201
|
Remus-Emsermann MNP, de Oliveira S, Schreiber L, Leveau JHJ. Quantification of lateral heterogeneity in carbohydrate permeability of isolated plant leaf cuticles. Front Microbiol 2011; 2:197. [PMID: 22046169 PMCID: PMC3202220 DOI: 10.3389/fmicb.2011.00197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 09/05/2011] [Indexed: 12/01/2022] Open
Abstract
In phyllosphere microbiology, the distribution of resources available to bacterial colonizers of leaf surfaces is generally understood to be very heterogeneous. However, there is little quantitative understanding of the mechanisms that underlie this heterogeneity. Here, we tested the hypothesis that different parts of the cuticle vary in the degree to which they allow diffusion of the leaf sugar fructose to the surface. To this end, individual, isolated cuticles of poplar leaves were each analyzed for two properties: (1) the permeability for fructose, which involved measurement of diffused fructose by gas chromatography and flame ionization detection (GC–FID), and (2) the number and size of fructose-permeable sites on the cuticle, which was achieved using a green-fluorescent protein (GFP)-based bacterial bioreporter for fructose. Bulk flux measurements revealed an average permeance P of 3.39 × 10−9 ms−1, while the bioreporter showed that most of the leaching fructose was clustered to sites around the base of shed trichomes, which accounted for only 0.37% of the surface of the cuticles under study. Combined, the GC–FID and GFP measurements allowed us to calculate an apparent rate of fructose diffusion at these preferential leaching sites of 9.15 × 10−7 ms−1. To the best of our knowledge, this study represents the first successful attempt to quantify cuticle permeability at a resolution that is most relevant to bacterial colonizers of plant leaves. The estimates for P at different spatial scales will be useful for future models that aim to explain and predict temporal and spatial patterns of bacterial colonization of plant foliage based on lateral heterogeneity in sugar permeability of the leaf cuticle.
Collapse
Affiliation(s)
- Mitja N P Remus-Emsermann
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands
| | | | | | | |
Collapse
|
202
|
Geographical location determines the population structure in phyllosphere microbial communities of a salt-excreting desert tree. Appl Environ Microbiol 2011; 77:7647-55. [PMID: 21926212 DOI: 10.1128/aem.05565-11] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The leaf surfaces of Tamarix, a salt-secreting desert tree, harbor a diverse community of microbial epiphytes. This ecosystem presents a unique combination of ecological characteristics and imposes a set of extreme stress conditions. The composition of the microbial community along ecological gradients was studied from analyses of microbial richness and diversity in the phyllosphere of three Tamarix species in the Mediterranean and Dead Sea regions in Israel and in two locations in the United States. Over 200,000 sequences of the 16S V6 and 18S V9 hypervariable regions revealed a diverse community, with 788 bacterial and 64 eukaryotic genera but only one archaeal genus. Both geographic location and tree species were determinants of microbial community structures, with the former being more dominant. Tree leaves of all three species in the Mediterranean region were dominated by Halomonas and Halobacteria, whereas trees from the Dead Sea area were dominated by Actinomycetales and Bacillales. Our findings demonstrate that microbial phyllosphere communities on different Tamarix species are highly similar in the same locale, whereas trees of the same species that grow in different climatic regions host distinct microbial communities.
Collapse
|
203
|
Rolfe BG, Mathesius U, Djordjevic M, Weinman J, Hocart C, Weiller G, Bauer WD. Proteomic analysis of legume-microbe interactions. Comp Funct Genomics 2011; 4:225-8. [PMID: 18629116 PMCID: PMC2447403 DOI: 10.1002/cfg.263] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2003] [Accepted: 02/04/2003] [Indexed: 11/22/2022] Open
Affiliation(s)
- Barry G Rolfe
- Genomic Interactions Group The Australian National University GPO Box 475 ACT Canberra 2601 Australia
| | | | | | | | | | | | | |
Collapse
|
204
|
Bisi DC, Lampe DJ. Secretion of anti-Plasmodium effector proteins from a natural Pantoea agglomerans isolate by using PelB and HlyA secretion signals. Appl Environ Microbiol 2011; 77:4669-75. [PMID: 21602368 PMCID: PMC3127683 DOI: 10.1128/aem.00514-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 05/09/2011] [Indexed: 01/20/2023] Open
Abstract
The insect-vectored disease malaria is a major world health problem. New control strategies are needed to supplement the current use of insecticides and medications. A genetic approach can be used to inhibit development of malaria parasites (Plasmodium spp.) in the mosquito host. We hypothesized that Pantoea agglomerans, a bacterial symbiont of Anopheles mosquitoes, could be engineered to express and secrete anti-Plasmodium effector proteins, a strategy termed paratransgenesis. To this end, plasmids that include the pelB or hlyA secretion signals from the genes of related species (pectate lyase from Erwinia carotovora and hemolysin A from Escherichia coli, respectively) were created and tested for their efficacy in secreting known anti-Plasmodium effector proteins (SM1, anti-Pbs21, and PLA2) in P. agglomerans and E. coli. P. agglomerans successfully secreted HlyA fusions of anti-Pbs21 and PLA2, and these strains are under evaluation for anti-Plasmodium activity in infected mosquitoes. Varied expression and/or secretion of the effector proteins was observed, suggesting that the individual characteristics of a particular effector may require empirical testing of several secretion signals. Importantly, those strains that secreted efficiently grew as well as wild-type strains under laboratory conditions and, thus, may be expected to be competitive with the native microbiota in the environment of the mosquito midgut.
Collapse
Affiliation(s)
- Dawn C. Bisi
- Duquesne University, Department of Biological Sciences, 600 Forbes Ave., Pittsburgh, Pennsylvania 15282
| | - David J. Lampe
- Duquesne University, Department of Biological Sciences, 600 Forbes Ave., Pittsburgh, Pennsylvania 15282
| |
Collapse
|
205
|
Nadalig T, Farhan Ul Haque M, Roselli S, Schaller H, Bringel F, Vuilleumier S. Detection and isolation of chloromethane-degrading bacteria from the Arabidopsis thaliana phyllosphere, and characterization of chloromethane utilization genes. FEMS Microbiol Ecol 2011; 77:438-48. [PMID: 21545604 DOI: 10.1111/j.1574-6941.2011.01125.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Chloromethane gas is produced naturally in the phyllosphere, the compartment defined as the aboveground parts of vegetation, which hosts a rich bacterial flora. Chloromethane may serve as a growth substrate for specialized aerobic methylotrophic bacteria, which have been isolated from soil and water environments, and use cmu genes for chloromethane utilization. Evidence for the presence of chloromethane-degrading bacteria on the leaf surfaces of Arabidopsis thaliana was obtained by specific quantitative PCR of the cmuA gene encoding the two-domain methyltransferase corrinoid protein of chloromethane dehalogenase. Bacterial strains were isolated on a solid mineral medium with chloromethane as the sole carbon source from liquid mineral medium enrichment cultures inoculated with leaves of A. thaliana. Restriction analysis-based genotyping of cmuA PCR products was used to evaluate the diversity of chloromethane-degrading bacteria during enrichment and after strain isolation. The isolates obtained, affiliated to the genus Hyphomicrobium based on their 16S rRNA gene sequence and the presence of characteristic hyphae, dehalogenate chloromethane, and grow in a liquid culture with chloromethane as the sole carbon and energy source. The cmu genes of these isolates were analysed using new PCR primers, and their sequences were compared with those of previously reported aerobic chloromethane-degrading strains. The three isolates featured a colinear cmuBCA gene arrangement similar to that of all previously characterized strains, except Methylobacterium extorquens CM4 of known genome sequence.
