National de Référence de la Résistance aux Antibiotiques, laboratoire associé, Clermont-Ferrand, France.,Clermont Université, Université d'Auvergne, M2iSH, Clermont-Ferrand, France.,UMR INSERM 1071, Clermont-Ferrand, France.,USC INRA2018, Clermont-Ferrand, France
| | - Frederic Robin
- CHU Clermont-Ferrand, Laboratoire de Bactériologie Clinique, Clermont-Ferrand, France.,Centre National de Référence de la Résistance aux Antibiotiques, laboratoire associé, Clermont-Ferrand, France.,Clermont Université, Université d'Auvergne, M2iSH, Clermont-Ferrand, France.,UMR INSERM 1071, Clermont-Ferrand, France.,USC INRA2018, Clermont-Ferrand, France
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale en Sciences et Technologies et Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Richard Bonnet
- CHU Clermont-Ferrand, Laboratoire de Bactériologie Clinique, Clermont-Ferrand, France .,Centre National de Référence de la Résistance aux Antibiotiques, laboratoire associé, Clermont-Ferrand, France.,Clermont Université, Université d'Auvergne, M2iSH, Clermont-Ferrand, France.,UMR INSERM 1071, Clermont-Ferrand, France.,USC INRA2018, Clermont-Ferrand, France
| |
Collapse
|
209
|
Abstract
DNA transposons are defined segments of DNA that are able to move from one genomic location to another. Movement is facilitated by one or more proteins, called the transposase, typically encoded by the mobile element itself. Here, we first provide an overview of the classification of such mobile elements in a variety of organisms. From a mechanistic perspective, we have focused on one particular group of DNA transposons that encode a transposase with a DD(E/D) catalytic domain that is topologically similar to RNase H. For these, a number of three-dimensional structures of transpososomes (transposase-nucleic acid complexes) are available, and we use these to describe the basics of their mechanisms. The DD(E/D) group, in addition to being the largest and most common among all DNA transposases, is the one whose members have been used for a wide variety of genomic applications. Therefore, a second focus of the article is to provide a nonexhaustive overview of transposon applications. Although several non-transposon-based approaches to site-directed genome modifications have emerged in the past decade, transposon-based applications are highly relevant when integration specificity is not sought. In fact, for many applications, the almost-perfect randomness and high frequency of integration make transposon-based approaches indispensable.
Collapse
Affiliation(s)
- Alison B. Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
210
|
Gillings MR, Paulsen IT, Tetu SG. Genomics and the evolution of antibiotic resistance. Ann N Y Acad Sci 2016; 1388:92-107. [DOI: 10.1111/nyas.13268] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022]
Affiliation(s)
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| | - Sasha G. Tetu
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| |
Collapse
|
211
|
Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ. The structure and diversity of human, animal and environmental resistomes. MICROBIOME 2016; 4:54. [PMID: 27717408 PMCID: PMC5055678 DOI: 10.1186/s40168-016-0199-5] [Citation(s) in RCA: 313] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/28/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Antibiotic resistance genes (ARGs) are widespread but cause problems only when present in pathogens. Environments where selection and transmission of antibiotic resistance frequently take place are likely to be characterized by high abundance and diversity of horizontally transferable ARGs. Large-scale quantitative data on ARGs is, however, lacking for most types of environments, including humans and animals, as is data on resistance genes to potential co-selective agents, such as biocides and metals. This paucity prevents efficient identification of risk environments. RESULTS We provide a comprehensive characterization of resistance genes, mobile genetic elements (MGEs) and bacterial taxonomic compositions for 864 metagenomes from humans (n = 350), animals (n = 145) and external environments (n = 369), all deeply sequenced using Illumina technology. Environment types showed clear differences in both resistance profiles and bacterial community compositions. Human and animal microbial communities were characterized by limited taxonomic diversity and low abundance and diversity of biocide/metal resistance genes and MGEs but a relatively high abundance of ARGs. In contrast, external environments showed consistently high taxonomic diversity which in turn was linked to high diversity of both biocide/metal resistance genes and MGEs. Water, sediment and soil generally carried low relative abundance and few varieties of known ARGs, whereas wastewater/sludge was on par with the human gut. The environments with the largest relative abundance and/or diversity of ARGs, including genes encoding resistance to last resort antibiotics, were those subjected to industrial antibiotic pollution and a limited set of deeply sequenced air samples from a Beijing smog event. CONCLUSIONS Our study identifies air and antibiotic-polluted environments as under-investigated transmission routes and reservoirs for antibiotic resistance. The high taxonomic and genetic diversity of external environments supports the hypothesis that these also form vast sources of unknown resistance genes, with potential to be transferred to pathogens in the future.
Collapse
Affiliation(s)
- Chandan Pal
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46, Gothenburg, Sweden.
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
212
|
Gillings MR. Lateral gene transfer, bacterial genome evolution, and the Anthropocene. Ann N Y Acad Sci 2016; 1389:20-36. [DOI: 10.1111/nyas.13213] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Michael R. Gillings
- Genes to Geoscience Research Centre, Department of Biological Sciences Macquarie University Sydney New South Wales Australia
| |
Collapse
|
213
|
Plasmid-mediated quinolone resistance: Two decades on. Drug Resist Updat 2016; 29:13-29. [PMID: 27912841 DOI: 10.1016/j.drup.2016.09.001] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/03/2016] [Accepted: 08/29/2016] [Indexed: 11/21/2022]
Abstract
After two decades of the discovery of plasmid-mediated quinolone resistance (PMQR), three different mechanisms have been associated to this phenomenon: target protection (Qnr proteins, including several families with multiple alleles), active efflux pumps (mainly QepA and OqxAB pumps) and drug modification [AAC(6')-Ib-cr acetyltransferase]. PMQR genes are usually associated with mobile or transposable elements on plasmids, and, in the case of qnr genes, are often incorporated into sul1-type integrons. PMQR has been found in clinical and environmental isolates around the world and appears to be spreading. Although the three PMQR mechanisms alone cause only low-level resistance to quinolones, they can complement other mechanisms of chromosomal resistance to reach clinical resistance level and facilitate the selection of higher-level resistance, raising a threat to the treatment of infections by microorganisms that host these mechanisms.
Collapse
|
214
|
Ferreira JC, Penha Filho RAC, Andrade LN, Berchieri Junior A, Darini ALC. Evaluation and characterization of plasmids carrying CTX-M genes in a non-clonal population of multidrug-resistant Enterobacteriaceae isolated from poultry in Brazil. Diagn Microbiol Infect Dis 2016; 85:444-8. [DOI: 10.1016/j.diagmicrobio.2016.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/14/2016] [Accepted: 05/17/2016] [Indexed: 11/28/2022]
|
215
|
Tian Z, Zhang Y, Yu B, Yang M. Changes of resistome, mobilome and potential hosts of antibiotic resistance genes during the transformation of anaerobic digestion from mesophilic to thermophilic. WATER RESEARCH 2016; 98:261-9. [PMID: 27108212 DOI: 10.1016/j.watres.2016.04.031] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 05/23/2023]
Abstract
This study aimed to reveal how antibiotic resistance genes (ARGs) and their horizontal and vertical transfer-related items (mobilome and bacterial hosts) respond to the transformation of anaerobic digestion (AD) from mesophilic to thermophilic using one-step temperature increase. The resistomes and mobilomes of mesophilic and thermophilic sludge were investigated using metagenome sequencing, and the changes in 24 representative ARGs belonging to three categories, class 1 integron and bacterial genera during the transition period were further followed using quantitative PCR and 454-pyrosequencing. After the temperature increase, resistome abundance in the digested sludge decreased from 125.97 ppm (day 0, mesophilic) to 50.65 ppm (day 57, thermophilic) with the reduction of most ARG types except for the aminoglycoside resistance genes. Thermophilic sludge also had a smaller mobilome, including plasmids, insertion sequences and integrons, than that of mesophilic sludge, suggesting the lower horizontal transfer potential of ARGs under thermophilic conditions. On the other hand, the total abundance of 18 bacterial genera, which were suggested as the possible hosts for 13 ARGs through network analysis, decreased from 23.27% in mesophilic sludge to 11.92% in thermophilic sludge, indicating fewer hosts for the vertical expansion of ARGs after the increase in temperature. These results indicate that the better reduction of resistome abundance by thermophilic AD might be associated with the decrease of both the horizontal and vertical transferability of ARGs.
