201
|
Fazelian-Dehkordi K, Mesbah Ardekani SF, Talaei-Khozani T. Quality Comparison of Decellularized Omentum Prepared by Different Protocols for Tissue Engineering Applications. CELL JOURNAL 2022; 24:267-276. [PMID: 35717569 PMCID: PMC9445523 DOI: 10.22074/cellj.2022.7968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 07/18/2021] [Indexed: 11/05/2022]
Abstract
Objective Decellularized greater omentum (GOM) is a good extracellular matrix (ECM) source for regenerative medicine applications. The aim of the current study was to compare the efficiency of three protocols for sheep GOM decellularization based on sufficient DNA depletion and ECM content retention for tissue engineering application. Materials and Methods In this experimental study, in the first protocol, low concentrations of sodium dodecyl sulfate (SDS 1%), hexane, acetone, ethylenediaminetetraacetic acid (EDTA), and ethanol were used. In the second one, a high concentration of SDS (4%) and ethanol, and in the last one sodium lauryl ether sulfate (SLES 1%) were used to decellularize the GOM. To evaluate the quality of scaffold prepared with various protocols, histochemical staining, DNA, and glycosaminoglycan (GAGs) quantification, scanning electron microscopy (SEM), Raman confocal microscopy, Bradford assay, and ELISA were performed. Results A comparison of DNA content showed that SDS-based protocols omitted DNA more efficiently than the SLESbased protocol. Histochemical staining showed that all protocols preserved the neutral carbohydrates, collagen, and elastic fibers; however, the SLES-based protocol removed the lipid droplets better than the SDS-based protocols. Although SEM images showed that all protocols preserved the ECM architecture, Raman microscopy, GAGs quantification, total protein, and vascular endothelial growth factor (VEGF) assessments revealed that SDS 1% preserved ECM more efficiently than the others. Conclusion The SDS 1% can be considered a superior protocol for decellularizing GOM in tissue engineering applications.
Collapse
Affiliation(s)
| | | | - Tahereh Talaei-Khozani
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Tissue Engineering Lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran,P.O.Box7134845794Histomorphometry and Stereology Research CenterShiraz University of Medical SciencesShirazIran
| |
Collapse
|
202
|
Mohgan R, Candasamy M, Mayuren J, Singh SK, Gupta G, Dua K, Chellappan DK. Emerging Paradigms in Bioengineering the Lungs. Bioengineering (Basel) 2022; 9:bioengineering9050195. [PMID: 35621473 PMCID: PMC9137616 DOI: 10.3390/bioengineering9050195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/25/2022] Open
Abstract
In end-stage lung diseases, the shortage of donor lungs for transplantation and long waiting lists are the main culprits in the significantly increasing number of patient deaths. New strategies to curb this issue are being developed with the help of recent advancements in bioengineering technology, with the generation of lung scaffolds as a steppingstone. There are various types of lung scaffolds, namely, acellular scaffolds that are developed via decellularization and recellularization techniques, artificial scaffolds that are synthesized using synthetic, biodegradable, and low immunogenic materials, and hybrid scaffolds which combine the advantageous properties of materials in the development of a desirable lung scaffold. There have also been advances in the design of bioreactors in terms of providing an optimal regenerative environment for the maturation of functional lung tissue over time. In this review, the emerging paradigms in the field of lung tissue bioengineering will be discussed.
Collapse
Affiliation(s)
- Raxshanaa Mohgan
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Jayashree Mayuren
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India;
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia;
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur 302017, India;
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia;
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
- Correspondence:
| |
Collapse
|
203
|
Crouch DJ, Sheridan CM, Behnsen JG, Bosworth LA. An Optimized Method to Decellularize Human Trabecular Meshwork. Bioengineering (Basel) 2022; 9:194. [PMID: 35621472 PMCID: PMC9137515 DOI: 10.3390/bioengineering9050194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Glaucoma is linked to raised intraocular pressure (IOP). The trabecular meshwork (TM) plays a major role in regulating IOP by enabling outflow of aqueous humor from the eye through its complex 3D structure. A lack of therapies targeting the dysfunctional TM highlights the need to develop biomimetic scaffolds that provide 3D in vitro models for glaucoma research or as implantable devices to regenerate TM tissue. To artificially mimic the TM's structure, we assessed methods for its decellularization and outline an optimized protocol for cell removal and structural retention. Using bovine TM, we trialed 2 lysing agents-Trypsin (0.05% v/v) and Ammonium Hydroxide (NH4OH; 2% v/v). Twenty-four hours in Trypsin caused significant structural changes. Shorter exposure (2 h) reduced this disruption whilst decellularizing the tissue (dsDNA 26 ± 14 ng/mL (control 1970 ± 146 ng/mL)). In contrast, NH4OH lysed all cells (dsDNA 25 ± 21 ng/mL), and the TM structure remained intact. For human TM, 2% v/v NH4OH similarly removed cells (dsDNA 52 ± 4 ng/mL (control 1965 ± 233 ng/mL)), and light microscopy and SEM presented no structural damage. X-ray computed tomography enabled a novel 3D reconstruction of decellularized human TM and observation of the tissue's intricate architecture. This study provides a new, validated method using NH4OH to decellularize delicate human TM without compromising tissue structure.
Collapse
Affiliation(s)
- Devon J. Crouch
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK;
| | - Carl M. Sheridan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK;
| | - Julia G. Behnsen
- Department of Mechanical, Materials, and Aerospace Engineering, University of Liverpool, Liverpool L69 6GB, UK;
| | - Lucy A. Bosworth
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK;
| |
Collapse
|
204
|
Chen MY, Fang JJ, Lee JN, Periasamy S, Yen KC, Wang HC, Hsieh DJ. Supercritical Carbon Dioxide Decellularized Xenograft-3D CAD/CAM Carved Bone Matrix Personalized for Human Bone Defect Repair. Genes (Basel) 2022; 13:755. [PMID: 35627140 PMCID: PMC9141546 DOI: 10.3390/genes13050755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022] Open
Abstract
About 30-50% of oral cancer patients require mandibulectomy and autologous fibula reconstruction. Autograft is the gold standard choice because of its histocompatibility; however, it requires additional surgery from the patient and with possible complications such as loss of fibula leading to calf weakening in the future. Allograft and xenograft are alternatives but are susceptible to immune response. Currently, no personalized bone xenografts are available in the market for large fascial bone defects. In addition, a large-sized complex shape bone graft cannot be produced directly from the raw material. We propose the use of porcine bones with 3D CAD/CAM carving to reconstruct a personalized, wide range and complex-shaped bone. We anticipate that patients can restore their native facial appearance after reconstruction surgery. Supercritical CO2 (SCCO2) technology was employed to remove the cells, fat and non-collagenous materials while maintaining a native collagen scaffold as a biomedical device for bone defects. We successfully developed 3D CAD/CAM carved bone matrices, followed by SCCO2 decellularization of those large-sized bones. A lock-and-key puzzle design was employed to fulfil a wide range of large and complex-shaped maxillofacial defects. To conclude, the 3D CAD/CAM carved bone matrices with lock and key puzzle Lego design were completely decellularized by SCCO2 extraction technology with intact natural collagen scaffold. In addition, the processed bone matrices were tested to show excellent cytocompatibility and mechanical stiffness. Thus, we can overcome the limitation of large size and complex shapes of xenograft availability. In addition, the 3D CAD/CAM carving process can provide personalized tailor-designed decellularized bone grafts for the native appearance for maxillofacial reconstruction surgery for oral cancer patients and trauma patients.