Collapse
Affiliation(s)
- Thierry Nadalig
- Université de Strasbourg, UMR 7156 CNRS, Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
206
|
Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 2011; 12:2885-93. [PMID: 20545741 DOI: 10.1111/j.1462-2920.2010.02258.x] [Citation(s) in RCA: 383] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Large populations of bacteria live on leaf surfaces and these phyllosphere bacteria can have important effects on plant health. However, we currently have a limited understanding of bacterial diversity on tree leaves and the inter- and intra-specific variability in phyllosphere community structure. We used a barcoded pyrosequencing technique to characterize the bacterial communities from leaves of 56 tree species in Boulder, Colorado, USA, quantifying the intra- and inter-individual variability in the bacterial communities from 10 of these species. We also examined the geographic variability in phyllosphere communities on Pinus ponderosa from several locations across the globe. Individual tree species harboured high levels of bacterial diversity and there was considerable variability in community composition between trees. The bacterial communities were organized in patterns predictable from the relatedness of the trees as there was significant correspondence between tree phylogeny and bacterial community phylogeny. Inter-specific variability in bacterial community composition exceeded intra-specific variability, a pattern that held even across continents where we observed minimal geographic differentiation in the bacterial communities on P. ponderosa needles.
Collapse
Affiliation(s)
- Amanda J Redford
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
207
|
Mestre MC, Rosa CA, Fontenla SB. Lindnera rhizosphaerae sp. nov., a yeast species isolated from rhizospheric soil. Int J Syst Evol Microbiol 2011; 61:985-988. [DOI: 10.1099/ijs.0.022863-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two strains of a novel yeast species were isolated from ectomycorrhizal Nothofagus pumilio rhizospheric soil in a native forest of Patagonia, Argentina. Analysis of the D1/D2 large-subunit rRNA gene sequences indicated that the novel species belongs to the recently described genus Lindnera. The name Lindnera rhizosphaerae sp. nov. is proposed to accommodate these isolates, and the type strain is CRUB 1796T ( = CBS 11400T = JCM 16499T).
Collapse
Affiliation(s)
- M. Cecilia Mestre
- Laboratorio de Microbiología Aplicada y Biotecnología, Centro Regional Universitario Bariloche (CRUB), INIBIOMA (Universidad Nacional del Comahue-CONICET), Quintral 1250, Bariloche (8400), Río Negro, Argentina
| | - Carlos A. Rosa
- Departamento de Microbiologia – ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Sonia B. Fontenla
- Laboratorio de Microbiología Aplicada y Biotecnología, Centro Regional Universitario Bariloche (CRUB), INIBIOMA (Universidad Nacional del Comahue-CONICET), Quintral 1250, Bariloche (8400), Río Negro, Argentina
| |
Collapse
|
208
|
Fonseca JM, Fallon SD, Sanchez CA, Nolte KD. Escherichia coli survival in lettuce fields following its introduction through different irrigation systems. J Appl Microbiol 2011; 110:893-902. [PMID: 21214696 DOI: 10.1111/j.1365-2672.2011.04942.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS This study aimed to assess the contamination risk of Escherichia coli in commercial lettuce grown under three different irrigation systems (overhead sprinkler, subsurface drip and surface furrow). METHODS AND RESULTS Three replicated field trials were conducted. In an initial trial, we consistently observed higher mesophilic bacteria counts under sprinkler irrigation but visual quality was found to be dependent on the water potential of leaves at harvest. Further, in the other two trials, E. coli K-12 strains LMM1010 and ATCC 25253, was injected into the water stream of the different irrigation systems to determine survival in the field. Results showed that product samples were positive for E. coli up to 7 days when using sprinkler irrigation, whereas only one product sample was found positive for E. coli when using other irrigation methods. Survival of bacteria in soil persisted longer in furrow-irrigated areas, ranging from an estimated 17 days in winter months to 5 days during the warmer summer periods. This finding combined with results from a parallel 3-year survey of canal waters indicate that while highest risk of finding E. coli in irrigation water is in warmer months, the survival in soil is lower during the same time period. CONCLUSIONS Our results in a study set under common commercial conditions confirmed the enhanced risk of E. coli contamination when using sprinkle irrigation. Furthermore, E. coli persistence in furrow-irrigated soil validates the importance of an early irrigation termination for both sprinkler and furrow methods.
Collapse
Affiliation(s)
- J M Fonseca
- Yuma Agricultural Center, The University of Arizona, Yuma, AZ 85364, USA.
| | | | | | | |
Collapse
|
209
|
Singh RP, Bijo AJ, Baghel RS, Reddy CRK, Jha B. Role of bacterial isolates in enhancing the bud induction in the industrially important red alga Gracilaria dura. FEMS Microbiol Ecol 2011; 76:381-92. [DOI: 10.1111/j.1574-6941.2011.01057.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
210
|
Kawanishi T, Shiraishi T, Okano Y, Sugawara K, Hashimoto M, Maejima K, Komatsu K, Kakizawa S, Yamaji Y, Hamamoto H, Oshima K, Namba S. New detection systems of bacteria using highly selective media designed by SMART: selective medium-design algorithm restricted by two constraints. PLoS One 2011; 6:e16512. [PMID: 21304596 PMCID: PMC3029383 DOI: 10.1371/journal.pone.0016512] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/04/2011] [Indexed: 11/18/2022] Open
Abstract
Culturing is an indispensable technique in microbiological research, and culturing with selective media has played a crucial role in the detection of pathogenic microorganisms and the isolation of commercially useful microorganisms from environmental samples. Although numerous selective media have been developed in empirical studies, unintended microorganisms often grow on such media probably due to the enormous numbers of microorganisms in the environment. Here, we present a novel strategy for designing highly selective media based on two selective agents, a carbon source and antimicrobials. We named our strategy SMART for highly Selective Medium-design Algorithm Restricted by Two constraints. To test whether the SMART method is applicable to a wide range of microorganisms, we developed selective media for Burkholderia glumae, Acidovorax avenae, Pectobacterium carotovorum, Ralstonia solanacearum, and Xanthomonas campestris. The series of media developed by SMART specifically allowed growth of the targeted bacteria. Because these selective media exhibited high specificity for growth of the target bacteria compared to established selective media, we applied three notable detection technologies: paper-based, flow cytometry-based, and color change-based detection systems for target bacteria species. SMART facilitates not only the development of novel techniques for detecting specific bacteria, but also our understanding of the ecology and epidemiology of the targeted bacteria.
Collapse
Affiliation(s)
- Takeshi Kawanishi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takuya Shiraishi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukari Okano
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kyoko Sugawara
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masayoshi Hashimoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kensaku Maejima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ken Komatsu
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeyuki Kakizawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Hamamoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenro Oshima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
211
|
Jackson CR, Denney WC. Annual and seasonal variation in the phyllosphere bacterial community associated with leaves of the southern Magnolia (Magnolia grandiflora). MICROBIAL ECOLOGY 2011; 61:113-122. [PMID: 20809288 DOI: 10.1007/s00248-010-9742-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 08/17/2010] [Indexed: 05/29/2023]
Abstract
The phyllosphere contains a diverse bacterial community that can be intimately associated with the host plant; however, few studies have examined how the phyllosphere community changes over time. We sampled replicate leaves from a single magnolia (Magnolia grandiflora) tree in the winter of three consecutive years (2007-2009) as well as during four seasons of 1 year (2008) and used molecular techniques to examine seasonal and year-to-year variation in bacterial community structure. Multivariate analysis of denaturing gradient gel electrophoresis profiles of 16S rRNA gene fragments revealed minimal leaf to leaf variation and much greater temporal changes, with the summer (August 2008) leaf community being most distinct from the other seasons. This was confirmed by sequencing and analysis of 16S rRNA gene clone libraries generated for each sample date. All phyllosphere communities were dominated by Alphaproteobacteria, with a reduction in the representation of certain Beijerinckiaceae during the summer and a concurrent increase in the Methylobacteriaceae being the most significant seasonal change. Other important components of the magnolia phyllosphere included members of the Bacteroidetes, Acidobacteria, and Actinobacteria, with the latter two lineages also showing differences in their representation in samples collected at different times. While the leaf-associated bacterial community sampled at the same time of year in three separate years showed some similarities, generally these communities were distinct, suggesting that while there are seasonal patterns, these may not be predictable from year to year. These results suggest that seasonal differences do occur in phyllosphere communities and that broad-leafed evergreen trees such as M. grandiflora may present interesting systems to study these changes in the context of changing environmental conditions.
