201
|
Yamauchi Y, Rogers MA. Sterol Metabolism and Transport in Atherosclerosis and Cancer. Front Endocrinol (Lausanne) 2018; 9:509. [PMID: 30283400 PMCID: PMC6157400 DOI: 10.3389/fendo.2018.00509] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/14/2018] [Indexed: 01/22/2023] Open
Abstract
Cholesterol is a vital lipid molecule for mammalian cells, regulating fluidity of biological membranes, and serving as an essential constituent of lipid rafts. Mammalian cells acquire cholesterol from extracellular lipoproteins and from de novo synthesis. Cholesterol biosynthesis generates various precursor sterols. Cholesterol undergoes metabolic conversion into oxygenated sterols (oxysterols), bile acids, and steroid hormones. Cholesterol intermediates and metabolites have diverse and important cellular functions. A network of molecular machineries including transcription factors, protein modifiers, sterol transporters/carriers, and sterol sensors regulate sterol homeostasis in mammalian cells and tissues. Dysfunction in metabolism and transport of cholesterol, sterol intermediates, and oxysterols occurs in various pathophysiological settings such as atherosclerosis, cancers, and neurodegenerative diseases. Here we review the cholesterol, intermediate sterol, and oxysterol regulatory mechanisms and intracellular transport machineries, and discuss the roles of sterols and sterol metabolism in human diseases.
Collapse
Affiliation(s)
- Yoshio Yamauchi
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
- *Correspondence: Yoshio Yamauchi
| | - Maximillian A. Rogers
- Division of Cardiovascular Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
202
|
Gil-Ramírez A, Morales D, Soler-Rivas C. Molecular actions of hypocholesterolaemic compounds from edible mushrooms. Food Funct 2018; 9:53-69. [DOI: 10.1039/c7fo00835j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Edible mushrooms contain bioactive compounds able to modulate the expression of genes related to absorption, biosynthesis and transport of cholesterol and regulation of its homeostasis.
Collapse
Affiliation(s)
- Alicia Gil-Ramírez
- Department of Production and Characterization of Novel Foods
- CIAL – Research Institute in Food Science (UAM+CSIC)
- C/Nicolas Cabrera 9
- Campus de Cantoblanco
- Universidad Autonoma de Madrid
| | - Diego Morales
- Department of Production and Characterization of Novel Foods
- CIAL – Research Institute in Food Science (UAM+CSIC)
- C/Nicolas Cabrera 9
- Campus de Cantoblanco
- Universidad Autonoma de Madrid
| | - Cristina Soler-Rivas
- Department of Production and Characterization of Novel Foods
- CIAL – Research Institute in Food Science (UAM+CSIC)
- C/Nicolas Cabrera 9
- Campus de Cantoblanco
- Universidad Autonoma de Madrid
| |
Collapse
|
203
|
Rossi R, Lessi M, Manzini C, Bellina F. Synthesis and Biological Profiles of 4,5-, 1,5-, and 1,2-Diaryl-1 H -imidazoles. VICINAL DIARYL SUBSTITUTED HETEROCYCLES 2018:83-160. [DOI: 10.1016/b978-0-08-102237-5.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
204
|
Rajapakse D, Peterson K, Mishra S, Wistow G. Serum starvation of ARPE-19 changes the cellular distribution of cholesterol and Fibulin3 in patterns reminiscent of age-related macular degeneration. Exp Cell Res 2017; 361:333-341. [PMID: 29097185 PMCID: PMC5701823 DOI: 10.1016/j.yexcr.2017.10.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/25/2017] [Accepted: 10/28/2017] [Indexed: 11/29/2022]
Abstract
Retinal pigment epithelium (RPE) has been implicated as key source of cholesterol-rich deposits at Bruch's membrane (BrM) and in drusen in aging human eye. We have shown that serum-deprivation of confluent RPE cells is associated with upregulation of cholesterol synthesis and accumulation of unesterified cholesterol (UC). Here we investigate the cellular processes involved in this response. We compared the distribution and localization of UC and esterified cholesterol (EC); the age-related macular degeneration (AMD) associated EFEMP1/Fibulin3 (Fib3); and levels of acyl-coenzyme A (CoA): cholesterol acyltransferases (ACAT) ACAT1, ACAT2 and Apolipoprotein B (ApoB) in ARPE-19 cells cultured in serum-supplemented and serum-free media. The results were compared with distributions of these lipids and proteins in human donor eyes with AMD. Serum deprivation of ARPE-19 was associated with increased formation of FM dye-positive membrane vesicles, many of which co-labeled for UC. Additionally, UC colocalized with Fib3 in distinct granules. By day 5, serum-deprived cells grown on transwells secreted Fib3 basally into the matrix. While mRNA and protein levels of ACTA1 were constant over several days of serum-deprivation, ACAT2 levels increased significantly after serum-deprivation, suggesting increased formation of EC. The lower levels of intracellular EC observed under serum-deprivation were associated with increased formation and secretion of ApoB. The responses to serum-deprivation in RPE-derived cells: accumulation and secretion of lipids, lipoproteins, and Fib3 are very similar to patterns seen in human donor eyes with AMD and suggest that this model mimics processes relevant to disease progression.
Collapse
Affiliation(s)
- Dinusha Rajapakse
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Building 6 Room 106, Bethesda, MD, USA.
| | - Katherine Peterson
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Building 6 Room 106, Bethesda, MD, USA.
| | - Sanghamitra Mishra
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Building 6 Room 106, Bethesda, MD, USA.
| | - Graeme Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Building 6 Room 106, Bethesda, MD, USA.
| |
Collapse
|
205
|
Korber M, Klein I, Daum G. Steryl ester synthesis, storage and hydrolysis: A contribution to sterol homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1534-1545. [DOI: 10.1016/j.bbalip.2017.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 02/01/2023]
|
206
|
Hai Q, Ritchey B, Robinet P, Alzayed AM, Brubaker G, Zhang J, Smith JD. Quantitative Trait Locus Mapping of Macrophage Cholesterol Metabolism and CRISPR/Cas9 Editing Implicate an ACAT1 Truncation as a Causal Modifier Variant. Arterioscler Thromb Vasc Biol 2017; 38:83-91. [PMID: 29097366 DOI: 10.1161/atvbaha.117.310173] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/19/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Cholesterol metabolism is a dynamic process involving intracellular trafficking, cholesterol esterification, and cholesterol ester hydrolysis. Our objective was to identify genes that regulate macrophage cholesterol metabolism. APPROACHES AND RESULTS We performed quantitative trait loci mapping of free and esterified cholesterol levels and the ratio of esterified to free cholesterol in acetylated low-density lipoprotein-loaded bone marrow-derived macrophages from an AKR×DBA/2 strain intercross. Ten distinct cholesterol modifier loci were identified, and bioinformatics was used to prioritize candidate genes. The strongest locus was located on distal chromosome 1, which we named Mcmm1 (macrophage cholesterol metabolism modifier 1). This locus harbors the Soat1 (sterol O-acyltransferase 1) gene, encoding Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1), which esterifies free cholesterol. The parental AKR strain has an exon 2 deletion in Soat1, which leads to a 33 amino acid N-terminal truncation in ACAT1. CRISPR/Cas9 editing of DBA/2 embryonic stem cells was performed to replicate the AKR strain Soat1 exon 2 deletion, while leaving the remainder of the genome unaltered. DBA/2 stem cells and stem cells heterozygous and homozygous for the Soat1 exon 2 deletion were differentiated into macrophages and loaded with acetylated low-density lipoprotein. DBA/2 stem cell-derived macrophages accumulated less free cholesterol and more esterified cholesterol relative to cells heterozygous and homozygous for the Soat1 exon 2 deletion. CONCLUSIONS A Soat1 deletion present in AKR mice, and resultant N-terminal ACAT1 truncation, was confirmed to be a significant modifier of macrophage cholesterol metabolism. Other Mcmm loci candidate genes were prioritized via bioinformatics.
Collapse
Affiliation(s)
- Qimin Hai
- From the Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Henan, China (Q.H., J.Z.); Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH (Q.H., B.R., P.R., A.M.A., G.B., J.D.S); and Department of Chemistry, Cleveland State University, OH (B.R.)
| | - Brian Ritchey
- From the Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Henan, China (Q.H., J.Z.); Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH (Q.H., B.R., P.R., A.M.A., G.B., J.D.S); and Department of Chemistry, Cleveland State University, OH (B.R.)
| | - Peggy Robinet
- From the Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Henan, China (Q.H., J.Z.); Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH (Q.H., B.R., P.R., A.M.A., G.B., J.D.S); and Department of Chemistry, Cleveland State University, OH (B.R.)
| | - Alexander M Alzayed
- From the Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Henan, China (Q.H., J.Z.); Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH (Q.H., B.R., P.R., A.M.A., G.B., J.D.S); and Department of Chemistry, Cleveland State University, OH (B.R.)
| | - Greg Brubaker
- From the Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Henan, China (Q.H., J.Z.); Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH (Q.H., B.R., P.R., A.M.A., G.B., J.D.S); and Department of Chemistry, Cleveland State University, OH (B.R.)
| | - Jinying Zhang
- From the Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Henan, China (Q.H., J.Z.); Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH (Q.H., B.R., P.R., A.M.A., G.B., J.D.S); and Department of Chemistry, Cleveland State University, OH (B.R.).
| | - Jonathan D Smith
- From the Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Henan, China (Q.H., J.Z.); Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH (Q.H., B.R., P.R., A.M.A., G.B., J.D.S); and Department of Chemistry, Cleveland State University, OH (B.R.).
| |
Collapse
|
207
|
Mast N, Lin JB, Anderson KW, Bjorkhem I, Pikuleva IA. Transcriptional and post-translational changes in the brain of mice deficient in cholesterol removal mediated by cytochrome P450 46A1 (CYP46A1). PLoS One 2017; 12:e0187168. [PMID: 29073233 PMCID: PMC5658173 DOI: 10.1371/journal.pone.0187168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/13/2017] [Indexed: 01/12/2023] Open
Abstract
Cytochrome P450 46A1 (CYP46A1) converts cholesterol to 24-hydroxycholesterol and thereby controls the major pathways of cholesterol removal from the brain. Cyp46a1-/- mice have a reduction in the rate of cholesterol biosynthesis in the brain and significant impairments to memory and learning. To gain insights into the mechanisms underlying Cyp46a1-/- phenotype, we used Cyp46a1-/- mice and quantified their brain sterol levels and the expression of the genes pertinent to cholesterol homeostasis. We also compared the Cyp46a1-/- and wild type brains for protein phosphorylation and ubiquitination. The data obtained enable the following inferences. First, there seems to be a compensatory upregulation in the Cyp46a1-/- brain of the pathways of cholesterol storage and CYP46A1-independent removal. Second, transcriptional regulation of the brain cholesterol biosynthesis via sterol regulatory element binding transcription factors is not significantly activated in the Cyp46a1-/- brain to explain a compensatory decrease in cholesterol biosynthesis. Third, some of the liver X receptor target genes (Abca1) are paradoxically upregulated in the Cyp46a1-/- brain, possibly due to a reduced activation of the small GTPases RAB8, CDC42, and RAC as a result of a reduced phosphorylation of RAB3IP and PAK1. Fourth, the phosphorylation of many other proteins (a total of 146) is altered in the Cyp46a1-/- brain, including microtubule associated and neurofilament proteins (the MAP and NEF families) along with proteins related to synaptic vesicles and synaptic neurotransmission (e.g., SLCs, SHANKs, and BSN). Fifth, the extent of protein ubiquitination is increased in the Cyp46a1-/- brain, and the affected proteins pertain to ubiquitination (UBE2N), cognition (STX1B and ATP1A2), cytoskeleton function (TUBA1A and YWHAZ), and energy production (ATP1A2 and ALDOA). The present study demonstrates the diverse potential effects of CYP46A1 deficiency on brain functions and identifies important proteins that could be affected by this deficiency.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Joseph B. Lin
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kyle W. Anderson
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland, United States of America
| | - Ingemar Bjorkhem
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institute, Huddinge, Sweden
| | - Irina A. Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
208
|
Wang YT, Wang YH, Ma YT, Fu ZY, Yang YN, Ma X, Li XM, Adi D, Liu F, Chen BD. ACAT-1 gene polymorphism is associated with increased susceptibility to coronary artery disease in Chinese Han population: a case-control study. Oncotarget 2017; 8:89055-89063. [PMID: 29179498 PMCID: PMC5687668 DOI: 10.18632/oncotarget.21649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/27/2017] [Indexed: 02/06/2023] Open
Abstract
Several studies suggest an important role of Acyl-CoA: cholesterol acyltransferase-1(ACAT-1) in the development of atherosclerosis. The aim of present study was to investigate whether there exists a possible correlation between genetic variations in ACAT-1 genes and coronary artery disease (CAD) risk. Four polymorphisms (rs1044925, rs11545566, rs12121758 and rs10913733) were finally selected and genotyped in 750 CAD patients and 580 health controls, using the improved multiplex ligation detection reaction (iMLDR) method. We found that the rs11545566 G allele was associated with a significantly elevated CAD risk [GG vs. AA: adjusted odds ratio (AOR) = 1.62, 95% confidence interval (CI) = 1.13-2.32, P = 0.008; GA/GG vs. AA: AOR = 1.67, 95% CI = 1.22-2.29, P = 0.001]. The rs10913733 G allele was also associated with a significantly elevated CAD risk (GG vs. TT: AOR = 1.57, 95% CI = 1.08-2.28, P = 0.018; GT/GG vs. TT: AOR = 1.39, 95% CI = 1.07-1.79, P = 0.013). Multivariate linear regression analysis showed that the rs11545566 polymorphism was independently associated with the Gensini scores (P = 0.005). The Gensini score of subjects in the variant GG genotype group and the GG/GA genotype group were higher than the score of subjects in the AA genotype group (32.49 ± 26.60 and 31.26 ± 26.96 vs. 23.45 ± 21.64; P = 0.001 and 0.002, respectively). Our results demonstrate that ACAT-1 rs1154556 and rs10913733 polymorphism are novel genetic factors in the development of CAD. Rs11545566 was also associated with the severity of CAD.