Collapse
Affiliation(s)
- Meng-Yen Chen
- Division of Oral and Maxillofacial Surgery, Department of Stomatology, College of Medicine, National Cheng Kung University, Tainan 704302, Taiwan;
| | - Jing-Jing Fang
- Department of Mechanical Engineering, College of Engineering, National Cheng Kung University, Tainan 701401, Taiwan;
| | - Jeng-Nan Lee
- Department of Mechanical Engineering, Cheng Shiu University, Kaohsiung 833301, Taiwan;
| | - Srinivasan Periasamy
- R & D Center, ACRO Biomedical Co., Ltd. 2nd. Floor, No.57, Luke 2nd. Rd., Luzhu District, Kaohsiung 821011, Taiwan; (S.P.); (K.-C.Y.); (H.-C.W.)
| | - Ko-Chung Yen
- R & D Center, ACRO Biomedical Co., Ltd. 2nd. Floor, No.57, Luke 2nd. Rd., Luzhu District, Kaohsiung 821011, Taiwan; (S.P.); (K.-C.Y.); (H.-C.W.)
| | - Hung-Chou Wang
- R & D Center, ACRO Biomedical Co., Ltd. 2nd. Floor, No.57, Luke 2nd. Rd., Luzhu District, Kaohsiung 821011, Taiwan; (S.P.); (K.-C.Y.); (H.-C.W.)
| | - Dar-Jen Hsieh
- R & D Center, ACRO Biomedical Co., Ltd. 2nd. Floor, No.57, Luke 2nd. Rd., Luzhu District, Kaohsiung 821011, Taiwan; (S.P.); (K.-C.Y.); (H.-C.W.)
| |
Collapse
|
205
|
Neishabouri A, Soltani Khaboushan A, Daghigh F, Kajbafzadeh AM, Majidi Zolbin M. Decellularization in Tissue Engineering and Regenerative Medicine: Evaluation, Modification, and Application Methods. Front Bioeng Biotechnol 2022; 10:805299. [PMID: 35547166 PMCID: PMC9081537 DOI: 10.3389/fbioe.2022.805299] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Reproduction of different tissues using scaffolds and materials is a major element in regenerative medicine. The regeneration of whole organs with decellularized extracellular matrix (dECM) has remained a goal despite the use of these materials for different purposes. Recently, decellularization techniques have been widely used in producing scaffolds that are appropriate for regenerating damaged organs and may be able to overcome the shortage of donor organs. Decellularized ECM offers several advantages over synthetic compounds, including the preserved natural microenvironment features. Different decellularization methods have been developed, each of which is appropriate for removing cells from specific tissues under certain conditions. A variety of methods have been advanced for evaluating the decellularization process in terms of cell removal efficiency, tissue ultrastructure preservation, toxicity, biocompatibility, biodegradability, and mechanical resistance in order to enhance the efficacy of decellularization methods. Modification techniques improve the characteristics of decellularized scaffolds, making them available for the regeneration of damaged tissues. Moreover, modification of scaffolds makes them appropriate options for drug delivery, disease modeling, and improving stem cells growth and proliferation. However, considering different challenges in the way of decellularization methods and application of decellularized scaffolds, this field is constantly developing and progressively moving forward. This review has outlined recent decellularization and sterilization strategies, evaluation tests for efficient decellularization, materials processing, application, and challenges and future outlooks of decellularization in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Afarin Neishabouri
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Pediatric Center of Excellence, Tehran University of Medical Science, Tehran, Iran
| | - Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Pediatric Center of Excellence, Tehran University of Medical Science, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Daghigh
- Department of Physiology, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Pediatric Center of Excellence, Tehran University of Medical Science, Tehran, Iran
- *Correspondence: Masoumeh Majidi Zolbin, ; Abdol-Mohammad Kajbafzadeh,
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Pediatric Center of Excellence, Tehran University of Medical Science, Tehran, Iran
- *Correspondence: Masoumeh Majidi Zolbin, ; Abdol-Mohammad Kajbafzadeh,
| |
Collapse
|
206
|
Placental Tissues as Biomaterials in Regenerative Medicine. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6751456. [PMID: 35496035 PMCID: PMC9050314 DOI: 10.1155/2022/6751456] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/19/2022] [Indexed: 12/02/2022]
Abstract
Placental tissues encompass all the tissues which support fetal development, including the placenta, placental membrane, umbilical cord, and amniotic fluid. Since the 1990s there has been renewed interest in the use of these tissues as a raw material for regenerative medicine applications. Placental tissues have been extensively studied for their potential contribution to tissue repair applications. Studies have attributed their efficacy in augmenting the healing process to the extracellular matrix scaffolds rich in collagens, glycosaminoglycans, and proteoglycans, as well as the presence of cytokines within the tissues that have been shown to stimulate re-epithelialization, promote angiogenesis, and aid in the reduction of inflammation and scarring. The compositions and properties of all birth tissues give them the potential to be valuable biomaterials for the development of new regenerative therapies. Herein, the development and compositions of each of these tissues are reviewed, with focus on the structural and signaling components that are relevant to medical applications. This review also explores current configurations and recent innovations in the use of placental tissues as biomaterials in regenerative medicine.
Collapse
|
207
|
Tang W, Qi J, Wang Q, Qu Y, Fu S, Luan J. Investigating the Adipogenic Effects of Different Tissue-Derived Decellularized Matrices. Front Bioeng Biotechnol 2022; 10:872897. [PMID: 35497363 PMCID: PMC9046558 DOI: 10.3389/fbioe.2022.872897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Decellularized adipose-derived matrix (DAM) can promote adipogenic differentiation and adipose tissue remodeling, but the biological impact of tissue origin on DAM remains unknown. The present study aimed to investigate the effects of tissue origins on the adipogenic capacity of the decellularized matrix by comparing the cellular and tissue responses of DAM versus acellular dermal matrix (ADM). Methods: The in vitro response of adipose-derived stem/stromal cells (ADSCs) to DAM and ADM was characterized by proliferation and differentiation. The in vivo remodeling response was evaluated in the subcutaneous injection model of immunocompromised mice, using histology, protein expression, and transcriptome analysis. Results: Both DAM and ADM exhibited excellent decellularization effects and cytocompatibility. In the absence of exogenous stimuli, DAM could induce adipogenic differentiation of ADSCs compared with ADM. In the animal model, the levels of PDGF, VEGF, and ACRP30 were higher in the DAM groups than in the ADM group, and more neovascularization and extensive adipose tissue remodeling were observed. The mRNA-seq analysis indicated that the DAM implant regulated tissue remodeling by modulating Lat1/2 expression along with Hippo Signaling pathway in the early stage. Conclusion: Tissue origin can influence the biological response of the decellularized matrix. DAM can retain favorable tissue-specific characteristics after the decellularization process and have unique adipogenic effects in vitro and vivo, which can be fully utilized for soft tissue repair and regeneration.
Collapse
Affiliation(s)
| | | | | | | | - Su Fu
- *Correspondence: Su Fu, ; Jie Luan,
| | - Jie Luan
- *Correspondence: Su Fu, ; Jie Luan,
| |
Collapse
|
208
|
Ji W, Wen J, Lin W, He P, Hou B, Quan S. Comparing the Characteristics of Amniotic Membrane-, Endometrium-, and Urinary-Derived ECMs and Their Effects on Endometrial Regeneration in a Rat Uterine Injury Model. Front Bioeng Biotechnol 2022; 10:861496. [PMID: 35497362 PMCID: PMC9043350 DOI: 10.3389/fbioe.2022.861496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The decellularized extracellular matrices (d-ECMs) currently utilized to repair endometrial injuries are derived from three tissue sources, the endometrium (dE-ECM), placental amniotic membrane (dA-ECM), and urinary (dU-ECM). Notably, the structures of dU-ECM and dE-ECM are similar. These d-ECMs are derived from different tissues, and their specific roles in endometrial injury repair remain unclear. This study aimed to analyse the characteristics of the tissue microstructures and compositions to confirm specific differences among the three ECM types. And using a rat model of endometrial injury, the effects of all the matrices after implantation in vivo on the promotion of endometrial regeneration were analysed. After decellularization, dE-ECM had more residual active factors than the other two ECM types, while dA-ECM had significantly less DNA, α-Gal antigen components and extracellular matrix components than the other two groups. Although the three ECMs had no effect on the proliferation of stromal cells in vitro, dA-ECM may have increased the sensitivity of stromal cells to oestradiol (E2) responses. In vivo experiments confirmed the promotional effect of dA-ECM on endometrial regeneration. For example, the endometrial thickness, collagen deposition, endometrial tissue regeneration, vascular regeneration and pregnancy outcomes were significantly better in this group than in the other two groups. These findings might be associated with the excellent immune tolerance of dA-ECM. Therefore, when selecting a d-ECM for the treatment of endometrial injury, dE-ECM, which has the strongest tissue specificity, is not the preferred choice. Controlling the inflammatory responses in local lesions at the early stage may be a prerequisite for ECMs to exert their functions.