Collapse
Affiliation(s)
- Colin R Jackson
- Department of Biology, Shoemaker Hall, The University of Mississippi, University, MS 38677, USA.
| | | |
Collapse
|
212
|
Hunter PJ, Hand P, Pink D, Whipps JM, Bending GD. Both leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (Lactuca Species) phyllosphere. Appl Environ Microbiol 2010; 76:8117-25. [PMID: 20952648 PMCID: PMC3008232 DOI: 10.1128/aem.01321-10] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 10/07/2010] [Indexed: 11/20/2022] Open
Abstract
Morphological and chemical differences between plant genera influence phyllosphere microbial populations, but the factors driving within-species variation in phyllosphere populations are poorly understood. Twenty-six lettuce accessions were used to investigate factors controlling within-species variation in phyllosphere bacterial populations. Morphological and physiochemical characteristics of the plants were compared, and bacterial community structure and diversity were investigated using terminal restriction fragment length polymorphism (T-RFLP) profiling and 16S rRNA gene clone libraries. Plant morphology and levels of soluble carbohydrates, calcium, and phenolic compounds (which have long been associated with plant responses to biotic stress) were found to significantly influence bacterial community structure. Clone libraries from three representative accessions were found to be significantly different in terms of both sequence differences and the bacterial genera represented. All three libraries were dominated by Pseudomonas species and the Enterobacteriaceae family. Significant differences in the relative proportions of genera in the Enterobacteriaceae were detected between lettuce accessions. Two such genera (Erwinia and Enterobacter) showed significant variation between the accessions and revealed microbe-microbe interactions. We conclude that both leaf surface properties and microbial interactions are important in determining the structure and diversity of the phyllosphere bacterial community.
Collapse
Affiliation(s)
- Paul J Hunter
- Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom.
| | | | | | | | | |
Collapse
|
213
|
Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W, Zeng G, Liu C, Wan Y, Chen J, He Y. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. BIORESOURCE TECHNOLOGY 2010; 101:8599-8605. [PMID: 20637605 DOI: 10.1016/j.biortech.2010.06.085] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 06/08/2010] [Accepted: 06/19/2010] [Indexed: 05/29/2023]
Abstract
Heavy metal bioremediation by a multi-metal resistant endophytic bacteria L14 (EB L14) isolated from the cadmium hyperaccumulator Solanum nigrum L. was characterized for its potential application in metal treatment. 16S rDNA analysis revealed that this endophyte belonged to Bacillus sp. The hormesis of EB L14 were observed in presence of divalent heavy metals (Cu (II), Cd (II) and Pb (II)) at a relatively lower concentration (10mg/L). Such hormesis was the side effect of abnormal activities increases of ATPase which was planned to provide energy to help EB L14 reduce the toxicity of heavy metals by exporting the cations. Within 24h incubation, EB L14 could specifically uptake 75.78%, 80.48%, 21.25% of Cd (II), Pb (II) and Cu (II) under the initial concentration of 10mg/L. However, nearly no chromium uptake was observed. The mechanism study indicated that its remediation efficiencies may be greatly promoted through inhibiting the activities of ATPase. The excellent adaptation abilities and promising remediation efficiencies strongly indicated the superiority of this endophyte in heavy metal bioremediation at low concentrations, which could be useful for developing efficient metal removal system.
Collapse
Affiliation(s)
- Hanjun Guo
- College of Environmental Science and Engineering, Hunan University, Changsha, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Unterseher M, Schnittler M. Species richness analysis and ITS rDNA phylogeny revealed the majority of cultivable foliar endophytes from beech (Fagus sylvatica). FUNGAL ECOL 2010. [DOI: 10.1016/j.funeco.2010.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
215
|
|
216
|
Ikeda S, Okubo T, Anda M, Nakashita H, Yasuda M, Sato S, Kaneko T, Tabata S, Eda S, Momiyama A, Terasawa K, Mitsui H, Minamisawa K. Community- and genome-based views of plant-associated bacteria: plant-bacterial interactions in soybean and rice. PLANT & CELL PHYSIOLOGY 2010; 51:1398-410. [PMID: 20685969 DOI: 10.1093/pcp/pcq119] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Diverse microorganisms are living as endophytes in plant tissues and as epiphytes on plant surfaces in nature. Questions about driving forces shaping the microbial community associated with plants remain unanswered. Because legumes developed systems to attain endosymbioses with rhizobia as well as mycorrhizae during their evolution, the above questions can be addressed using legume mutants relevant to genes for symbiosis. Analytical methods for the microbial community have recently been advanced by enrichment procedures of plant-associated microbes and culture-independent analyses targeting the small subunit of rRNA in microbial ecology. In this review, we first deal with interdisciplinary works on the global diversity of bacteria associated with field-grown soybeans with different nodulation genotypes and nitrogen application. A subpopulation of Proteobacteria in aerial parts of soybean shoots was likely to be regulated through both the autoregulation system for plant-rhizobium symbiosis and the nitrogen signaling pathway, suggesting that legumes accommodate a taxonomically characteristic microbial community through unknown plant-microbe communications. In addition to the community views, we then show multiphasic analysis of a beneficial rice endophyte for comparative bacterial genomics and plant responses. The significance and perspectives of community- and genome-based approaches are discussed to achieve a better understanding of plant-microbe interactions.
Collapse
Affiliation(s)
- Seishi Ikeda
- Memuro Research Station, National Agricultural Research Center for Hokkaido Region, Shinsei, Memuro-cho, Kasaigun, Hokkaido 082-0081, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Mestre MC, Ulloa JR, Rosa CA, Lachance MA, Fontenla S. Lachancea nothofagi sp. nov., a yeast associated with Nothofagus species in Patagonia, Argentina. Int J Syst Evol Microbiol 2010; 60:2247-2250. [DOI: 10.1099/ijs.0.018929-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Six strains of a novel yeast species were isolated from Nothofagus species trees in native forests in Patagonia, Argentina. The strains were isolated from bark, fluxes and the ectomycorrhizospheric soil fraction of Nothofagus antarctica, Nothofagus nervosa and Nothofagus pumilio. Analysis of the D1/D2 large-subunit rDNA sequences indicated that the novel species belonged to the genus Lachancea and is closely related to Lachancea meyersii. The name Lachancea nothofagi sp. nov. is proposed to accommodate these strains. The type strain is UWOPS 99-807.3T (=CBS 11611T=NRRL Y-48670T).
