201
|
Philips CA, Augustine P, Yerol PK, Ramesh GN, Ahamed R, Rajesh S, George T, Kumbar S. Modulating the Intestinal Microbiota: Therapeutic Opportunities in Liver Disease. J Clin Transl Hepatol 2020; 8:87-99. [PMID: 32274349 PMCID: PMC7132020 DOI: 10.14218/jcth.2019.00035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/11/2019] [Accepted: 10/27/2019] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota has been demonstrated to have a significant impact on the initiation, progression and development of complications associated with multiple liver diseases. Notably, nonalcoholic fatty liver diseases, including nonalcoholic steatohepatitis and cirrhosis, severe alcoholic hepatitis, primary sclerosing cholangitis and hepatic encephalopathy, have strong links to dysbiosis - or a pathobiological change in the microbiota. In this review, we provide clear and concise discussions on the human gut microbiota, methods of identifying gut microbiota and its functionality, liver diseases that are affected by the gut microbiota, including novel associations under research, and provide current evidence on the modulation of gut microbiota and its effects on specific liver disease conditions.
Collapse
Affiliation(s)
- Cyriac Abby Philips
- The Liver Unit, Monarch Liver Lab and Division of Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| | - Philip Augustine
- The Liver Unit, Monarch Liver Lab and Division of Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| | - Praveen Kumar Yerol
- Department of Gastroenterology, State Government Medical College, Thrissur, Kerala, India
| | | | - Rizwan Ahamed
- The Liver Unit, Monarch Liver Lab and Division of Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| | - Sasidharan Rajesh
- The Liver Unit, Monarch Liver Lab and Division of Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| | - Tom George
- The Liver Unit, Monarch Liver Lab and Division of Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| | - Sandeep Kumbar
- The Liver Unit, Monarch Liver Lab and Division of Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| |
Collapse
|
202
|
Gut dysbiosis is prevailing in Sjögren's syndrome and is related to dry eye severity. PLoS One 2020; 15:e0229029. [PMID: 32059038 PMCID: PMC7021297 DOI: 10.1371/journal.pone.0229029] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/28/2020] [Indexed: 02/08/2023] Open
Abstract
Objective To investigate gut dysbiosis in patients with Sjögren’s syndrome (SS) or dry eye syndrome (DES) compared to normal subjects and to evaluate the association of dysbiosis with dry eye severity. Methods 10 subjects with SS, 14 subjects with DES and 12 controls were enrolled. Corneal staining, tear break up time (TBUT) and tear secretion were evaluated. Bacterial genomic 16s rRNA from stool samples were analyzed. Main outcomes were microbiome compositional differences among groups and their correlation to dry eye signs. Results Gut microbiome analysis revealed significant compositional differences in SS compared to controls and DES. In phylum, Bacteriodetes increased, while Firmicutes/Bacteroidetes ratio and Actinobacteria decreased (p<0.05). In genus, Bifidobacterium was reduced (vs controls; p = 0.025, vs DES; p = 0.026). Beta diversity of SS also showed significant distances from controls and DES (p = 0.007 and 0.019, respectively). SS showed decreased genus of Blautia (p = 0.041), Dorea (p = 0.025) and Agathobacter (p = 0.035) compared to controls and increased genus of Prevotella (p = 0.026), Odoribacter (p = 0.028) and Alistipes (p = 0.46) compared to DES. On the other hand, DES only had increased genus Veillonella (p = 0.045) and reduced Subdoligranulum (p = 0.035) compared to controls. Bacteroidetes, Actinobacteria and Bifidobacterium were significantly related with dry eye signs (p<0.05). After adjustment of age, gender and group classification, multivariate linear regression analysis revealed tear secretion was strongly affected by Prevotella (p = 0.025). With additional adjustment of hydroxychloroquine use, TBUT was markedly affected by Prevotella (p = 0.037) and Actinobacteria (p = 0.001). Conclusions Sjögren’s syndrome showed significant gut dysbiosis compared to controls and environmental dry eye syndrome, while dry eye patients showed compositional changes of gut microbiome somewhere in between Sjögren’s syndrome and controls. Dysbiosis of the gut microbiota was partly correlated to dry eye severity.
