201
|
Membrane lipid domains and rafts: current applications of fluorescence lifetime spectroscopy and imaging. Chem Phys Lipids 2009; 157:61-77. [DOI: 10.1016/j.chemphyslip.2008.07.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 07/24/2008] [Indexed: 11/30/2022]
|
202
|
Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling. EMBO J 2009; 28:466-76. [PMID: 19177148 DOI: 10.1038/emboj.2009.6] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 01/07/2009] [Indexed: 11/08/2022] Open
Abstract
Activating stimuli for T lymphocytes are transmitted through plasma membrane domains that form at T-cell antigen receptor (TCR) signalling foci. Here, we determined the molecular lipid composition of immunoisolated TCR activation domains. We observed that they accumulate cholesterol, sphingomyelin and saturated phosphatidylcholine species as compared with control plasma membrane fragments. This provides, for the first time, direct evidence that TCR activation domains comprise a distinct molecular lipid composition reminiscent of liquid-ordered raft phases in model membranes. Interestingly, TCR activation domains were also enriched in plasmenyl phosphatidylethanolamine and phosphatidylserine. Modulating the T-cell lipidome with polyunsaturated fatty acids impaired the plasma membrane condensation at TCR signalling foci and resulted in a perturbed molecular lipid composition. These results correlate the accumulation of specific molecular lipid species with the specific plasma membrane condensation at sites of TCR activation and with early TCR activation responses.
Collapse
|
203
|
Garnier-Lhomme M, Byrne RD, Hobday TMC, Gschmeissner S, Woscholski R, Poccia DL, Dufourc EJ, Larijani B. Nuclear envelope remnants: fluid membranes enriched in sterols and polyphosphoinositides. PLoS One 2009; 4:e4255. [PMID: 19165341 PMCID: PMC2626249 DOI: 10.1371/journal.pone.0004255] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 12/23/2008] [Indexed: 11/30/2022] Open
Abstract
Background The cytoplasm of eukaryotic cells is a highly dynamic compartment where membranes readily undergo fission and fusion to reorganize the cytoplasmic architecture, and to import, export and transport various cargos within the cell. The double membrane of the nuclear envelope that surrounds the nucleus, segregates the chromosomes from cytoplasm and regulates nucleocytoplasmic transport through pores. Many details of its formation are still unclear. At fertilization the sperm devoid of nuclear envelope pores enters the egg. Although most of the sperm nuclear envelope disassembles, remnants of the envelope at the acrosomal and centriolar fossae do not and are subsequently incorporated into the newly forming male pronuclear envelope. Remnants are conserved from annelid to mammalian sperm. Methodology/Principal Findings Using lipid mass spectrometry and a new application of deuterium solid-state NMR spectroscopy we have characterized the lipid composition and membrane dynamics of the sperm nuclear envelope remnants in isolated sperm nuclei. Conclusions/Significance We report nuclear envelope remnants are relatively fluid membranes rich in sterols, devoid of sphingomyelin, and highly enriched in polyphosphoinositides and polyunsaturated phospholipids. The localization of the polybasic effector domain of MARCKS illustrates the non-nuclear aspect of the polyphosphoinositides. Based on their atypical biophysical characteristics and phospholipid composition, we suggest a possible role for nuclear envelope remnants in membrane fusion leading to nuclear envelope assembly.
Collapse
Affiliation(s)
- Marie Garnier-Lhomme
- Cell Biophysics Laboratory, Lincoln's Inn Fields Laboratories, Cancer Research UK, London, United Kingdom
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
- UMR 5248 CNRS-Université Bordeaux 1-ENITAB, IECB, Pessac, France
| | - Richard D. Byrne
- Cell Biophysics Laboratory, Lincoln's Inn Fields Laboratories, Cancer Research UK, London, United Kingdom
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Tina M. C. Hobday
- Cell Biophysics Laboratory, Lincoln's Inn Fields Laboratories, Cancer Research UK, London, United Kingdom
| | - Stephen Gschmeissner
- Electron Microscopy Unit, Lincoln's Inn Fields Laboratories, Cancer Research UK, London, United Kingdom
| | - Rudiger Woscholski
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| | - Dominic L. Poccia
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Erick J. Dufourc
- UMR 5248 CNRS-Université Bordeaux 1-ENITAB, IECB, Pessac, France
| | - Banafshé Larijani
- Cell Biophysics Laboratory, Lincoln's Inn Fields Laboratories, Cancer Research UK, London, United Kingdom
- * E-mail:
| |
Collapse
|
204
|
|
205
|
Ghosh A, Campen RK, Sovago M, Bonn M. Structure and dynamics of interfacial water in model lung surfactants. Faraday Discuss 2009; 141:145-59; discussion 175-207. [DOI: 10.1039/b805858j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
206
|
Deng D, Jiang N, Hao SJ, Sun H, Zhang GJ. Loss of membrane cholesterol influences lysosomal permeability to potassium ions and protons. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:470-6. [PMID: 19109925 DOI: 10.1016/j.bbamem.2008.11.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 11/25/2008] [Accepted: 11/25/2008] [Indexed: 12/21/2022]
Abstract
Cholesterol is an essential component of lysosomal membranes. In this study, we investigated the effects of membrane cholesterol on the permeability of rat liver lysosomes to K+ and H+, and the organelle stability. Through the measurements of lysosomal beta-hexosaminidase free activity, membrane potential, membrane fluidity, intra-lysosomal pH, and lysosomal proton leakage, we established that methyl-beta-cyclodextrin (MbetaCD)-produced loss of membrane cholesterol could increase the lysosomal permeability to both potassium ions and protons, and fluidize the lysosomal membranes. As a result, potassium ions entered the lysosomes through K+/H+ exchange, which produced osmotic imbalance across the membranes and osmotically destabilized the lysosomes. In addition, treatment of the lysosomes with MbetaCD caused leakage of the lysosomal protons and raised the intra-lysosomal pH. The results indicate that membrane cholesterol plays important roles in the maintenance of the lysosomal limited permeability to K+ and H+. Loss of this membrane sterol is critical for the organelle acidification and stability.
Collapse
Affiliation(s)
- Dong Deng
- School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | | | | | | | | |
Collapse
|
207
|
Piazza TM, Lu JC, Carver KC, Schuler LA. SRC family kinases accelerate prolactin receptor internalization, modulating trafficking and signaling in breast cancer cells. Mol Endocrinol 2008; 23:202-12. [PMID: 19056863 DOI: 10.1210/me.2008-0341] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite the growing body of evidence supporting prolactin (PRL) actions in human breast cancer, little is known regarding PRL regulation of its own receptor in these cells. Ligand-initiated endocytosis is a key process in the regulation of receptor availability and signaling cascades that may lead to oncogenic actions. Although exposure to exogenous PRL accelerates degradation of the long isoform of the PRL receptor (lPRLR), neither the signals initiated by PRL that lead to lPRLR internalization and subsequent down-regulation, nor the relationship to downstream pathways are understood in breast cancer cells. In this study, we showed that PRL-induced down-regulation of the lPRLR was reduced by inhibition of src family kinases (SFKs), but not Janus kinase 2, in MCF-7 cells. Inhibition of SFKs also resulted in accumulation of a PRL-induced PRLR fragment containing the extracellular domain, which appeared to be generated from newly synthesized PRLR. lPRLR was constitutively associated with SFKs in lipid rafts. PRL-induced SFK activation led to recruitment of the guanosine triphosphatase, dynamin-2, to an internalization complex, resulting in endocytosis. Inhibition of endocytosis by small interfering RNA-mediated knockdown of dynamin-2 blocked PRL-induced down-regulation of lPRLR, confirming that internalization is essential for this process. Endocytosis also was required for optimal phosphorylation of ERK1/2 and Akt, but not for Janus kinase 2 or signal transducer and activator of transcription 5, indicating that internalization selectively modulates signaling cascades. Together, these data indicate that SFKs are key mediators of ligand-initiated lPRLR internalization, down-regulation, and signal transduction in breast cancer cells, and underscore the importance of target cell context in receptor trafficking and signal transduction.