Collapse
Affiliation(s)
- Yong-Tao Wang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Ying-Hong Wang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Zhen-Yan Fu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Yi-Ning Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Xiang Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Xiao-Mei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Dilare Adi
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Fen Liu
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Bang-Dang Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| |
Collapse
|
209
|
Liu L, Cui H, Fu R, Zheng M, Liu R, Zhao G, Wen J. The regulation of IMF deposition in pectoralis major of fast- and slow- growing chickens at hatching. J Anim Sci Biotechnol 2017; 8:77. [PMID: 29026539 PMCID: PMC5623058 DOI: 10.1186/s40104-017-0207-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/22/2017] [Indexed: 12/18/2022] Open
Abstract
Background The lipid from egg yolk is largely consumed in supplying the energy for embryonic growth until hatching. The remaining lipid in the yolk sac is transported into the hatchling’s tissues. The gene expression profiles of fast- and slow-growing chickens, Arbor Acres (AA) and Beijing-You (BJY), were determined to identify global differentially expressed genes and enriched pathways related to lipid metabolism in the pectoralis major at hatching. Results Between these two breeds, the absolute and weight-specific amounts of total yolk energy (TYE) and intramuscular fat (IMF) content in pectoralis major of fast-growing chickens were significantly higher (P < 0.01, P < 0.01, P < 0.05, respectively) than those of the slow-growing breed. IMF content and u-TYE were significantly related (r = 0.9047, P < 0.01). Microarray analysis revealed that gene transcripts related to lipogenesis, including PPARG, RBP7, LPL, FABP4, THRSP, ACACA, ACSS1, DGAT2, and GK, were significantly more abundant in breast muscle of fast-growing chickens than in slow-growing chickens. Conversely, the abundance of transcripts of genes involved in fatty acid degradation and glycometabolism, including ACAT1, ACOX2, ACOX3, CPT1A, CPT2, DAK, APOO, FUT9, GCNT1, and B4GALT3, was significantly lower in fast-growing chickens. The results further indicated that the PPAR signaling pathway was directly involved in fat deposition in pectoralis major, and other upstream pathways (Hedgehog, TGF-beta, and cytokine–cytokine receptor interaction signaling pathways) play roles in its regulation of the expression of related genes. Conclusions Additional energy from the yolk sac is transported and deposited as IMF in the pectoralis major of chickens at hatching. Genes and pathways related to lipid metabolism (such as PPAR, Hedgehog, TGF-beta, and cytokine–cytokine receptor interaction signaling pathways) promote the deposition of IMF in the pectoralis major of fast-growing chickens compared with those that grow more slowly. These findings provide new insights into the molecular mechanisms underlying lipid metabolism and deposition in hatchling chickens. Electronic supplementary material The online version of this article (10.1186/s40104-017-0207-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lu Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China.,State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Huanxian Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China.,State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Ruiqi Fu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China.,State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Maiqing Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China.,State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Ranran Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China.,State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China.,State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China.,State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| |
Collapse
|
210
|
Zhu T, Corraze G, Plagnes-Juan E, Quillet E, Dupont-Nivet M, Skiba-Cassy S. Regulation of genes related to cholesterol metabolism in rainbow trout (Oncorhynchus mykiss) fed a plant-based diet. Am J Physiol Regul Integr Comp Physiol 2017; 314:R58-R70. [PMID: 28931545 DOI: 10.1152/ajpregu.00179.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
When compared with fish meal and fish oil, plant ingredients differ not only in their protein content and amino acid and fatty acid profiles but are also devoid of cholesterol, the major component of cell membrane and precursor of several bioactive compounds. Based on these nutritional characteristics, plant-based diets can affect fish physiology and cholesterol metabolism. To investigate the mechanisms underlying cholesterol homeostasis, rainbow trout were fed from 1 g body wt for 6 mo with a totally plant-based diet (V), a marine diet (M), and a marine-restricted diet (MR), with feed intake adjusted to that of the V group. The expression of genes involved in cholesterol synthesis, esterification, excretion, bile acid synthesis, and cholesterol efflux was measured in liver. Results showed that genes involved in cholesterol synthesis were upregulated in trout fed the V diet, whereas expression of genes related to bile acid synthesis ( cyp7a1) and cholesterol elimination ( abcg8) were reduced. Feeding trout the V diet also enhanced the expression of srebp-2 while reducing that of lxrα and miR-223. Overall, these data suggested that rainbow trout coped with the altered nutritional characteristics and absence of dietary cholesterol supply by increasing cholesterol synthesis and limiting cholesterol efflux through molecular mechanisms involving at least srebp-2, lxrα, and miR-223. However, plasma and body cholesterol levels in trout fed the V diet were lower than in fish fed the M diet, raising the question of the role of cholesterol in the negative effect of plant-based diet on growth.
Collapse
Affiliation(s)
- Tengfei Zhu
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche, Joint Research Unit 1419, Nutrition Métabolisme Aquaculture, Saint Pée-sur-Nivelle, France
| | - Geneviève Corraze
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche, Joint Research Unit 1419, Nutrition Métabolisme Aquaculture, Saint Pée-sur-Nivelle, France
| | - Elisabeth Plagnes-Juan
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche, Joint Research Unit 1419, Nutrition Métabolisme Aquaculture, Saint Pée-sur-Nivelle, France
| | - Edwige Quillet
- Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mathilde Dupont-Nivet
- Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sandrine Skiba-Cassy
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche, Joint Research Unit 1419, Nutrition Métabolisme Aquaculture, Saint Pée-sur-Nivelle, France
| |
Collapse
|
211
|
Chanyshev MD, Ushakov DS, Gulyaeva LF. Expression of miR-21 and its Acat1, Armcx1, and Pten target genes in liver of female rats treated with DDT and benzo[a]pyrene. Mol Biol 2017. [DOI: 10.1134/s0026893317040082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
212
|
Tirinato L, Pagliari F, Limongi T, Marini M, Falqui A, Seco J, Candeloro P, Liberale C, Di Fabrizio E. An Overview of Lipid Droplets in Cancer and Cancer Stem Cells. Stem Cells Int 2017; 2017:1656053. [PMID: 28883835 PMCID: PMC5572636 DOI: 10.1155/2017/1656053] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 06/08/2017] [Accepted: 07/05/2017] [Indexed: 02/06/2023] Open
Abstract
For decades, lipid droplets have been considered as the main cellular organelles involved in the fat storage, because of their lipid composition. However, in recent years, some new and totally unexpected roles have been discovered for them: (i) they are active sites for synthesis and storage of inflammatory mediators, and (ii) they are key players in cancer cells and tissues, especially in cancer stem cells. In this review, we summarize the main concepts related to the lipid droplet structure and function and their involvement in inflammatory and cancer processes.
Collapse
Affiliation(s)
- L. Tirinato
- German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - F. Pagliari
- Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - T. Limongi
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Torino, Italy
| | - M. Marini
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - A. Falqui
- Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - J. Seco
- German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany
| | - P. Candeloro
- BioNEM Lab, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - C. Liberale
- Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - E. Di Fabrizio
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
213
|
Pal P, Gandhi HP, Kanhed AM, Patel NR, Mankadia NN, Baldha SN, Barmade MA, Murumkar PR, Yadav MR. Vicinal diaryl azole-based urea derivatives as potential cholesterol lowering agents acting through inhibition of SOAT enzymes. Eur J Med Chem 2017; 130:107-123. [PMID: 28242547 DOI: 10.1016/j.ejmech.2017.02.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
Abstract
A novel series of vicinal diaryl azole-urea derivatives were synthesized and evaluated for their potential to inhibit SOAT enzyme. Among the reported compounds, compound (12d) emerged as the most potent compound with an IC50 value of 2.43 μM. In polaxamer-407 induced lipoprotein lipase inhibition model, compound (12d) reduced triglyceride turnover in vivo. Compound (12d) also showed dose-dependent prevention of serum total cholesterol and prevention of LDL-C elevation at a dose of 30 mg/kg. Furthermore, compound (12d) showed potential to stop falling levels of serum HDL-C dose-dependently and improved the atherogenic index. Effect of 12d on body weight, plaque formation and development of atherogenic lesions were studied. Toxicological study of compound (12d) indicated that at a dose of 2000 mg/kg, 12d was devoid of any signs of toxicity or mortality.
Collapse
Affiliation(s)
- Palash Pal
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, India
| | - Hardik P Gandhi
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, India
| | - Ashish M Kanhed
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, India
| | - Nirali R Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, India
| | - Niraj N Mankadia
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, India
| | - Satish N Baldha
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, India
| | - Mahesh A Barmade
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, India
| | - Prashant R Murumkar
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, India
| | - Mange Ram Yadav
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, India.
| |
Collapse
|
214
|
Hernández-Díaz N, Torres R, Ramírez-Pinilla MP. Proteomic Profile of Mabuya sp. (Squamata: Scincidae) Ovary and Placenta During Gestation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:371-389. [PMID: 28397398 DOI: 10.1002/jez.b.22739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 02/07/2023]
Abstract
Reptiles are one of the most diverse groups of vertebrates, providing an integrated system for comparative studies on metabolic, animal physiology, and developmental biology. However, the molecular data available are limited and only recently have started to call attention in the "omics" sciences. Mabuya sp. is a viviparous placentrotrophic skink with particular reproductive features, including microlecithal eggs, early luteolysis, prolonged gestation, and development of a highly specialized placenta. This placenta is responsible for respiratory exchange and the transference of all nutrients necessary for embryonic development. Our aim was to identify differentially expressed proteins in the ovary and placenta of Mabuya sp. during early, mid, and late gestation; their possible metabolic pathways; and biological processes. We carried out a comparative proteomic analysis during gestation in both tissues by sodium dodecyl sulfate polyacrylamide gel electrophoresis, two-dimensional gel electrophoresis, and matrix-assisted laser desorption/ionization. Differential protein expression in both tissues (Student's t-test P < 0.05) was related to several processes such as cell structure, cell movement, and energy. Proteins found in ovary are mainly associated with follicular development and its regulation. In the placenta, particularly during mid and late gestation, protein expression is involved in nutrient metabolism, transport, protein synthesis, and embryonic development. This work provides new insights about the proteins expressed and their physiological mechanisms in Mabuya sp. placenta and ovary during gestation.