Collapse
Affiliation(s)
- Zhe Tian
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yu Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Bo Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
216
|
Wang J, Ben W, Yang M, Zhang Y, Qiang Z. Dissemination of veterinary antibiotics and corresponding resistance genes from a concentrated swine feedlot along the waste treatment paths. ENVIRONMENT INTERNATIONAL 2016; 92-93:317-323. [PMID: 27128716 DOI: 10.1016/j.envint.2016.04.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/05/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
Swine feedlots are an important pollution source of antibiotics and antibiotic resistance genes (ARGs) to the environment. This study investigated the dissemination of two classes of commonly-used veterinary antibiotics, namely, tetracyclines (TCs) and sulfonamides (SAs), and their corresponding ARGs along the waste treatment paths from a concentrated swine feedlot located in Beijing, China. The highest total TC and total SA concentrations detected were 166.7mgkg(-1) and 64.5μgkg(-1) in swine manure as well as 388.7 and 7.56μgL(-1) in swine wastewater, respectively. Fourteen tetracycline resistance genes (TRGs) encoding ribosomal protection proteins (RPP), efflux proteins (EFP) and enzymatic inactivation proteins, three sulfonamide resistance genes (SRGs), and two integrase genes were detected along the waste treatment paths with detection frequencies of 33.3-75.0%. The relative abundances of target ARGs ranged from 2.74×10(-6) to 1.19. The antibiotics and ARGs generally declined along both waste treatment paths, but their degree of reduction was more significant along the manure treatment path. The RPP TRGs dominated in the upstream samples and then decreased continuously along both waste treatment paths, whilst the EFP TRGs and SRGs maintained relatively stable. Strong correlations between antibiotic concentrations and ARGs were observed among both manure and wastewater samples. In addition, seasonal temperature, and integrase genes, moisture content and nutrient level of tested samples could all impact the relative abundances of ARGs along the swine waste treatment paths. This study helps understand the evolution and spread of ARGs from swine feedlots to the environment as well as assess the environmental risk arising from swine waste treatment.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yu-quan Road, Beijing 100049, China
| | - Weiwei Ben
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China.
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yu-quan Road, Beijing 100049, China
| | - Yu Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yu-quan Road, Beijing 100049, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yu-quan Road, Beijing 100049, China.
| |
Collapse
|
217
|
Mechanisms Involved in Acquisition of blaNDM Genes by IncA/C2 and IncFIIY Plasmids. Antimicrob Agents Chemother 2016; 60:4082-8. [PMID: 27114281 DOI: 10.1128/aac.00368-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/22/2016] [Indexed: 12/11/2022] Open
Abstract
blaNDM genes confer carbapenem resistance and have been identified on transferable plasmids belonging to different incompatibility (Inc) groups. Here we present the complete sequences of four plasmids carrying a blaNDM gene, pKP1-NDM-1, pEC2-NDM-3, pECL3-NDM-1, and pEC4-NDM-6, from four clinical samples originating from four different patients. Different plasmids carry segments that align to different parts of the blaNDM region found on Acinetobacter plasmids. pKP1-NDM-1 and pEC2-NDM-3, from Klebsiella pneumoniae and Escherichia coli, respectively, were identified as type 1 IncA/C2 plasmids with almost identical backbones. Different regions carrying blaNDM are inserted in different locations in the antibiotic resistance island known as ARI-A, and ISCR1 may have been involved in the acquisition of blaNDM-3 by pEC2-NDM-3. pECL3-NDM-1 and pEC4-NDM-6, from Enterobacter cloacae and E. coli, respectively, have similar IncFIIY backbones, but different regions carrying blaNDM are found in different locations. Tn3-derived inverted-repeat transposable elements (TIME) appear to have been involved in the acquisition of blaNDM-6 by pEC4-NDM-6 and the rmtC 16S rRNA methylase gene by IncFIIY plasmids. Characterization of these plasmids further demonstrates that even very closely related plasmids may have acquired blaNDM genes by different mechanisms. These findings also illustrate the complex relationships between antimicrobial resistance genes, transposable elements, and plasmids and provide insights into the possible routes for transmission of blaNDM genes among species of the Enterobacteriaceae family.
Collapse
|
218
|
Harmer CJ, Partridge SR, Hall RM. pDGO100, a type 1 IncC plasmid from 1981 carrying ARI-A and a Tn1696-like transposon in a novel integrating element. Plasmid 2016; 86:38-45. [PMID: 27318267 DOI: 10.1016/j.plasmid.2016.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
Most A/C plasmids sequenced to date were recovered in the last two decades. To gain insight into the evolution of this group, the IncC plasmid pDGO100, found in a multiply antibiotic-resistant Escherichia coli strain isolated in 1981, was sequenced. pDGO100 belongs to the type 1 lineage and carries an ARI-A antibiotic resistance island but not an ARI-B island. The A/C2 backbone of pDGO100 has a deletion in the rhs1 gene previously found in pRMH760 and differs by only six single base pair substitutions from pRMH760, recovered at the same hospital 16years later. This confirms that the separation of type 1 and type 2 IncC plasmids is long standing. The ARI-A islands are also closely related, but pRMH760 contains Tn4352B in tniA of Tn402, while in pDGO100, Tn4352 has inserted into merA of pDUmer. pDGO100 also carries an additional 46kb insertion that includes a Tn1696-like transposon with the dfrB3 gene cassette. This insertion was identified as a novel integrating element, with an int gene at one end, and also includes the fec iron uptake operon that has been acquired from the E. coli chromosome. Related integrating elements carrying the same int gene were found in A/C2, IncHI1, and IncHI2 plasmids, and in the chromosomes of Enterobacter cloacae, Klebsiella oxytoca, and Cronobacter sakazakii isolates. In the Enterobacteriaceae chromosomes, these integrating elements appear to target a gene encoding a radical SAM superfamily protein. In the A/C2, IncHI1, and IncHI2 plasmids, genes encoding a phosphoadenosine phosphosulfate reductase were interrupted. The extremities of the integrating element are highly conserved, whilst the internal gene content varies. The detection of integrative elements in plasmids demonstrates an increased range of locations into which this type of mobile element can integrate and insertion in plasmids is likely to assist their spread.