Collapse
Affiliation(s)
- Timothy M Piazza
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
208
|
McIntosh AL, Atshaves BP, Huang H, Gallegos AM, Kier AB, Schroeder F. Fluorescence techniques using dehydroergosterol to study cholesterol trafficking. Lipids 2008; 43:1185-208. [PMID: 18536950 PMCID: PMC2606672 DOI: 10.1007/s11745-008-3194-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 05/09/2008] [Indexed: 12/22/2022]
Abstract
Cholesterol itself has very few structural/chemical features suitable for real-time imaging in living cells. Thus, the advent of dehydroergosterol [ergosta-5,7,9(11),22-tetraen-3beta-ol, DHE] the fluorescent sterol most structurally and functionally similar to cholesterol to date, has proven to be a major asset for real-time probing/elucidating the sterol environment and intracellular sterol trafficking in living organisms. DHE is a naturally occurring, fluorescent sterol analog that faithfully mimics many of the properties of cholesterol. Because these properties are very sensitive to sterol structure and degradation, such studies require the use of extremely pure (>98%) quantities of fluorescent sterol. DHE is readily bound by cholesterol-binding proteins, is incorporated into lipoproteins (from the diet of animals or by exchange in vitro), and for real-time imaging studies is easily incorporated into cultured cells where it co-distributes with endogenous sterol. Incorporation from an ethanolic stock solution to cell culture media is effective, but this process forms an aqueous dispersion of DHE crystals which can result in endocytic cellular uptake and distribution into lysosomes which is problematic in imaging DHE at the plasma membrane of living cells. In contrast, monomeric DHE can be incorporated from unilamellar vesicles by exchange/fusion with the plasma membrane or from DHE-methyl-beta-cyclodextrin (DHE-MbetaCD) complexes by exchange with the plasma membrane. Both of the latter techniques can deliver large quantities of monomeric DHE with significant distribution into the plasma membrane. The properties and behavior of DHE in protein-binding, lipoproteins, model membranes, biological membranes, lipid rafts/caveolae, and real-time imaging in living cells indicate that this naturally occurring fluorescent sterol is a useful mimic for probing the properties of cholesterol in these systems.
Collapse
Affiliation(s)
- Avery L. McIntosh
- Department of Physiology and Pharmacology Texas A&M University, TVMC College Station, TX 77843-4466
| | - Barbara P. Atshaves
- Department of Physiology and Pharmacology Texas A&M University, TVMC College Station, TX 77843-4466
| | - Huan Huang
- Department of Physiology and Pharmacology Texas A&M University, TVMC College Station, TX 77843-4466
| | - Adalberto M. Gallegos
- Department of Pathobiology Texas A&M University, TVMC College Station, TX 77843-4467
| | - Ann B. Kier
- Department of Pathobiology Texas A&M University, TVMC College Station, TX 77843-4467
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology Texas A&M University, TVMC College Station, TX 77843-4466
| |
Collapse
|
209
|
Driouich A, Baskin TI. Intercourse between cell wall and cytoplasm exemplified by arabinogalactan proteins and cortical microtubules. AMERICAN JOURNAL OF BOTANY 2008; 95:1491-7. [PMID: 21628156 DOI: 10.3732/ajb.0800277] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
How does a plant cell sense and respond to the status of its cell wall? Intercourse between cell wall and cytoplasm has long been supposed to involve arabinogalactan proteins, in part because many of them are anchored to the plasma membrane. Disrupting arabinogalactan proteins has recently been shown to disrupt the array of cortical microtubules present just inside the plasma membrane, implying that microtubules and arabinogalactan proteins interact. In this article, we assess possibilities for how this interaction might be mediated. First, we consider microdomains in the plasma membrane (lipid rafts), which have been alleged to link internal and external regions of the plasma membrane; however, the characteristics and even the existence of these domains remains controversial. Next, we point out that disrupting the synthesis of cellulose also can disrupt microtubules and consider whether arabinogalactan proteins are part of a network linking microtubules and nascent microfibrils. Finally, we outline several signaling cascades that could transmit information from arabinogalactan proteins to microtubules through channels of cellular communication. These diverse possibilities highlight the work that remains to be done before we can understand how plant cells communicate across their membranes.
Collapse
Affiliation(s)
- Azeddine Driouich
- UMR 6037 CNRS-Institut Fédératif de Recherche Multidisciplinaire des Peptides (IFRMP 23), Plateforme de Recherche en Imagerie Cellulaire de Haute Normandie (PRIMACEN)-Université de Rouen, 76821 Mont Saint Aignan, France
| | | |
Collapse
|
210
|
Kim HM, Kim BR, Choo HJ, Ko YG, Jeon SJ, Kim CH, Joo T, Cho BR. Two-Photon Fluorescent Probes for Biomembrane Imaging: Effect of Chain Length. Chembiochem 2008; 9:2830-8. [DOI: 10.1002/cbic.200800353] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
211
|
Effects of phosphatidylethanolamine glycation on lipid-protein interactions and membrane protein thermal stability. Biochem J 2008; 416:145-52. [PMID: 18564061 DOI: 10.1042/bj20080618] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Non-enzymatic glycation of biomolecules has been implicated in the pathophysiology of aging and diabetes. Among the potential targets for glycation are biological membranes, characterized by a complex organization of lipids and proteins interacting and forming domains of different size and stability. In the present study, we analyse the effects of glycation on the interactions between membrane proteins and lipids. The phospholipid affinity for the transmembrane surface of the PMCA (plasma-membrane Ca(2+)-ATPase) was determined after incubating the protein or the phospholipids with glucose. Results show that the affinity between PMCA and the surrounding phospholipids decreases significantly after phosphospholipid glycation, but remains unmodified after glycation of the protein. Furthermore, phosphatidylethanolamine glycation decreases by approximately 30% the stability of PMCA against thermal denaturation, suggesting that glycated aminophospholipids induce a structural rearrangement in the protein that makes it more sensitive to thermal unfolding. We also verified that lipid glycation decreases the affinity of lipids for two other membrane proteins, suggesting that this effect might be common to membrane proteins. Extending these results to the in vivo situation, we can hypothesize that, under hyperglycaemic conditions, glycation of membrane lipids may cause a significant change in the structure and stability of membrane proteins, which may affect the normal functioning of membranes and therefore of cells.
Collapse
|
212
|
Piehowski PD, Carado AJ, Kurczy ME, Ostrowski SG, Heien ML, Winograd N, Ewing AG. MS/MS methodology to improve subcellular mapping of cholesterol using TOF-SIMS. Anal Chem 2008; 80:8662-7. [PMID: 18925746 PMCID: PMC2597061 DOI: 10.1021/ac801591r] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) can be utilized to map the distribution of various molecules on a surface with submicrometer resolution. Much of its biological application has been in the study of membrane lipids, such as phospholipids and cholesterol. Cholesterol is a particularly interesting molecule due to its involvement in numerous biological processes. For many studies, the effectiveness of chemical mapping is limited by low signal intensity from various biomolecules. Because of the high energy nature of the SIMS ionization process, many molecules are identified by detection of characteristic fragments. Commonly, fragments of a molecule are identified using standard samples, and those fragments are used to map the location of the molecule. In this work, MS/MS data obtained from a prototype C60(+)/quadrupole time-of-flight mass spectrometer was used in conjunction with indium LMIG imaging to map previously unrecognized cholesterol fragments in single cells. A model system of J774 macrophages doped with cholesterol was used to show that these fragments are derived from cholesterol in cell imaging experiments. Examination of relative quantification experiments reveals that m/z 147 is the most specific diagnostic fragment and offers a 3-fold signal enhancement. These findings greatly increase the prospects for cholesterol mapping experiments in biological samples, particularly with single cell experiments. In addition, these findings demonstrate the wealth of information that is hidden in the traditional TOF-SIMS spectrum.