Collapse
Affiliation(s)
- Nathaly Hernández-Díaz
- Laboratorio de Biología Reproductiva de Vertebrados, Escuela de Biología, Facultad de Ciencias, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia.,Grupo de Investigación en Bioquímica y Microbiología, GIBIM, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Rodrigo Torres
- Grupo de Investigación en Bioquímica y Microbiología, GIBIM, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia.,Laboratorio de Biotecnología-CEO, Instituto Colombiano del Petróleo, ECOPETROL, Piedecuesta, Santander, Colombia
| | - Martha Patricia Ramírez-Pinilla
- Laboratorio de Biología Reproductiva de Vertebrados, Escuela de Biología, Facultad de Ciencias, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| |
Collapse
|
215
|
Chang TY, Yamauchi Y, Hasan MT, Chang C. Cellular cholesterol homeostasis and Alzheimer's disease. J Lipid Res 2017; 58:2239-2254. [PMID: 28298292 DOI: 10.1194/jlr.r075630] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/14/2017] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in older adults. Currently, there is no cure for AD. The hallmark of AD is the accumulation of extracellular amyloid plaques composed of amyloid-β (Aβ) peptides (especially Aβ1-42) and neurofibrillary tangles, composed of hyperphosphorylated tau and accompanied by chronic neuroinflammation. Aβ peptides are derived from the amyloid precursor protein (APP). The oligomeric form of Aβ peptides is probably the most neurotoxic species; its accumulation eventually forms the insoluble and aggregated amyloid plaques. ApoE is the major apolipoprotein of the lipoprotein(s) present in the CNS. ApoE has three alleles, of which the Apoe4 allele constitutes the major risk factor for late-onset AD. Here we describe the complex relationship between ApoE4, oligomeric Aβ peptides, and cholesterol homeostasis. The review consists of four parts: 1) key elements involved in cellular cholesterol metabolism and regulation; 2) key elements involved in intracellular cholesterol trafficking; 3) links between ApoE4, Aβ peptides, and disturbance of cholesterol homeostasis in the CNS; 4) potential lipid-based therapeutic targets to treat AD. At the end, we recommend several research topics that we believe would help in better understanding the connection between cholesterol and AD for further investigations.
Collapse
Affiliation(s)
- Ta-Yuan Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Yoshio Yamauchi
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Mazahir T Hasan
- Laboratory of Memory Circuits, Achucarro Basque Center for Neuroscience, Zamudio, Spain
| | - Catherine Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
| |
Collapse
|
216
|
Romano S, Mitro N, Diviccaro S, Spezzano R, Audano M, Garcia-Segura LM, Caruso D, Melcangi RC. Short-term effects of diabetes on neurosteroidogenesis in the rat hippocampus. J Steroid Biochem Mol Biol 2017; 167:135-143. [PMID: 27890531 DOI: 10.1016/j.jsbmb.2016.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/12/2016] [Accepted: 11/22/2016] [Indexed: 12/31/2022]
Abstract
Diabetes may induce neurophysiological and structural changes in the central nervous system (i.e., diabetic encephalopathy). We here explored whether the levels of neuroactive steroids (i.e., neuroprotective agents) in the hippocampus may be altered by short-term diabetes (i.e., one month). To this aim, by liquid chromatography-tandem mass spectrometry we observed that in the experimental model of the rat raised diabetic by streptozotocin injection, one month of pathology induced changes in the levels of several neuroactive steroids, such as pregnenolone, progesterone and its metabolites (i.e., tetrahydroprogesterone and isopregnanolone) and testosterone and its metabolites (i.e., dihydrotestosterone and 3α-diol). Interestingly these brain changes were not fully reflected by the plasma level changes, suggesting that early phase of diabetes directly affects steroidogenesis and/or steroid metabolism in the hippocampus. These concepts are also supported by the findings that crucial steps of steroidogenic machinery, such as the gene expression of steroidogenic acute regulatory protein (i.e., molecule involved in the translocation of cholesterol into mitochondria) and cytochrome P450 side chain cleavage (i.e., enzyme converting cholesterol into pregnenolone) and 5α-reductase (enzyme converting progesterone and testosterone into their metabolites) are also affected in the hippocampus. In addition, cholesterol homeostasis as well as the functionality of mitochondria, a key organelle in which the limiting step of neuroactive steroid synthesis takes place, are also affected. Data obtained indicate that short-term diabetes alters hippocampal steroidogenic machinery and that these changes are associated with impaired cholesterol homeostasis and mitochondrial dysfunction in the hippocampus, suggesting them as relevant factors for the development of diabetic encephalopathy.
Collapse
Affiliation(s)
- Simone Romano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Roberto Spezzano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
217
|
Characterization of Ghrelin O-Acyltransferase (GOAT) in goldfish (Carassius auratus). PLoS One 2017; 12:e0171874. [PMID: 28178327 PMCID: PMC5298278 DOI: 10.1371/journal.pone.0171874] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/26/2017] [Indexed: 12/21/2022] Open
Abstract
Ghrelin is the only known hormone posttranslationally modified with an acylation. This modification is crucial for most of ghrelin’s physiological effects and is catalyzed by the polytopic enzyme ghrelin O-acyltransferase (GOAT). The aim of this study was to characterize GOAT in a teleost model, goldfish (Carassius auratus). First, the full-length cDNA sequence was obtained by RT-PCR and rapid amplification of cDNA ends methods. Two highly homologous cDNAs of 1491 and 1413 bp, respectively, named goat-V1 and goat-V2 were identified. Deduced protein sequences (393 and 367 amino acids, respectively) are predicted to present 11 and 9 transmembrane regions, respectively, and both contain two conserved key residues proposed to be involved in catalysis: asparagine 273 and histidine 304. RT-qPCR revealed that both forms of goat mRNAs show a similar widespread tissue distribution, with the highest expression in the gastrointestinal tract and gonads and less but considerable expression in brain, pituitary, liver and adipose tissue. Immunostaining of intestinal sections showed the presence of GOAT immunoreactive cells in the intestinal mucosa, some of which colocalize with ghrelin. Using an in vitro approach, we observed that acylated ghrelin downregulates GOAT gene and protein levels in cultured intestine in a time-dependent manner. Finally, we found a rhythmic oscillation of goat mRNA expression in the hypothalamus, pituitary and intestinal bulb of goldfish fed at midday, but not at midnight. Together, these findings report novel data characterizing GOAT, and offer new information about the ghrelinergic system in fish.
Collapse
|
218
|
The Lipid Droplet and the Endoplasmic Reticulum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 997:111-120. [DOI: 10.1007/978-981-10-4567-7_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
219
|
Chang NY, Chan YJ, Ding ST, Lee YH, HuangFu WC, Liu IH. Sterol O-Acyltransferase 2 Contributes to the Yolk Cholesterol Trafficking during Zebrafish Embryogenesis. PLoS One 2016; 11:e0167644. [PMID: 27936201 PMCID: PMC5147938 DOI: 10.1371/journal.pone.0167644] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/17/2016] [Indexed: 11/18/2022] Open
Abstract
To elucidate whether Sterol O-acyltransferase (Soat) mediates the absorption and transportation of yolk lipids to the developing embryo, zebrafish soat1 and soat2 were cloned and studied. In the adult zebrafish, soat1 was detected ubiquitously while soat2 mRNA was detected specifically in the liver, intestine, brain and testis. Whole mount in situ hybridization demonstrated that both soat1 and soat2 expressed in the yolk syncytial layer, hatching gland and developing cardiovascular as well as digestive systems, suggesting that Soats may play important roles in the lipid trafficking and utilization during embryonic development. The enzymatic activity of zebrafish Soat2 was confirmed by Oil Red O staining in the HEK293 cells overexpressing this gene, and could be quenched by Soat2 inhibitor Pyripyropene A (PPPA). The zebrafish embryos injected with PPPA or morpholino oligo against soat2 in the yolk showed significantly larger yolk when compared with wild-type embryos, especially at 72 hpf, indicating a slower rate of yolk consumption. Our result indicated that zebrafish Soat2 is catalytically active in synthesizing cholesteryl esters and contributes to the yolk cholesterol trafficking during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Nai-Yun Chang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yen-Ju Chan
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yen-Hua Lee
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Wei-Chun HuangFu
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - I-Hsuan Liu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
220
|
Alves S, Fol R, Cartier N. Gene Therapy Strategies for Alzheimer's Disease: An Overview. Hum Gene Ther 2016; 27:100-7. [PMID: 26838997 DOI: 10.1089/hum.2016.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Key neuropathological hallmarks of Alzheimer's disease (AD) are extracellular amyloid plaques and intracellular accumulation of hyperphosphorylated Tau protein. The mechanisms underlying these neuropathological changes remain unclear. So far, research on AD therapy has had limited success in terms of symptomatic treatments although it has also had several failures for disease-modifying drugs. Gene transfer strategies to the brain have contributed to evaluate in animal models many interesting tracks, some of which should deserve clinical applications in AD patients in the future.
Collapse
Affiliation(s)
- Sandro Alves
- INSERM U1169/MIRCen CEA 92265 Fontenay aux Roses and Université Paris-Sud, Université Paris-Saclay , Orsay, France
| | - Romain Fol
- INSERM U1169/MIRCen CEA 92265 Fontenay aux Roses and Université Paris-Sud, Université Paris-Saclay , Orsay, France
| | - Nathalie Cartier
- INSERM U1169/MIRCen CEA 92265 Fontenay aux Roses and Université Paris-Sud, Université Paris-Saclay , Orsay, France
| |
Collapse
|
221
|
Abstract
CVD accounted for 27 % of all deaths in the UK in 2014, and was responsible for 1·7 million hospital admissions in 2013/2014. This condition becomes increasingly prevalent with age, affecting 34·1 and 29·8 % of males and females over 75 years of age respectively in 2011. The dysregulation of cholesterol metabolism with age, often observed as a rise in LDL-cholesterol, has been associated with the pathogenesis of CVD. To compound this problem, it is estimated by 2050, 22 % of the world's population will be over 60 years of age, in culmination with a growing resistance and intolerance to pre-existing cholesterol regulating drugs such as statins. Therefore, it is apparent research into additional therapies for hypercholesterolaemia and CVD prevention is a growing necessity. However, it is also imperative to recognise this complex biological system cannot be studied using a reductionist approach; rather its biological uniqueness necessitates a more integrated methodology, such as that offered by systems biology. In this review, we firstly discuss cholesterol metabolism and how it is affected by diet and the ageing process. Next, we describe therapeutic strategies for hypercholesterolaemia, and finally how the systems biology paradigm can be utilised to investigate how ageing interacts with complex systems such as cholesterol metabolism. We conclude by emphasising the need for nutritionists to work in parallel with the systems biology community, to develop novel approaches to studying cholesterol metabolism and its interaction with ageing.