Collapse
|
203
|
Quigley EMM. The Microbiota-Gut-Liver Axis: Implications for the Pathophysiology of Liver Disease. LIVER IMMUNOLOGY 2020:125-137. [DOI: 10.1007/978-3-030-51709-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
204
|
Jiang H, Li J, Zhang B, Huang R, Zhang J, Chen Z, Shang X, Li X, Nie X. Intestinal Flora Disruption and Novel Biomarkers Associated With Nasopharyngeal Carcinoma. Front Oncol 2019; 9:1346. [PMID: 31867274 PMCID: PMC6908496 DOI: 10.3389/fonc.2019.01346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Nasopharyngeal carcinoma (NPC) is a malignant nasopharyngeal disease with a complicated etiology that occurs mostly in southern China. Intestinal flora imbalance is believed to be associated with a variety of organ malignancies. Current studies revealed that the destruction of intestinal flora is associated with NPC, and many studies have shown that intestinal flora can be used as a biomarker for many cancers and to predict cancer. Methods: To compare the differences in intestinal flora compositions and biological functions among 8 patients with familial NPC (NPC_F), 24 patients with sporadic NPC (NPC_S), and 27 healthy controls (NOR), we compared the intestinal flora DNA sequencing and hematological testing results between every two groups using bioinformatic methods. Results: Compared to the NOR group, the intestinal flora structures of the patients in the NPC_F and NPC_S groups showed significant changes. In NPC_F, Clostridium ramosum, Citrobacter spp., Veillonella spp., and Prevotella spp. were significantly increased, and Akkermansia muciniphila and Roseburia spp. were significantly reduced. In NPC_S, C. ramosum, Veillonella parvula, Veillonella dispar, and Klebsiella spp. were significantly increased, and Bifidobacterium adolescentis was significantly reduced. A beta diversity analysis showed significant difference compared NPC_F with NOR based on Bray Curtis (P = 0.012) and Unweighted UniFrac (P = 0.0045) index, respectively. The areas under the ROC curves plotted were all 1. Additionally, the concentrations of 5-hydroxytryptamine (5-HT) in NPC_F and NPC_S were significantly higher than those of NOR. C. ramosum was positively correlated with 5-HT (rcm: 0.85, P < 0.001). A functional analysis of the intestinal flora showed that NPC_F was associated with Neurodegenerative Diseases (P = 0.023) and that NPC_S was associated with Neurodegenerative Diseases (P = 0.045) as well. Conclusion: We found that NPC was associated with structural imbalances in the intestinal flora, with C. ramosum that promoted the elevation of 5-HT and opportunistic pathogens being significantly increased, while probiotics significantly decreased. C. ramosum can be used as a novel biomarker and disease prediction models should be established for NPC. The new biomarkers and disease prediction models may be used for disease risk prediction and the screening of high-risk populations, as well as for the early noninvasive diagnosis of NPC.
Collapse
Affiliation(s)
- Haiye Jiang
- Clinical Laboratory, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jian Li
- Department of Blood Transfusion, Third Xiangya Hospital, Central South University, Changsha, China
| | - Bin Zhang
- Department of Anatomy and Neurobiology, Biology Postdoctoral Workstation, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Rong Huang
- Department of Blood Transfusion, Third Xiangya Hospital, Central South University, Changsha, China
| | - Junhua Zhang
- Department of Blood Transfusion, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ziwei Chen
- Clinical Laboratory, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xueling Shang
- Clinical Laboratory, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xisheng Li
- Clinical Laboratory, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xinmin Nie
- Clinical Laboratory, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
205
|
Huang F, Ning M, Wang K, Liu J, Guan W, Leng Y, Shen J. Discovery of Highly Polar β-Homophenylalanine Derivatives as Nonsystemic Intestine-Targeted Dipeptidyl Peptidase IV Inhibitors. J Med Chem 2019; 62:10919-10925. [PMID: 31747282 DOI: 10.1021/acs.jmedchem.9b01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although intensively expressed within intestine, the precise roles of intestinal dipeptidyl peptidase IV (DPPIV) in numerous pathologies remain incompletely understood. Here, we first reported a nonsystemic intestine-targeted (NSIT) DPPIV inhibitor with β-homophenylalanine scaffold, compound 7, which selectively inhibited the intestinal rather than plasmatic DPPIV at an oral dosage as high as 30 mg/kg. We expect that compound 7 could serve as a qualified tissue-selective tool to determine undetected physiological or pathological roles of intestinal DPPIV.