Collapse
Affiliation(s)
- Wanqing Ji
- Department of Gynecology and Obstetrics, NanFang Hospital, Southern Medical University, Guangzhou, China,Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiaming Wen
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Weige Lin
- Guangdong Maoming Health Vocational College, Maoming, China
| | - Ping He
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bo Hou
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,*Correspondence: Bo Hou, ; Song Quan,
| | - Song Quan
- Department of Gynecology and Obstetrics, NanFang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Bo Hou, ; Song Quan,
| |
Collapse
|
209
|
Eini E, Ghaemi A, Rahim F. Bone Using Stem Cells for Maxillofacial Bone Disorders: A Systematic Review and Meta-analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022:119-135. [PMID: 35389197 DOI: 10.1007/5584_2022_706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Due to economic, cultural, environmental, and social factors, the prevalence of maxillofacial bone disorders varies in different parts of the world. The present meta-analysis was conducted to assess the efficacy and safety of different type of stem cells-based scaffolds and their construction methods in maxillofacial bone disorders. We searched major indexing databases, including PubMed/Medline, ISI Web of Science, Scopus, Embase, and Cochrane Central without any language, study region, or type restrictions. A systematic search of articles published up to July 2021 was done. Of the 428 studies found through initial searches, 36 met the inclusion criteria. After applying the exclusion criteria, the main properties of 32 articles on 643 animals and 4 experimental studies on 52 patients (age range from 43 to 74 years) included in this meta-analysis. Our pooled analysis showed that stem cells-based scaffolds significantly improved the bone regeneration and formation in maxillofacial bone disorders (Prevalence: 0.54; 95% CI: 0.43, 0.64, P < 00001, I2 = 90 2). According to the results of these studies, in most studies, bone marrow-derived mesenchymal stem cells (BMSCs) have been used to regenerate bone, and these cells are still the gold standard in bone tissue engineering, a growth factor that is one of the three sides of the tissue engineering triangle. Bone morphogenetic proteins (BMP) especially BMP2 and platelet-rich plasma (PRP) are the most widely used growth factor and scaffold respectively. Platelet-rich plasma (PRP) is used as a scaffold and since it contains proteins, it also used as a growth factor and can be a stimulant of ossification. It seems that the future perspective of bone tissue engineering is to use the prototyping rapid method to build a composite and patient-specific scaffold from CT and MRI images, along with genetically modified stem cells.
Collapse
Affiliation(s)
- Ebrahim Eini
- MSD, Department of Orthodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Fakher Rahim
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
210
|
Rastegar Adib F, Bagheri F, Sharifi AM. Osteochondral regeneration in rabbit using xenograft decellularized ECM in combination with different biological products; platelet-rich fibrin, amniotic membrane extract, and mesenchymal stromal cells. J Biomed Mater Res B Appl Biomater 2022; 110:2089-2099. [PMID: 35383398 DOI: 10.1002/jbm.b.35063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/11/2022]
Abstract
This study aimed to investigate the regenerative effect of decellularized osteochondral ECM xenograft in combination with various biological products in an osteochondral (OC) defect. OC tissue from the sheep femur were obtained and decellularized. The decellularized ECM (dECM) was combined with either platelet-rich fibrin (PRF), amniotic membrane extract (AME), or rabbit bone marrow-derived mesenchymal stromal cells (rBMSCs). The hybrid dECM-biological products were then utilized for the treatment of rabbit OC critical size defects. The regenerative potential of different groups was compared using; MRI, macroscopic assessment, histopathology, and histomorphometry. All characterizations analysis verified successful decellularization. Three months post-surgery, macroscopic findings indicated that dECM was better compared to controls. Also, dECM in combination with AME, PRF, and rBMSCs showed enhanced OC regeneration compared to only dECM (AME: +100%, PRF: +61%, rBMSCs: +28%). In particular, the dECM+AME group results in the best integration of new cartilage into surrounding cartilage tissue. The histomorphometric evaluations demonstrated enhancement in new cartilage formation and bone tissue (86.5 ± 5.9% and 90 ± 7.7%, respectively) for the dECM+AME group compared to other groups. Furthermore, histological results for the dECM+AME elucidated a mature hyaline cartilage tissue that covered the new and symmetrically formed subchondral bone, exhibiting a significantly higher regenerative effect compared to all other treated groups. This finding was also confirmed with MRI images. The current study revealed that in addition to the benefits of dECM alone, its combination with AME indicated to have a superior regenerative effect on OC regeneration. Overall, dECM+AME may be considered a suitable construct for treating knee OC injuries.
Collapse
Affiliation(s)
- Fatemeh Rastegar Adib
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ali Mohammad Sharifi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Tissue Engineering Group, (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
211
|
Rodboon T, Yodmuang S, Chaisuparat R, Ferreira JN. Development of high-throughput lacrimal gland organoid platforms for drug discovery in dry eye disease. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:151-158. [PMID: 35058190 DOI: 10.1016/j.slasd.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dysfunction and damage of the lacrimal gland (LG) results in ocular discomfort and dry eye disease (DED). Current therapies for DED do not fully replenish the necessary lubrication to rescue optimal vision. New drug discovery for DED has been limited perhaps because in vitro models cannot mimic the biology of the native LG. The existing platforms for LG organoid culture are scarce and still not ready for consistency and scale up production towards drug screening. The magnetic three-dimensional (3D) bioprinting (M3DB) is a novel system for 3D in vitro biofabrication of cellularized tissues using magnetic nanoparticles to bring cells together. M3DB provides a scalable platform for consistent handling of spheroid-like cell cultures facilitating consistent biofabrication of organoids. Previously, we successfully generated innervated secretory epithelial organoids from human dental pulp stem cells with M3DB and found that this platform is feasible for epithelial organoid bioprinting. Research targeting LG organogenesis, drug discovery for DED has extensively used mouse models. However, certain inter-species differences between mouse and human must be considered. Porcine LG appear to have more similarities to human LG than the mouse counterparts. We have conducted preliminary studies with the M3DB for fabricating LG organoids from primary cells isolated from murine and porcine LG, and found that this platform provides robust LG organoids for future potential high-throughput analysis and drug discovery. The LG organoid holds promise to be a functional model of tearing, a platform for drug screening, and may offer clinical applications for DED.