Collapse
Affiliation(s)
- Paul D Piehowski
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | |
Collapse
|
213
|
Spatiotemporal analysis of endocytosis and membrane distribution of fluorescent sterols in living cells. Histochem Cell Biol 2008; 130:891-908. [DOI: 10.1007/s00418-008-0488-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2008] [Indexed: 01/04/2023]
|
214
|
Saxena R, Shrivastava S, Chattopadhyay A. Exploring the Organization and Dynamics of Hippocampal Membranes Utilizing Pyrene Fluorescence. J Phys Chem B 2008; 112:12134-8. [DOI: 10.1021/jp804353m] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roopali Saxena
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007, India
| | - Sandeep Shrivastava
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007, India
| | - Amitabha Chattopadhyay
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007, India
| |
Collapse
|
215
|
Sot J, Ibarguren M, Busto JV, Montes LR, Goñi FM, Alonso A. Cholesterol displacement by ceramide in sphingomyelin-containing liquid-ordered domains, and generation of gel regions in giant lipidic vesicles. FEBS Lett 2008; 582:3230-6. [PMID: 18755187 DOI: 10.1016/j.febslet.2008.08.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 08/12/2008] [Accepted: 08/15/2008] [Indexed: 12/20/2022]
Abstract
Fluorescence confocal microscopy and differential scanning calorimetry are used in combination to study the phase behaviour of bilayers composed of PC:PE:SM:Chol equimolecular mixtures, in the presence or absence of 10 mol% egg ceramide. In the absence of ceramide, separate liquid-ordered and liquid-disordered domains are observed in giant unilamellar vesicles. In the presence of ceramide, gel-like domains appear within the liquid-ordered regions. The melting properties of these gel-like domains resemble those of SM:ceramide binary mixtures, suggesting Chol displacement by ceramide from SM:Chol-rich liquid-ordered regions. Thus three kinds of domains coexist within a single vesicle in the presence of ceramide: gel, liquid-ordered, and liquid-disordered. In contrast, when 10 mol% egg diacylglycerol is added instead of ceramide, homogeneous vesicles, consisting only of liquid-disordered bilayers, are observed.
Collapse
Affiliation(s)
- Jesús Sot
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU), Universidad del País Vasco, P.O. Box 644, 48080 Bilbao, Spain
| | | | | | | | | | | |
Collapse
|
216
|
Stöckl M, Plazzo AP, Korte T, Herrmann A. Detection of lipid domains in model and cell membranes by fluorescence lifetime imaging microscopy of fluorescent lipid analogues. J Biol Chem 2008; 283:30828-37. [PMID: 18708353 DOI: 10.1074/jbc.m801418200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The presence of lipid domains in cellular membranes and their characteristic features are still an issue of dividing discussion. Several recent studies implicate lipid domains in plasma membranes of mammalian cells as short lived and in the submicron range. Measuring the fluorescence lifetime of appropriate lipid analogues is a proper approach to detect domains with such properties. Here, the sensitivity of the fluorescence lifetime of1-palmitoyl-2-[6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]-hexanoyl]-sn-glycero-3-phospholipid (C6-NBD-phospholipid) analogues has been employed to characterize lipid domains in giant unilamellar vesicles (GUVs) and the plasma membrane of mammalian cells by fluorescence lifetime imaging (FLIM). Fluorescence decay of C6-NBD-phosphatidylcholine is characterized by a short and long lifetime. For GUVs forming microscopically visible lipid domains the longer lifetime in the liquid disordered (ld) and the liquid ordered (lo) phase was clearly distinct, being approximately 7 ns and 11 ns, respectively. Lifetimes were not sensitive to variation of cholesterol concentration of domain-forming GUVs indicating that the lipid composition and physical properties of those lipid domains are well defined entities. Even the existence of submicroscopic domains can be detected by FLIM as demonstrated for GUVs of palmitoyloleoyl phosphatidylcholine/N-palmitoyl-d-sphingomyelin/cholesterol mixtures. A broad distribution of the long lifetime was found for C6-NBD-phosphatidylcholine inserted in the plasma membrane of HepG2 and HeLa cells centered around 11 ns. FLIM studies on lipid domains forming giant vesicles derived from the plasma membrane of HeLa cells may suggest that a variety of submicroscopic lipid domains exists in the plasma membrane of intact cells.
Collapse
Affiliation(s)
- Martin Stöckl
- Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, Institut für Biologie/Biophysik, Invalidenstrasse 42, Berlin D-10115, Germany
| | | | | | | |
Collapse
|
217
|
Duan D, Sigano DM, Kelley JA, Lai CC, Lewin NE, Kedei N, Peach ML, Lee J, Abeyweera TP, Rotenberg SA, Kim H, Kim YH, El Kazzouli S, Chung JU, Young HA, Young MR, Baker A, Colburn NH, Haimovitz-Friedman A, Truman JP, Parrish DA, Deschamps JR, Perry NA, Surawski RJ, Blumberg PM, Marquez VE. Conformationally constrained analogues of diacylglycerol. 29. Cells sort diacylglycerol-lactone chemical zip codes to produce diverse and selective biological activities. J Med Chem 2008; 51:5198-220. [PMID: 18698758 DOI: 10.1021/jm8001907] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diacylglycerol-lactone (DAG-lactone) libraries generated by a solid-phase approach using IRORI technology produced a variety of unique biological activities. Subtle differences in chemical diversity in two areas of the molecule, the combination of which generates what we have termed "chemical zip codes", are able to transform a relatively small chemical space into a larger universe of biological activities, as membrane-containing organelles within the cell appear to be able to decode these "chemical zip codes". It is postulated that after binding to protein kinase C (PKC) isozymes or other nonkinase target proteins that contain diacylglycerol responsive, membrane interacting domains (C1 domains), the resulting complexes are directed to diverse intracellular sites where different sets of substrates are accessed. Multiple cellular bioassays show that DAG-lactones, which bind in vitro to PKCalpha to varying degrees, expand their biological repertoire into a larger domain, eliciting distinct cellular responses.
Collapse
Affiliation(s)
- Dehui Duan
- Laboratory of Medicinal Chemistry, National Cancer Institute at Frederick, National Institutes of Health, 376 Boyles Street, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Babakhani A, Gorfe AA, Kim JE, McCammon JA. Thermodynamics of peptide insertion and aggregation in a lipid bilayer. J Phys Chem B 2008; 112:10528-34. [PMID: 18681475 PMCID: PMC2651738 DOI: 10.1021/jp804710v] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A variety of biomolecules mediate physiological processes by inserting and reorganizing in cell membranes, and the thermodynamic forces responsible for their partitioning are of great interest. Recent experiments provided valuable data on the free energy changes associated with the transfer of individual amino acids from water to membrane. However, a complete picture of the pathways and the associated changes in energy of peptide insertion into a membrane remains elusive. To this end, computational techniques supplement the experimental data with atomic-level details and shed light on the energetics of insertion. Here, we employed the technique of umbrella sampling in a total 850 ns of all-atom molecular dynamics simulations to study the free energy profile and the pathway of insertion of a model hexapeptide consisting of a tryptophan and five leucines (WL5). The computed free energy profile of the peptide as it travels from bulk solvent through the membrane core exhibits two minima: a local minimum at the water−membrane interface or the headgroup region and a global minimum at the hydrophobic−hydrophilic interface close to the lipid glycerol region. A rather small barrier of roughly 1 kcal mol−1 exists at the membrane core, which is explained by the enhanced flexibility of the peptide when deeply inserted. Combining our results with those in the literature, we present a thermodynamic model for peptide insertion and aggregation which involves peptide aggregation upon contact with the membrane at the solvent−lipid headgroup interface.