Collapse
Affiliation(s)
- M. C. Mestre
- Laboratorio de Microbiología Aplicada y Biotecnología, Centro Regional Universitario Bariloche (CRUB), INIBIOMA (Universidad Nacional del Comahue-CONICET), Quintral 1250, Bariloche 8400, Río Negro, Argentina
| | - J. R. Ulloa
- Laboratorio de Microbiología Aplicada y Biotecnología, Centro Regional Universitario Bariloche (CRUB), INIBIOMA (Universidad Nacional del Comahue-CONICET), Quintral 1250, Bariloche 8400, Río Negro, Argentina
| | - C. A. Rosa
- Departamento de Microbiologia – ICB, CP 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - M. A. Lachance
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - S. Fontenla
- Laboratorio de Microbiología Aplicada y Biotecnología, Centro Regional Universitario Bariloche (CRUB), INIBIOMA (Universidad Nacional del Comahue-CONICET), Quintral 1250, Bariloche 8400, Río Negro, Argentina
| |
Collapse
|
218
|
Stout LM, Dodova EN, Tyson JF, Nüsslein K. Phytoprotective influence of bacteria on growth and cadmium accumulation in the aquatic plant Lemna minor. WATER RESEARCH 2010; 44:4970-4979. [PMID: 20732704 DOI: 10.1016/j.watres.2010.07.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/23/2010] [Accepted: 07/26/2010] [Indexed: 05/29/2023]
Abstract
Certain plants are known to accumulate heavy metals, and can be used in remediation of polluted soil or water. Plant-associated bacteria, especially those that are metal tolerant, may enhance the total amount of metal accumulated by the plant, but this process is still unclear. In this study, we investigated metal enhancement vs. exclusion by plants, and the phytoprotective role plant-associated bacteria might provide to plants exposed to heavy metal. We isolated cadmium-tolerant bacteria from the roots of the aquatic plant Lemna minor grown in heavy metal-polluted waters, and tested these isolates for tolerance to cadmium. The efficiency of plants to accumulate heavy metal from their surrounding environment was then tested by comparing L. minor plants grown with added metal tolerant bacteria to plants grown axenically to determine, whether bacteria associated with these plants increase metal accumulation in the plant. Unexpectedly, cadmium tolerance was not seen in all bacterial isolates that had been exposed to cadmium. Axenic plants accumulated slightly more cadmium than plants inoculated with bacterial isolates. Certain isolates promoted root growth, but overall, addition of bacterial strains did not enhance plant cadmium uptake, and in some cases, inhibited cadmium accumulation by plants. This suggests that bacteria serve a phytoprotective role in their relationship with Lemna minor, preventing toxic cadmium from entering plants.
Collapse
Affiliation(s)
- Lisa M Stout
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9298, USA
| | | | | | | |
Collapse
|
219
|
Belkin S, Qvit-Raz N. Life on a Leaf: Bacterial Epiphytes of a Salt-Excreting Desert Tree. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-90-481-9449-0_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
|
220
|
|
221
|
Baker CM, Chitrakar R, Obulareddy N, Panchal S, Williams P, Melotto M. Molecular battles between plant and pathogenic bacteria in the phyllosphere. Braz J Med Biol Res 2010; 43:698-704. [PMID: 20602017 DOI: 10.1590/s0100-879x2010007500060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 06/14/2010] [Indexed: 12/18/2022] Open
Abstract
The phyllosphere, i.e., the aerial parts of the plant, provides one of the most important niches for microbial colonization. This niche supports the survival and, often, proliferation of microbes such as fungi and bacteria with diverse lifestyles including epiphytes, saprophytes, and pathogens. Although most microbes may complete the life cycle on the leaf surface, pathogens must enter the leaf and multiply aggressively in the leaf interior. Natural surface openings, such as stomata, are important entry sites for bacteria. Stomata are known for their vital role in water transpiration and gas exchange between the plant and the environment that is essential for plant growth. Recent studies have shown that stomata can also play an active role in limiting bacterial invasion of both human and plant pathogenic bacteria as part of the plant innate immune system. As counter-defense, plant pathogens such as Pseudomonas syringae pv tomato (Pst) DC3000 use the virulence factor coronatine to suppress stomate-based defense. A novel and crucial early battleground in host-pathogen interaction in the phyllosphere has been discovered with broad implications in the study of bacterial pathogenesis, host immunity, and molecular ecology of bacterial diseases.
Collapse
Affiliation(s)
- C M Baker
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | | | | | | | |
Collapse
|
222
|
Lopez-Velasco G, Davis M, Boyer RR, Williams RC, Ponder MA. Alterations of the phylloepiphytic bacterial community associated with interactions of Escherichia coli O157:H7 during storage of packaged spinach at refrigeration temperatures. Food Microbiol 2010; 27:476-86. [DOI: 10.1016/j.fm.2009.12.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/21/2009] [Accepted: 12/22/2009] [Indexed: 11/25/2022]
|
223
|
Ning J, Bai Z, Gang G, Jiang D, Hu Q, He J, Zhang H, Zhuang G. Functional assembly of bacterial communities with activity for the biodegradation of an organophosphorus pesticide in the rape phyllosphere. FEMS Microbiol Lett 2010; 306:135-43. [DOI: 10.1111/j.1574-6968.2010.01946.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
224
|
Plant growth-promoting activity in newly isolated Bacillus thioparus (NII-0902) from Western ghat forest, India. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0418-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
225
|
Nix S, Burpee LL, Buck JW. Responses of 2 epiphytic yeasts to foliar infection by Rhizoctonia solani or mechanical wounding on the phylloplane of tall fescue. Can J Microbiol 2010; 55:1160-5. [PMID: 19935888 DOI: 10.1139/w09-072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A growth-chamber experiment was conducted to determine how foliar disease or wounding affects the ability of 2 phylloplane yeasts (Rhodotorula glutinis and Cryptococcus laurentii) to colonize leaves of tall fescue (Festuca arundinacea). Yeasts were applied separately and together onto healthy leaves, leaves infected with Rhizoctonia solani (diseased), and mechanically bruised (wounded) leaves. In all 3 trials, the leaf disturbance treatment significantly affected the abundance of yeast on the phylloplane of tall fescue. Yeast abundance on the diseased or wounded leaves was significantly greater than on the nontreated, healthy leaves. In 2 of the 3 trials, the yeast species applied also had a significant affect on yeast abundance. Typically, R. glutinis was significantly more abundant than C. laurentii when applied individually, but not significantly greater than the total yeast colony-forming units of the co-inoculated treatment. When the 2 yeasts were co-inoculated onto the leaves, R. glutinis comprised 89.7%, 75.4%, and 67.6% of the recovered yeast colony-forming units on healthy, diseased, and wounded leaves, respectfully. Our data suggest that these 2 species of yeasts will differentially colonize compromised leaf tissue with disease or wounds favoring populations of R. glutinis over C. laurentii.
Collapse
Affiliation(s)
- Shannon Nix
- Department of Plant Pathology, University of Georgia, Griffin, GA 30223-1797, USA
| | | | | |
Collapse
|
226
|
Kharwar RN, Gond SK, Kumar A, Mishra A. A comparative study of endophytic and epiphytic fungal association with leaf of Eucalyptus citriodora Hook., and their antimicrobial activity. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0374-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
227
|
Hoque MS, Broadhurst LM, Thrall PH. Genetic characterization of root-nodule bacteria associated with Acacia salicina and A. stenophylla (Mimosaceae) across south-eastern Australia. Int J Syst Evol Microbiol 2010; 61:299-309. [PMID: 20228207 DOI: 10.1099/ijs.0.021014-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Symbiotic relationships between legumes and nitrogen-fixing soil micro-organisms are of ecological importance in plant communities worldwide. For example, nutrient-poor Australian soils are often dominated by shrubby legumes (e.g. species of Acacia). However, relatively few studies have quantified patterns of diversity, host-specificity and effectiveness of these ecologically important plant-microbe interactions. In this study, 16S rRNA gene sequence and PCR-RFLP analyses were used to examine bacterial strains isolated from the root nodules of two widespread south-eastern Australian legumes, Acacia salicina and Acacia stenophylla, across nearly 60 sites. The results showed that there was extensive genetic diversity in microbial populations, including a broad range of novel genomic species. While previous studies have suggested that most native Australian legumes nodulate primarily with species of the genus Bradyrhizobium, our results indicate significant associations with members of other root-nodule-forming bacterial genera, including Rhizobium, Ensifer, Mesorhizobium, Burkholderia, Phyllobacterium and Devosia. Genetic analyses also revealed a diverse suite of non-nodulating bacterial endophytes, only a subset of which have been previously recorded. Although the ecological roles of these endosymbionts are not well understood, they may play both direct and indirect roles in promoting plant growth, nodulation and disease suppression.