Collapse
Affiliation(s)
- Teerapat Rodboon
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Supansa Yodmuang
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Risa Chaisuparat
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Faculty of Dentistry, National University of Singapore, Singapore.
| |
Collapse
|
212
|
Kostelnik CJ, Hohn J, Escoto-Diaz CE, Kooistra JB, Stern MM, Swinton DE, Richardson WJ, Carver W, Eberth JF. Small-diameter artery decellularization: Effects of anionic detergent concentration and treatment duration on porcine internal thoracic arteries. J Biomed Mater Res B Appl Biomater 2022; 110:885-897. [PMID: 34855280 PMCID: PMC8854343 DOI: 10.1002/jbm.b.34969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/27/2021] [Accepted: 11/13/2021] [Indexed: 11/06/2022]
Abstract
Engineered replacement materials have tremendous potential for vascular applications where over 400,000 damaged and diseased blood vessels are replaced annually in the United States alone. Unlike large diameter blood vessels, which are effectively replaced by synthetic materials, prosthetic small-diameter vessels are prone to early failure, restenosis, and reintervention surgery. We investigated the differential response of varying 0%-6% sodium dodecyl sulfate and sodium deoxycholate anionic detergent concentrations after 24 and 72 h in the presence of DNase using biochemical, histological, and biaxial mechanical analyses to optimize the decellularization process for xenogeneic vascular tissue sources, specifically the porcine internal thoracic artery (ITA). Detergent concentrations greater than 1% were successful at removing cytoplasmic and cell surface proteins but not DNA content after 24 h. A progressive increase in porosity and decrease in glycosaminoglycan (GAG) content was observed with detergent concentration. Augmented porosity was likely due to the removal of both cells and GAGs and could influence recellularization strategies. The treatment duration on the other hand, significantly improved decellularization by reducing DNA content to trace amounts after 72 h. Prolonged treatment times reduced laminin content and influenced the vessel's mechanical behavior in terms of altered circumferential stress and stretch while further increasing porosity. Collectively, DNase with 1% detergent for 72 h provided an effective and efficient decellularization strategy to be employed in the preparation of porcine ITAs as bypass graft scaffolding materials with minor biomechanical and histological penalties.
Collapse
Affiliation(s)
- CJ Kostelnik
- Biomedical Engineering Program, University of South Carolina College of Eng., Columbia, SC
| | - J Hohn
- Department of Cell Biology & Anatomy, University of South Carolina School of Med., Columbia, SC
| | - CE Escoto-Diaz
- Department of Biology, Winthrop University, Rock Hill, SC
| | - JB Kooistra
- Department of Biology, Winthrop University, Rock Hill, SC
| | - MM Stern
- Department of Biology, Winthrop University, Rock Hill, SC
| | - DE Swinton
- Department of Chemistry, Claflin University, Orangeburg, SC
| | - WJ Richardson
- Department of Bioengineering, Clemson University, Clemson, SC
| | - W Carver
- Department of Cell Biology and Anatomy, University of South Carolina, School of Medicine, Columbia, SC
| | - JF Eberth
- Department of Cell Biology & Anatomy, University of South Carolina School of Med., Columbia, SC
| |
Collapse
|
213
|
Song ES, Park JH, Ha SS, Cha PH, Kang JT, Park CY, Park K. Novel Corneal Endothelial Cell Carrier Couples a Biodegradable Polymer and a Mesenchymal Stem Cell-Derived Extracellular Matrix. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12116-12129. [PMID: 35238557 DOI: 10.1021/acsami.2c01709] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Here, we report a transparent, biodegradable, and cell-adhesive carrier that is securely coupled with the extracellular matrix (ECM) for corneal endothelial cell (CEC) transplantation. To fabricate a CEC carrier, poly(lactide-co-caprolactone) (PLCL) solution was poured onto the decellularized ECM (UMDM) derived from in vitro cultured umbilical cord blood-MSCs. Once completely dried, ECM-PLCL was then peeled off from the substrate. It was 20 μm thick, transparent, rich in fibronectin and collagen type IV, and easy to handle. Surface characterizations exhibited that ECM-PLCL was very rough (54.0 ± 4.50 nm) and uniformly covered in high density by ECM and retained a positive surface charge (65.2 ± 57.8 mV), as assessed via atomic force microscopy. Human CECs (B4G12) on the ECM-PLCL showed good cell attachment, with a cell density similar to the normal cornea. They could also maintain a cell phenotype, with nicely formed cell-cell junctions as assessed via ZO-1 and N-cadherin at 14 days. This was in sharp contrast to the CEC behaviors on the FNC-coated PLCL (positive control). A function-related marker, Na+/K+-ATPase, was also identified via western blot and immunofluorescence. In addition, primary rabbit CECs showed a normal shape and they could express structural and functional proteins on the ECM-PLCL. A simulation test confirmed that CECs loaded on the ECM-PLCL were successfully engrafted into the decellularized porcine corneal tissue, with a high engraftment level and cell viability. Moreover, ECM-PLCL transplantation into the anterior chamber of the rabbit eye for 8 weeks proved the maintenance of normal cornea properties. Taken together, this study demonstrates that our ECM-PLCL can be a promising cornea endothelium graft with an excellent ECM microenvironment for CECs.
Collapse
Affiliation(s)
- Eui Sun Song
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Joo-Hee Park
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea
| | - Sang Su Ha
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Pu-Hyeon Cha
- Biotechnology Research Institute, Mgenplus Co., Ltd., Seoul 06688, Republic of Korea
| | - Jung-Taek Kang
- Biotechnology Research Institute, Mgenplus Co., Ltd., Seoul 06688, Republic of Korea
| | - Choul Yong Park
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea
| | - Kwideok Park
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
214
|
Dubus M, Scomazzon L, Chevrier J, Montanede A, Baldit A, Terryn C, Quilès F, Thomachot-Schneider C, Gangloff SC, Bouland N, Gindraux F, Rammal H, Mauprivez C, Kerdjoudj H. Decellularization of Wharton’s Jelly Increases Its Bioactivity and Antibacterial Properties. Front Bioeng Biotechnol 2022; 10:828424. [PMID: 35360386 PMCID: PMC8963334 DOI: 10.3389/fbioe.2022.828424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/08/2022] [Indexed: 12/31/2022] Open
Abstract
The field of regenerative medicine has recently seen an emerging trend toward decellularized extracellular matrix (ECM) as a biological scaffold for stem cell-delivery. Human umbilical cord represents a valuable opportunity from both technical and ethical point of view to obtain allogenic ECM. Herein, we established a protocol, allowing the full removal of cell membranes and nuclei moieties from Wharton’s jelly (WJ) tissue. No alterations in the ECM components (i.e., collagen, GAG content, and growth factors), physical (i.e., porosity and swelling) and mechanical (i.e., linear tensile modulus) properties were noticed following WJ processing. Furthermore, no effect of the tissue processing on macromolecules and growth factors retention was observed, assuring thus a suitable bioactive matrix for cell maintenance upon recellularization. Based on the in vitro and in vivo biodegradability and stromal cell homing capabilities, decellularized WJ could provide an ideal substrate for stromal cells adhesion and colonization. Interestingly, the tissue processing increased the antibacterial and antiadhesive properties of WJ against Staphylococcus aureus and Staphylococcus epidermidis pathogens. Altogether, our results indicate that decellularized WJ matrix is able to limit Staphylococcus-related infections and to promote stromal cell homing, thus offering a versatile scaffold for tissue regenerative medicine.