Collapse
Affiliation(s)
| | | | | | | | - Wenbo Guan
- University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing , 100049 , China
| | - Ying Leng
- University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing , 100049 , China
| | | |
Collapse
|
206
|
Lung T, Sakem B, Risch L, Würzner R, Colucci G, Cerny A, Nydegger U. The complement system in liver diseases: Evidence-based approach and therapeutic options. J Transl Autoimmun 2019; 2:100017. [PMID: 32743505 PMCID: PMC7388403 DOI: 10.1016/j.jtauto.2019.100017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Complement is usually seen to largely originate from the liver to accomplish its tasks systemically - its return to the production site has long been underestimated. Recent progress in genomics, therapeutic effects on complement, standardised possibilities in medical laboratory tests and involvement of complosome brings the complement system with its three major functions of opsonization, cytolysis and phagocytosis back to liver biology and pathology. The LOINC™ system features 20 entries for the C3 component of complement to anticipate the application of artificial intelligence data banks algorythms of which are fed with patient-specific data connected to standard lab assays for liver function. These advancements now lead to increased vigilance by clinicians. This reassessment article will further elucidate the distribution of synthesis sites to the three germ layer-derived cell systems and the role complement now known to play in embryogenesis, senescence, allotransplantation and autoimmune disease. This establishes the liver as part of the gastro-intestinal system in connection with nosological entities never thought of, such as the microbiota-liver-brain axis. In neurological disease etiology infectious and autoimmune hepatitis play an important role in the context of causative viz reactive complement activation. The mosaic of autoimmunity, i.e. multiple combinations of the many factors producing varying clinical pictures, leads to the manifold facets of liver autoimmunity.
Collapse
Affiliation(s)
- Thomas Lung
- Labormedizinisches Zentrum Dr. Risch, Lagerstrasse 30, CH-9470, Buchs, Switzerland
| | - Benjamin Sakem
- Labormedizinisches Zentrum Dr. Risch, Waldeggstrasse 37, CH-3097, Liebefeld bei Bern, Switzerland
| | - Lorenz Risch
- Labormedizinisches Zentrum Dr. Risch, Waldeggstrasse 37, CH-3097, Liebefeld bei Bern, Switzerland
| | - Reinhard Würzner
- Medical University Innsbruck, Division of Hygiene & Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Schöpfstrasse 41, A-6020, Innsbruck, Austria
| | - Giuseppe Colucci
- Clinica Luganese Moncucco, Lugano, Via Moncucco, CH-6900, Lugano, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Andreas Cerny
- Epatocentro Ticino, Via Soldino 5, CH-6900, Lugano, Switzerland
| | - Urs Nydegger
- Labormedizinisches Zentrum Dr. Risch, Waldeggstrasse 37, CH-3097, Liebefeld bei Bern, Switzerland
| |
Collapse
|
207
|
Abe K, Fujita M, Hayashi M, Okai K, Takahashi A, Ohira H. Gut and oral microbiota in autoimmune liver disease. Fukushima J Med Sci 2019; 65:71-75. [PMID: 31564673 DOI: 10.5387/fms.2019-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota plays a key role in the development of chronic inflammatory liver disease. The gut-liver axis involves inflammatory cells, cytokines, and other molecules that cause liver deterioration. Dysbiosis is important in understanding several liver diseases, especially in relation to the development of autoimmune liver disease. The aim of this review is to provide a current overview of alterations in the gut and oral microbiota associated with autoimmune liver diseases.
Collapse
Affiliation(s)
- Kazumichi Abe
- Department of Gastroenterology, Fukushima Medical University School of Medicine
| | - Masashi Fujita
- Department of Gastroenterology, Fukushima Medical University School of Medicine
| | - Manabu Hayashi
- Department of Gastroenterology, Fukushima Medical University School of Medicine
| | - Ken Okai
- Department of Gastroenterology, Fukushima Medical University School of Medicine
| | - Atsushi Takahashi
- Department of Gastroenterology, Fukushima Medical University School of Medicine
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University School of Medicine
| |
Collapse
|