Collapse
Affiliation(s)
| | | | - Peter H Thrall
- CSIRO Plant Industry, PO Box 1600, Canberra ACT 2601 Australia
| |
Collapse
|
228
|
Stuart RM, Romão AS, Pizzirani-Kleiner AA, Azevedo JL, Araújo WL. Culturable endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane and its non-transgenic isolines. Arch Microbiol 2010; 192:307-13. [PMID: 20191263 DOI: 10.1007/s00203-010-0557-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/02/2010] [Accepted: 02/08/2010] [Indexed: 10/19/2022]
Abstract
The diversity of endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane plants and its isoline was evaluated by cultivation followed by amplified rDNA restriction analysis (ARDRA) of randomly selected strains. Transgenic and non-transgenic cultivars and their crop management (herbicide application or manual weed control) were used to assess the possible non-target effects of genetically modified sugarcane on the fungal endophytic community. A total of 14 ARDRA haplotypes were identified in the endophytic community of sugarcane. Internal transcribed spacer (ITS) sequencing revealed a rich community represented by 12 different families from the Ascomycota phylum. Some isolates had a high sequence similarity with genera that are common endophytes in tropical climates, such as Cladosporium, Epicoccum, Fusarium, Guignardia, Pestalotiopsis and Xylaria. Analysis of molecular variance indicated that fluctuations in fungal population were related to both transgenic plants and herbicide application. While herbicide applications quickly induced transient changes in the fungal community, transgenic plants induced slower changes that were maintained over time. These results represent the first draft on composition of endophytic filamentous fungi associated with sugarcane plants. They are an important step in understanding the possible effects of transgenic plants and their crop management on the fungal endophytic community.
Collapse
|
229
|
Uzu G, Sobanska S, Sarret G, Muñoz M, Dumat C. Foliar lead uptake by lettuce exposed to atmospheric fallouts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:1036-42. [PMID: 20063891 DOI: 10.1021/es902190u] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Metal uptake by plants occurs by soil-root transfer but also by direct transfer of contaminants from the atmosphere to the shoots. This second pathway may be particularly important in kitchen gardens near industrial plants. The mechanisms of foliar uptake of lead by lettuce ( Lactuca sativa ) exposed to the atmospheric fallouts of a lead-recycling plant were studied. After 43 days of exposure, the thoroughly washed leaves contained 335 +/- 50 mg Pb kg(-1) (dry weight). Micro-X-ray fluorescence mappings evidenced Pb-rich spots of a few hundreds of micrometers in diameter located in necrotic zones. These spots were more abundant at the base of the central nervure. Environmental scanning electron microscopy coupled with energy dispersive X-ray microanalysis showed that smaller particles (a few micrometers in diameter) were also present in other regions of the leaves, often located beneath the leaf surface. In addition, submicrometric particles were observed inside stomatal openings. Raman microspectrometry analyses of the leaves identified smelter-originated Pb minerals but also secondary phases likely resulting from the weathering of original particles. On the basis of these observations, several pathways for foliar lead uptake are discussed. A better understanding of these mechanisms may be of interest for risk assessment of population exposure to atmospheric metal contamination.
Collapse
Affiliation(s)
- Gaëlle Uzu
- Universite de Toulouse, Toulouse, France
| | | | | | | | | |
Collapse
|
230
|
The carnivorous pale pitcher plant harbors diverse, distinct, and time-dependent bacterial communities. Appl Environ Microbiol 2010; 76:1851-60. [PMID: 20097807 DOI: 10.1128/aem.02440-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of American carnivorous pitcher plants (Sarracenia) to digest insect prey is facilitated by microbial associations. Knowledge of the details surrounding this interaction has been limited by our capability to characterize bacterial diversity in this system. To describe microbial diversity within and between pitchers of one species, Sarracenia alata, and to explore how these communities change over time as pitchers accumulate and digest insect prey, we collected and analyzed environmental sequence tag (454 pyrosequencing) and genomic fingerprint (automated ribosomal intergenic spacer analysis and terminal restriction fragment length polymorphism) data. Microbial richness associated with pitcher plant fluid is high; more than 1,000 unique phylogroups were identified across at least seven phyla and 50 families. We documented an increase in bacterial diversity and abundance with time and observed repeated changes in bacterial community composition. Pitchers from different plants harbored significantly more similar bacterial communities at a given time point than communities coming from the same genetic host over time. The microbial communities in pitcher plant fluid also differ significantly from those present in the surrounding soil. These findings indicate that the bacteria associated with pitcher plant leaves are far from random assemblages and represent an important step toward understanding this unique plant-microbe interaction.
Collapse
|
231
|
Symbiont genomics, our new tangled bank. Genomics 2010; 95:129-37. [PMID: 20053372 DOI: 10.1016/j.ygeno.2009.12.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/24/2009] [Accepted: 12/25/2009] [Indexed: 12/24/2022]
Abstract
Microbial symbionts inhabit the soma and surfaces of most multicellular species and instigate both beneficial and harmful infections. Despite their ubiquity, we are only beginning to resolve major patterns of symbiont ecology and evolution. Here, we summarize the history, current progress, and projected future of the study of microbial symbiont evolution throughout the tree of life. We focus on the recent surge of data that whole-genome sequencing has introduced into the field, in particular the links that are now being made between symbiotic lifestyle and molecular evolution. Post-genomic and systems biology approaches are also emerging as powerful techniques to investigate host-microbe interactions, both at the molecular level of the species interface and at the global scale. In parallel, next-generation sequencing technologies are allowing new questions to be addressed by providing access to population genomic data, as well as the much larger genomes of microbial eukaryotic symbionts and hosts. Throughout we describe the questions that these techniques are tackling and we conclude by listing a series of unanswered questions in microbial symbiosis that can potentially be addressed with the new technologies.
Collapse
|
232
|
Ikeda S, Kaneko T, Okubo T, Rallos LEE, Eda S, Mitsui H, Sato S, Nakamura Y, Tabata S, Minamisawa K. Development of a bacterial cell enrichment method and its application to the community analysis in soybean stems. MICROBIAL ECOLOGY 2009; 58:703-14. [PMID: 19662454 DOI: 10.1007/s00248-009-9566-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 07/06/2009] [Indexed: 05/06/2023]
Abstract
A method was developed for enriching bacterial cells from soybean stems which was recalcitrant for a culture-independent analysis of bacterial community due to the interference with plant DNA. Stem homogenates were fractionated by a series of differential centrifugations followed by a Nycodenz density gradient centrifugation. The efficiency of bacterial cell enrichment was assessed by ribosomal intergenic spacer analysis (RISA). The intensity and the number of bacterial amplicons of RISA were markedly increased in the DNA extracted from the enriched bacterial cells compared to that in the DNA directly extracted from soybean stems. The phylogenetic diversity of the enriched bacterial cells was evaluated by analyzing a clone library of 16S rRNA gene in comparison with those of the culturable fractions of the enriched and non-enriched stem-associated bacteria, endophytic bacteria, and epiphytic bacteria. The results indicated that the method was able to enrich both endophytic and epiphytic bacteria from soybean stems, and was useful to assess the bacterial diversity based on a 16S rRNA gene clone library. When the sequence data from all clones (1,332 sequences) were combined, 72 operational taxonomic units were affiliated with Proteobacteria (Alpha-, Beta-, and Gammaproteobacteria), Actinobacteria, Firmicutes, and Bacteroidetes, which also provided the most comprehensive set of data on the bacterial diversity in the aerial parts of soybeans.