Collapse
|
222
|
Guo D, Lu M, Hu X, Xu J, Hu G, Zhu M, Zhang X, Li Q, Chang CCY, Chang T, Song B, Xiong Y, Li B. Low-level expression of human ACAT2 gene in monocytic cells is regulated by the C/EBP transcription factors. Acta Biochim Biophys Sin (Shanghai) 2016; 48:980-989. [PMID: 27688151 PMCID: PMC5091289 DOI: 10.1093/abbs/gmw091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/18/2016] [Accepted: 07/15/2016] [Indexed: 01/15/2023] Open
Abstract
Acyl-coenzyme A:cholesterol acyltransferases (ACATs) are the exclusive intracellular enzymes that catalyze the formation of cholesteryl/steryl esters (CE/SE). In our previous work, we found that the high-level expression of human ACAT2 gene with the CpG hypomethylation of its whole promoter was synergistically regulated by two transcription factors Cdx2 and HNF1α in the intestine and fetal liver. Here, we first observed that the specific CpG-hypomethylated promoter was correlated with the low expression of human ACAT2 gene in monocytic cell line THP-1. Then, two CCAAT/enhancer binding protein (C/EBP) elements within the activation domain in the specific CpG-hypomethylation promoter region were identified, and the expression of ACAT2 in THP-1 cells was evidently decreased when the C/EBP transcription factors were knock-downed using RNAi technology. Furthermore, ChIP assay confirmed that C/EBPs directly bind to their elements for low-level expression of human ACAT2 gene in THP-1 cells. Significantly, the increased expressions of ACAT2 and C/EBPs were also found in macrophages differentiated from both ATRA-treated THP-1 cells and cultured human blood monocytes. These results demonstrate that the low-level expression of human ACAT2 gene with specific CpG-hypomethylated promoter is regulated by the C/EBP transcription factors in monocytic cells, and imply that the lowly expressed ACAT2 catalyzes the synthesis of certain CE/SE that are assembled into lipoproteins for the secretion.
Collapse
Affiliation(s)
- Dongqing Guo
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Lu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xihan Hu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiajia Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangjing Hu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Zhu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaowei Zhang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qin Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Catherine C Y Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Tayuan Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Baoliang Song
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ying Xiong
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Boliang Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
223
|
Guo D, Zhang X, Li Q, Qian L, Xu J, Lu M, Hu X, Zhu M, Chang CCY, Song B, Chang T, Xiong Y, Li B. The ACAT2 expression of human leukocytes is responsible for the excretion of lipoproteins containing cholesteryl/steryl esters. Acta Biochim Biophys Sin (Shanghai) 2016; 48:990-997. [PMID: 27688150 PMCID: PMC5091290 DOI: 10.1093/abbs/gmw095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/24/2016] [Accepted: 06/30/2016] [Indexed: 12/19/2022] Open
Abstract
Acyl-coenzymeA:cholesterol acyltransferase 2 (ACAT2) is abundantly expressed in intestine and fetal liver of healthy human. Our previous studies have shown that in monocytic cells the low-level expression of human ACAT2 gene with specific CpG-hypomethylated promoter is regulated by the CCAAT/enhancer binding protein (C/EBP) transcription factors. In this study, we further report that the ACAT2 gene expression is attributable to the C/EBPs in the human leukocytes and correlated with the excretion of fluorescent lipoproteins containing the ACAT2-catalyzed NBD22-steryl esters. Moreover, this lipoprotein excretion can be inhibited by the ACAT2 isoform-selective inhibitor pyripyropene A (PPPA) in a dose-dependent manner, and employed to determine the half maximum inhibitory concentration (IC50) values of PPPA. Significantly, it is found that the differentiation-inducing factor all-trans retinoic acid, but not the proinflammatory cytokine tumor necrosis factor-α, enhances this ACAT2-dependent lipoprotein excretion. These data demonstrate that the ACAT2 expression of human leukocytes is responsible for the excretion of lipoproteins containing cholesteryl/steryl esters (CE/SE), and suggest that the excretion of lipoproteins containing the ACAT2-catalyzed CS/SE may avoid cytotoxicity through decreasing the excess intracellular cholesterols/sterols (especially various oxysterols), which is essential for the action of the human leukocytes.
Collapse
Affiliation(s)
- Dongqing Guo
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaowei Zhang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qin Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Qian
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiajia Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Lu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xihan Hu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Zhu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Catherine C Y Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | - Baoliang Song
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Tayuan Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | - Ying Xiong
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Boliang Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
224
|
Takabe W, Urano Y, Vo DKH, Shibuya K, Tanno M, Kitagishi H, Fujimoto T, Noguchi N. Esterification of 24S-OHC induces formation of atypical lipid droplet-like structures, leading to neuronal cell death. J Lipid Res 2016; 57:2005-2014. [PMID: 27647838 DOI: 10.1194/jlr.m068775] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 12/20/2022] Open
Abstract
The 24(S)-hydroxycholesterol (24S-OHC), which plays an important role in maintaining brain cholesterol homeostasis, has been shown to possess neurotoxicity. We have previously reported that 24S-OHC esterification by ACAT1 and the resulting lipid droplet (LD) formation are responsible for 24S-OHC-induced cell death. In the present study, we investigate the functional roles of 24S-OHC esters and LD formation in 24S-OHC-induced cell death, and we identify four long-chain unsaturated fatty acids (oleic acid, linoleic acid, arachidonic acid, and DHA) with which 24S-OHC is esterified in human neuroblastoma SH-SY5Y cells treated with 24S-OHC. Here, we find that cotreatment of cells with 24S-OHC and each of these four unsaturated fatty acids increases prevalence of the corresponding 24S-OHC ester and exacerbates induction of cell death as compared with cell death induced by treatment with 24S-OHC alone. Using electron microscopy, we find in the present study that 24S-OHC induces formation of LD-like structures coupled with enlarged endoplasmic reticulum (ER) lumina, and that these effects are suppressed by treatment with ACAT inhibitor. Collectively, these results illustrate that ACAT1-catalyzed esterification of 24S-OHC with long-chain unsaturated fatty acid followed by formation of atypical LD-like structures at the ER membrane is a critical requirement for 24S-OHC-induced cell death.
Collapse
Affiliation(s)
- Wakako Takabe
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Yasuomi Urano
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Diep-Khanh Ho Vo
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Kimiyuki Shibuya
- Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Company, Ltd., Tokyo 189-0022, Japan
| | - Masaki Tanno
- Department of Molecular Chemistry and Biochemistry, Faculty of Sciences and Technology, Doshisha University, Kyoto 610-0394, Japan
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Sciences and Technology, Doshisha University, Kyoto 610-0394, Japan
| | - Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Noriko Noguchi
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| |
Collapse
|
225
|
Yamazaki Y, Painter MM, Bu G, Kanekiyo T. Apolipoprotein E as a Therapeutic Target in Alzheimer's Disease: A Review of Basic Research and Clinical Evidence. CNS Drugs 2016; 30:773-89. [PMID: 27328687 PMCID: PMC5526196 DOI: 10.1007/s40263-016-0361-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that causes progressive cognitive decline. The majority of AD cases are sporadic and late-onset (>65 years old) making it the leading cause of dementia in the elderly. While both genetic and environmental factors contribute to the development of late-onset AD (LOAD), APOE polymorphism is a major genetic risk determinant for LOAD. In humans, the APOE gene has three major allelic variants: ε2, ε3, and ε4, of which APOE ε4 is the strongest genetic risk factor for LOAD, whereas APOE ε2 is protective. Mounting evidence suggests that APOE ε4 contributes to AD pathogenesis through multiple pathways including facilitated amyloid-β deposition, increased tangle formation, synaptic dysfunction, exacerbated neuroinflammation, and cerebrovascular defects. Since APOE modulates multiple biological processes through its corresponding protein apolipoprotein E (apoE), APOE gene and apoE properties have been a promising target for therapy and drug development against AD. In this review, we summarize the current evidence regarding how the APOE ε4 allele contributes to the pathogenesis of AD and how relevant therapeutic approaches can be developed to target apoE-mediated pathways in AD.
Collapse
Affiliation(s)
- Yu Yamazaki
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Meghan M Painter
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
226
|
Kojima M, Hamamoto A, Sato T. Ghrelin O-acyltransferase (GOAT), a specific enzyme that modifies ghrelin with a medium-chain fatty acid. J Biochem 2016; 160:189-194. [PMID: 27489223 DOI: 10.1093/jb/mvw046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/01/2016] [Indexed: 11/14/2022] Open
Abstract
In the gastric peptide hormone ghrelin, serine 3 (threonine 3 in frogs) is modified, primarily by n-octanoic acid; this modification is essential for ghrelin's activity. The enzyme that transfers n-octanoic acid to Ser3 of ghrelin is ghrelin O-acyltransferase (GOAT). GOAT, the only enzyme known to catalyze acyl modification of ghrelin, specifically modifies serine (or threonine) at the third position and does not modify other serine residues in ghrelin peptides. GOAT prefers n-hexanoyl-CoA over n-octanoyl-CoA as the acyl donor, although in the stomach the n-octanoyl form is the predominant form of acyl-modified ghrelin. GOAT is a promising target for drug development to treat metabolic diseases and eating disorders.
Collapse
Affiliation(s)
- Masayasu Kojima
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan
| | - Akie Hamamoto
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan
| | - Takahiro Sato
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan
| |
Collapse
|
227
|
Combined Effects of Rosuvastatin and Exercise on Gene Expression of Key Molecules Involved in Cholesterol Metabolism in Ovariectomized Rats. PLoS One 2016; 11:e0159550. [PMID: 27442011 PMCID: PMC4956224 DOI: 10.1371/journal.pone.0159550] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 07/04/2016] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study was to investigate the effects of three weeks of rosuvastatin (Ros) treatment alone and in combination with voluntary training (Tr) on expression of genes involved in cholesterol metabolism (LDLR, PCSK9, LRP-1, SREBP-2, IDOL, ACAT-2 and HMGCR) in the liver of eight week-old ovariectomized (Ovx) rats. Sprague Dawley rats were Ovx or sham-operated (Sham) and kept sedentary for 8 weeks under a standard diet. Thereafter, rats were transferred for three weeks in running wheel cages for Tr or kept sedentary (Sed) with or without Ros treatment (5mg/kg/day). Six groups were formed: Sham-Sed treated with saline (Sal) or Ros (Sham-Sed-Sal; Sham-Sed-Ros), Ovx-Sed treated with Sal or Ros (Ovx-Sed-Sal; Ovx-Sed-Ros), Ovx trained treated with Sal or Ros (Ovx-Tr-Sal; Ovx-Tr-Ros). Ovx-Sed-Sal rats depicted higher (P < 0.05) body weight, plasma total cholesterol (TC) and LDL-C, and liver TC content compared to Sham-Sed-Sal rats. In contrast, mRNA levels of liver PCSK9, LDLR, LRP-1 as well as plasma PCSK9 concentrations and protein levels of LRP-1 were reduced (P < 0.01) in Ovx-Sed-Sal compared to Sham-Sed-Sal rats. However, protein levels of LDLR increased (P < 0.05) in Ovx-Sed-Sal compared to Sham-Sed-Sal rats. Treatment of Ovx rats with Ros increased (P < 0.05) mRNA and protein levels of LRP-1 and PCSK9 but not mRNA levels of LDLR, while its protein abundance was reduced at the level of Sham rats. As a result, plasma LDL-C was not reduced. Exercise alone did not affect the expression of any of these markers in Ovx rats. Overall, Ros treatment corrected Ovx-induced decrease in gene expression of markers of cholesterol metabolism in liver of Ovx rats, but without reducing plasma LDL-C concentrations. Increased plasma PCSK9 levels could be responsible for the reduction of liver LDLR protein abundance and the absence of reduction of plasma LDL-C after Ros treatment.