Collapse
Affiliation(s)
- Christopher J Harmer
- School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales, Australia.
| | - Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead Hospital, The University of Sydney, Sydney, New South Wales, Australia
| | - Ruth M Hall
- School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
219
|
Characterization of antimicrobial resistance in Klebsiella species isolated from chicken broilers. Int J Food Microbiol 2016; 232:95-102. [PMID: 27289192 DOI: 10.1016/j.ijfoodmicro.2016.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 01/16/2023]
Abstract
The prevalence of antimicrobial resistant Klebsiella pneumoniae in poultry products has been a public concern, as it severely endangers food safety and human health. In this study, we investigated 90 antimicrobial resistant Klebsiella strains that were isolated from a commercial broiler slaughter plant in Shandong province of China. Nearly all (89/90) of the isolates were identified as infectious phylogenetic group KpI-type K. pneumoniae. Out of these 90 strains, 87 (96.7%) were multidrug-resistant isolates, and 87 (96.7%) were extended-spectrum beta-lactamase (ESBL)-producing isolates. An analysis of the prevalence of quinolone resistance genes showed that 7.8%, 77.8%, 26.7%, and 2.2% of the strains carried the qnrA, qnrB, qnrS, and qepA genes, respectively. An analysis of beta-lactam resistance genes showed that a high percentage of the strains contain the blaTEM (76.7%), blaSHV (88.9%), and blaCTX-M (75.6%) genes, among which three blaSHV subtypes (blaSHV-1, n=30; blaSHV-11, n=38; blaSHV-12, n=12) and three blaCTX-M subtypes (blaCTX-M-14, n=14; blaCTX-M-15, n=35; blaCTX-M-55, n=19) were found. A further investigation of mobile genetic elements involved in horizontal multidrug resistance gene transfer showed the presence of class 1 and 2 integrons in 77 (85.6%) and five (5.6%) isolates, respectively, while no class 3 integrons were detected. Four types of class 1 integrons containing specific gene cassette arrays (dfrA12-orfF-aadA2, dfrA17-aadA5, dfrA1-aadA1, and empty) were identified. Only one gene cassette array (dfrA1-sat2-aadA1) was detected in the class 2 integrons. Furthermore, four different types of insertion sequence common region 1 (ISCR1)-mediated downstream structures were successfully identified in 46 class 1 integron-positive isolates, among which ISCR1-sapA-like-qnrB2-qacEΔ1 was the most commonly observed structure. Chi-square tests revealed a significant association between ESBL genes, plasmid-mediated quinolone resistance (PMQR) genes, and class 1 integrons (p<0.01). Additional conjugation experiments confirmed this relationship (p<0.01) in transconjugants by finding that a high percentage of PMQR genes (74.0%) and class 1 integrons (73.7%) were co-transferred with ESBL genes. Finally, multilocus sequence typing (MLST) was performed, and it revealed that the isolates from chickens are widely distributed in humans, and that antimicrobial resistance is not only disseminated by clonal spreading, but largely by horizontal gene transfer. These results suggest that horizontal transfer of antimicrobial resistance genes by mobile genetic elements, such as integrons, plays a major role in the spread of antimicrobial resistance. Therefore, elucidating the structures of drug resistance integrons is of great importance to the commercial broiler slaughter plant in Shandong, China.
Collapse
|
220
|
Molecular Epidemiology and Genetic Characteristics of Various blaPER Genes in Shanghai, China. Antimicrob Agents Chemother 2016; 60:3849-53. [PMID: 27067315 DOI: 10.1128/aac.00258-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/21/2016] [Indexed: 01/03/2023] Open
Abstract
We describe the genetic characteristics and possible transmission mechanism of blaPER in 25 clinical Gram-negative bacilli in Shanghai. blaPER, including blaPER-1, blaPER-3, and blaPER-4, was located chromosomally or in different plasmids. Tn1213 harboring blaPER-1 was first identified in two Proteus mirabilis isolates in China. The other blaPER variants were preceded by an ISCR1 element inside the complex class 1 integron associated with IS26, Tn21, Tn1696, and a miniature inverted-repeat transposable element.
Collapse
|
221
|
Abstract
The OXA β-lactamases were among the earliest β-lactamases detected; however, these molecular class D β-lactamases were originally relatively rare and always plasmid mediated. They had a substrate profile limited to the penicillins, but some became able to confer resistance to cephalosporins. From the 1980s onwards, isolates of Acinetobacter baumannii that were resistant to the carbapenems emerged, manifested by plasmid-encoded β-lactamases (OXA-23, OXA-40, and OXA-58) categorized as OXA enzymes because of their sequence similarity to earlier OXA β-lactamases. It was soon found that every A. baumannii strain possessed a chromosomally encoded OXA β-lactamase (OXA-51-like), some of which could confer resistance to carbapenems when the genetic environment around the gene promoted its expression. Similarly, Acinetobacter species closely related to A. baumannii also possessed their own chromosomally encoded OXA β-lactamases; some could be transferred to A. baumannii, and they formed the basis of transferable carbapenem resistance in this species. In some cases, the carbapenem-resistant OXA β-lactamases (OXA-48) have migrated into the Enterobacteriaceae and are becoming a significant cause of carbapenem resistance. The emergence of OXA enzymes that can confer resistance to carbapenems, particularly in A. baumannii, has transformed these β-lactamases from a minor hindrance into a major problem set to demote the clinical efficacy of the carbapenems.
Collapse
|
222
|
Cheng C, Sun J, Zheng F, Lu W, Yang Q, Rui Y. New structures simultaneously harboring class 1 integron and ISCR1-linked resistance genes in multidrug-resistant Gram-negative bacteria. BMC Microbiol 2016; 16:71. [PMID: 27103443 PMCID: PMC4839121 DOI: 10.1186/s12866-016-0683-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/29/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The connection structure of class 1 integron and insertion sequence common region 1 (ISCR1) is called "complex class 1 integrons" or "complex sul1-type integrons", which is also known to be associated with many resistance genes. This structure is a powerful gene-capturing tool kit that can mobilize antibiotic resistance genes. In order to look for and study the structure among clinical multidrug-resistant (MDR) Gram-negative isolates, 63 isolates simultaneously harbored class 1 integron and ISCR1-linked resistance genes were isolated from 2309 clinical non-redundant MDR Gram-negative isolates in Nanfang Hospital in 2008-2013. The connecting regions between the class 1 integrons and ISCR1 were examined using PCR and DNA sequencing to determine the structures in these isolates. RESULT The two elements (the variable regions of the class 1 integron structures and the ISCR1-linked resistance genes) are connected in series among 63 isolates according to long-extension PCR and DNA sequencing. According to the kinds and permutations of resistance genes in the structure, 12 distinct types were identified, including 8 types that have never been described in any species. Several types of these structures are similar with the structures of other reports, but not entirely same. CONCLUSION This study is the first to determine the structure simultaneously harboring class 1 integron and ISCR1-linked resistance genes by detecting the region connecting class 1 integrons and ISCR1 in a large number of MDR bacteria. These structures carrying various resistance genes were closely associated with multidrug resistance bacteria in Southern China.
Collapse
Affiliation(s)
- Cancan Cheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jingjing Sun
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fen Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenting Lu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiu Yang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yongyu Rui
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
223
|
Abstract
Helitrons, the eukaryotic rolling-circle transposable elements, are widespread but most prevalent among plant and animal genomes. Recent studies have identified three additional coding and structural variants of Helitrons called Helentrons, Proto-Helentron, and Helitron2. Helitrons and Helentrons make up a substantial fraction of many genomes where nonautonomous elements frequently outnumber the putative autonomous partner. This includes the previously ambiguously classified DINE-1-like repeats, which are highly abundant in Drosophila and many other animal genomes. The purpose of this review is to summarize what we have learned about Helitrons in the decade since their discovery. First, we describe the history of autonomous Helitrons, and their variants. Second, we explain the common coding features and difference in structure of canonical Helitrons versus the endonuclease-encoding Helentrons. Third, we review how Helitrons and Helentrons are classified and discuss why the system used for other transposable element families is not applicable. We also touch upon how genome-wide identification of candidate Helitrons is carried out and how to validate candidate Helitrons. We then shift our focus to a model of transposition and the report of an excision event. We discuss the different proposed models for the mechanism of gene capture. Finally, we will talk about where Helitrons are found, including discussions of vertical versus horizontal transfer, the propensity of Helitrons and Helentrons to capture and shuffle genes and how they impact the genome. We will end the review with a summary of open questions concerning the biology of this intriguing group of transposable elements.