Collapse
Affiliation(s)
- Arneh Babakhani
- Department of Chemistry & Biochemistry, and Howard Hughes Medical Institute, University of California at San Diego, 9500 Gilman Drive, MC 0365 La Jolla, California 92093-0365, USA.
| | | | | | | |
Collapse
|
219
|
Piehowski PD, Kurczy ME, Willingham D, Parry S, Heien ML, Winograd N, Ewing AG. Freeze-etching and vapor matrix deposition for ToF-SIMS imaging of single cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:7906-11. [PMID: 18570446 PMCID: PMC2527754 DOI: 10.1021/la800292e] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Freeze-etching, the practice of removing excess surface water from a sample through sublimation into the vacuum of the analysis environment, has been extensively used in conjunction with electron microscopy. Here, we apply this technique to time-of-flight secondary-ion mass spectrometry (ToF-SIMS) imaging of cryogenically preserved single cells. By removing the excess water which condenses onto the sample in vacuo, a uniform surface is produced that is ideal for imaging by static SIMS. We demonstrate that the conditions employed to remove deposited water do not adversely affect cell morphology and do not redistribute molecules in the topmost surface layers. In addition, we found water can be controllably redeposited onto the sample at temperatures below -100 degrees C in vacuum. The redeposited water increases the ionization of characteristic fragments of biologically interesting molecules 2-fold without loss of spatial resolution. The utilization of freeze-etch methodology will increase the reliability of cryogenic sample preparations for SIMS analysis by providing greater control of the surface environment. Using these procedures, we have obtained high quality spectra with both atomic bombardment as well as C 60 (+) cluster ion bombardment.
Collapse
Affiliation(s)
- Paul D. Piehowski
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Michael E. Kurczy
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - David Willingham
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Shawn Parry
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Michael L. Heien
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Nicholas Winograd
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Andrew G. Ewing
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry, Göteborg University, Kemivägen 10, SE-41296 Göeborg, Sweden
| |
Collapse
|
220
|
Paila YD, Murty MR, Vairamani M, Chattopadhyay A. Signaling by the human serotonin1A receptor is impaired in cellular model of Smith–Lemli–Opitz Syndrome. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1508-16. [DOI: 10.1016/j.bbamem.2008.03.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/01/2008] [Accepted: 03/05/2008] [Indexed: 10/22/2022]
|
221
|
Shrivastava S, Paila YD, Dutta A, Chattopadhyay A. Differential Effects of Cholesterol and its Immediate Biosynthetic Precursors on Membrane Organization. Biochemistry 2008; 47:5668-77. [DOI: 10.1021/bi8001677] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sandeep Shrivastava
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Yamuna Devi Paila
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Aritri Dutta
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
222
|
Jin H, McCaffery JM, Grote E. Ergosterol promotes pheromone signaling and plasma membrane fusion in mating yeast. ACTA ACUST UNITED AC 2008; 180:813-26. [PMID: 18299351 PMCID: PMC2265586 DOI: 10.1083/jcb.200705076] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ergosterol depletion independently inhibits two aspects of yeast mating: pheromone signaling and plasma membrane fusion. In signaling, ergosterol participates in the recruitment of Ste5 to a polarized site on the plasma membrane. Ergosterol is thought to form microdomains within the membrane by interacting with the long acyl chains of sphingolipids. We find that although sphingolipid-free ergosterol is concentrated at sites of cell–cell contact, transmission of the pheromone signal at contact sites depends on a balanced ratio of ergosterol to sphingolipids. If a mating pair forms between ergosterol-depleted cells despite the attenuated pheromone response, the subsequent process of membrane fusion is retarded. Prm1 also participates in membrane fusion. However, ergosterol and Prm1 have independent functions and only prm1 mutant mating pairs are susceptible to contact-dependent lysis. In contrast to signaling, plasma membrane fusion is relatively insensitive to sphingolipid depletion. Thus, the sphingolipid-free pool of ergosterol promotes plasma membrane fusion.
Collapse
Affiliation(s)
- Hui Jin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
223
|
Abstract
Wide angle x-ray scattering (WAXS) from oriented lipid multilayers is used to examine liquid-ordered (Lo)/liquid-disordered (Ld) phase coexistence in the system 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-phosphocholine/cholesterol (DOPC/DPPC/Chol), which is a model for the outer leaflet of the animal cell plasma membrane. Using the method of analysis developed in the accompanying work, we find that two orientational distributions are necessary to fit the WAXS data at lower temperatures, whereas only one distribution is needed at temperatures higher than the miscibility transition temperature, T(mix) = 25-35 degrees C (for 1:1 DOPC/DPPC with 15%, 20%, 25%, and 30% Chol). We propose that the necessity for two distributions is a criterion for coexistence of Lo domains with a high S(x-ray) order parameter and Ld domains with a lower order parameter. This criterion is capable of detecting coexistence of small domains or rafts that the conventional x-ray criterion of two lamellar D spacings may not. Our T(mix) values tend to be slightly larger than published NMR results and microscopy results when the fluorescence probe artifact is considered. This is consistent with the sensitivity of WAXS to very short time and length scales, which makes it more capable of detecting small, short-lived domains that are likely close to T(mix).
Collapse
|
224
|
Cationic peptide-induced remodelling of model membranes: Direct visualization by in situ atomic force microscopy. J Struct Biol 2008; 162:121-38. [DOI: 10.1016/j.jsb.2007.11.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 10/01/2007] [Accepted: 11/06/2007] [Indexed: 02/04/2023]
|
225
|
Actin cytoskeleton-dependent dynamics of the human serotonin1A receptor correlates with receptor signaling. Biophys J 2008; 95:451-63. [PMID: 18339759 DOI: 10.1529/biophysj.107.125732] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Analyzing the dynamics of membrane proteins in the context of cellular signaling represents a challenging problem in contemporary cell biology. Lateral diffusion of lipids and proteins in the cell membrane is known to be influenced by the cytoskeleton. In this work, we explored the role of the actin cytoskeleton on the mobility of the serotonin(1A) (5-HT(1A)) receptor, stably expressed in CHO cells, and its implications in signaling. FRAP analysis of 5-HT(1A)R-EYFP shows that destabilization of the actin cytoskeleton induced by either CD or elevation of cAMP levels mediated by forskolin results in an increase in the mobile fraction of the receptor. The increase in the mobile fraction is accompanied by a corresponding increase in the signaling efficiency of the receptor. Interestingly, with increasing concentrations of CD used, the increase in the mobile fraction exhibited a correlation of approximately 0.95 with the efficiency in ligand-mediated signaling of the receptor. Radioligand binding and G-protein coupling of the receptor were found to be unaffected upon treatment with CD. Our results suggest that signaling by the serotonin(1A) receptor is correlated with receptor mobility, implying thereby that the actin cytoskeleton could play a regulatory role in receptor signaling. These results may have potential significance in the context of signaling by GPCRs in general and in the understanding of GPCR-cytoskeleton interactions with respect to receptor signaling in particular.