Collapse
Affiliation(s)
- M. Dubus
- Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, Université de Reims Champagne Ardenne, Reims, France
- UFR d’Odontologie, Université de Reims Champagne Ardenne, Reims, France
| | - L. Scomazzon
- Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, Université de Reims Champagne Ardenne, Reims, France
| | - J. Chevrier
- Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, Université de Reims Champagne Ardenne, Reims, France
| | - A. Montanede
- Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, Université de Reims Champagne Ardenne, Reims, France
| | - A. Baldit
- Laboratoire d’étude des Microstructures et de Mécanique des Matériaux (LEM3), UMR CNRS 7239, Université de Lorraine, Metz, France
| | - C. Terryn
- Plateau Technique PICT, Université de Reims Champagne Ardenne, Reims, France
| | - F. Quilès
- CNRS, LCPME, Université de Lorraine, Nancy, France
| | - C. Thomachot-Schneider
- Groupe d’Étude des Géomatériaux et Environnement Naturels, Anthropiques et Archéologiques (GEGENAA), Université de Reims Champagne Ardenne, Reims, France
| | - S. C. Gangloff
- Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, Université de Reims Champagne Ardenne, Reims, France
- UFR de Pharmacie, Université de Reims Champagne Ardenne, Reims, France
| | - N. Bouland
- Service d’anatomopathologie, UFR de Médecine, Université de Reims Champagne Ardenne, Reims, France
| | - F. Gindraux
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique, Université Bourgogne Franche-Comté, Besançon, France
| | - H. Rammal
- Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, Université de Reims Champagne Ardenne, Reims, France
- UFR d’Odontologie, Université de Reims Champagne Ardenne, Reims, France
| | - C. Mauprivez
- Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, Université de Reims Champagne Ardenne, Reims, France
- UFR d’Odontologie, Université de Reims Champagne Ardenne, Reims, France
- Centre Hospitalier Universitaire de Reims, Pôle Médecine Bucco-dentaire, Hôpital Maison Blanche, Reims, France
| | - H. Kerdjoudj
- Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, Université de Reims Champagne Ardenne, Reims, France
- UFR d’Odontologie, Université de Reims Champagne Ardenne, Reims, France
- *Correspondence: H. Kerdjoudj,
| |
Collapse
|
215
|
Krishnan A, Wang H, MacArthur JW. Applications of Tissue Decellularization Techniques in Ventricular Myocardial Biofabrication. Front Bioeng Biotechnol 2022; 10:802283. [PMID: 35265593 PMCID: PMC8899393 DOI: 10.3389/fbioe.2022.802283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemic heart disease is the leading cause of death around the world, and though the advent of coronary revascularization has revolutionized its treatment, many patients who sustain ischemic injury to the heart will go on to develop heart failure. Biofabrication of ventricular myocardium for replacement of irreversibly damaged ischemic myocardium is sought after as a potential therapy for ischemic heart failure, though challenges in reliably producing this biomaterial have limited its clinical application. One method that shows promise for generation of functional myocardium is the use of tissue decellularization to serve as a scaffold for biofabrication. This review outlines the methods, materials, challenges, and prospects of tissue decellularization techniques for ventricular myocardium biofabrication. Decellularization aims to preserve the architecture and composition of the extracellular matrix of the tissue it is applied to, allowing for the subsequent implantation of stem cells of the desired cell type. Decellularization can be achieved with multiple reagents, most of which have detergent properties. A variety of cell types can be implanted in the resulting scaffold, including cardiac progenitor cells, and embryonic or induced pluripotent stem cells to generate a range of tissue, from patches to beating myocardium. The future of this biofabrication method will likely emphasize patient specific tissue engineering to generate complex 3-dimensional constructs that can replace dysfunctional cardiac structures.
Collapse
Affiliation(s)
- Aravind Krishnan
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - John Ward MacArthur
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
216
|
Li K, Tharwat M, Larson EL, Felgendreff P, Hosseiniasl SM, Rmilah AA, Safwat K, Ross JJ, Nyberg SL. Re-Endothelialization of Decellularized Liver Scaffolds: A Step for Bioengineered Liver Transplantation. Front Bioeng Biotechnol 2022; 10:833163. [PMID: 35360393 PMCID: PMC8960611 DOI: 10.3389/fbioe.2022.833163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Bioengineered livers (BELs) are an attractive therapeutic alternative to address the donor organ shortage for liver transplantation. The goal of BELs technology aims at replacement or regeneration of the native human liver. A variety of approaches have been proposed for tissue engineering of transplantable livers; the current review will highlight the decellularization-recellularization approach to BELs. For example, vascular patency and appropriate cell distribution and expansion are critical components in the production of successful BELs. Proper solutions to these components of BELs have challenged its development. Several strategies, such as heparin immobilization, heparin-gelatin, REDV peptide, and anti-CD31 aptamer have been developed to extend the vascular patency of revascularized bioengineered livers (rBELs). Other novel methods have been developed to enhance cell seeding of parenchymal cells and to increase graft functionality during both bench and in vivo perfusion. These enhanced methods have been associated with up to 15 days of survival in large animal (porcine) models of heterotopic transplantation but have not yet permitted extended survival after implantation of BELs in the orthotopic position. This review will highlight both the remaining challenges and the potential for clinical application of functional bioengineered grafts.
Collapse
Affiliation(s)
- Kewei Li
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Mohammad Tharwat
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- General Surgery Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ellen L. Larson
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
| | - Philipp Felgendreff
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- Department for General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | | | - Anan Abu Rmilah
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
| | - Khaled Safwat
- General Surgery Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Scott L. Nyberg
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Scott L. Nyberg,
| |
Collapse
|
217
|
Narciso M, Ulldemolins A, Júnior C, Otero J, Navajas D, Farré R, Gavara N, Almendros I. Novel Decellularization Method for Tissue Slices. Front Bioeng Biotechnol 2022; 10:832178. [PMID: 35356779 PMCID: PMC8959585 DOI: 10.3389/fbioe.2022.832178] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Decellularization procedures have been developed and optimized for the entire organ or tissue blocks, by either perfusion of decellularizing agents through the tissue’s vasculature or submerging large sections in decellularizing solutions. However, some research aims require the analysis of native as well as decellularized tissue slices side by side, but an optimal protocol has not yet been established to address this need. Thus, the main goal of this work was to develop a fast and efficient decellularization method for tissue slices—with an emphasis on lung—while attached to a glass slide. To this end, different decellularizing agents were compared for their effectiveness in cellular removal while preserving the extracellular matrix. The intensity of DNA staining was taken as an indicator of remaining cells and compared to untreated sections. The presence of collagen, elastin and laminin were quantified using immunostaining and signal quantification. Scaffolds resulting from the optimized protocol were mechanically characterized using atomic force microscopy. Lung scaffolds were recellularized with mesenchymal stromal cells to assess their biocompatibility. Some decellularization agents (CHAPS, triton, and ammonia hydroxide) did not achieve sufficient cell removal. Sodium dodecyl sulfate (SDS) was effective in cell removal (1% remaining DNA signal), but its sharp reduction of elastin signal (only 6% remained) plus lower attachment ratio (32%) singled out sodium deoxycholate (SD) as the optimal treatment for this application (6.5% remaining DNA signal), due to its higher elastin retention (34%) and higher attachment ratio (60%). Laminin and collagen were fully preserved in all treatments. The SD decellularization protocol was also successful for porcine and murine (mice and rat) lungs as well as for other tissues such as the heart, kidney, and bladder. No significant mechanical differences were found before and after sample decellularization. The resulting acellular lung scaffolds were shown to be biocompatible (98% cell survival after 72 h of culture). This novel method to decellularize tissue slices opens up new methodological possibilities to better understand the role of the extracellular matrix in the context of several diseases as well as tissue engineering research and can be easily adapted for scarce samples like clinical biopsies.