Collapse
|
224
|
Abstract
Transposons of the Tn3 family form a widespread and remarkably homogeneous group of bacterial transposable elements in terms of transposition functions and an extremely versatile system for mediating gene reassortment and genomic plasticity owing to their modular organization. They have made major contributions to antimicrobial drug resistance dissemination or to endowing environmental bacteria with novel catabolic capacities. Here, we discuss the dynamic aspects inherent to the diversity and mosaic structure of Tn3-family transposons and their derivatives. We also provide an overview of current knowledge of the replicative transposition mechanism of the family, emphasizing most recent work aimed at understanding this mechanism at the biochemical level. Previous and recent data are put in perspective with those obtained for other transposable elements to build up a tentative model linking the activities of the Tn3-family transposase protein with the cellular process of DNA replication, suggesting new lines for further investigation. Finally, we summarize our current view of the DNA site-specific recombination mechanisms responsible for converting replicative transposition intermediates into final products, comparing paradigm systems using a serine recombinase with more recently characterized systems that use a tyrosine recombinase.
Collapse
|
225
|
A Helitron transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes. Nat Commun 2016; 7:10716. [PMID: 26931494 PMCID: PMC4778049 DOI: 10.1038/ncomms10716] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/14/2016] [Indexed: 02/08/2023] Open
Abstract
Helitron transposons capture and mobilize gene fragments in eukaryotes, but experimental evidence for their transposition is lacking in the absence of an isolated active element. Here we reconstruct Helraiser, an ancient element from the bat genome, and use this transposon as an experimental tool to unravel the mechanism of Helitron transposition. A hairpin close to the 3′-end of the transposon functions as a transposition terminator. However, the 3′-end can be bypassed by the transposase, resulting in transduction of flanking sequences to new genomic locations. Helraiser transposition generates covalently closed circular intermediates, suggestive of a replicative transposition mechanism, which provides a powerful means to disseminate captured transcriptional regulatory signals across the genome. Indeed, we document the generation of novel transcripts by Helitron promoter capture both experimentally and by transcriptome analysis in bats. Our results provide mechanistic insight into Helitron transposition, and its impact on diversification of gene function by genome shuffling. Helitron elements are proposed rolling-circle transposons in eukaryotic genomes, but experimental evidence for their transposition has been lacking. Here, Grabundzija et al. reconstruct an active Helitron from bats which they name Helraiser, and characterize its mechanism of transposition in cell-free reactions and in human cell cultures in vitro.
Collapse
|
226
|
Abstract
Three mechanisms for plasmid-mediated quinolone resistance (PMQR) have been discovered since 1998. Plasmid genes qnrA, qnrB, qnrC, qnrD, qnrS, and qnrVC code for proteins of the pentapeptide repeat family that protects DNA gyrase and topoisomerase IV from quinolone inhibition. The qnr genes appear to have been acquired from chromosomal genes in aquatic bacteria, are usually associated with mobilizing or transposable elements on plasmids, and are often incorporated into sul1-type integrons. The second plasmid-mediated mechanism involves acetylation of quinolones with an appropriate amino nitrogen target by a variant of the common aminoglycoside acetyltransferase AAC(6')-Ib. The third mechanism is enhanced efflux produced by plasmid genes for pumps QepAB and OqxAB. PMQR has been found in clinical and environmental isolates around the world and appears to be spreading. The plasmid-mediated mechanisms provide only low-level resistance that by itself does not exceed the clinical breakpoint for susceptibility but nonetheless facilitates selection of higher-level resistance and makes infection by pathogens containing PMQR harder to treat.
Collapse
|
227
|
Han JW, Koh HB, Kim TJ. Molecular Characterization of β-Lactamase-ProducingEscherichia coliCollected from 2001 to 2011 from Pigs in Korea. Foodborne Pathog Dis 2016; 13:68-76. [DOI: 10.1089/fpd.2015.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ji Won Han
- College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Hong Bum Koh
- College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Tae Jung Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| |
Collapse
|
228
|
Jayol A, Janvier F, Guillard T, Chau F, Mérens A, Robert J, Fantin B, Berçot B, Cambau E. qnrA6genetic environment and quinolone resistance conferred onProteus mirabilis. J Antimicrob Chemother 2016; 71:903-8. [DOI: 10.1093/jac/dkv431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/12/2015] [Indexed: 11/13/2022] Open
|
229
|
Guo Q, Spychala CN, McElheny CL, Doi Y. Comparative analysis of an IncR plasmid carrying armA, blaDHA-1 and qnrB4 from Klebsiella pneumoniae ST37 isolates. J Antimicrob Chemother 2016; 71:882-6. [PMID: 26747096 DOI: 10.1093/jac/dkv444] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/19/2015] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The objective of this study was to conduct a comparative analysis with reported IncR plasmids of a Klebsiella pneumoniae IncR plasmid carrying an MDR region. METHODS MDR K. pneumoniae isolates were serially identified from two inpatients at a hospital in the USA in 2014. MDR plasmid pYDC676 was fully sequenced, annotated and compared with related plasmids. Antimicrobial susceptibility testing, PFGE and MLST were also conducted. RESULTS The K. pneumoniae isolates were identical by PFGE, belonged to ST37 and harboured an identical ∼50 kb IncR plasmid (pYDC676). pYDC676 possessed the backbone and multi-IS loci closely related to IncR plasmids reported from aquatic bacteria, as well as animal and human K. pneumoniae strains, and carried an MDR region consisting of armA, blaDHA-1 and qnrB4, a combination that has been reported in IncR plasmids from K. pneumoniae ST11 strains in Europe and Asia. A plasmid with the identical IncR backbone and a similar MDR region containing blaDHA-1 and qnrB4 has also been reported in ST37 strains from Europe, suggesting potential dissemination of this lineage of IncR plasmids in K. pneumoniae ST37. CONCLUSIONS K. pneumoniae ST37 strains with an MDR IncR plasmid carrying armA, blaDHA-1 and qnrB4 were identified in a hospital in the USA, where these resistance genes remain rare. The IncR backbone may play a role in the global dissemination of these resistance genes.
Collapse
Affiliation(s)
- Qinglan Guo
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Caressa Nicole Spychala
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christi Lee McElheny
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
230
|
Complete Sequences of Multidrug Resistance Plasmids Bearing rmtD1 and rmtD2 16S rRNA Methyltransferase Genes. Antimicrob Agents Chemother 2016; 60:1928-31. [PMID: 26729503 DOI: 10.1128/aac.02562-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/27/2015] [Indexed: 11/20/2022] Open
Abstract
Complete nucleotide sequences were determined for two plasmids bearing rmtD group 16S rRNA methyltransferase genes. pKp64/11 was 78 kb in size, belonged to the IncL/M group, and harbored blaTEM-1b, sul1, qacEΔ1, dfrA22, and rmtD1 across two multidrug resistance regions (MRRs). pKp368/10 was 170 kb in size, belonged to the IncA/C group, and harbored acrB, sul1, qacEΔ1, ant(3″)-Ia, aac(6')-Ib, cat, rmtD2, and blaCTX-M-8 across three MRRs. The rmtD-containing regions shared a conserved motif, suggesting a common origin for the two rmtD alleles.