Collapse
Affiliation(s)
- Seishi Ikeda
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Koike M, Maniania NK, Monzón A, Ownley BH, Pell JK, Rangel DE, Roy HE. Fungal entomopathogens: new insights on their ecology. FUNGAL ECOL 2009. [DOI: 10.1016/j.funeco.2009.05.001] [Citation(s) in RCA: 390] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
234
|
Harding MW, Marques LLR, Howard RJ, Olson ME. Can filamentous fungi form biofilms? Trends Microbiol 2009; 17:475-80. [PMID: 19833519 DOI: 10.1016/j.tim.2009.08.007] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 06/30/2009] [Accepted: 08/27/2009] [Indexed: 10/20/2022]
Abstract
The discovery of biofilm formation in bacteria and yeasts has led to a better understanding of microbial ecology and to new insights into the mechanisms of virulence and persistence of pathogenic microorganisms. However, it is generally assumed that filamentous fungi, some of which have a significant impact on our health or our economy, do not form biofilms. In contrast to this assumption, here we discuss recent findings supporting the hypothesis that surface-associated filamentous fungi can form biofilms. Based on these findings and on previous models for bacterial and yeast systems, we propose preliminary criteria and a model for biofilm formation by filamentous fungi.
Collapse
|
235
|
Rezzonico F, Smits THM, Montesinos E, Frey JE, Duffy B. Genotypic comparison of Pantoea agglomerans plant and clinical strains. BMC Microbiol 2009; 9:204. [PMID: 19772624 PMCID: PMC2764716 DOI: 10.1186/1471-2180-9-204] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 09/22/2009] [Indexed: 11/10/2022] Open
Abstract
Background Pantoea agglomerans strains are among the most promising biocontrol agents for a variety of bacterial and fungal plant diseases, particularly fire blight of apple and pear. However, commercial registration of P. agglomerans biocontrol products is hampered because this species is currently listed as a biosafety level 2 (BL2) organism due to clinical reports as an opportunistic human pathogen. This study compares plant-origin and clinical strains in a search for discriminating genotypic/phenotypic markers using multi-locus phylogenetic analysis and fluorescent amplified fragment length polymorphisms (fAFLP) fingerprinting. Results Majority of the clinical isolates from culture collections were found to be improperly designated as P. agglomerans after sequence analysis. The frequent taxonomic rearrangements underwent by the Enterobacter agglomerans/Erwinia herbicola complex may be a major problem in assessing clinical associations within P. agglomerans. In the P. agglomerans sensu stricto (in the stricter sense) group, there was no discrete clustering of clinical/biocontrol strains and no marker was identified that was uniquely associated to clinical strains. A putative biocontrol-specific fAFLP marker was identified only in biocontrol strains. The partial ORF located in this band corresponded to an ABC transporter that was found in all P. agglomerans strains. Conclusion Taxonomic mischaracterization was identified as a major problem with P. agglomerans, and current techniques removed a majority of clinical strains from this species. Although clear discrimination between P. agglomerans plant and clinical strains was not obtained with phylogenetic analysis, a single marker characteristic of biocontrol strains was identified which may be of use in strain biosafety determinations. In addition, the lack of Koch's postulate fulfilment, rare retention of clinical strains for subsequent confirmation, and the polymicrobial nature of P. agglomerans clinical reports should be considered in biosafety assessment of beneficial strains in this species.
Collapse
Affiliation(s)
- Fabio Rezzonico
- Agroscope Changins-Wädenswil ACW, Plant Protection Division, CH-8820 Wädenswil, Switzerland.
| | | | | | | | | |
Collapse
|
236
|
|
237
|
Bowers RM, Lauber CL, Wiedinmyer C, Hamady M, Hallar AG, Fall R, Knight R, Fierer N. Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Appl Environ Microbiol 2009; 75:5121-30. [PMID: 19502432 PMCID: PMC2725505 DOI: 10.1128/aem.00447-09] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 06/02/2009] [Indexed: 02/01/2023] Open
Abstract
Bacteria and fungi are ubiquitous in the atmosphere. The diversity and abundance of airborne microbes may be strongly influenced by atmospheric conditions or even influence atmospheric conditions themselves by acting as ice nucleators. However, few comprehensive studies have described the diversity and dynamics of airborne bacteria and fungi based on culture-independent techniques. We document atmospheric microbial abundance, community composition, and ice nucleation at a high-elevation site in northwestern Colorado. We used a standard small-subunit rRNA gene Sanger sequencing approach for total microbial community analysis and a bacteria-specific 16S rRNA bar-coded pyrosequencing approach (4,864 sequences total). During the 2-week collection period, total microbial abundances were relatively constant, ranging from 9.6 x 10(5) to 6.6 x 10(6) cells m(-3) of air, and the diversity and composition of the airborne microbial communities were also relatively static. Bacteria and fungi were nearly equivalent, and members of the proteobacterial groups Burkholderiales and Moraxellaceae (particularly the genus Psychrobacter) were dominant. These taxa were not always the most abundant in freshly fallen snow samples collected at this site. Although there was minimal variability in microbial abundances and composition within the atmosphere, the number of biological ice nuclei increased significantly during periods of high relative humidity. However, these changes in ice nuclei numbers were not associated with changes in the relative abundances of the most commonly studied ice-nucleating bacteria.
Collapse
MESH Headings
- Air Microbiology
- Bacteria/classification
- Bacteria/genetics
- Bacteria/isolation & purification
- Biodiversity
- Cluster Analysis
- Colony Count, Microbial
- Colorado
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Fungi/classification
- Fungi/genetics
- Fungi/isolation & purification
- Ice
- Molecular Sequence Data
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 18S/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Robert M Bowers
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, 80309, USA.
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Redford AJ, Fierer N. Bacterial succession on the leaf surface: a novel system for studying successional dynamics. MICROBIAL ECOLOGY 2009; 58:189-98. [PMID: 19221834 DOI: 10.1007/s00248-009-9495-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 01/28/2009] [Indexed: 05/05/2023]
Abstract
Succession is a widely studied process in plant and animal systems, but succession in microbial communities has received relatively little attention despite the ubiquity of microorganisms in natural habitats. One important microbial habitat is the phyllosphere, or leaf surface, which harbors large, diverse populations of bacteria and offers unique opportunities for the study of succession and temporal community assembly patterns. To explore bacterial community successional patterns, we sampled phyllosphere communities on cottonwood (Populus deltoides) trees multiple times across the growing season, from leaf emergence to leaf fall. Bacterial community composition was highly variable throughout the growing season; leaves sampled as little as a week apart were found to harbor significantly different communities, and the temporal variability on a given tree exceeded the variability in community composition between individual trees sampled on a given day. The bacterial communities clearly clustered into early-, mid-, and late-season clusters, with early- and late-season communities being more similar to each other than to the mid-season communities, and these patterns appeared consistent from year to year. Although we observed clear and predictable changes in bacterial community composition during the course of the growing season, changes in phyllosphere bacterial diversity were less predictable. We examined the species-time relationship, a measure of species turnover rate, and found that the relationship was fundamentally similar to that observed in plant and invertebrate communities, just on a shorter time scale. The temporal dynamics we observed suggest that although phyllosphere bacterial communities have high levels of phylogenetic diversity and rapid turnover rates, these communities follow predictable successional patterns from season to season.