Collapse
Affiliation(s)
- Maria Narciso
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Ulldemolins
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Constança Júnior
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jorge Otero
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Núria Gavara
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- *Correspondence: Isaac Almendros,
| |
Collapse
|
218
|
Ayariga JA, Huang H, Dean D. Decellularized Avian Cartilage, a Promising Alternative for Human Cartilage Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1974. [PMID: 35269204 PMCID: PMC8911734 DOI: 10.3390/ma15051974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023]
Abstract
Articular cartilage defects, and subsequent degeneration, are prevalent and account for the poor quality of life of most elderly persons; they are also one of the main predisposing factors to osteoarthritis. Articular cartilage is an avascular tissue and, thus, has limited capacity for healing and self-repair. Damage to the articular cartilage by trauma or pathological causes is irreversible. Many approaches to repair cartilage have been attempted with some potential; however, there is no consensus on any ideal therapy. Tissue engineering holds promise as an approach to regenerate damaged cartilage. Since cell adhesion is a critical step in tissue engineering, providing a 3D microenvironment that recapitulates the cartilage tissue is vital to inducing cartilage regeneration. Decellularized materials have emerged as promising scaffolds for tissue engineering, since this procedure produces scaffolds from native tissues that possess structural and chemical natures that are mimetic of the extracellular matrix (ECM) of the native tissue. In this work, we present, for the first time, a study of decellularized scaffolds, produced from avian articular cartilage (extracted from Gallus Gallus domesticus), reseeded with human chondrocytes, and we demonstrate for the first time that human chondrocytes survived, proliferated and interacted with the scaffolds. Morphological studies of the decellularized scaffolds revealed an interconnected, porous architecture, ideal for cell growth. Mechanical characterization showed that the decellularized scaffolds registered stiffness comparable to the native cartilage tissues. Cell growth inhibition and immunocytochemical analyses showed that the decellularized scaffolds are suitable for cartilage regeneration.
Collapse
Affiliation(s)
| | | | - Derrick Dean
- The Biomedical Engineering Program, College of Science, Technology, Engineering and Mathematics (C-STEM), Alabama State University, 1627 Hall Street, Montgomery, AL 36104, USA; (J.A.A.); (H.H.)
| |
Collapse
|
219
|
Design by Nature: Emerging Applications of Native Liver Extracellular Matrix for Cholangiocyte Organoid-Based Regenerative Medicine. Bioengineering (Basel) 2022; 9:bioengineering9030110. [PMID: 35324799 PMCID: PMC8945468 DOI: 10.3390/bioengineering9030110] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
Organoid technology holds great promise for regenerative medicine. Recent studies show feasibility for bile duct tissue repair in humans by successfully transplanting cholangiocyte organoids in liver grafts during perfusion. Large-scale expansion of cholangiocytes is essential for extending these regenerative medicine applications. Human cholangiocyte organoids have a high and stable proliferation capacity, making them an attractive source of cholangiocytes. Commercially available basement membrane extract (BME) is used to expand the organoids. BME allows the cells to self-organize into 3D structures and stimulates cell proliferation. However, the use of BME is limiting the clinical applications of the organoids. There is a need for alternative tissue-specific and clinically relevant culture substrates capable of supporting organoid proliferation. Hydrogels prepared from decellularized and solubilized native livers are an attractive alternative for BME. These hydrogels can be used for the culture and expansion of cholangiocyte organoids in a clinically relevant manner. Moreover, the liver-derived hydrogels retain tissue-specific aspects of the extracellular microenvironment. They are composed of a complex mixture of bioactive and biodegradable extracellular matrix (ECM) components and can support the growth of various hepatobiliary cells. In this review, we provide an overview of the clinical potential of native liver ECM-based hydrogels for applications with human cholangiocyte organoids. We discuss the current limitations of BME for the clinical applications of organoids and how native ECM hydrogels can potentially overcome these problems in an effort to unlock the full regenerative clinical potential of the organoids.
Collapse
|
220
|
Porcine Small Intestinal Submucosa (SIS) as a Suitable Scaffold for the Creation of a Tissue-Engineered Urinary Conduit: Decellularization, Biomechanical and Biocompatibility Characterization Using New Approaches. Int J Mol Sci 2022; 23:ijms23052826. [PMID: 35269969 PMCID: PMC8910833 DOI: 10.3390/ijms23052826] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer (BC) is among the most common malignancies in the world and a relevant cause of cancer mortality. BC is one of the most frequent causes for bladder removal through radical cystectomy, the gold-standard treatment for localized muscle-invasive and some cases of high-risk, non-muscle-invasive bladder cancer. In order to restore urinary functionality, an autologous intestinal segment has to be used to create a urinary diversion. However, several complications are associated with bowel-tract removal, affecting patients' quality of life. The present study project aims to develop a bio-engineered material to simplify this surgical procedure, avoiding related surgical complications and improving patients' quality of life. The main novelty of such a therapeutic approach is the decellularization of a porcine small intestinal submucosa (SIS) conduit to replace the autologous intestinal segment currently used as urinary diversion after radical cystectomy, while avoiding an immune rejection. Here, we performed a preliminary evaluation of this acellular product by developing a novel decellularization process based on an environmentally friendly, mild detergent, i.e., Tergitol, to replace the recently declared toxic Triton X-100. Treatment efficacy was evaluated through histology, DNA, hydroxyproline and elastin quantification, mechanical and insufflation tests, two-photon microscopy, FTIR analysis, and cytocompatibility tests. The optimized decellularization protocol is effective in removing cells, including DNA content, from the porcine SIS, while preserving the integrity of the extracellular matrix despite an increase in stiffness. An effective sterilization protocol was found, and cytocompatibility of treated SIS was demonstrated from day 1 to day 7, during which human fibroblasts were able to increase in number and strongly organize along tissue fibres. Taken together, this in vitro study suggests that SIS is a suitable candidate for use in urinary diversions in place of autologous intestinal segments, considering the optimal results of decellularization and cell proliferation. Further efforts should be undertaken in order to improve SIS conduit patency and impermeability to realize a future viable substitute.
Collapse
|
221
|
Tan YH, Helms HR, Nakayama KH. Decellularization Strategies for Regenerating Cardiac and Skeletal Muscle Tissues. Front Bioeng Biotechnol 2022; 10:831300. [PMID: 35295645 PMCID: PMC8918733 DOI: 10.3389/fbioe.2022.831300] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide and is associated with approximately 17.9 million deaths each year. Musculoskeletal conditions affect more than 1.71 billion people globally and are the leading cause of disability. These two areas represent a massive global health burden that is perpetuated by a lack of functionally restorative treatment options. The fields of regenerative medicine and tissue engineering offer great promise for the development of therapies to repair damaged or diseased tissues. Decellularized tissues and extracellular matrices are cornerstones of regenerative biomaterials and have been used clinically for decades and many have received FDA approval. In this review, we first discuss and compare methods used to produce decellularized tissues and ECMs from cardiac and skeletal muscle. We take a focused look at how different biophysical properties such as spatial topography, extracellular matrix composition, and mechanical characteristics influence cell behavior and function in the context of regenerative medicine. Lastly, we describe emerging research and forecast the future high impact applications of decellularized cardiac and skeletal muscle that will drive novel and effective regenerative therapies.
Collapse
Affiliation(s)
| | | | - Karina H. Nakayama
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
222
|
Heo JH, Kang D, Seo SJ, Jin Y. Engineering the Extracellular Matrix for Organoid Culture. Int J Stem Cells 2022; 15:60-69. [PMID: 35220292 PMCID: PMC8889330 DOI: 10.15283/ijsc21190] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Organoids show great potential in clinical translational research owing to their intriguing properties to represent a near physiological model for native tissues. However, the dependency of organoid generation on the use of poorly defined matrices has hampered their clinical application. Current organoid culture systems mostly reply on biochemical signals provided by medium compositions and cell-cell interactions to control growth. Recent studies have highlighted the importance of the extracellular matrix (ECM) composition, cell-ECM interactions, and mechanical signals for organoid expansion and differentiation. Thus, several hydrogel systems prepared using natural or synthetic-based materials have been designed to recreate the stem cell niche in vitro, providing biochemical, biophysical, and mechanical signals. In this review, we discuss how recapitulating multiple aspects of the tissue-specific environment through designing and applying matrices could contribute to accelerating the translation of organoid technology from the laboratory to therapeutic and pharmaceutical applications.