Collapse
|
231
|
Comparison of Four Comamonas Catabolic Plasmids Reveals the Evolution of pBHB To Catabolize Haloaromatics. Appl Environ Microbiol 2015; 82:1401-1411. [PMID: 26682859 DOI: 10.1128/aem.02930-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/08/2015] [Indexed: 11/20/2022] Open
Abstract
Comamonas plasmids play important roles in shaping the phenotypes of their hosts and the adaptation of these hosts to changing environments, and understanding the evolutionary strategy of these plasmids is thus of great concern. In this study, the sequence of the 119-kb 3,5-dibromo-4-hydroxybenzonitrile-catabolizing plasmid pBHB from Comamonas sp. strain 7D-2 was studied and compared with those of three other Comamonas haloaromatic catabolic plasmids. Incompatibility group determination based on a phylogenetic analysis of 24 backbone gene proteins, as well as TrfA, revealed that these four plasmids all belong to the IncP-1β subgroup. Comparison of the four plasmids revealed a conserved backbone region and diverse genetic-load regions. The four plasmids share a core genome consisting of 40 genes (>50% similarities) and contain 12 to 50 unique genes each, most of which are xenobiotic-catabolic genes. Two functional reductive dehalogenase gene clusters are specifically located on pBHB, showing distinctive evolution of pBHB for haloaromatics. The higher catabolic ability of the bhbA2B2 cluster than the bhbAB cluster may be due to the transcription levels and the character of the dehalogenase gene itself rather than that of its extracytoplasmic binding receptor gene. The plasmid pBHB is riddled with transposons and insertion sequence (IS) elements, and ISs play important roles in the evolution of pBHB. The analysis of the origin of the bhb genes on pBHB suggested that these accessory genes evolved independently. Our work provides insights into the evolutionary strategies of Comamonas plasmids, especially into the adaptation mechanism employed by pBHB for haloaromatics.
Collapse
|
232
|
Abstract
Enterobacteriaceae are responsible for a large proportion of serious, life-threatening infections and resistance to multiple antibiotics in these organisms is an increasing global public health problem. Mutations in chromosomal genes contribute to antibiotic resistance, but Enterobacteriaceae are adapted to sharing genetic material and much important resistance is due to 'mobile' resistance genes. Different mobile genetic elements, which have different characteristics, are responsible for capturing these genes from the chromosomes of a variety of bacterial species and moving them between DNA molecules. If transferred to plasmids, these resistance genes are then able to be transferred 'horizontally' between different bacterial cells, including different species, and well as being transferred 'vertically' during cell division. Carriage of several resistance genes on the same plasmid enables a bacterial cell to acquire multi-resistance in a single step and means that spread of one resistance gene may be co-selected for by use of antibiotics other than those to which it confers resistance. Many different mobile genes conferring resistance to each class of antibiotic have been identified, complicating detection of the factors responsible for a particular resistance phenotype, especially when changes in chromosomal genes may also confer or contribute to resistance. Understanding the mechanisms of antibiotic resistance, and the means by which these mechanisms can evolve and disseminate, is important for developing ways to efficiently track the spread of resistance and to optimise treatment.
Collapse
|
233
|
Teo JWP, La MV, Jureen R, Lin RTP. Emergence of a New Delhi metallo-β-lactamase-1-producing Pseudomonas aeruginosa in Singapore. Emerg Microbes Infect 2015; 4:e72. [PMID: 26632659 PMCID: PMC4661430 DOI: 10.1038/emi.2015.72] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/21/2015] [Accepted: 09/25/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Jeanette W P Teo
- Department of Laboratory Medicine, Division of Microbiology, National University Hospital, Singapore 119074, Republic of Singapore
| | - My-Van La
- National Public Health Laboratory, Ministry of Health, Synapse, Singapore 138623, Republic of Singapore
| | - Roland Jureen
- Department of Laboratory Medicine, Division of Microbiology, National University Hospital, Singapore 119074, Republic of Singapore
| | - Raymond T P Lin
- Department of Laboratory Medicine, Division of Microbiology, National University Hospital, Singapore 119074, Republic of Singapore.,National Public Health Laboratory, Ministry of Health, Synapse, Singapore 138623, Republic of Singapore
| |
Collapse
|
234
|
Sarkar A, Pazhani GP, Chowdhury G, Ghosh A, Ramamurthy T. Attributes of carbapenemase encoding conjugative plasmid pNDM-SAL from an extensively drug-resistant Salmonella enterica Serovar Senftenberg. Front Microbiol 2015; 6:969. [PMID: 26441902 PMCID: PMC4569734 DOI: 10.3389/fmicb.2015.00969] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/01/2015] [Indexed: 12/04/2022] Open
Abstract
A carbapenem resistant Salmonella enterica serovar Senftenberg isolate BCH 2406 was isolated from a diarrheal child attending an outpatient unit of B.C. Roy Hospital in Kolkata, India. This isolate was positive for the blaNDM-1 in the PCR assay, which was confirmed by amplicon sequencing. Except for tetracycline, this isolate was resistant to all the tested antimicrobials. The blaNDM-1 was found to be located on a 146.13-kb mega plasmid pNDM-SAL, which could be conjugally transferred into Escherichia coli and other enteric pathogens such as Vibrio cholerae O1 Ogawa and Shigella flexneri 2a. However, the expression of β-lactam resistance is not the same in different bacteria. The whole genome sequence of pNDM-SAL was determined and compared with other pNDM plasmids available in public domain. This plasmid is an IncA/C incompatibility type composed of 155 predicted coding sequences and shares homology with plasmids of E. coli pNDM-1_Dok01, Klebsiella pNDM-KN, and Citrobacter pNDM-CIT. In pNDM-SAL, gene cluster containing blaNDM-1 was located between IS26 and IS4321 elements. Between the IS26 element and the blaNDM-1, a truncated ISAba125 insertion sequence was identified. Downstream of the blaNDM-1, other genes, such as bleMBL, trpF, tat, and an ISCR1 element with class 1 integron containing aac(6′)-Ib were detected. Another β-lactacamase gene, blaCMY -4 was found to be inserted in IS1 element within the type IV conjugative transfer loci of the plasmid. This gene cluster had blc and sugE downstream of the blaCMY -4. From our findings, it appears that the strain S. Senftenberg could have acquired the NDM plasmid from the other members of Enterobacteriaceae. Transfer of NDM plasmids poses a danger in the management of infectious diseases.