Collapse
|
226
|
Kim HM, Jeong BH, Hyon JY, An MJ, Seo MS, Hong JH, Lee KJ, Kim CH, Joo T, Hong SC, Cho BR. Two-photon fluorescent turn-on probe for lipid rafts in live cell and tissue. J Am Chem Soc 2008; 130:4246-7. [PMID: 18331041 DOI: 10.1021/ja711391f] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a new two-photon fluorescence turn-on probe 6-[(E)-3-oxo-1-dodecenyl]-2-[N-methyl-N-(carboxymethyl)amino]naphthalene (CL2) that is designed specifically for visualizing lipid rafts in living cells and tissues. This probe emits much brighter two-photon excited fluorescence in lipid rafts than in non-raft domains and allows direct visualization of the lipid rafts in the live cells and pyramidal neuron layer of the CA1 region at a depth of 100-250 mum in live tissues using two-photon microscopy.
Collapse
Affiliation(s)
- Hwan Myung Kim
- Department of Chemistry, National Creative Research Initiative Center for Cell Dynamics, Department of Physics, Biomicrosystems Technology Program, Korea University, 1-Anamdong, Seoul, 136-701, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Rózycki B, Weikl TR, Lipowsky R. Stable patterns of membrane domains at corrugated substrates. PHYSICAL REVIEW LETTERS 2008; 100:098103. [PMID: 18352753 DOI: 10.1103/physrevlett.100.098103] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Indexed: 05/26/2023]
Abstract
Multicomponent membranes such as ternary mixtures of lipids and cholesterol can exhibit coexistence regions between two liquid phases. When such membranes adhere to a corrugated substrate, the phase separation process strongly depends on the interplay between substrate topography, bending rigidities, and line tension of the membrane domains as we show theoretically via energy minimization and Monte Carlo simulations. For sufficiently large bending rigidity contrast between the two membrane phases, the corrugated substrate truncates the phase separation process and leads to a stable pattern of membrane domains. Our theory is consistent with recent experimental observations and provides a possible control mechanism for domain patterns in biological membranes.
Collapse
Affiliation(s)
- Bartosz Rózycki
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | | | | |
Collapse
|
228
|
Davey AM, Krise KM, Sheets ED, Heikal AA. Molecular Perspective of Antigen-mediated Mast Cell Signaling. J Biol Chem 2008; 283:7117-27. [DOI: 10.1074/jbc.m708879200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
229
|
Yoshizaki F, Nakayama H, Iwahara C, Takamori K, Ogawa H, Iwabuchi K. Role of glycosphingolipid-enriched microdomains in innate immunity: Microdomain-dependent phagocytic cell functions. Biochim Biophys Acta Gen Subj 2008; 1780:383-92. [DOI: 10.1016/j.bbagen.2007.11.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 11/10/2007] [Accepted: 11/13/2007] [Indexed: 12/16/2022]
|
230
|
Abstract
Transient lateral microdomains (rafts) in cell membranes have been postulated to perform a number of important functions in normal cells, and are also thought to be critically involved in several pathological conditions. However, there are still a number of fundamental unanswered questions concerning the composition, size, dynamics, and stability of membrane rafts. These questions are currently being addressed by a number of sophisticated biophysical, biochemical, and computational methodologies.
Collapse
|
231
|
Kim KB, Lee JS, Ko YG. The isolation of detergent-resistant lipid rafts for two-dimensional electrophoresis. Methods Mol Biol 2008; 424:413-22. [PMID: 18369879 DOI: 10.1007/978-1-60327-064-9_32] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Because lipid rafts are plasma membrane platforms mediating various cellular events such as in signal transduction, immunological response, pathogen invasion, and neurodegenerative diseases, protein identification in the rafts could provide important information to study their function. Here, we present an optimized method to isolate detergent-resistant lipid rafts that are subsequently analyzed by two-dimensional electrophoresis (2-DE). Lipid rafts were isolated based on their two distinct biochemical properties such as Triton X-100 insolubility and low density. To solubilize completely the proteins embedded in lipid rafts, sample lysis buffer (9 M urea, 2 M thiourea, 100 mM DTT, 2% CHAPS (w/v), 60 mM n-octylbeta-D-glucopyranoside, 2% IPG buffer) was applied to the isolated rafts. This method was found to be the most suitable choice for obtaining 2-DE profile of lipid raft proteome from various cells and tissues. We expect that this method could provide the way to dissect the function of raft-associated proteins and to gain a comprehensive insight upon various cellular events mediated through lipid rafts, the specialized domains in cell surface.
Collapse
|
232
|
Johnny S, Liana, C. S, Anthony, H. F. Ceramide-containing membranes: the interface between biophysics and biology. TRENDS GLYCOSCI GLYC 2008. [DOI: 10.4052/tigg.20.297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
233
|
Kalipatnapu S, Chattopadhyay A. Membrane organization and function of the serotonin(1A) receptor. Cell Mol Neurobiol 2007; 27:1097-116. [PMID: 17710529 DOI: 10.1007/s10571-007-9189-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 07/27/2007] [Indexed: 01/02/2023]
Abstract
(1) The serotonin(1A) receptor is a G-protein coupled receptor involved in several cognitive, behavioral, and developmental functions. It binds the neurotransmitter serotonin and signals across the membrane through its interactions with heterotrimeric G-proteins. (2) Lipid-protein interactions in membranes play an important role in the assembly, stability, and function of membrane proteins. The role of membrane environment in serotonin(1A) receptor function is beginning to be addressed by exploring the consequences of lipid manipulations on the ligand binding and G-protein coupling of serotonin(1A) receptors, the ability to functionally solubilize the serotonin(1A) receptor, and the factors influencing the membrane organization of the serotonin(1A) receptor. (3) Recent developments involving the application of detergent-based and detergent-free approaches to understand the membrane organization of the serotonin(1A) receptor under conditions of ligand activation and modulation of membrane lipid content, with an emphasis on membrane cholesterol, are described.
Collapse
Affiliation(s)
- Shanti Kalipatnapu
- Divisionof Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0377, USA
| | | |
Collapse
|
234
|
Iwabuchi K, Prinetti A, Sonnino S, Mauri L, Kobayashi T, Ishii K, Kaga N, Murayama K, Kurihara H, Nakayama H, Yoshizaki F, Takamori K, Ogawa H, Nagaoka I. Involvement of very long fatty acid-containing lactosylceramide in lactosylceramide-mediated superoxide generation and migration in neutrophils. Glycoconj J 2007; 25:357-74. [PMID: 18041581 DOI: 10.1007/s10719-007-9084-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 10/16/2007] [Accepted: 11/01/2007] [Indexed: 01/12/2023]
Abstract
The neutral glycosphingolipid lactosylceramide (LacCer) forms lipid rafts (membrane microdomains) coupled with the Src family kinase Lyn on the plasma membranes of human neutrophils; ligand binding to LacCer activates Lyn, resulting in neutrophil functions, such as superoxide generation and migration (Iwabuchi and Nagaoka, Lactosylceramide-enriched glycosphingolipid signaling domain mediates superoxide generation from human neutrophils, Blood 100, 1454-1464, 2002 and Sato et al. Induction of human neutrophil chemotaxis by Candida albicans-derived beta-1,6-long glycoside side-chain-branched beta glycan, J. Leukoc. Biol. 84, 204-211, 2006). Neutrophilic differentiated HL-60 cells (D-HL-60 cells) express almost the same amount of LacCer as neutrophils. However, D-HL-60 cells do not have Lyn-associated LacCer-enriched lipid rafts and lack LacCer-mediated superoxide-generating and migrating abilities. Here, we examined the roles of LacCer molecular species of different fatty acid compositions in these processes. Liquid chromatography-mass spectrometry analyses revealed that the very long fatty acid C24:0 and C24:1 chains were the main components of LacCer (31.6% on the total fatty acid content) in the detergent-resistant membrane fraction (DRM) from neutrophil plasma membranes. In contrast, plasma membrane DRM of D-HL-60 cells included over 70% C16:0-LacCer, but only 13.6% C24-LacCer species. D-HL-60 cells loaded with C24:0 or C24:1-LacCer acquired LacCer-mediated migrating and superoxide-generating abilities, and allowed Lyn coimmunoprecipitation by anti-LacCer antibody. Lyn knockdown by siRNA completely abolished the effect of C24:1-LacCer loading on LacCer-mediated migration of D-HL-60 cells. Immunoelectron microscopy revealed that LacCer clusters were closely associated with Lyn molecules in neutrophils and C24:1-LacCer-loaded D-HL-60 cells, but not in D-HL-60 cells or C16:0-LacCer-loaded cells. Taken together, these observations suggest that LacCer species with very long fatty acids are specifically necessary for Lyn-coupled LacCer-enriched lipid raft-mediated neutrophil superoxide generation and migration.