Collapse
|
228
|
Gonzalez-Baro MR, Coleman RA. Mitochondrial acyltransferases and glycerophospholipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:49-55. [PMID: 27377347 DOI: 10.1016/j.bbalip.2016.06.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/23/2016] [Accepted: 06/28/2016] [Indexed: 12/14/2022]
Abstract
Our understanding of the synthesis and remodeling of mitochondrial phospholipids remains incomplete. Two isoforms of glycerol-3-phosphate acyltransferase (GPAT1 and 2) and two isoforms of acylglycerol-3-phosphate acyltransferase (AGPAT4 and 5) are located on the outer mitochondrial membrane, suggesting that both lysophosphatidic acid and phosphatidic acid are synthesized in situ for de novo glycerolipid biosynthesis. However, it is believed that the phosphatidic acid substrate for cardiolipin and phosphatidylethanolamine biosynthesis is produced at the endoplasmic reticulum whereas the phosphatidic acid synthesized in the mitochondria must be transferred to the endoplasmic reticulum before it undergoes additional steps to form the mature phospholipids that are trafficked back to the mitochondria. It is unclear whether mitochondrial phospholipids are remodeled by mitochondrial acyltransferases or whether lysophospholipids must return to the endoplasmic reticulum or to the mitochondrial associated membrane for reesterification. In this review we will focus on the few glycerolipid acyltransferases that are known to be mitochondrial. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
Affiliation(s)
- Maria R Gonzalez-Baro
- Instituto de Investigaciones Bioquımicas de La Plata, CONICET, Facultad de Ciencias Medicas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
229
|
Yi J, Knudsen TA, Nielsen AL, Duelund L, Christensen M, Hervella P, Needham D, Mouritsen OG. Inhibition of cholesterol transport in an intestine cell model by pine-derived phytosterols. Chem Phys Lipids 2016; 200:62-73. [PMID: 27372052 DOI: 10.1016/j.chemphyslip.2016.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
Abstract
We have quantified the inhibition of intestinal cholesterol transport by pine-derived phytosterols using an HT29-MTX intestine cell model that forms a mucus layer similar to that in the intestine. An artificial intestinal fluid consisting of digested fat, bile salt, cholesterol, and phytosterols was formulated in order to mimic the conditions in the intestine. The apparent permeability coefficient (Papp) of the positive control, i.e., 0.1mM of cholesterol solubilized in the artificial intestine fluid, was found to be 0.33 (±0.17)×10-6cm/s. When 0.1mM β-sitosterol was solubilized alongside, Papp was effectively zero, corresponding to a total inhibition of cholesterol transport. A similar strong inhibition was found when commercial pine-derived phytosterols, PinVita™ FSP DuPont, were co-solubilized with cholesterol in the dietary model micelles, leading to Papp=0.06 (±0.06)×10-6cm/s, i.e., 5.5 times lower than the cholesterol positive control. Additionally, the effect of potential oral administration formulations generated by the pine-derived phytosterols was also characterized. The formulations were produced as a liquid formulation of the cholesterol-containing artificial intestine fluid. Six liquid formulations were tested of which four displayed a Papp in the range of 0-0.09×10-6cm/s. The remaining two formulations did not show any inhibition effect on cholesterol transport and even enhanced cholesterol transport. It was furthermore observed that the phytosterols were found in the collected intestine cells but not transported to the basolateral region in the intestinal cell model system.
Collapse
Affiliation(s)
- Jinsoo Yi
- MEMPHYS/SPSE, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Tine A Knudsen
- DuPont Nutritional Biosciences ApS, Edwin Rahrs Vej 38, DK-8220 Brabrand, Denmark
| | | | - Lars Duelund
- MEMPHYS/SPSE, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Morten Christensen
- MEMPHYS/SPSE, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Pablo Hervella
- MEMPHYS/SPSE, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - David Needham
- MEMPHYS/SPSE, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Ole G Mouritsen
- MEMPHYS/SPSE, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark.
| |
Collapse
|
230
|
Shibuya K, Watanabe T, Urano Y, Takabe W, Noguchi N, Kitagishi H. Synthesis of 24(S)-hydroxycholesterol esters responsible for the induction of neuronal cell death. Bioorg Med Chem 2016; 24:2559-2566. [PMID: 27117262 DOI: 10.1016/j.bmc.2016.04.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/09/2016] [Accepted: 04/12/2016] [Indexed: 01/19/2023]
Abstract
We synthesized several candidates of 24(S)-hydroxycholesterol (24S-OHC) esters, which are involved in neuronal cell death, through catalysis with acyl-CoA:cholesterol acyltransferase-1 (ACAT-1). We studied the regioselectivity of the acylation of the secondary alcohol at the 3- or 24-position of 24S-OHC. The appropriate saturated and unsaturated long-chain fatty acids were esterified with the protected 24S-OHC and then de-protected to afford the desired esters at a satisfactory yield. We then confirmed by HPLC monitoring that the retention times of four esters of 24S-OHC, namely 3-oleate, 3-linoleate, 3-arachidonoate and 3-docosahexaenoate, were consistent with those of 24S-OHC esters observed in 24S-OHC-treated SH-SY5Y cells.
Collapse
Affiliation(s)
- Kimiyuki Shibuya
- Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Co., Ltd, 2-17-43, Noguchicho, Higashimurayama, Tokyo 189-0022, Japan.
| | - Toshiaki Watanabe
- Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Co., Ltd, 2-17-43, Noguchicho, Higashimurayama, Tokyo 189-0022, Japan
| | - Yasuomi Urano
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Wakako Takabe
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Noriko Noguchi
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Sciences and Technology, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| |
Collapse
|
231
|
Shen J, Tsoi H, Liang Q, Chu ESH, Liu D, Yu ACS, Chan TF, Li X, Sung JJY, Wong VWS, Yu J. Oncogenic mutations and dysregulated pathways in obesity-associated hepatocellular carcinoma. Oncogene 2016; 35:6271-6280. [PMID: 27132506 PMCID: PMC5153568 DOI: 10.1038/onc.2016.162] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/01/2016] [Accepted: 04/03/2016] [Indexed: 02/07/2023]
Abstract
Epidemiological studies showed that obesity and its related non-alcoholic fatty liver disease (NAFLD) promote hepatocellular carcinoma (HCC) development. We aimed to uncover the genetic alterations of NAFLD-HCC using whole-exome sequencing. We compared HCC development in genetically obese mice and dietary obese mice with wild-type lean mice fed a normal chow after treatment with diethylnitrosamine. HCC tumor and adjacent normal samples from obese and lean mice were then subjected to whole-exome sequencing. Functional and mechanistic importance of the identified mutations in Carboxyl ester lipase (Cel) gene and Harvey rat sarcoma virus oncogene 1 (Hras) was further elucidated. We demonstrated significantly higher incidences of HCC in both genetic and dietary obese mice with NAFLD development as compared with lean mice without NAFLD. The mutational signatures of NAFLD-HCC and lean HCC were distinct, with <3% overlapped. Eight metabolic or oncogenic pathways were found to be significantly enriched by mutated genes in NAFLD-HCC, but only two of these pathways were dysregulated by mutations in lean HCC. In particular, Cel was mutated significantly more frequently in NAFLD-HCC than in lean HCC. The multiple-site mutations in Cel are loss-of-function mutations, with effects similar to Cel knock-down. Mutant Cel caused accumulation of cholesteryl ester in liver cells, which led to induction of endoplasmic reticulum stress and consequently activated the IRE1α/c-Jun N-terminal kinase (JNK)/c-Jun/activating protein-1 (AP-1) signaling cascade to promote liver cell growth. In addition, single-site mutations in Hras at codon 61 were found in NAFLD-HCC but none in lean HCC. The gain-of-function mutations in Hras (Q61R and Q61K) significantly promoted liver cell growth through activating the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/3-phosphoinositide-dependent protein kinase-1 (PDK1)/Akt pathways. In conclusion, we have identified mutation signature and pathways in NAFLD-associated HCC. Mutations in Cel and Hras have important roles in NAFLD-associated hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- J Shen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - H Tsoi
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Q Liang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - E S H Chu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - D Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - A C-S Yu
- School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - T F Chan
- School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - X Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - J J Y Sung
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - V W S Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - J Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
232
|
Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer. Oncogene 2016; 35:6378-6388. [PMID: 27132508 PMCID: PMC5093084 DOI: 10.1038/onc.2016.168] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 03/20/2016] [Accepted: 03/22/2016] [Indexed: 12/27/2022]
Abstract
Cancer cells are known to execute reprogramed metabolism of glucose, amino acids and lipids. Here, we report a significant role of cholesterol metabolism in cancer metastasis. By using label-free Raman spectromicroscopy, we found an aberrant accumulation of cholesteryl ester in human pancreatic cancer specimens and cell lines, mediated by acyl-CoA cholesterol acyltransferase-1 (ACAT-1) enzyme. Expression of ACAT-1 showed a correlation with poor patient survival. Abrogation of cholesterol esterification, either by an ACAT-1 inhibitor or by shRNA knockdown, significantly suppressed tumor growth and metastasis in an orthotopic mouse model of pancreatic cancer. Mechanically, ACAT-1 inhibition increased intracellular free cholesterol level, which was associated with elevated endoplasmic reticulum stress and caused apoptosis. Collectively, our results demonstrate a new strategy for treating metastatic pancreatic cancer by inhibiting cholesterol esterification.
Collapse
|
233
|
Morgan A, Mooney K, Wilkinson S, Pickles N, Mc Auley M. Cholesterol metabolism: A review of how ageing disrupts the biological mechanisms responsible for its regulation. Ageing Res Rev 2016; 27:108-124. [PMID: 27045039 DOI: 10.1016/j.arr.2016.03.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/22/2016] [Accepted: 03/30/2016] [Indexed: 02/06/2023]
Abstract
Cholesterol plays a vital role in the human body as a precursor of steroid hormones and bile acids, in addition to providing structure to cell membranes. Whole body cholesterol metabolism is maintained by a highly coordinated balancing act between cholesterol ingestion, synthesis, absorption, and excretion. The aim of this review is to discuss how ageing interacts with these processes. Firstly, we will present an overview of cholesterol metabolism. Following this, we discuss how the biological mechanisms which underpin cholesterol metabolism are effected by ageing. Included in this discussion are lipoprotein dynamics, cholesterol absorption/synthesis and the enterohepatic circulation/synthesis of bile acids. Moreover, we discuss the role of oxidative stress in the pathological progression of atherosclerosis and also discuss how cholesterol biosynthesis is effected by both the mammalian target of rapamycin and sirtuin pathways. Next, we examine how diet and alterations to the gut microbiome can be used to mitigate the impact ageing has on cholesterol metabolism. We conclude by discussing how mathematical models of cholesterol metabolism can be used to identify therapeutic interventions.
Collapse
|
234
|
Kroiss M, Fassnacht M. Inhibition of Cholesterol Esterification in the Adrenal Gland by ATR101/PD132301-2, A Promising Case of Drug Repurposing. Endocrinology 2016; 157:1719-21. [PMID: 27149038 DOI: 10.1210/en.2016-1210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Matthias Kroiss
- Division of Endocrinology and Diabetology, Department of Internal Medicine, University Hospital Würzburg, University of Würzburg; and Clinical Chemistry and Laboratory Medicine, University Hospital Würzburg; and Comprehensive Cancer Center Mainfranken, University of Würzburg, 97080 Würzburg, Germany
| | - Martin Fassnacht
- Division of Endocrinology and Diabetology, Department of Internal Medicine, University Hospital Würzburg, University of Würzburg; and Clinical Chemistry and Laboratory Medicine, University Hospital Würzburg; and Comprehensive Cancer Center Mainfranken, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
235
|
Hirano T, Mori Y. Anti-atherogenic and anti-inflammatory properties of glucagon-like peptide-1, glucose-dependent insulinotropic polypepide, and dipeptidyl peptidase-4 inhibitors in experimental animals. J Diabetes Investig 2016; 7 Suppl 1:80-6. [PMID: 27186361 PMCID: PMC4854510 DOI: 10.1111/jdi.12446] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/11/2015] [Indexed: 01/08/2023] Open
Abstract
We reported that native incretins, liraglutide and dipeptidyl peptidase‐4 inhibitors (DPP‐4i) all confer an anti‐atherosclerotic effect in apolipoprotein E‐null (Apoe−/−) mice. We confirmed the anti‐atherogenic property of incretin‐related agents in the mouse wire injury model, in which the neointimal formation in the femoral artery is remarkably suppressed. Furthermore, we showed that DPP‐4i substantially suppresses plaque formation in coronary arteries with a marked reduction in the accumulation of macrophages in cholesterol‐fed rabbits. DPP‐4i showed an anti‐atherosclerotic effect in Apoe−/− mice mainly through the actions of glucagon‐like peptide‐1 and glucose‐dependent insulinotropic polypepide. However, the dual incretin receptor antagonists partially attenuated the suppressive effect of DPP‐4i on atherosclerosis in diabetic Apoe−/− mice, suggesting an incretin‐independent mechanism. Exendin‐4 and glucose‐dependent insulinotropic polypepide elicited cyclic adenosine monophosphate generation, and suppressed the lipopolysaccharide‐induced gene expression of inflammatory molecules, such as interleukin‐1β, interleukin‐6 and tumor necrosis factor‐α, in U937 human monocytes. This suppressive effect, however, was attenuated by an inhibitor of adenylate cyclase and mimicked by 8‐bromo‐cyclic adenosine monophosphate or forskolin. DPP‐4i substantially suppressed the lipopolysaccharide‐induced expression of inflammatory cytokines without affecting cyclic adenosine monophosphate generation or cell proliferation. DPP‐4i more strongly suppressed the lipopolysaccharide‐induced gene expression of inflammatory molecules than incretins, most likely through inactivation of CD26. Glucagon‐like peptide‐1 and glucose‐dependent insulinotropic polypepide suppressed oxidized low‐density lipoprotein‐induced macrophage foam cell formation in a receptor‐dependent manner, which was associated with the downregulation of acyl‐coenzyme A cholesterol acyltransferase‐1 and CD36, as well as the up‐regulation of adenosine triphosphate‐binding cassette transporter A1. Our studies strongly suggest that incretin‐related agents have favorable effects on macrophage‐driven atherosclerosis in experimental animals.