Collapse
Affiliation(s)
- Anirban Sarkar
- Department of Bacteriology, National Institute of Cholera and Enteric Diseases Kolkata, India
| | - Gururaja P Pazhani
- Department of Bacteriology, National Institute of Cholera and Enteric Diseases Kolkata, India ; Centre for Drug Discovery and Development, Sathyabama University Chennai, India
| | - Goutam Chowdhury
- Department of Bacteriology, National Institute of Cholera and Enteric Diseases Kolkata, India
| | - Amit Ghosh
- Department of Bacteriology, National Institute of Cholera and Enteric Diseases Kolkata, India
| | - Thandavarayan Ramamurthy
- Department of Bacteriology, National Institute of Cholera and Enteric Diseases Kolkata, India ; Center for Human Microbial Ecology, Translational Health Science and Technology Institute Faridabad, India
| |
Collapse
|
235
|
Nguyen VT, Carrique-Mas JJ, Ngo TH, Ho HM, Ha TT, Campbell JI, Nguyen TN, Hoang NN, Pham VM, Wagenaar JA, Hardon A, Thai QH, Schultsz C. Prevalence and risk factors for carriage of antimicrobial-resistant Escherichia coli on household and small-scale chicken farms in the Mekong Delta of Vietnam. J Antimicrob Chemother 2015; 70:2144-52. [PMID: 25755000 PMCID: PMC4472326 DOI: 10.1093/jac/dkv053] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/27/2015] [Accepted: 02/06/2015] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To describe the prevalence of antimicrobial resistance among commensal Escherichia coli isolates on household and small-scale chicken farms, common in southern Vietnam, and to investigate the association of antimicrobial resistance with farming practices and antimicrobial usage. METHODS We collected data on farming and antimicrobial usage from 208 chicken farms. E. coli was isolated from boot swab samples using MacConkey agar (MA) and MA with ceftazidime, nalidixic acid or gentamicin. Isolates were tested for their susceptibility to 11 antimicrobials and for ESBL production. Risk factor analyses were carried out, using logistic regression, at both the bacterial population and farm levels. RESULTS E. coli resistant to gentamicin, ciprofloxacin and third-generation cephalosporins was detected on 201 (96.6%), 191 (91.8%) and 77 (37.0%) of the farms, respectively. Of the 895 E. coli isolates, resistance to gentamicin, ciprofloxacin and third-generation cephalosporins was detected in 178 (19.9%), 291 (32.5%) and 29 (3.2%) of the isolates, respectively. Ciprofloxacin resistance was significantly associated with quinolone usage (OR = 2.26) and tetracycline usage (OR = 1.70). ESBL-producing E. coli were associated with farms containing fish ponds (OR = 4.82). CONCLUSIONS Household and small farms showed frequent antimicrobial usage associated with a high prevalence of resistance to the most commonly used antimicrobials. Given the weak biocontainment, the high prevalence of resistant E. coli could represent a risk to the environment and to humans.
Collapse
Affiliation(s)
- Vinh Trung Nguyen
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands Department of Global Health-Amsterdam Institute for Global Health and Development, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam
| | - Juan J Carrique-Mas
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thi Hoa Ngo
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Huynh Mai Ho
- Sub-Department of Animal Health, My Tho, Tien Giang, Vietnam
| | - Thanh Tuyen Ha
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam
| | - James I Campbell
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thi Nhung Nguyen
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam
| | - Ngoc Nhung Hoang
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam
| | - Van Minh Pham
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam
| | - Jaap A Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Anita Hardon
- Center for Social Science and Global Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Quoc Hieu Thai
- Sub-Department of Animal Health, My Tho, Tien Giang, Vietnam
| | - Constance Schultsz
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands Department of Global Health-Amsterdam Institute for Global Health and Development, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam
| |
Collapse
|
236
|
Domingues S, Nielsen KM, da Silva GJ. Global dissemination patterns of common gene cassette arrays in class 1 integrons. Microbiology (Reading) 2015; 161:1313-37. [DOI: 10.1099/mic.0.000099] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
237
|
Hong DJ, Bae IK, Jang IH, Jeong SH, Kang HK, Lee K. Epidemiology and Characteristics of Metallo-β-Lactamase-Producing Pseudomonas aeruginosa. Infect Chemother 2015; 47:81-97. [PMID: 26157586 PMCID: PMC4495280 DOI: 10.3947/ic.2015.47.2.81] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Indexed: 12/18/2022] Open
Abstract
Metallo-β-lactamase-producing Pseudomonas aeruginosa (MPPA) is an important nosocomial pathogen that shows resistance to all β-lactam antibiotics except monobactams. There are various types of metallo-β-lactamases (MBLs) in carbapenem-resistant P. aeruginosa including Imipenemase (IMP), Verona integron-encoded metallo-β-lactamase (VIM), Sao Paulo metallo-β-lactamase (SPM), Germany imipenemase (GIM), New Delhi metallo-β-lactamase (NDM), Florence imipenemase (FIM). Each MBL gene is located on specific genetic elements including integrons, transposons, plasmids, or on the chromosome, in which they carry genes encoding determinants of resistance to carbapenems and other antibiotics, conferring multidrug resistance to P. aeruginosa. In addition, these genetic elements are transferable to other Gram-negative species, increasing the antimicrobial resistance rate and complicating the treatment of infected patients. Therefore, it is essential to understand the epidemiology, resistance mechanism, and molecular characteristics of MPPA for infection control and prevention of a possible global health crisis. Here, we highlight the characteristics of MPPA.
Collapse
Affiliation(s)
- Duck Jin Hong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Il Kwon Bae
- Department of Dental Hygiene, Silla University, Busan, Korea
| | - In-Ho Jang
- Department of Biomedical Laboratory Science, College of Health Sciences, Sangji University, Wonju, Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun-Kyung Kang
- Department of Dental Hygiene, Silla University, Busan, Korea
| | - Kyungwon Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
238
|
Insertion Sequence IS26 Reorganizes Plasmids in Clinically Isolated Multidrug-Resistant Bacteria by Replicative Transposition. mBio 2015; 6:e00762. [PMID: 26060276 PMCID: PMC4471558 DOI: 10.1128/mbio.00762-15] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE), which are resistant to most or all known antibiotics, constitute a global threat to public health. Transposable elements are often associated with antibiotic resistance determinants, suggesting a role in the emergence of resistance. One insertion sequence, IS26, is frequently associated with resistance determinants, but its role remains unclear. We have analyzed the genomic contexts of 70 IS26 copies in several clinical and surveillance CPE isolates from the National Institutes of Health Clinical Center. We used target site duplications and their patterns as guides and found that a large fraction of plasmid reorganizations result from IS26 replicative transpositions, including replicon fusions, DNA inversions, and deletions. Replicative transposition could also be inferred for transposon Tn4401, which harbors the carbapenemase blaKPC gene. Thus, replicative transposition is important in the ongoing reorganization of plasmids carrying multidrug-resistant determinants, an observation that carries substantial clinical and epidemiological implications for understanding how such extreme drug resistance phenotypes evolve. Although IS26 is frequently reported to reside in resistance plasmids of clinical isolates, the characteristic hallmark of transposition, target site duplication (TSD), is generally not observed, raising questions about the mode of transposition for IS26. The previous observation of cointegrate formation during transposition implies that IS26 transposes via a replicative mechanism. The other possible outcome of replicative transposition is DNA inversion or deletion, when transposition occurs intramolecularly, and this would also generate a specific TSD pattern that might also serve as supporting evidence for the transposition mechanism. The numerous examples we present here demonstrate that replicative transposition, used by many mobile elements (including IS26 and Tn4401), is prevalent in the plasmids of clinical isolates and results in significant plasmid reorganization. This study also provides a method to trace the evolution of resistance plasmids based on TSD patterns.
Collapse
|
239
|
Relative Strengths of Promoters Provided by Common Mobile Genetic Elements Associated with Resistance Gene Expression in Gram-Negative Bacteria. Antimicrob Agents Chemother 2015; 59:5088-91. [PMID: 26055385 DOI: 10.1128/aac.00420-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/05/2015] [Indexed: 01/01/2023] Open
Abstract
Comparison of green fluorescent protein expression from outward-facing promoters (POUT) of ISAba1, ISEcp1, and ISAba125 revealed approximate equivalence in strength, intermediate between PCS (strong) and PCWTGN-10 (weak) class 1 integron promoter variants, >30-fold stronger than POUT of ISCR1, and >5 times stronger than Ptac. Consistent with its usual role, PCWTGN-10 produces more mRNA from a "downstream" gfp gene transcriptionally linked to a "usual" PCWTGN-10-associated gene cassette than does POUT of ISAba1.