Collapse
Affiliation(s)
- Jeong Hyun Heo
- Department of Physiology, Yonsei University College of Medicine, Seoul, Korea
| | - Dongyun Kang
- Department of Physiology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Ju Seo
- Department of Physiology, Yonsei University College of Medicine, Seoul, Korea
| | - Yoonhee Jin
- Department of Physiology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
223
|
Naso F, Gandaglia A. Can Heart Valve Decellularization Be Standardized? A Review of the Parameters Used for the Quality Control of Decellularization Processes. Front Bioeng Biotechnol 2022; 10:830899. [PMID: 35252139 PMCID: PMC8891751 DOI: 10.3389/fbioe.2022.830899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
When a tissue or an organ is considered, the attention inevitably falls on the complex and delicate mechanisms regulating the correct interaction of billions of cells that populate it. However, the most critical component for the functionality of specific tissue or organ is not the cell, but the cell-secreted three-dimensional structure known as the extracellular matrix (ECM). Without the presence of an adequate ECM, there would be no optimal support and stimuli for the cellular component to replicate, communicate and interact properly, thus compromising cell dynamics and behaviour and contributing to the loss of tissue-specific cellular phenotype and functions. The limitations of the current bioprosthetic implantable medical devices have led researchers to explore tissue engineering constructs, predominantly using animal tissues as a potentially unlimited source of materials. The high homology of the protein sequences that compose the mammalian ECM, can be exploited to convert a soft animal tissue into a human autologous functional and long-lasting prosthesis ensuring the viability of the cells and maintaining the proper biomechanical function. Decellularization has been shown to be a highly promising technique to generate tissue-specific ECM-derived products for multiple applications, although it might comprise very complex processes that involve the simultaneous use of chemical, biochemical, physical and enzymatic protocols. Several different approaches have been reported in the literature for the treatment of bone, cartilage, adipose, dermal, neural and cardiovascular tissues, as well as skeletal muscle, tendons and gastrointestinal tract matrices. However, most of these reports refer to experimental data. This paper reviews the most common and latest decellularization approaches that have been adopted in cardiovascular tissue engineering. The efficacy of cells removal was specifically reviewed and discussed, together with the parameters that could be used as quality control markers for the evaluation of the effectiveness of decellularization and tissue biocompatibility. The purpose was to provide a panel of parameters that can be shared and taken into consideration by the scientific community to achieve more efficient, comparable, and reliable experimental research results and a faster technology transfer to the market.
Collapse
|
224
|
Solarte David VA, Güiza-Argüello VR, Arango-Rodríguez ML, Sossa CL, Becerra-Bayona SM. Decellularized Tissues for Wound Healing: Towards Closing the Gap Between Scaffold Design and Effective Extracellular Matrix Remodeling. Front Bioeng Biotechnol 2022; 10:821852. [PMID: 35252131 PMCID: PMC8896438 DOI: 10.3389/fbioe.2022.821852] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/28/2022] [Indexed: 12/27/2022] Open
Abstract
The absence or damage of a tissue is the main cause of most acute or chronic diseases and are one of the appealing challenges that novel therapeutic alternatives have, in order to recover lost functions through tissue regeneration. Chronic cutaneous lesions are the most frequent cause of wounds, being a massive area of regenerative medicine and tissue engineering to have efforts to develop new bioactive medical products that not only allow an appropriate and rapid healing, but also avoid severe complications such as bacterial infections. In tissue repair and regeneration processes, there are several overlapping stages that involve the synergy of cells, the extracellular matrix (ECM) and biomolecules, which coordinate processes of ECM remodeling as well as cell proliferation and differentiation. Although these three components play a crucial role in the wound healing process, the ECM has the function of acting as a biological platform to permit the correct interaction between them. In particular, ECM is a mixture of crosslinked proteins that contain bioactive domains that cells recognize in order to promote migration, proliferation and differentiation. Currently, tissue engineering has employed several synthetic polymers to design bioactive scaffolds to mimic the native ECM, by combining biopolymers with growth factors including collagen and fibrinogen. Among these, decellularized tissues have been proposed as an alternative for reconstructing cutaneous lesions since they maintain the complex protein conformation, providing the required functional domains for cell differentiation. In this review, we present an in-depth discussion of different natural matrixes recently employed for designing novel therapeutic alternatives for treating cutaneous injuries, and overview some future perspectives in this area.
Collapse
Affiliation(s)
- Víctor Alfonso Solarte David
- Program of Medicine, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- Program of Biomedical Engineering, Faculty of Engineering, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
| | - Viviana Raquel Güiza-Argüello
- Metallurgical Engineering and Materials Science Department, Faculty of Physicochemical Engineering, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Martha L. Arango-Rodríguez
- Multi-tissue Bank and Advanced Therapy Center, Fundación Oftalmológica de Santander, Clínica Carlos Ardila Lulle, Floridablanca, Colombia
| | - Claudia L. Sossa
- Program of Medicine, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- Multi-tissue Bank and Advanced Therapy Center, Fundación Oftalmológica de Santander, Clínica Carlos Ardila Lulle, Floridablanca, Colombia
| | - Silvia M. Becerra-Bayona
- Program of Medicine, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- *Correspondence: Silvia M. Becerra-Bayona,
| |
Collapse
|
225
|
Zakhireh S, Barar J, Adibkia K, Beygi-Khosrowshahi Y, Fathi M, Omidain H, Omidi Y. Bioactive Chitosan-Based Organometallic Scaffolds for Tissue Engineering and Regeneration. Top Curr Chem (Cham) 2022; 380:13. [PMID: 35149879 DOI: 10.1007/s41061-022-00364-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Captivating achievements in developing advanced hybrid biostructures through integrating natural biopolymers with inorganic materials (e.g., metals and metalloids) have paved the way towards the application of bioactive organometallic scaffolds (OMSs) in tissue engineering and regenerative medicine (TERM). Of various biopolymers, chitosan (CS) has been used widely for the development of bioactive OMSs, in large part due to its unique characteristics (e.g., biocompatibility, biodegradability, surface chemistry, and functionalization potential). In integration with inorganic elements, CS has been used to engineer advanced biomimetic matrices to accommodate both embedded cells and drug molecules and serve as scaffolds in TERM. The use of the CS-based OMSs is envisioned to provide a new pragmatic potential in TERM and even in precision medicine. In this review, we aim to elaborate on recent achievements in a variety of CS/metal, CS/metalloid hybrid scaffolds, and discuss their applications in TERM. We also provide comprehensive insights into the formulation, surface modification, characterization, biocompatibility, and cytotoxicity of different types of CS-based OMSs.
Collapse
Affiliation(s)
- Solmaz Zakhireh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Beygi-Khosrowshahi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Omidain
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA.
| |
Collapse
|
226
|
Sun K, Tao C, Wang DA. Scaffold-free approaches for the fabrication of engineered articular cartilage tissue. Biomed Mater 2022; 17. [PMID: 35114657 DOI: 10.1088/1748-605x/ac51b9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/03/2022] [Indexed: 11/12/2022]
Abstract
Tissue engineered cartilaginous constructs have meet great advances in the past decades as a treatment for osteoarthritis, a degenerative disease affecting people all over the world as the population ages. Scaffold-free tissue engineered constructs are designed and developed in recent years with only cells and cell-derived matrix involved. Scaffold-free tissue constructs do not require cell adherence on exogenous materials and are superior to scaffold-based constructs in (1) relying on only cells to produce matrix, (2) not interfering cell-cell signaling, cell migration or small molecules diffusion after implantation and (3) introducing no exogenous impurities. In this review, three main scaffold-free methodologies for cartilage tissue engineering, the cell sheet technology, the phase transfer cell culture-living hyaline cartilage graft (PTCC-LhCG) system and the cell aggregate-based (bottom-up) methods, were reviewed, covering mold fabrication, decellularization and 3D bioprinting. The recent advances, medical applications, superiority and drawbacks were elaborated in detail.