Collapse
Affiliation(s)
- Tsutomu Hirano
- Department of Diabetes, Metabolism and Endocrinology Showa University School of Medicine Tokyo Japan
| | - Yusaku Mori
- Department of Diabetes, Metabolism and Endocrinology Showa University School of Medicine Tokyo Japan
| |
Collapse
|
236
|
Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature 2016; 531:651-5. [PMID: 26982734 DOI: 10.1038/nature17412] [Citation(s) in RCA: 706] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 02/10/2016] [Indexed: 12/16/2022]
Abstract
CD8(+) T cells have a central role in antitumour immunity, but their activity is suppressed in the tumour microenvironment. Reactivating the cytotoxicity of CD8(+) T cells is of great clinical interest in cancer immunotherapy. Here we report a new mechanism by which the antitumour response of mouse CD8(+) T cells can be potentiated by modulating cholesterol metabolism. Inhibiting cholesterol esterification in T cells by genetic ablation or pharmacological inhibition of ACAT1, a key cholesterol esterification enzyme, led to potentiated effector function and enhanced proliferation of CD8(+) but not CD4(+) T cells. This is due to the increase in the plasma membrane cholesterol level of CD8(+) T cells, which causes enhanced T-cell receptor clustering and signalling as well as more efficient formation of the immunological synapse. ACAT1-deficient CD8(+) T cells were better than wild-type CD8(+) T cells at controlling melanoma growth and metastasis in mice. We used the ACAT inhibitor avasimibe, which was previously tested in clinical trials for treating atherosclerosis and showed a good human safety profile, to treat melanoma in mice and observed a good antitumour effect. A combined therapy of avasimibe plus an anti-PD-1 antibody showed better efficacy than monotherapies in controlling tumour progression. ACAT1, an established target for atherosclerosis, is therefore also a potential target for cancer immunotherapy.
Collapse
|
237
|
|
238
|
Howe V, Sharpe LJ, Alexopoulos SJ, Kunze SV, Chua NK, Li D, Brown AJ. Cholesterol homeostasis: How do cells sense sterol excess? Chem Phys Lipids 2016; 199:170-178. [PMID: 26993747 DOI: 10.1016/j.chemphyslip.2016.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/27/2016] [Indexed: 12/23/2022]
Abstract
Cholesterol is vital in mammals, but toxic in excess. Consequently, elaborate molecular mechanisms have evolved to maintain this sterol within narrow limits. How cells sense excess cholesterol is an intriguing area of research. Cells sense cholesterol, and other related sterols such as oxysterols or cholesterol synthesis intermediates, and respond to changing levels through several elegant mechanisms of feedback regulation. Cholesterol sensing involves both direct binding of sterols to the homeostatic machinery located in the endoplasmic reticulum (ER), and indirect effects elicited by sterol-dependent alteration of the physical properties of membranes. Here, we examine the mechanisms employed by cells to maintain cholesterol homeostasis.
Collapse
Affiliation(s)
- Vicky Howe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Stephanie J Alexopoulos
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Sarah V Kunze
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Ngee Kiat Chua
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Dianfan Li
- National Center for Protein Sciences, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
239
|
The counterflow transport of sterols and PI4P. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:940-951. [PMID: 26928592 DOI: 10.1016/j.bbalip.2016.02.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 02/03/2023]
Abstract
Cholesterol levels in intracellular membranes are constantly adjusted to match with specific organelle functions. Cholesterol is kept high in the plasma membrane (PM) because it is essential for its barrier function, while low levels are found in the endoplasmic reticulum (ER) where cholesterol mediates feedback control of its own synthesis by sterol-sensor proteins. The ER→Golgi→PM concentration gradient of cholesterol in mammalian cells, and ergosterol in yeast, appears to be sustained by specific intracellular transport processes, which are mostly mediated by lipid transfer proteins (LTPs). Here we review a recently described function of two LTPs, OSBP and its yeast homolog Osh4p, which consists in creating a sterol gradient between membranes by vectorial transport. OSBP also contributes to the formation of ER/Golgi membrane contact sites, which are important hubs for the transfer of several lipid species. OSBP and Osh4p organize a counterflow transport of lipids whereby sterols are exchanged for the phosphoinositide PI4P, which is used as a fuel to drive sterol transport. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
240
|
Huang LH, Melton EM, Li H, Sohn P, Rogers MA, Mulligan-Kehoe MJ, Fiering SN, Hickey WF, Chang CCY, Chang TY. Myeloid Acyl-CoA:Cholesterol Acyltransferase 1 Deficiency Reduces Lesion Macrophage Content and Suppresses Atherosclerosis Progression. J Biol Chem 2016; 291:6232-44. [PMID: 26801614 DOI: 10.1074/jbc.m116.713818] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Indexed: 01/03/2023] Open
Abstract
Acyl-CoA:cholesterol acyltransferase 1 (Acat1) converts cellular cholesterol to cholesteryl esters and is considered a drug target for treating atherosclerosis. However, in mouse models for atherosclerosis, global Acat1 knockout (Acat1(-/-)) did not prevent lesion development. Acat1(-/-) increased apoptosis within lesions and led to several additional undesirable phenotypes, including hair loss, dry eye, leukocytosis, xanthomatosis, and a reduced life span. To determine the roles of Acat1 in monocytes/macrophages in atherosclerosis, we produced a myeloid-specific Acat1 knockout (Acat1(-M/-M)) mouse and showed that, in the Apoe knockout (Apoe(-/-)) mouse model for atherosclerosis, Acat1(-M/-M) decreased the plaque area and reduced lesion size without causing leukocytosis, dry eye, hair loss, or a reduced life span. Acat1(-M/-M) enhanced xanthomatosis in apoe(-/-) mice, a skin disease that is not associated with diet-induced atherosclerosis in humans. Analyses of atherosclerotic lesions showed that Acat1(-M/-M) reduced macrophage numbers and diminished the cholesterol and cholesteryl ester load without causing detectable apoptotic cell death. Leukocyte migration analysis in vivo showed that Acat1(-M/-M) caused much fewer leukocytes to appear at the activated endothelium. Studies in inflammatory (Ly6C(hi)-positive) monocytes and in cultured macrophages showed that inhibiting ACAT1 by gene knockout or by pharmacological inhibition caused a significant decrease in integrin β 1 (CD29) expression in activated monocytes/macrophages. The sparse presence of lesion macrophages without Acat1 can therefore, in part, be attributed to decreased interaction between inflammatory monocytes/macrophages lacking Acat1 and the activated endothelium. We conclude that targeting ACAT1 in a myeloid cell lineage suppresses atherosclerosis progression while avoiding many of the undesirable side effects caused by global Acat1 inhibition.
Collapse
Affiliation(s)
- Li-Hao Huang
- From the Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755 and
| | - Elaina M Melton
- From the Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755 and
| | - Haibo Li
- From the Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755 and
| | - Paul Sohn
- From the Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755 and
| | - Maximillian A Rogers
- From the Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755 and
| | | | | | - William F Hickey
- Pathology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756
| | - Catherine C Y Chang
- From the Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755 and
| | - Ta-Yuan Chang
- From the Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755 and
| |
Collapse
|
241
|
Masuda Y, Aoyama K, Yoshida M, Kobayashi K, Ohshiro T, Tomoda H, Doi T. Design, Synthesis, and Biological Evaluation of Beauveriolide Analogues Bearing Photoreactive Amino Acids. Chem Pharm Bull (Tokyo) 2016; 64:754-65. [DOI: 10.1248/cpb.c16-00095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuichi Masuda
- Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Kazumasa Aoyama
- Graduate School of Pharmaceutical Sciences, Tohoku University
| | | | | | - Taichi Ohshiro
- Graduate School of Pharmaceutical Sciences, Kitasato University
| | - Hiroshi Tomoda
- Graduate School of Pharmaceutical Sciences, Kitasato University
| | - Takayuki Doi
- Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
242
|
Abstract
Alzheimer's disease (AD) is the most common cause of dementia with no cure at present. Cholesterol metabolism is closely associated with AD at several stages. ACAT1 converts free cholesterol to cholesteryl esters, and plays important roles in cellular cholesterol homeostasis. Recent studies show that in a mouse model, blocking ACAT1 provides multiple beneficial effects on AD. Here we review the current evidence that implicates ACAT1 as a therapeutic target for AD. We also discuss the potential usage of various ACAT inhibitors currently available to treat AD.
Collapse
|
243
|
Zhu M, Zhao X, Chen J, Xu J, Hu G, Guo D, Li Q, Zhang X, Chang CCY, Song B, Xiong Y, Chang T, Li B. ACAT1 regulates the dynamics of free cholesterols in plasma membrane which leads to the APP-α-processing alteration. Acta Biochim Biophys Sin (Shanghai) 2015; 47:951-9. [PMID: 26474739 DOI: 10.1093/abbs/gmv101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/14/2015] [Indexed: 12/13/2022] Open
Abstract
Acyl-CoA:cholesterol acyltransferase 1 (ACAT1) is a key enzyme exclusively using free cholesterols as the substrates in cell and is involved in the cellular cholesterol homeostasis. In this study, we used human neuroblastoma cell line SK-N-SH as a model and first observed that inhibiting ACAT1 can decrease the amyloid precursor protein (APP)-α-processing. Meanwhile, the transfection experiments using the small interfering RNA and expression plasmid of ACAT1 indicated that ACAT1 can dependently affect the APP-α-processing. Furthermore, inhibiting ACAT1 was found to increase the free cholesterols in plasma membrane (PM-FC), and the increased PM-FC caused by inhibiting ACAT1 can lead to the decrease of the APP-α-processing, indicating that ACAT1 regulates the dynamics of PM-FC, which leads to the alteration of the APP-α-processing. More importantly, further results showed that under the ACAT1 inhibition, the alterations of the PM-FC and the subsequent APP-α-processing are not dependent on the cellular total cholesterol level, confirming that ACAT1 regulates the dynamics of PM-FC. Finally, we revealed that even when the Niemann-Pick-Type C-dependent pathway is blocked, the ACAT1 inhibition still obviously results in the PM-FC increase, suggesting that the ACAT1-dependent pathway is responsible for the shuttling of PM-FC to the intracellular pool. Our data provide a novel insight that ACAT1 which enzymatically regulates the dynamics of PM-FC may play important roles in the human neuronal cells.