Collapse
Affiliation(s)
- Amanda J Redford
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA.
| | | |
Collapse
|
239
|
Pontiroli A, Rizzi A, Simonet P, Daffonchio D, Vogel TM, Monier JM. Visual evidence of horizontal gene transfer between plants and bacteria in the phytosphere of transplastomic tobacco. Appl Environ Microbiol 2009; 75:3314-22. [PMID: 19329660 PMCID: PMC2681637 DOI: 10.1128/aem.02632-08] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 03/20/2009] [Indexed: 12/29/2022] Open
Abstract
Plant surfaces, colonized by numerous and diverse bacterial species, are often considered hot spots for horizontal gene transfer (HGT) between plants and bacteria. Plant DNA released during the degradation of plant tissues can persist and remain biologically active for significant periods of time, suggesting that soil or plant-associated bacteria could be in direct contact with plant DNA. In addition, nutrients released during the decaying process may provide a copiotrophic environment conducive for opportunistic microbial growth. Using Acinetobacter baylyi strain BD413 and transplastomic tobacco plants harboring the aadA gene as models, the objective of this study was to determine whether specific niches could be shown to foster bacterial growth on intact or decaying plant tissues, to develop a competence state, and to possibly acquire exogenous plant DNA by natural transformation. Visualization of HGT in situ was performed using A. baylyi strain BD413(rbcL-DeltaPaadA::gfp) carrying a promoterless aadA::gfp fusion. Both antibiotic resistance and green fluorescence phenotypes were restored in recombinant bacterial cells after homologous recombination with transgenic plant DNA. Opportunistic growth occurred on decaying plant tissues, and a significant proportion of the bacteria developed a competence state. Quantification of transformants clearly supported the idea that the phytosphere constitutes a hot spot for HGT between plants and bacteria. The nondisruptive approach used to visualize transformants in situ provides new insights into environmental factors influencing HGT for plant tissues.
Collapse
Affiliation(s)
- Alessandra Pontiroli
- Environmental Microbial Genomics Group, Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, Ecully, France
| | | | | | | | | | | |
Collapse
|
240
|
Pusey PL, Stockwell VO, Mazzola M. Epiphytic bacteria and yeasts on apple blossoms and their potential as antagonists of Erwinia amylovora. PHYTOPATHOLOGY 2009; 99:571-81. [PMID: 19351253 DOI: 10.1094/phyto-99-5-0571] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Apple blossoms were sampled for indigenous epiphytic populations of culturable microorganisms during different stages of bloom at two locations in central Washington State and one site in Corvallis, OR. Frequencies and population sizes of bacteria on stigmas of apple were lower in Washington than at Corvallis, where average relative humidity was higher and possibly favored greater colonization; however, bacteria at Corvallis were mainly pseudomonads, whereas those in Washington were diverse, composed of several genera. In Washington, yeast as well as bacteria were isolated from both stigmatic and hypanthial surfaces. Sampled blossoms were processed immediately to assess microbial populations, or after a 24-h incubation at 28 degrees C and high relative humidity, which broadened the range of detectable taxa evaluated as potential antagonists. Identifications were based on fatty acid methyl ester profiles and rDNA sequence analyses. Yeasts or yeastlike organisms were detected at frequencies similar to or greater than bacteria, particularly in hypanthia. When microbial isolates were tested for their capacity to suppress Erwinia amylovora on stigmas of detached crab apple flowers, many were ineffective. The best antagonists were the bacteria Pantoea agglomerans and Pseudomonas spp. and a few yeasts identified as Cryptococcus spp. Further evaluation of these taxa on flowers could lead to the discovery of additional biocontrol agents for fire blight.
Collapse
Affiliation(s)
- P Lawrence Pusey
- U.S. Department of Agriculture, Agricultural Research Service, Tree Fruit Laboratory, Wenatchee, WA 98801, USA.
| | | | | |
Collapse
|
241
|
Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Gupta HS. Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P (MTCC 8707) a cold tolerant bacterial strain from the Uttarakhand Himalayas. Indian J Microbiol 2009; 50:50-6. [PMID: 23100807 DOI: 10.1007/s12088-009-0024-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 03/31/2008] [Indexed: 10/20/2022] Open
Abstract
Exiguobacterium acetylicum strain 1P (MTCC 8707) is a gram-positive, rod-shaped, yellow pigmented bacterium isolated from soil on nutrient agar plates at 4°C. The identity of the bacterium was arrived on the basis of the biochemical characterization, BIOLOG sugar utilization pattern and sequencing of the 16S rRNA gene. It grew at temperatures ranging from 4 to 42°C, with temperature optima at 30°C. It expressed multiple plant growth promotion attributes such as phosphate solubilization, indole acetic acid (IAA), siderophore and hydrogen cyanide (HCN) production, differentially at suboptimal growth temperatures (15 and 4°C). At 15°C it solubilized phosphate (21.1 μg of P ml(-1) day(-1)), and produced IAA (14.9 μg ml(-1) day(-1)) in tryptophan amended media. Qualitative detection of siderophore production and HCN were possible at 15°C. At 4°C it retained all the plant growth promotion attributes. Seed bacterization with the isolate, positively influenced the growth and nutrient uptake parameters of wheat seedlings in glass house studies at suboptimal cold growing temperatures.
Collapse
Affiliation(s)
- G Selvakumar
- Vivekananda Institute of Hill Agriculture, Indian Council of Agricultural Research, Almora, 263 601 India
| | | | | | | | | | | |
Collapse
|
242
|
Dastager SG, Deepa CK, Puneet SC, Nautiyal CS, Pandey A. Isolation and characterization of plant growth-promoting strain Pantoea NII-186. From Western Ghat forest soil, India. Lett Appl Microbiol 2009; 49:20-5. [PMID: 19413772 DOI: 10.1111/j.1472-765x.2009.02616.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To isolate plant growth-promoting bacterium from Western Ghat forests in India. METHODS AND RESULTS A Gram-negative, rod shaped, cream white coloured strain Pantoea NII-186 isolated from Western Ghat soil sample. The taxonomic position of the bacterium was confirmed by sequencing of 16S rRNA and phylogenetic analysis. A strain grew at a wide range of temperature ranging from 5-40 degrees C, but optimum growth was observed at 28-30 degrees C. It showed multiple plant growth-promoting attributes such as phosphate solubilization activity, indole acetic acid (IAA) production, siderophore production and HCN production. It was able to solubilize (28 microg of Ca(3)PO(4) ml(-1) day(-1)), and produce IAA (59 microg) at 28 degrees C. The solubilization of insoluble phosphate was associates with a drop in the pH of the culture medium. Pantoea sp. NII-186 tolerate to different environmental stresses like 5-40 degrees C, 0-7% salt concentration and 4-12 pH range. CONCLUSIONS The 16S rRNA gene sequence confirmed that the isolate NII-186 was belongs to Pantoea genus and showed considerable differences in physiological properties with previously reported species of this genus. Isolate NII-186 possessed multiple attributes of plant growth-promoting activity. SIGNIFICANCE AND IMPACT OF THE STUDY Hence in the context it is proposed that Pantoea sp. NII-186, could be deployed as an inoculant to attain the desired plant growth-promoting activity in agricultural environment.
Collapse
Affiliation(s)
- S G Dastager
- Biotechnology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum, India
| | | | | | | | | |
Collapse
|
243
|
Baldotto LEB, Olivares FL. Phylloepiphytic interaction between bacteria and different plant species in a tropical agricultural system. Can J Microbiol 2009; 54:918-31. [PMID: 18997848 DOI: 10.1139/w08-087] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plant surfaces are a favourable niche for bacterial establishment, and hypothetically, plant species differ in their capacity to harbour epiphytic bacterial communities. This study was conducted to evaluate and describe the structural relationship of a bacterial community at the phyllosphere level with different plant species in a tropical ecosystem. Leaf blades of 47 plant species distributed in 27 botanical families were collected on a typical small Brazilian farm and prepared for observation under light and scanning electron microscopy. Naturally occurring bacteria were the most abundant settlers of the phylloplane, followed by fungal spore or hyphae. All plant species studied were colonized by phylloepiphytic bacteria, which were observed as solitary cells, microcolonies, and biofilms. However, independent of the family, the plant species differed in the pattern of phyllosphere colonization, as reflected in bacteria frequency and presence or absence of anatomical features that would favour the association. The phylloepiphytic bacteria were preferentially established on the following sites: epidermal cell wall junctions, glandular and nonglandular trichomes, veins, stomata, and epidermal cell wall surface. Profuse bacteria and fungi colonization was observed, at a level that was at least comparable with temperate regions. Interestingly, fungi seemed to alter the bacteria colonization pattern, most probably by microenvironmental modifications. The trichome type and density as well as the presence of epicuticular wax on the leaf blade surface seemed to be the most determinant anatomical features for the pattern of phyllosphere colonization. The presence of trichomes has a favourable, and epicuticular wax an unfavourable influence on the plant-bacteria interaction.