Collapse
|
240
|
Bossé JT, Li Y, Atherton TG, Walker S, Williamson SM, Rogers J, Chaudhuri RR, Weinert LA, Holden MTG, Maskell DJ, Tucker AW, Wren BW, Rycroft AN, Langford PR. Characterisation of a mobilisable plasmid conferring florfenicol and chloramphenicol resistance in Actinobacillus pleuropneumoniae. Vet Microbiol 2015; 178:279-82. [PMID: 26049592 PMCID: PMC4503812 DOI: 10.1016/j.vetmic.2015.05.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 12/02/2022]
Abstract
First complete sequence of a floR plasmid from Actinobacillus pleuropneumoniae Extended similarity to floR plasmids in other Pasteurellaceae species Conjugal transfer between between species confirmed
The complete nucleotide sequence of a 7.7 kb mobilisable plasmid (pM3446F), isolated from a florfenicol resistant isolate of Actinobacillus pleuropneumoniae, showed extended similarity to plasmids found in other members of the Pasteurellaceae containing the floR gene as well as replication and mobilisation genes. Mobilisation into other Pasteurellaceae species confirmed that this plasmid can be transferred horizontally.
Collapse
Affiliation(s)
- Janine T Bossé
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, W2 1PG, UK.
| | - Yanwen Li
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, W2 1PG, UK
| | - Tom G Atherton
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, W2 1PG, UK
| | - Stephanie Walker
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, W2 1PG, UK
| | - Susanna M Williamson
- Animal and Plant Health Agency (APHA) Bury St Edmunds, Rougham Hill, Bury St Edmunds, Suffolk, IP33 2RX, UK
| | - Jon Rogers
- Animal and Plant Health Agency (APHA) Bury St Edmunds, Rougham Hill, Bury St Edmunds, Suffolk, IP33 2RX, UK
| | - Roy R Chaudhuri
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Matthew T G Holden
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Brendan W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Andrew N Rycroft
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hawkshead Campus, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Paul R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, W2 1PG, UK.
| | | |
Collapse
|
241
|
Zhao WH, Hu ZQ. Acquired metallo-β-lactamases and their genetic association with class 1 integrons and ISCR elements in Gram-negative bacteria. Future Microbiol 2015; 10:873-87. [DOI: 10.2217/fmb.15.18] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Metallo-β-lactamases (MBLs) can hydrolyze almost all β-lactam antibiotics and are resistant to clinically available β-lactamase inhibitors. Numerous types of acquired MBLs have been identified, including IMP, VIM, NDM, SPM, GIM, SIM, DIM, KHM, TMB, FIM and AIM. IMPs and VIMs are the most frequent MBLs and disseminate in members of the family Enterobacteriaceae, Pseudomonas spp. and Acinetobacter spp. Acquired MBL genes are often embedded in integrons, and some are associated with insertion sequence (IS) elements. The class 1 integrons and IS common region (ISCR) elements are usually harbored in transposons and/or plasmids, forming so-called mobile vesicles for horizontal transfer of captured genes between bacteria. Here, we review the MBL superfamily identified in Gram-negative bacteria, with an emphasis on the phylogeny of acquired MBLs and their genetic association with class 1 integrons and IS common region elements.
Collapse
Affiliation(s)
- Wei-Hua Zhao
- Department of Microbiology & Immunology, Showa University School of Medicine, 1–5–8 Hatanodai, Shinagawa-ku, Tokyo 142–8555, Japan
| | - Zhi-Qing Hu
- Department of Microbiology & Immunology, Showa University School of Medicine, 1–5–8 Hatanodai, Shinagawa-ku, Tokyo 142–8555, Japan
| |
Collapse
|
242
|
Dominance of IMP-4-producing enterobacter cloacae among carbapenemase-producing Enterobacteriaceae in Australia. Antimicrob Agents Chemother 2015; 59:4059-66. [PMID: 25918153 DOI: 10.1128/aac.04378-14] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/19/2015] [Indexed: 12/16/2022] Open
Abstract
The prevalence of carbapenemase-producing Enterobacteriaceae (CPE) has been increasing worldwide. blaIMP has been reported to be the predominant carbapenemase-encoding gene within Enterobacteriaceae in Australia. However, there are limited data currently available on CPE from Queensland, Australia. A total of 58 CPE isolates were isolated between July 2009 and March 2014 from Queensland hospitals. The clonality of isolates was determined by Diversilab repetitive sequence-based PCR. The isolates were investigated for the resistance mechanisms carbapenemase, extended-spectrum β-lactamase, and AmpC β-lactamase and for aminoglycoside resistance and plasmid-mediated quinolone resistance genes by PCR. The plasmid types associated with carbapenemase-encoding genes were characterized. The majority of the CPE were Enterobacter cloacae (n = 29). The majority of Queensland CPE isolates were IMP producers and comprised 11 species (n = 48). Nine NDM-producing Enterobacteriaceae were identified. One NDM-producing Klebsiella pneumoniae isolate coproduced OXA-48. One K. pneumoniae isolate was an OXA-181 producer. The incidence of IMP producers increased significantly in 2013. blaIMP-4 was found in all IMP-producing isolates. blaTEM, qnrB, and aacA4 were common among IMP-4 producers. The HI2 (67%) and L/M (21%) replicons were associated with blaIMP-4. All HI2 plasmids were of sequence type 1 (ST1). All but one of the NDM producers possessed blaCTX-M-15. The 16S rRNA methylase genes found among NDM producers were armA, rmtB, rmtC, and rmtF. The substantial increase in the prevalence of CPE in Queensland has been associated mainly with the emergence E. cloacae strains possessing HI2 plasmids carrying blaIMP-4 over the past 2 years. The importation of NDM producers and/or OXA-48-like producers in patients also contributed to the increased emergence of CPE.
Collapse
|
243
|
Complete sequence of conjugative IncA/C plasmid encoding CMY-2 β-lactamase and RmtE 16S rRNA methyltransferase. Antimicrob Agents Chemother 2015; 59:4360-1. [PMID: 25896689 DOI: 10.1128/aac.00852-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
244
|
Molecular characterization of ISCR1-mediated blaPER-1 in a non-O1, non-O139 Vibrio cholerae strain from China. Antimicrob Agents Chemother 2015; 59:4293-5. [PMID: 25870070 DOI: 10.1128/aac.00166-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/06/2015] [Indexed: 11/20/2022] Open
Abstract
We report the detection of PER-1 extended-spectrum β-lactamase (ESBL) in a clinical non-O1, non-O139 Vibrio cholerae strain from China. ISCR1-mediated bla(PER-1) was embedded in a complex In4 family class 1 integron belonging to the lineage of Tn1696 on a conjugative IncA/C plasmid. A free 8.98-kb circular molecule present with the ISCR1-bla(PER-1)-truncated 3'-conserved sequence (CS) structure was detected in this isolate. These findings may provide insight into the mobilization of bla(PER-1).