Collapse
Affiliation(s)
- Kazuhisa Iwabuchi
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu-shi, Chiba, 279-0021, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Volkov VV, Chelli R, Zhuang W, Nuti F, Takaoka Y, Papini AM, Mukamel S, Righini R. Electrostatic interactions in phospholipid membranes revealed by coherent 2D IR spectroscopy. Proc Natl Acad Sci U S A 2007; 104:15323-7. [PMID: 17881567 PMCID: PMC2000491 DOI: 10.1073/pnas.0706426104] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inter- and intramolecular interactions of the carbonyl moieties at the polar interface of a phospholipid membrane are probed by using nonlinear femtosecond infrared spectroscopy. Two-dimensional IR correlation spectra separate homogeneous and inhomogeneous broadenings and show a distinct cross-peak pattern controlled by electrostatic interactions. The inter- and intramolecular electrostatic interactions determine the inhomogeneous character of the optical response. Using molecular dynamics simulation and the nonlinear exciton equations approach, we extract from the spectra short-range structural correlations between carbonyls at the interface.
Collapse
Affiliation(s)
- V V Volkov
- European Laboratory for Nonlinear Spectroscopy, Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
236
|
Hendler RW. An apparent general solution for the kinetic models of the bacteriorhodopsin photocycles. J Phys Chem B 2007; 109:16515-28. [PMID: 16853100 DOI: 10.1021/jp052733h] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For the past decade, the field of Bacteriorhodopsin (BR) research has been influenced by a kinetic view of the photocycle as a reversible, homogeneous, model (RHM) with a linear sequence of intermediates. More recently, we proposed a much different model which consists of essentially unidirectional, parallel (i.e., heterogeneous) cycles (UPM) (Hendler, R. W.; Shrager, R. I.; Bose, S. J. Phys. Chem. B 2001, 105, 3319-3328). It is important to try to resolve which of the two models is more likely to be correct, because models influence and provide a basis for further experimentation. Therefore, in this communication, we reexamine the basis for the RHM with a focus on the most recent and complete description of this model (van Stokkum, I., H., M.; Lozier, R. J. Phys. Chem. B 2002, 106, 3477-3485) vis a vis the UPM in an in-depth study. We show that (i) the tested RHM does not really work for the data of van Stokkum and Lozier nor ours; (ii) no previously published RHM model has been shown to work for data under any conditions; (iii) there are many published observations that are difficult if not impossible to explain by RHM, but are readily explained by parallel cycles. It is also shown that either a UPM or a parallel cycle model with limited reversibility correctly describes photocycle data collected at pH 5, 7, and 9 and at 10, 20, and 30 degrees and is consistent with all known experimental observations.
Collapse
Affiliation(s)
- Richard W Hendler
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
237
|
Montes LR, Alonso A, Goñi FM, Bagatolli LA. Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. Biophys J 2007; 93:3548-54. [PMID: 17704162 PMCID: PMC2072068 DOI: 10.1529/biophysj.107.116228] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In recent years, giant unilamellar vesicles (GUVs) have become objects of intense scrutiny by chemists, biologists, and physicists who are interested in the many aspects of biological membranes. In particular, this "cell size" model system allows direct visualization of particular membrane-related phenomena at the level of single vesicles using fluorescence microscopy-related techniques. However, this model system lacks two relevant features with respect to biological membranes: 1), the conventional preparation of GUVs currently requires very low salt concentration, thus precluding experimentation under physiological conditions, and 2), the model system lacks membrane compositional asymmetry. Here we show for first time that GUVs can be prepared using a new protocol based on the electroformation method either from native membranes or organic lipid mixtures at physiological ionic strength. Additionally, for the GUVs composed of native membranes, we show that membrane proteins and glycosphingolipids preserve their natural orientation after electroformation. We anticipate our result to be important to revisit a vast variety of findings performed with GUVs under low- or no-salt conditions. These studies, which include results on artificial cell assembly, membrane mechanical properties, lipid domain formation, partition of membrane proteins into lipid domains, DNA-lipid interactions, and activity of interfacial enzymes, are likely to be affected by the amount of salt present in the solution.
Collapse
Affiliation(s)
- L-Ruth Montes
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU), Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain
| | | | | | | |
Collapse
|
238
|
Wang X, Du Q. Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J Math Biol 2007; 56:347-71. [PMID: 17701177 DOI: 10.1007/s00285-007-0118-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 03/23/2007] [Indexed: 11/28/2022]
Abstract
Diffuse interface (phase field) models are developed for multi-component vesicle membranes with different lipid compositions and membranes with free boundary. These models are used to simulate the deformation of membranes under the elastic bending energy and the line tension energy with prescribed volume and surface area constraints. By comparing our numerical simulations with recent biological experiments, it is demonstrated that the diffuse interface models can effectively capture the rich phenomena associated with the multi-component vesicle transformation and thus offering great functionality in their simulation and modelling.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- School of Computational Sciences, Florida State University, Tallahassee, FL 32306, USA.
| | | |
Collapse
|
239
|
Adachi S, Nagao T, Ingolfsson HI, Maxfield FR, Andersen OS, Kopelovich L, Weinstein IB. The inhibitory effect of (-)-epigallocatechin gallate on activation of the epidermal growth factor receptor is associated with altered lipid order in HT29 colon cancer cells. Cancer Res 2007; 67:6493-501. [PMID: 17616711 DOI: 10.1158/0008-5472.can-07-0411] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
(-)-Epigallocatechin gallate (EGCG), a major biologically active constituent of green tea, inhibits activation of the epidermal growth factor (EGF) receptor (EGFR) and downstream signaling pathways in several types of human cancer cells, but the precise mechanism is not known. Because several plasma membrane-associated receptor tyrosine kinases (RTK) including EGFR are localized in detergent-insoluble ordered membrane domains, so-called "lipid rafts," we examined whether the inhibitory effect of EGCG on activation of the EGFR is associated with changes in membrane lipid order in HT29 colon cancer cells. First, we did cold Triton X-100 solubility assays. Phosphorylated (activated) EGFR was found only in the Triton X-100-insoluble (lipid raft) fraction, whereas total cellular EGFR was present in the Triton X-100-soluble fraction. Pretreatment with EGCG inhibited the binding of Alexa Fluor 488-labeled EGF to the cells and also inhibited EGF-induced dimerization of the EGFR. To examine possible effects of EGCG on membrane lipid organization, we labeled the cells with the fluorescent lipid analogue 1, 1'-dihexadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate, which preferentially incorporates into ordered membrane domains in cells and found that subsequent treatment with EGCG caused a marked reduction in the Triton X-100-resistant membrane fraction. Polyphenon E, a mixture of green tea catechins, had a similar effect but (-)-epicatechin (EC), the biologically inactive compound, did not significantly alter the Triton X-100 solubility properties of the membrane. Furthermore, we found that EGCG but not EC caused dramatic changes in the function of bilayer-incorporated gramicidin channels. Taken together, these findings suggest that EGCG inhibits the binding of EGF to the EGFR and the subsequent dimerization and activation of the EGFR by altering membrane organization. These effects may also explain the ability of EGCG to inhibit activation of other membrane-associated RTKs, and they may play a critical role in the anticancer effects of this and related compounds.