Collapse
Affiliation(s)
- Lílian Estrela Borges Baldotto
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
244
|
Mishra PK, Mishra S, Selvakumar G, Bisht JK, Kundu S, Gupta HS. Coinoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.). World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-9963-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
245
|
Someya N, Morohoshi T, Okano N, Otsu E, Usuki K, Sayama M, Sekiguchi H, Ikeda T, Ishida S. Distribution of N-Acylhomoserine Lactone-Producing Fluorescent Pseudomonads in the Phyllosphere and Rhizosphere of Potato (Solanum tuberosum L.). Microbes Environ 2009; 24:305-14. [DOI: 10.1264/jsme2.me09155] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nobutaka Someya
- National Agricultural Research Center for Hokkaido Region (NARCH), National Agriculture and Food Research Organization (NARO)
| | | | - Nobuya Okano
- Department of Applied Chemistry, Utsunomiya University
| | - Eiko Otsu
- National Agricultural Research Center for Hokkaido Region (NARCH), National Agriculture and Food Research Organization (NARO)
| | - Kazuei Usuki
- National Agricultural Research Center for Hokkaido Region (NARCH), National Agriculture and Food Research Organization (NARO)
| | - Mitsuru Sayama
- National Agricultural Research Center for Hokkaido Region (NARCH), National Agriculture and Food Research Organization (NARO)
| | - Hiroyuki Sekiguchi
- National Agricultural Research Center for Hokkaido Region (NARCH), National Agriculture and Food Research Organization (NARO)
| | - Tsukasa Ikeda
- Department of Applied Chemistry, Utsunomiya University
| | - Shigeki Ishida
- National Agricultural Research Center for Hokkaido Region (NARCH), National Agriculture and Food Research Organization (NARO)
| |
Collapse
|
246
|
Suda W, Nagasaki A, Shishido M. Powdery Mildew-Infection Changes Bacterial Community Composition in the Phyllosphere. Microbes Environ 2009; 24:217-23. [DOI: 10.1264/jsme2.me09114] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Wataru Suda
- Graduate School of Horticulture, Chiba University
| | | | | |
Collapse
|
247
|
Whipps J, Hand P, Pink D, Bending G. Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 2008; 105:1744-55. [DOI: 10.1111/j.1365-2672.2008.03906.x] [Citation(s) in RCA: 332] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
248
|
Crump BC, Koch EW. Attached bacterial populations shared by four species of aquatic angiosperms. Appl Environ Microbiol 2008; 74:5948-57. [PMID: 18676705 PMCID: PMC2565956 DOI: 10.1128/aem.00952-08] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 07/24/2008] [Indexed: 11/20/2022] Open
Abstract
Symbiotic relationships between microbes and plants are common and well studied in terrestrial ecosystems, but little is known about such relationships in aquatic environments. We compared the phylogenetic diversities of leaf- and root-attached bacteria from four species of aquatic angiosperms using denaturing gradient gel electrophoresis (DGGE) and DNA sequencing of PCR-amplified 16S rRNA genes. Plants were collected from three beds in Chesapeake Bay at sites characterized as freshwater (Vallisneria americana), brackish (Potomogeton perfoliatus and Stuckenia pectinata), and marine (Zostera marina). DGGE analyses showed that bacterial communities were very similar for replicate samples of leaves from canopy-forming plants S. pectinata and P. perfoliatus and less similar for replicate samples of leaves from meadow-forming plants Z. marina and V. americana and of roots of all species. In contrast, bacterial communities differed greatly among plant species and between leaves and roots. DNA sequencing identified 154 bacterial phylotypes, most of which were restricted to single plant species. However, 12 phylotypes were found on more than one plant species, and several of these phylotypes were abundant in clone libraries and represented the darkest bands in DGGE banding patterns. Root-attached phylotypes included relatives of sulfur-oxidizing Gammaproteobacteria and sulfate-reducing Deltaproteobacteria. Leaf-attached phylotypes included relatives of polymer-degrading Bacteroidetes and phototrophic Alphaproteobacteria. Also, leaves and roots of three plant species hosted relatives of methylotrophic Betaproteobacteria belonging to the family Methylophilaceae. These results suggest that aquatic angiosperms host specialized communities of bacteria on their surfaces, including several broadly distributed and potentially mutualistic bacterial populations.
Collapse
MESH Headings
- Atlantic Ocean
- Bacteria/classification
- Bacteria/isolation & purification
- Biodiversity
- Cluster Analysis
- DNA Fingerprinting
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Electrophoresis, Polyacrylamide Gel
- Fresh Water/microbiology
- Genes, rRNA
- Genotype
- Magnoliopsida/microbiology
- Maryland
- Molecular Sequence Data
- Nucleic Acid Denaturation
- Phylogeny
- Plant Leaves/microbiology
- Plant Roots/microbiology
- RNA, Ribosomal, 16S/genetics
- Rivers
- Seawater/microbiology
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Byron C Crump
- University of Maryland Center for Environmental Science, Horn Point Laboratory, 2020 Horns Point Rd., Cambridge, MD 21613, USA.
| | | |
Collapse
|
249
|
St. Leger RJ. Studies on adaptations of Metarhizium anisopliae to life in the soil. J Invertebr Pathol 2008; 98:271-6. [DOI: 10.1016/j.jip.2008.01.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 01/18/2008] [Indexed: 10/22/2022]
|
250
|
Ramos Solano B, Barriuso Maicas J, Pereyra de la Iglesia MT, Domenech J, Gutiérrez Mañero FJ. Systemic disease protection elicited by plant growth promoting rhizobacteria strains: relationship between metabolic responses, systemic disease protection, and biotic elicitors. PHYTOPATHOLOGY 2008; 98:451-7. [PMID: 18944194 DOI: 10.1094/phyto-98-4-0451] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A study of plant defensive systemic responses induced by three plant growth promoting rhizobacteria (PGPR) on Arabidopsis thaliana Col 0 against Pseudomonas syringae pv. tomato DC3000 at the biochemical and transcriptional levels is reported in this paper. All three strains decreased disease severity when applied to A. thaliana prior to pathogen inoculation. At the biochemical level, each of the three strains induced ethylene (ET) when incubated with 1-amino-cyclopropane-1-carboxylic acid, and salicylic acid (SA) production in the plant. Plants treated with each of the three strains were also reduced in salicylic acid production after pathogen challenge compared to untreated controls. This effect was more marked in plants treated with Chryseobacterium balustinum AUR9, the strain most effective in decreasing disease severity. The expression level of PR1, a transcriptional marker of the SA-dependent pathway in C. balustinum AUR9-treated plants, is fourfold that of controls while the expression of PDF1.2, a transcriptional marker for the SA-independent pathway, is not induced. C. balustinum cell wall lipopolysaccharides, being putative bacterial elicitor molecules, are able to reproduce this systemic induction effect at low doses. From these observations, we hypothesize that certain PGPR strains are capable of stimulating different systemic responses in host plants. With C. balustinum AUR9, the SA-dependent pathway is stimulated first, as indicated by increases in SA levels and PR1 expression, followed by induction of the SA-independent pathway, as indicated by the increases in ET concentrations. The effects of both pathways combined with respect to disease suppression appear to be additive.
Collapse
Affiliation(s)
- B Ramos Solano
- Universidad San Pablo CEU, Facultad de Farmacia, Madrid, Spain.
| | | | | | | | | |
Collapse
|