Collapse
|
245
|
Virus world as an evolutionary network of viruses and capsidless selfish elements. Microbiol Mol Biol Rev 2015; 78:278-303. [PMID: 24847023 DOI: 10.1128/mmbr.00049-13] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Viruses were defined as one of the two principal types of organisms in the biosphere, namely, as capsid-encoding organisms in contrast to ribosome-encoding organisms, i.e., all cellular life forms. Structurally similar, apparently homologous capsids are present in a huge variety of icosahedral viruses that infect bacteria, archaea, and eukaryotes. These findings prompted the concept of the capsid as the virus "self" that defines the identity of deep, ancient viral lineages. However, several other widespread viral "hallmark genes" encode key components of the viral replication apparatus (such as polymerases and helicases) and combine with different capsid proteins, given the inherently modular character of viral evolution. Furthermore, diverse, widespread, capsidless selfish genetic elements, such as plasmids and various types of transposons, share hallmark genes with viruses. Viruses appear to have evolved from capsidless selfish elements, and vice versa, on multiple occasions during evolution. At the earliest, precellular stage of life's evolution, capsidless genetic parasites most likely emerged first and subsequently gave rise to different classes of viruses. In this review, we develop the concept of a greater virus world which forms an evolutionary network that is held together by shared conserved genes and includes both bona fide capsid-encoding viruses and different classes of capsidless replicons. Theoretical studies indicate that selfish replicons (genetic parasites) inevitably emerge in any sufficiently complex evolving ensemble of replicators. Therefore, the key signature of the greater virus world is not the presence of a capsid but rather genetic, informational parasitism itself, i.e., various degrees of reliance on the information processing systems of the host.
Collapse
|
246
|
Abstract
ABSTRACT
The number and diversity of known prokaryotic insertion sequences (IS) have increased enormously since their discovery in the late 1960s. At present the sequences of more than 4000 different IS have been deposited in the specialized ISfinder database. Over time it has become increasingly apparent that they are important actors in the evolution of their host genomes and are involved in sequestering, transmitting, mutating and activating genes, and in the rearrangement of both plasmids and chromosomes. This review presents an overview of our current understanding of these transposable elements (TE), their organization and their transposition mechanism as well as their distribution and genomic impact. In spite of their diversity, they share only a very limited number of transposition mechanisms which we outline here. Prokaryotic IS are but one example of a variety of diverse TE which are being revealed due to the advent of extensive genome sequencing projects. A major conclusion from sequence comparisons of various TE is that frontiers between the different types are becoming less clear. We detail these receding frontiers between different IS-related TE. Several, more specialized chapters in this volume include additional detailed information concerning a number of these.
In a second section of the review, we provide a detailed description of the expanding variety of IS, which we have divided into families for convenience. Our perception of these families continues to evolve and families emerge regularly as more IS are identified. This section is designed as an aid and a source of information for consultation by interested specialist readers.
Collapse
|
247
|
Abstract
DNA transposases use a limited repertoire of structurally and mechanistically distinct nuclease domains to catalyze the DNA strand breaking and rejoining reactions that comprise DNA transposition. Here, we review the mechanisms of the four known types of transposition reactions catalyzed by (1) RNase H-like transposases (also known as DD(E/D) enzymes); (2) HUH single-stranded DNA transposases; (3) serine transposases; and (4) tyrosine transposases. The large body of accumulated biochemical and structural data, particularly for the RNase H-like transposases, has revealed not only the distinguishing features of each transposon family, but also some emerging themes that appear conserved across all families. The more-recently characterized single-stranded DNA transposases provide insight into how an ancient HUH domain fold has been adapted for transposition to accomplish excision and then site-specific integration. The serine and tyrosine transposases are structurally and mechanistically related to their cousins, the serine and tyrosine site-specific recombinases, but have to date been less intensively studied. These types of enzymes are particularly intriguing as in the context of site-specific recombination they require strict homology between recombining sites, yet for transposition can catalyze the joining of transposon ends to form an excised circle and then integration into a genomic site with much relaxed sequence specificity.
Collapse
Affiliation(s)
- Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Center Dr., Bethesda, MD 20892, USA
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Center Dr., Bethesda, MD 20892, USA
| |
Collapse
|
248
|
Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. Int J Antimicrob Agents 2015; 45:568-85. [PMID: 25857949 DOI: 10.1016/j.ijantimicag.2015.03.001] [Citation(s) in RCA: 486] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 02/07/2023]
Abstract
Multidrug resistance is quite common among non-fermenting Gram-negative rods, in particular among clinically relevant species including Pseudomonas aeruginosa and Acinetobacter baumannii. These bacterial species, which are mainly nosocomial pathogens, possess a diversity of resistance mechanisms that may lead to multidrug or even pandrug resistance. Extended-spectrum β-lactamases (ESBLs) conferring resistance to broad-spectrum cephalosporins, carbapenemases conferring resistance to carbapenems, and 16S rRNA methylases conferring resistance to all clinically relevant aminoglycosides are the most important causes of concern. Concomitant resistance to fluoroquinolones, polymyxins (colistin) and tigecycline may lead to pandrug resistance. The most important mechanisms of resistance in P. aeruginosa and A. baumannii and their most recent dissemination worldwide are detailed here.
Collapse
Affiliation(s)
- Anaïs Potron
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Laurent Poirel
- Emerging Antibiotic Resistance Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland.
| | - Patrice Nordmann
- Emerging Antibiotic Resistance Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland; HFR - Hôpital Cantonal de Fribourg, Fribourg, Switzerland
| |
Collapse
|
249
|
Complete nucleotide sequence of a conjugative plasmid carrying bla(PER-1). Antimicrob Agents Chemother 2015; 59:3582-4. [PMID: 25779581 DOI: 10.1128/aac.00518-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 03/11/2015] [Indexed: 12/16/2022] Open
Abstract
The nucleotide sequence of a self-transmissible plasmid pVPH1 harboring bla(PER-1) from Vibrio parahaemolyticus was determined. pVPH1 was 183,730 bp in size and shared a backbone similar to pAQU1 and pAQU2, differing mainly in an ∼40-kb multidrug resistance (MDR) region. A complex class 1 integron was identified together with ISCR1 and bla(PER-1) (ISCR1-bla(PER-1)-gst-abct-qacEΔ1-sul1), which was shown to form a circular intermediate playing an important role in the dissemination of bla(PER-1).
Collapse
|
250
|
Szuplewska M, Czarnecki J, Bartosik D. Autonomous and non-autonomous Tn 3-family transposons and their role in the evolution of mobile genetic elements. Mob Genet Elements 2015; 4:1-4. [PMID: 26442174 DOI: 10.1080/2159256x.2014.998537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/09/2014] [Accepted: 12/09/2014] [Indexed: 10/23/2022] Open
Abstract
The Tn3 family of transposons includes diverse elements that encode homologous transposases and contain conserved terminal inverted repeat sequences (IRs). The recent identification of non-autonomous elements, named TIMEs (Tn3-derived Inverted-repeat Miniature Elements), has shed new light on the diversity and evolution of this transposon family. A common feature of TIMEs and other members of this family is their ability to mobilize genomic DNA for transposition as part of composite transposons. These elements significantly influence the structure and properties of plasmids and other mobile genetic elements (MGEs). They may contain and move by transposition (i) plasmid replication systems, (ii) toxin-antitoxin systems and (iii) site-specific recombination modules that can resolve plasmid multimers. Some Tn3 family elements may also transfer large segments of chromosomal DNA into plasmids, which increases the pool of mobile DNA that can take part in horizontal gene transfer.
Collapse
Affiliation(s)
- Magdalena Szuplewska
- Faculty of Biology; Institute of Microbiology; Department of Bacterial Genetics; University of Warsaw ; Warsaw, Poland
| | - Jakub Czarnecki
- Faculty of Biology; Institute of Microbiology; Department of Bacterial Genetics; University of Warsaw ; Warsaw, Poland
| | - Dariusz Bartosik
- Faculty of Biology; Institute of Microbiology; Department of Bacterial Genetics; University of Warsaw ; Warsaw, Poland
| |
Collapse
|