Collapse
Affiliation(s)
- Seiji Adachi
- Herbert Irving Comprehensive Cancer Center and Department of Medicine, Columbia University Medical Center, New Yourk, NY 10032-2704, USA
| | | | | | | | | | | | | |
Collapse
|
240
|
Zhao J, Wu J, Heberle FA, Mills TT, Klawitter P, Huang G, Costanza G, Feigenson GW. Phase studies of model biomembranes: complex behavior of DSPC/DOPC/cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2764-76. [PMID: 17825247 PMCID: PMC2701629 DOI: 10.1016/j.bbamem.2007.07.008] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/11/2007] [Accepted: 07/13/2007] [Indexed: 11/20/2022]
Abstract
We have undertaken a series of experiments to examine the behavior of individual components of cell membranes. Here we report an initial stage of these experiments, in which the properties of a chemically simple lipid mixture are carefully mapped onto a phase diagram. Four different experimental methods were used to establish the phase behavior of the 3-component mixture DSPC/DOPC/chol: (1) confocal fluorescence microscopy observation of giant unilamellar vesicles, GUVs; (2) FRET from perylene to C20:0-DiI; (3) fluorescence of dilute dyes C18:2-DiO and C20:0-DiI; and (4) wide angle X-ray diffraction. This particular 3-component mixture was chosen, in part, for a high level of immiscibility of the components in order to facilitate solving the phase behavior at all compositions. At 23 degrees C, a large fraction of the possible compositions for this mixture give rise to a solid phase. A region of 3-phase coexistence of {Lalpha+Lbeta+Lo} was detected and defined based on a combination of fluorescence microscopy of GUVs, FRET, and dilute C20:0-DiI fluorescence. At very low cholesterol concentrations, the solid phase is the tilted-chain phase Lbeta'. Most of the phase boundaries have been determined to be within a few percent of the composition. Measurements of the perturbations of the boundaries of this accurate phase diagram could serve as a means to understand the behaviors of a range of added lipids and proteins.
Collapse
Affiliation(s)
| | | | | | - Thalia T. Mills
- Department of Physics, Cornell University, Ithaca, NewYork 14853
| | | | | | | | | |
Collapse
|
241
|
Kim S, Kim Y, Lee Y, Cho KH, Kim KH, Chung JH. Cholesterol inhibits MMP-9 expression in human epidermal keratinocytes and HaCaT cells. FEBS Lett 2007; 581:3869-74. [PMID: 17643435 DOI: 10.1016/j.febslet.2007.06.074] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 06/18/2007] [Accepted: 06/28/2007] [Indexed: 12/01/2022]
Abstract
Cholesterol is a major component of skin lipids and acts as a regulator of vesicular trafficking and signal transduction. However, the function of cholesterol on matrix metalloproteinases (MMPs) expression of human skin is not fully understood. Here, we investigated the effects of cholesterol on MMP-9 expression in normal human keratinocytes (NHK) and HaCaT cells. Basal level of MMP-9 expression was decreased by cholesterol in NHK. On the other hand, MMP-9 expression was increased by the cholesterol depletion agent, methyl-beta-cyclodextrin (MbetaCD), while it was inhibited by cholesterol repletion in HaCaT cells. MbetaCD induced ERK and JNK phosphorylation were prevented by cholesterol repletion. The inhibition of ERK and JNK decreased MbetaCD-induced MMP-9 expression. Therefore, our results suggest that cholesterol regulates MMP-9 expression through ERK and JNK-dependent pathways.
Collapse
Affiliation(s)
- Sangmin Kim
- Department of Dermatology, Seoul National University College of Medicine, Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul 110-744, Republic of Korea
| | | | | | | | | | | |
Collapse
|
242
|
Cho WJ, Jeremic A, Jin H, Ren G, Jena BP. Neuronal fusion pore assembly requires membrane cholesterol. Cell Biol Int 2007; 31:1301-1308. [PMID: 17703958 PMCID: PMC2040125 DOI: 10.1016/j.cellbi.2007.06.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Accepted: 06/28/2007] [Indexed: 10/23/2022]
Abstract
Cholesterol has been proposed to play a critical role in regulating neurotransmitter release and synaptic plasticity. The neuronal porosome/fusion pore, the secretory machinery at the nerve terminal, is a 12-17 nm cup-shaped lipoprotein structure composed of cholesterol and a number of proteins, among them calcium channels, and the t-SNARE proteins Syntaxin-1 and SNAP-25. During neurotransmission, synaptic vesicles dock and fuse at the porosome via interaction of their v-SNARE protein with t-SNAREs at the porosome base. Membrane-associated neuronal t-SNAREs interact in a circular array with liposome-associated neuronal v-SNARE to form the t-/v-SNARE ring complex. The SNARE complex along with calcium is required for the establishment of continuity between opposing bilayers. Here we show that although cholesterol is an integral component of the neuronal porosome and is required for maintaining its physical integrity and function, it has no influence on the conformation of the SNARE ring complex.
Collapse
Affiliation(s)
- Won Jin Cho
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Aleksandar Jeremic
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Huan Jin
- Department of Biochemistry and Biophysics, University of California SanFrancisco, SanFrancisco, CA 94158, USA
| | - Gang Ren
- Department of Biochemistry and Biophysics, University of California SanFrancisco, SanFrancisco, CA 94158, USA
| | - Bhanu P Jena
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
243
|
Funkhouser CM, Solis FJ, Thornton K. Coupled composition-deformation phase-field method for multicomponent lipid membranes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:011912. [PMID: 17677499 DOI: 10.1103/physreve.76.011912] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 05/04/2007] [Indexed: 05/16/2023]
Abstract
We present a method for modeling phase transitions and morphological evolution of binary lipid membranes with approximately planar geometries. The local composition and the shape of the membrane are coupled through composition-dependent spontaneous curvature in a Helfrich free energy. The evolution of the composition field is described by a Cahn-Hilliard-type equation, while shape changes are described by relaxation dynamics. Our method explicitly treats the full nonlinear form of the geometrical scalars, tensors, and differential operators associated with the curved shape of the membrane. The model is applied to examine morphological evolution and stability of lipid membranes initialized in a variety of compositional and geometric configurations. Specifically, we investigate the dynamics of systems which have a lamellar structure as their lowest energy state. We find that evolution is very sensitive to initial conditions; only membranes with sufficiently large lamellar-type compositional perturbations or ripple-type shape perturbations in their initial configuration can deterministically evolve into a lamellar equilibrium morphology. We also observe that rigid topographical surface patterns have a strong effect on the phase separation and compositional evolution in these systems.