Collapse
Affiliation(s)
- Ming Zhu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaonan Zhao
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia Chen
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiajia Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangjing Hu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongqing Guo
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qin Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaowei Zhang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Catherine C Y Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Baoliang Song
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China College of Life Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ying Xiong
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tayuan Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Boliang Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
244
|
Sbiera S, Leich E, Liebisch G, Sbiera I, Schirbel A, Wiemer L, Matysik S, Eckhardt C, Gardill F, Gehl A, Kendl S, Weigand I, Bala M, Ronchi CL, Deutschbein T, Schmitz G, Rosenwald A, Allolio B, Fassnacht M, Kroiss M. Mitotane Inhibits Sterol-O-Acyl Transferase 1 Triggering Lipid-Mediated Endoplasmic Reticulum Stress and Apoptosis in Adrenocortical Carcinoma Cells. Endocrinology 2015; 156:3895-908. [PMID: 26305886 DOI: 10.1210/en.2015-1367] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare malignancy that harbors a dismal prognosis in advanced stages. Mitotane is approved as an orphan drug for treatment of ACC and counteracts tumor growth and steroid hormone production. Despite serious adverse effects, mitotane has been clinically used for decades. Elucidation of its unknown molecular mechanism of action seems essential to develop better ACC therapies. Here, we set out to identify the molecular target of mitotane and altered downstream mechanisms by combining expression genomics and mass spectrometry technology in the NCI-H295 ACC model cell line. Pathway analyses of expression genomics data demonstrated activation of endoplasmic reticulum (ER) stress and profound alteration of lipid-related genes caused by mitotane treatment. ER stress marker CHOP was strongly induced and the two upstream ER stress signalling events XBP1-mRNA splicing and eukaryotic initiation factor 2 A (eIF2α) phosphorylation were activated by mitotane in NCI-H295 cells but to a much lesser extent in four nonsteroidogenic cell lines. Lipid mass spectrometry revealed mitotane-induced increase of free cholesterol, oxysterols, and fatty acids specifically in NCI-H295 cells as cause of ER stress. We demonstrate that mitotane is an inhibitor of sterol-O-acyl-transferase 1 (SOAT1) leading to accumulation of these toxic lipids. In ACC tissue samples we show variable SOAT1 expression correlating with the response to mitotane treatment. In conclusion, mitotane confers adrenal-specific cytotoxicity and down-regulates steroidogenesis by inhibition of SOAT1 leading to lipid-induced ER stress. Targeting of cancer-specific lipid metabolism opens new avenues for treatment of ACC and potentially other types of cancer.
Collapse
Affiliation(s)
- Silviu Sbiera
- Department of Internal Medicine I, Endocrinology and Diabetes Unit (S.S., I.S., E.C., F.G., A.G., I.W., M.B., C.L.R., T.D., B.A., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken (S.S., A.R., M.F., M.K.), 97080 Würzburg, Germany; Institute of Pathology (E.L., A.R.), University of Würzburg, 97080 Würzburg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (S.M., G.L., G.S.), University Hospital Regensburg, 93053 Regensburg, Germany; Department of Nuclear Medicine (A.S.), University Hospital Würzburg, 97080 Würzburg, Germany; and Clinical Chemistry and Laboratory Medicine (S.K., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany
| | - Ellen Leich
- Department of Internal Medicine I, Endocrinology and Diabetes Unit (S.S., I.S., E.C., F.G., A.G., I.W., M.B., C.L.R., T.D., B.A., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken (S.S., A.R., M.F., M.K.), 97080 Würzburg, Germany; Institute of Pathology (E.L., A.R.), University of Würzburg, 97080 Würzburg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (S.M., G.L., G.S.), University Hospital Regensburg, 93053 Regensburg, Germany; Department of Nuclear Medicine (A.S.), University Hospital Würzburg, 97080 Würzburg, Germany; and Clinical Chemistry and Laboratory Medicine (S.K., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany
| | - Gerhard Liebisch
- Department of Internal Medicine I, Endocrinology and Diabetes Unit (S.S., I.S., E.C., F.G., A.G., I.W., M.B., C.L.R., T.D., B.A., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken (S.S., A.R., M.F., M.K.), 97080 Würzburg, Germany; Institute of Pathology (E.L., A.R.), University of Würzburg, 97080 Würzburg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (S.M., G.L., G.S.), University Hospital Regensburg, 93053 Regensburg, Germany; Department of Nuclear Medicine (A.S.), University Hospital Würzburg, 97080 Würzburg, Germany; and Clinical Chemistry and Laboratory Medicine (S.K., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany
| | - Iuliu Sbiera
- Department of Internal Medicine I, Endocrinology and Diabetes Unit (S.S., I.S., E.C., F.G., A.G., I.W., M.B., C.L.R., T.D., B.A., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken (S.S., A.R., M.F., M.K.), 97080 Würzburg, Germany; Institute of Pathology (E.L., A.R.), University of Würzburg, 97080 Würzburg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (S.M., G.L., G.S.), University Hospital Regensburg, 93053 Regensburg, Germany; Department of Nuclear Medicine (A.S.), University Hospital Würzburg, 97080 Würzburg, Germany; and Clinical Chemistry and Laboratory Medicine (S.K., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany
| | - Andreas Schirbel
- Department of Internal Medicine I, Endocrinology and Diabetes Unit (S.S., I.S., E.C., F.G., A.G., I.W., M.B., C.L.R., T.D., B.A., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken (S.S., A.R., M.F., M.K.), 97080 Würzburg, Germany; Institute of Pathology (E.L., A.R.), University of Würzburg, 97080 Würzburg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (S.M., G.L., G.S.), University Hospital Regensburg, 93053 Regensburg, Germany; Department of Nuclear Medicine (A.S.), University Hospital Würzburg, 97080 Würzburg, Germany; and Clinical Chemistry and Laboratory Medicine (S.K., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany
| | - Laura Wiemer
- Department of Internal Medicine I, Endocrinology and Diabetes Unit (S.S., I.S., E.C., F.G., A.G., I.W., M.B., C.L.R., T.D., B.A., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken (S.S., A.R., M.F., M.K.), 97080 Würzburg, Germany; Institute of Pathology (E.L., A.R.), University of Würzburg, 97080 Würzburg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (S.M., G.L., G.S.), University Hospital Regensburg, 93053 Regensburg, Germany; Department of Nuclear Medicine (A.S.), University Hospital Würzburg, 97080 Würzburg, Germany; and Clinical Chemistry and Laboratory Medicine (S.K., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany
| | - Silke Matysik
- Department of Internal Medicine I, Endocrinology and Diabetes Unit (S.S., I.S., E.C., F.G., A.G., I.W., M.B., C.L.R., T.D., B.A., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken (S.S., A.R., M.F., M.K.), 97080 Würzburg, Germany; Institute of Pathology (E.L., A.R.), University of Würzburg, 97080 Würzburg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (S.M., G.L., G.S.), University Hospital Regensburg, 93053 Regensburg, Germany; Department of Nuclear Medicine (A.S.), University Hospital Würzburg, 97080 Würzburg, Germany; and Clinical Chemistry and Laboratory Medicine (S.K., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany
| | - Carolin Eckhardt
- Department of Internal Medicine I, Endocrinology and Diabetes Unit (S.S., I.S., E.C., F.G., A.G., I.W., M.B., C.L.R., T.D., B.A., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken (S.S., A.R., M.F., M.K.), 97080 Würzburg, Germany; Institute of Pathology (E.L., A.R.), University of Würzburg, 97080 Würzburg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (S.M., G.L., G.S.), University Hospital Regensburg, 93053 Regensburg, Germany; Department of Nuclear Medicine (A.S.), University Hospital Würzburg, 97080 Würzburg, Germany; and Clinical Chemistry and Laboratory Medicine (S.K., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany
| | - Felix Gardill
- Department of Internal Medicine I, Endocrinology and Diabetes Unit (S.S., I.S., E.C., F.G., A.G., I.W., M.B., C.L.R., T.D., B.A., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken (S.S., A.R., M.F., M.K.), 97080 Würzburg, Germany; Institute of Pathology (E.L., A.R.), University of Würzburg, 97080 Würzburg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (S.M., G.L., G.S.), University Hospital Regensburg, 93053 Regensburg, Germany; Department of Nuclear Medicine (A.S.), University Hospital Würzburg, 97080 Würzburg, Germany; and Clinical Chemistry and Laboratory Medicine (S.K., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany
| | - Annemarie Gehl
- Department of Internal Medicine I, Endocrinology and Diabetes Unit (S.S., I.S., E.C., F.G., A.G., I.W., M.B., C.L.R., T.D., B.A., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken (S.S., A.R., M.F., M.K.), 97080 Würzburg, Germany; Institute of Pathology (E.L., A.R.), University of Würzburg, 97080 Würzburg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (S.M., G.L., G.S.), University Hospital Regensburg, 93053 Regensburg, Germany; Department of Nuclear Medicine (A.S.), University Hospital Würzburg, 97080 Würzburg, Germany; and Clinical Chemistry and Laboratory Medicine (S.K., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany
| | - Sabine Kendl
- Department of Internal Medicine I, Endocrinology and Diabetes Unit (S.S., I.S., E.C., F.G., A.G., I.W., M.B., C.L.R., T.D., B.A., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken (S.S., A.R., M.F., M.K.), 97080 Würzburg, Germany; Institute of Pathology (E.L., A.R.), University of Würzburg, 97080 Würzburg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (S.M., G.L., G.S.), University Hospital Regensburg, 93053 Regensburg, Germany; Department of Nuclear Medicine (A.S.), University Hospital Würzburg, 97080 Würzburg, Germany; and Clinical Chemistry and Laboratory Medicine (S.K., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany
| | - Isabel Weigand
- Department of Internal Medicine I, Endocrinology and Diabetes Unit (S.S., I.S., E.C., F.G., A.G., I.W., M.B., C.L.R., T.D., B.A., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken (S.S., A.R., M.F., M.K.), 97080 Würzburg, Germany; Institute of Pathology (E.L., A.R.), University of Würzburg, 97080 Würzburg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (S.M., G.L., G.S.), University Hospital Regensburg, 93053 Regensburg, Germany; Department of Nuclear Medicine (A.S.), University Hospital Würzburg, 97080 Würzburg, Germany; and Clinical Chemistry and Laboratory Medicine (S.K., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany
| | - Margarita Bala
- Department of Internal Medicine I, Endocrinology and Diabetes Unit (S.S., I.S., E.C., F.G., A.G., I.W., M.B., C.L.R., T.D., B.A., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken (S.S., A.R., M.F., M.K.), 97080 Würzburg, Germany; Institute of Pathology (E.L., A.R.), University of Würzburg, 97080 Würzburg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (S.M., G.L., G.S.), University Hospital Regensburg, 93053 Regensburg, Germany; Department of Nuclear Medicine (A.S.), University Hospital Würzburg, 97080 Würzburg, Germany; and Clinical Chemistry and Laboratory Medicine (S.K., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany
| | - Cristina L Ronchi
- Department of Internal Medicine I, Endocrinology and Diabetes Unit (S.S., I.S., E.C., F.G., A.G., I.W., M.B., C.L.R., T.D., B.A., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken (S.S., A.R., M.F., M.K.), 97080 Würzburg, Germany; Institute of Pathology (E.L., A.R.), University of Würzburg, 97080 Würzburg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (S.M., G.L., G.S.), University Hospital Regensburg, 93053 Regensburg, Germany; Department of Nuclear Medicine (A.S.), University Hospital Würzburg, 97080 Würzburg, Germany; and Clinical Chemistry and Laboratory Medicine (S.K., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany
| | - Timo Deutschbein
- Department of Internal Medicine I, Endocrinology and Diabetes Unit (S.S., I.S., E.C., F.G., A.G., I.W., M.B., C.L.R., T.D., B.A., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken (S.S., A.R., M.F., M.K.), 97080 Würzburg, Germany; Institute of Pathology (E.L., A.R.), University of Würzburg, 97080 Würzburg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (S.M., G.L., G.S.), University Hospital Regensburg, 93053 Regensburg, Germany; Department of Nuclear Medicine (A.S.), University Hospital Würzburg, 97080 Würzburg, Germany; and Clinical Chemistry and Laboratory Medicine (S.K., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany
| | - Gerd Schmitz
- Department of Internal Medicine I, Endocrinology and Diabetes Unit (S.S., I.S., E.C., F.G., A.G., I.W., M.B., C.L.R., T.D., B.A., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken (S.S., A.R., M.F., M.K.), 97080 Würzburg, Germany; Institute of Pathology (E.L., A.R.), University of Würzburg, 97080 Würzburg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (S.M., G.L., G.S.), University Hospital Regensburg, 93053 Regensburg, Germany; Department of Nuclear Medicine (A.S.), University Hospital Würzburg, 97080 Würzburg, Germany; and Clinical Chemistry and Laboratory Medicine (S.K., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany
| | - Andreas Rosenwald
- Department of Internal Medicine I, Endocrinology and Diabetes Unit (S.S., I.S., E.C., F.G., A.G., I.W., M.B., C.L.R., T.D., B.A., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken (S.S., A.R., M.F., M.K.), 97080 Würzburg, Germany; Institute of Pathology (E.L., A.R.), University of Würzburg, 97080 Würzburg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (S.M., G.L., G.S.), University Hospital Regensburg, 93053 Regensburg, Germany; Department of Nuclear Medicine (A.S.), University Hospital Würzburg, 97080 Würzburg, Germany; and Clinical Chemistry and Laboratory Medicine (S.K., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany
| | - Bruno Allolio
- Department of Internal Medicine I, Endocrinology and Diabetes Unit (S.S., I.S., E.C., F.G., A.G., I.W., M.B., C.L.R., T.D., B.A., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken (S.S., A.R., M.F., M.K.), 97080 Würzburg, Germany; Institute of Pathology (E.L., A.R.), University of Würzburg, 97080 Würzburg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (S.M., G.L., G.S.), University Hospital Regensburg, 93053 Regensburg, Germany; Department of Nuclear Medicine (A.S.), University Hospital Würzburg, 97080 Würzburg, Germany; and Clinical Chemistry and Laboratory Medicine (S.K., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany
| | - Martin Fassnacht
- Department of Internal Medicine I, Endocrinology and Diabetes Unit (S.S., I.S., E.C., F.G., A.G., I.W., M.B., C.L.R., T.D., B.A., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken (S.S., A.R., M.F., M.K.), 97080 Würzburg, Germany; Institute of Pathology (E.L., A.R.), University of Würzburg, 97080 Würzburg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (S.M., G.L., G.S.), University Hospital Regensburg, 93053 Regensburg, Germany; Department of Nuclear Medicine (A.S.), University Hospital Würzburg, 97080 Würzburg, Germany; and Clinical Chemistry and Laboratory Medicine (S.K., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany
| | - Matthias Kroiss
- Department of Internal Medicine I, Endocrinology and Diabetes Unit (S.S., I.S., E.C., F.G., A.G., I.W., M.B., C.L.R., T.D., B.A., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken (S.S., A.R., M.F., M.K.), 97080 Würzburg, Germany; Institute of Pathology (E.L., A.R.), University of Würzburg, 97080 Würzburg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (S.M., G.L., G.S.), University Hospital Regensburg, 93053 Regensburg, Germany; Department of Nuclear Medicine (A.S.), University Hospital Würzburg, 97080 Würzburg, Germany; and Clinical Chemistry and Laboratory Medicine (S.K., M.F.), University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
245
|
Noguchi N, Urano Y, Takabe W, Saito Y. New aspects of 24(S)-hydroxycholesterol in modulating neuronal cell death. Free Radic Biol Med 2015; 87:366-72. [PMID: 26164631 DOI: 10.1016/j.freeradbiomed.2015.06.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/26/2015] [Accepted: 06/27/2015] [Indexed: 02/05/2023]
Abstract
24(S)-Hydroxycholesterol (24S-OHC), which is enzymatically produced in the brain, has been known to play an important role in maintaining cholesterol homeostasis in the brain and has been proposed as a possible biomarker of neurodegenerative disease. Recent studies have revealed diverse functions of 24S-OHC and gained increased attention. For example, 24S-OHC at sublethal concentrations has been found to induce an adaptive response via activation of the liver X receptor signaling pathway, thereby protecting neuronal cells against subsequent oxidative stress. It has also been found that physiological concentrations of 24S-OHC suppress amyloid-β production via downregulation of amyloid precursor protein trafficking in neuronal cells. On the other hand, high concentrations of 24S-OHC have been found to induce a type of nonapoptotic programmed cell death in neuronal cells expressing little caspase-8. Because neuronal cell death induced by 24S-OHC has been found to proceed by a unique mechanism, which is different from but in some ways similar to necroptosis-necroptosis being a type of programmed necrosis induced by tumor necrosis factor α-neuronal cell death induced by 24S-OHC has been called "necroptosis-like" cell death. 24S-OHC-induced cell death is dependent on the formation of 24S-OHC esters but not on oxidative stress. This review article discusses newly reported aspects of 24S-OHC in neuronal cell death and sheds light on the possible importance of controlling 24S-OHC levels in the brain for preventing neurodegenerative disease.
Collapse
Affiliation(s)
- Noriko Noguchi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan.
| | - Yasuomi Urano
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Wakako Takabe
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Yoshiro Saito
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| |
Collapse
|
246
|
Huang LH, Elvington A, Randolph GJ. The role of the lymphatic system in cholesterol transport. Front Pharmacol 2015; 6:182. [PMID: 26388772 PMCID: PMC4557107 DOI: 10.3389/fphar.2015.00182] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/12/2015] [Indexed: 11/13/2022] Open
Abstract
Reverse cholesterol transport (RCT) is the pathway for removal of peripheral tissue cholesterol and involves transport of cholesterol back to liver for excretion, starting from cellular cholesterol efflux facilitated by lipid-free apolipoprotein A1 (ApoA1) or other lipidated high-density lipoprotein (HDL) particles within the interstitial space. Extracellular cholesterol then is picked up and transported through the lymphatic vasculature before entering into bloodstream. There is increasing evidence supporting a role for enhanced macrophage cholesterol efflux and RCT in ameliorating atherosclerosis, and recent data suggest that these processes may serve as better diagnostic biomarkers than plasma HDL levels. Hence, it is important to better understand the processes governing ApoA1 and HDL influx into peripheral tissues from the bloodstream, modification and facilitation of cellular cholesterol removal within the interstitial space, and transport through the lymphatic vasculature. New findings will complement therapeutic strategies for the treatment of atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Li-Hao Huang
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO, USA
| | - Andrew Elvington
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO, USA
| |
Collapse
|
247
|
Qiao Y, Guo D, Meng L, Liu Q, Liu X, Tang C, Yi G, Wang Z, Yin W, Tian G, Yuan Z. Oxidized-low density lipoprotein accumulates cholesterol esters via the PKCα-adipophilin-ACAT1 pathway in RAW264.7 cells. Mol Med Rep 2015; 12:3599-3606. [PMID: 26017812 DOI: 10.3892/mmr.2015.3864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 04/30/2015] [Indexed: 11/06/2022] Open
Abstract
Oxidized low‑density lipoprotein (ox‑LDL) can increase the expression of adipophilin and the accumulation of intracellular lipid droplets. However, the detailed mechanisms remain to be fully elucidated. The present study aimed to investigate the mechanism underlying the effect of ox‑LDL on the expression of adipophilin and the accumulation of intracellular cholesterol esters. The results revealed that ox‑LDL increased the activation of protein kinase C α (PKCα), expression of adipophilin and acyl‑coenzymeA: cholesterol acyltransferse 1 (ACAT1) and increased accumulation of intracellular cholesterol esters. In addition, PKCα siRNA abrogated ox‑LDL‑induced adipophilin, expression of ATAC1 and accumulation of cholesterol esters. Furthermore, ox‑LDL increased the accumulation of intracellular cholesterol esters and expression of ACAT1, and this effect were reversed by transfection with adipophilin siRNA. Taken together, these results demonstrated that ox‑LDL induces the accumulation of cholesterol esters, which is mediated by the PKCα‑adipophilin‑ACAT1 pathway.
Collapse
Affiliation(s)
- Yuncheng Qiao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Dongming Guo
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lei Meng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Qingnan Liu
- Department of Basic Nursing, Yiyang Medical College, Yiyang, Hunan 413000, P.R. China
| | - Xiaohui Liu
- Cyrus Tang Hematology Center (Research Partnership), Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215400, P.R. China
| | - Chaoke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Guanghui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Weidong Yin
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Guoping Tian
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhonghua Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
248
|
Wüstner D, Solanko K. How cholesterol interacts with proteins and lipids during its intracellular transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1908-26. [DOI: 10.1016/j.bbamem.2015.05.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/14/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022]
|
249
|
He X, Leow KY, Yang H, Heng CK. Functional characterization of two single nucleotide polymorphisms of acyl-coenzyme A:cholesterol acyltransferase 2. Gene 2015; 566:236-41. [PMID: 25917363 DOI: 10.1016/j.gene.2015.04.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/20/2015] [Accepted: 04/21/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND Acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2) plays a critical role in the formation of cholesteryl esters from cholesterol and fatty acids, and is a potential target for treating hypercholesterolemia. We recently reported the significant effects of two human ACAT2 gene polymorphisms, 41A>G (Glu(14)Gly, rs9658625) and 734C>T (Thr(254)Ile, rs2272296), on plasma lipid levels and coronary artery disease susceptibility in a case-control association study. In the present study, we evaluated the possible biological influence of the two polymorphism using two approaches. METHODS In the first approach, the functional impact of the two polymorphisms was predicted in-silico using available web-based software, and in the second approach, the varying functions of the two polymorphisms were characterized in in vitro experiments, using ACAT2-deficient AC-29 cells. RESULTS Our results show that the enzymatic activity of mutant Glu(14)Gly is approximately two times higher than wildtype, and that this increase is primarily due to the increased expression and/or stability of the mutant ACAT2 protein. CONCLUSIONS These results suggest that the genetic variation at Glu(14)Gly is functionally important and may contribute to ACAT2 protein expression and stability.
Collapse
Affiliation(s)
- Xuelian He
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore; Central Laboratory, Wuhan Children's Hospital, China.
| | - Koon-Yeow Leow
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Hongyuan Yang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore.
| |
Collapse
|
250
|
Kalish BT, Fell GL, Nandivada P, Puder M. Clinically Relevant Mechanisms of Lipid Synthesis, Transport, and Storage. JPEN J Parenter Enteral Nutr 2015; 39:8S-17S. [PMID: 26187937 DOI: 10.1177/0148607115595974] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/26/2015] [Indexed: 12/19/2022]
Abstract
Lipids not only are fundamental nutrients but also serve as basic structural components of cells and as multifunctional signaling molecules. Lipid metabolism pathways underlie basic processes in health and disease and are the targets of novel therapeutics. In this review, we explore the molecular control of lipid synthesis, trafficking, and storage, with a focus on clinically relevant pathways. To illustrate the clinical relevance of molecular lipid regulation, we highlight how these biochemical processes contribute to the pathogenesis of nonalcoholic fatty liver disease, a component of the metabolic syndrome and a paradigmatic example of lipid dysregulation.
Collapse
Affiliation(s)
- Brian T Kalish
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gillian L Fell
- Department of Surgery and The Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Prathima Nandivada
- Department of Surgery and The Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mark Puder
- Department of Surgery and The Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|