Collapse
Affiliation(s)
- Chloe M Funkhouser
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
244
|
Suzuki KGN, Fujiwara TK, Edidin M, Kusumi A. Dynamic recruitment of phospholipase C gamma at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: single-molecule tracking study 2. ACTA ACUST UNITED AC 2007; 177:731-42. [PMID: 17517965 PMCID: PMC2064217 DOI: 10.1083/jcb.200609175] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Clusters of CD59, a glycosylphosphatidylinositol-anchored receptor (GPI-AR), with physiological sizes of approximately six CD59 molecules, recruit Gαi2 and Lyn via protein–protein and raft interactions. Lyn is activated probably by the Gαi2 binding in the same CD59 cluster, inducing the CD59 cluster's binding to F-actin, resulting in its immobilization, termed stimulation-induced temporary arrest of lateral diffusion (STALL; with a 0.57-s lifetime, occurring approximately every 2 s). Simultaneous single-molecule tracking of GFP-PLCγ2 and CD59 clusters revealed that PLCγ2 molecules are transiently (median = 0.25 s) recruited from the cytoplasm exclusively at the CD59 clusters undergoing STALL, producing the IP3–Ca2+ signal. Therefore, we propose that the CD59 cluster in STALL may be a key, albeit transient, platform for transducing the extracellular GPI-AR signal to the intracellular IP3–Ca2+ signal, via PLCγ2 recruitment. The prolonged, analogue, bulk IP3–Ca2+ signal, which lasts for more than several minutes, is likely generated by the sum of the short-lived, digital-like IP3 bursts, each created by the transient recruitment of PLCγ2 molecules to STALLed CD59.
Collapse
Affiliation(s)
- Kenichi G N Suzuki
- Membrane Mechanisms Project, International Cooperative Research Project, Japan Science and Technology Agency, The Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
245
|
|
246
|
Abstract
With one or two exceptions, biological materials are "soft", meaning that they combine viscous and elastic elements. This mechanical behavior results from self-assembled supramolecular structures that are stabilized by noncovalent interactions. It is an ongoing and profound challenge to understand the self-organization of biological materials. In many cases, concepts can be imported from soft-matter physics and chemistry, which have traditionally focused on materials such as colloids, polymers, surfactants, and liquid crystals. Using these ideas, it is possible to gain a new perspective on phenomena as diverse as DNA condensation, protein and peptide fibrillization, lipid partitioning in rafts, vesicle fusion and budding, and others, as discussed in this selective review of recent highlights from the literature.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading, Reading, Berkshire RG6 6AD, UK.
| | | |
Collapse
|
247
|
Mukherjee S, Kombrabail M, Krishnamoorthy G, Chattopadhyay A. Dynamics and heterogeneity of bovine hippocampal membranes: role of cholesterol and proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2130-44. [PMID: 17618864 DOI: 10.1016/j.bbamem.2007.05.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 05/05/2007] [Accepted: 05/29/2007] [Indexed: 12/14/2022]
Abstract
The structural and dynamic consequence of alterations in membrane lipid composition (specifically cholesterol) in neuronal membranes is poorly understood. Previous work from our laboratory has established bovine hippocampal membranes as a convenient natural source for studying neuronal receptors. In this paper, we have explored the role of cholesterol and proteins in the dynamics and heterogeneity of bovine hippocampal membranes using fluorescence lifetime distribution analysis of the environment-sensitive fluorescent probe Nile Red incorporated into such membranes by the maximum entropy method (MEM), and time-resolved fluorescence anisotropy measurements. The peak position and the width of the lifetime distribution of Nile Red show a progressive reduction with increasing cholesterol depletion from native hippocampal membranes indicating that the extent of heterogeneity decreases with decrease in membrane cholesterol content. This is accompanied by a concomitant decrease of the fluorescence anisotropy and rotational correlation time. Our results point out that the microenvironment experienced by Nile Red is relatively insensitive to the presence of proteins in hippocampal membranes. Interestingly, Nile Red lifetime distribution in liposomes of lipid extracts is similar to that of native membranes indicating that proteins do not contribute significantly to the high level of heterogeneity observed in native membranes. These results could be relevant in understanding the neuronal diseases characterized by defective membrane lipid metabolism.
Collapse
Affiliation(s)
- Soumi Mukherjee
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | | | | |
Collapse
|
248
|
Gudheti MV, Mlodzianoski M, Hess ST. Imaging and shape analysis of GUVs as model plasma membranes: effect of trans DOPC on membrane properties. Biophys J 2007; 93:2011-23. [PMID: 17513374 PMCID: PMC1959543 DOI: 10.1529/biophysj.106.103374] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unsaturated trans fatty acids have been linked to a higher incidence of coronary artery disease, but not enough is known about the effect of trans lipids on membrane properties. Liquid-ordered (l(o)) and liquid-disordered (l(d)) membrane domains are implicated in various biological processes, such as endocytosis, adhesion, signaling, protein transport, apoptosis, and disease pathogenesis. The physical forces that induce domain formation and thus orchestrate cell function need to be further addressed and quantified. Here, we test the effect of trans DOPC (dielaidoyl phosphatidylcholine or DEPC) on the morphology of giant unilamellar vesicles (GUVs, used as a biomembrane model) made by electroformation with varying compositions of egg sphingomyelin, trans DOPC, cis DOPC, and cholesterol. GUVs were imaged by confocal fluorescence microscopy and then analyzed for changes in membrane morphology and properties such as l(o)/l(d) phase coexistence and area fractions, distribution of meridional curvature, and fluorescent-probe intensity distribution. BODIPY-FL-C(12)-sphingomyelin, Lissamine rhodamine B dioleoylphosphatidylethanolamine and BODIPY-TR-C(12)-sphingomyelin were used as fluorescent probes to differentially label the l(o) and l(d) phases. Trans DOPC induces some vesicles to form multidomain, invaginated morphologies that differ from the typical two-domain circular and truncated spherical shapes observed in its absence. Trans DOPC also alters the membrane curvature distribution; this is more pronounced in the l(o) phase near the phase boundary, where significantly negative curvatures (<-0.5 microm(-1)) are observed. A narrower distribution of meridional curvatures in GUVs with trans DOPC is suggestive of higher membrane bending rigidity. The ratio of average fluorescent intensities in the l(d)/l(o) phases indicates a greater concentration or brightness of the probes BODIPY-FL-C(12)-sphingomyelin and BODIPY-TR-C(12)-sphingomyelin in the l(o) phase in the presence of trans DOPC. Addition of trans DOPC does not alter the l(o)/l(d) area fractions, indicating that it does not act like egg sphingomyelin, a saturated lipid. These changes in membrane properties seen in the presence of trans lipids could significantly impact cell function.
Collapse
Affiliation(s)
- Manasa V Gudheti
- Department of Physics and Astronomy, University of Maine, Orono, ME 04469, USA
| | | | | |
Collapse
|
249
|
Kalipatnapu S, Chattopadhyay A, Pucadyil T. Membrane Organization and Dynamics of the Serotonin 1A Receptor Monitored Using Fluorescence Microscopic Approaches. Front Neurosci 2007. [DOI: 10.1201/9781420005752.ch3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
250
|
Del Pozo MA, Schwartz MA. Rac, membrane heterogeneity, caveolin and regulation of growth by integrins. Trends Cell Biol 2007; 17:246-50. [PMID: 17363257 DOI: 10.1016/j.tcb.2007.03.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 02/06/2007] [Accepted: 03/02/2007] [Indexed: 02/08/2023]
Abstract
Anchorage dependence of growth blocks cell proliferation in inappropriate environments, thereby inhibiting cancer cell invasion and metastasis. Inhibition of growth regulatory pathways, including Rac, Erk and PtdIns 3-kinase in non-adherent cells mediates this effect. Here, we review recent work showing that integrin-mediated adhesion controls Rac binding to membranes. Rac binding sites can be found within cholesterol-enriched membrane domains, which are internalized when cells are deprived of adhesion. Endocytosis of these domains is mediated by caveolae and regulated by caveolin-1 phosphorylated on Tyr 14. This mechanism can account for the control of multiple pathways by integrins, thus providing an important mechanism for anchorage dependence of growth.
Collapse
Affiliation(s)
- Miguel A Del Pozo
- Integrin Signalling Laboratory, Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernández Almagro 3, Madrid, Spain
| | | |
Collapse
|