Collapse
Affiliation(s)
- Kang Sun
- City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Kowloon, 000000, HONG KONG
| | - Chao Tao
- City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Kowloon, 000000, HONG KONG
| | - Dong-An Wang
- City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Kowloon, 000000, HONG KONG
| |
Collapse
|
227
|
|
228
|
Araújo D, Araujo G, Oliveira L, Leite L, Franzo V, Santos G, Souza T, Vulcani V. Biocompatibility in vivo of elastic cartilage treated in alkaline solutions. ARQ BRAS MED VET ZOO 2022. [DOI: 10.1590/1678-4162-12435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT This study verified the in vivo biocompatibility of bovine elastic cartilage decellularized with alkaline solution in relation to the non-decellularized cartilage implanted in rats. Fifty Wistar rats were divided into two groups, with the experimental group (EG) receiving subcutaneous implants of cartilage treated in alkaline solution and the control group (CG) receiving subcutaneous implants of untreated cartilage. In both groups, the implants were removed on days 3, 7, 14, 21 and 42 with the preparation of histological slides stained with Hematoxylin and Eosin for the quantification of inflammatory cells, fibroblasts, angiogenesis, and cartilage degradation. The results showed that EG presented a less intense inflammatory infiltrate and better organization of collagen fibers compared to CG. It was concluded that the alkaline treatment provided better biocompatibility for elastic cartilage when implanted subcutaneously in rats.
Collapse
|
229
|
Sajed R, Zarnani A, Madjd Z, Arefi S, Bolouri MR, Vafaei S, Samadikuchaksaraei A, Gholipourmalekabadi M, Haghighipour N, Ghods R. Introduction of an efficient method for placenta decellularization with high potential to preserve ultrastructure and support cell attachment. Artif Organs 2022; 46:375-386. [PMID: 35023156 DOI: 10.1111/aor.14162] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/14/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Roya Sajed
- Department of Molecular Medicine Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences (IUMS) Tehran Iran
- Oncopathology Research Center Iran University of Medical Sciences (IUMS) Tehran Iran
| | - Amir‐Hassan Zarnani
- Department of Immunology School of Public Health Tehran University of Medical Sciences (TUMS) Tehran Iran
- Reproductive Biotechnology Research Center Avicenna Research Institute (ACECR) Tehran Iran
| | - Zahra Madjd
- Department of Molecular Medicine Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences (IUMS) Tehran Iran
- Oncopathology Research Center Iran University of Medical Sciences (IUMS) Tehran Iran
| | - Soheila Arefi
- Reproductive Biotechnology Research Center Avicenna Research Institute (ACECR) Tehran Iran
- Genetics and In Vitro Assisted Reproductive (GIVAR) Center Erfan Hospital Tehran Iran
| | - Mohammad Reza Bolouri
- Department of Immunology Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences (IUMS) Tehran Iran
| | - Sedigheh Vafaei
- Reproductive Biotechnology Research Center Avicenna Research Institute (ACECR) Tehran Iran
| | - Ali Samadikuchaksaraei
- Department of Tissue Engineering & Regenerative Medicine Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences (IUMS) Tehran Iran
- Cellular and Molecular Research Center Iran University of Medical Sciences (IUMS) Tehran Iran
| | - Mazaher Gholipourmalekabadi
- Department of Tissue Engineering & Regenerative Medicine Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences (IUMS) Tehran Iran
- Cellular and Molecular Research Center Iran University of Medical Sciences (IUMS) Tehran Iran
| | | | - Roya Ghods
- Department of Molecular Medicine Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences (IUMS) Tehran Iran
- Oncopathology Research Center Iran University of Medical Sciences (IUMS) Tehran Iran
| |
Collapse
|
230
|
Akbarzadeh A, Tafti SHA, Sabetkish S, Hassannejad Z, Kajbafzadeh AM. Coronary-Based Right Heart Flap Recellularization by Rat Neonatal Whole Cardiac Cells: a Viable Sheep Cardiac Patch Model for Possible Management of Heart Aneurysm. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-021-00238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
231
|
Hussain NA, Figueiredo FC, Connon CJ. Use of biomaterials in corneal endothelial repair. Ther Adv Ophthalmol 2022; 13:25158414211058249. [PMID: 34988369 PMCID: PMC8721373 DOI: 10.1177/25158414211058249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022] Open
Abstract
Human corneal endothelium (HCE) is a single layer of hexagonal cells that lines the posterior surface of the cornea. It forms the barrier that separates the aqueous humor from the rest of the corneal layers (stroma and epithelium layer). This layer plays a fundamental role in maintaining the hydration and transparency of the cornea, which in turn ensures a clear vision. In vivo, human corneal endothelial cells (HCECs) are generally believed to be nonproliferating. In many cases, due to their nonproliferative nature, any damage to these cells can lead to further issues with Descemet’s membrane (DM), stroma and epithelium which may ultimately lead to hazy vision and blindness. Endothelial keratoplasties such as Descemet’s stripping automated endothelial keratoplasty (DSAEK) and Descemet’s membrane endothelial keratoplasty (DEK) are the standard surgeries routinely used to restore vision following endothelial failure. Basically, these two similar surgical techniques involve the replacement of the diseased endothelial layer in the center of the cornea by a healthy layer taken from a donor cornea. Globally, eye banks are facing an increased demand to provide corneas that have suitable features for transplantation. Consequently, it can be stated that there is a significant shortage of corneal grafting tissue; for every 70 corneas required, only 1 is available. Nowadays, eye banks face long waiting lists due to shortage of donors, seriously aggravated when compared with previous years, due to the global COVID-19 pandemic. Thus, there is an urgent need to find alternative and more sustainable sources for treating endothelial diseases, such as utilizing bioengineering to use of biomaterials as a remedy. The current review focuses on the use of biomaterials to repair the corneal endothelium. A range of biomaterials have been considered based on their promising results and outstanding features, including previous studies and their key findings in the context of each biomaterial.
Collapse
Affiliation(s)
- Noor Ahmed Hussain
- University of Jeddah, Jeddah, Saudi ArabiaBiosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Francisco C Figueiredo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UKDepartment of Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Che J Connon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
232
|
Amirazad H, Dadashpour M, Zarghami N. Application of decellularized bone matrix as a bioscaffold in bone tissue engineering. J Biol Eng 2022; 16:1. [PMID: 34986859 PMCID: PMC8734306 DOI: 10.1186/s13036-021-00282-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Autologous bone grafts are commonly used as the gold standard to repair and regenerate diseased bones. However, they are strongly associated with postoperative complications, especially at the donor site, and increased surgical costs. In an effort to overcome these limitations, tissue engineering (TE) has been proposed as an alternative to promote bone repair. The successful outcome of tissue engineering depends on the microstructure and composition of the materials used as scaffold. Decellularized bone matrix-based biomaterials have been applied as bioscaffolds in bone tissue engineering. These biomaterials play an important role in providing the mechanical and physical microenvironment needed by cells to proliferate and survive. Decellularized extracellular matrix (dECM) can be used as a powder, hydrogel and electrospun scaffolds. These bioscaffolds mimic the native microenvironment due to their structure similar to the original tissue. The aim of this review is to highlight the bone decellularization techniques. Herein we discuss: (1) bone structure; (2) properties of an ideal scaffold; (3) the potential of decellularized bone as bioscaffolds; (4) terminal sterilization of decellularized bone; (5) cell removing confirmation in decellularized tissues; and (6) post decellularization procedures. Finally, the improvement of bone formation by dECM and the immunogenicity aspect of using the decellularized bone matrix are presented, to illustrate how novel dECM-based materials can be used as bioscaffold in tissue engineering. A comprehensive understanding of tissue engineering may allow for better incorporation of therapeutic approaches in bone defects allowing for bone repair and regeneration.
Collapse
Affiliation(s)
- Halimeh Amirazad
- Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Dadashpour
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Nosratollah Zarghami
- Deparment of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin Universioty, Istanbul, Turkey
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
233
|
Moffat D, Ye K, Jin S. Decellularization for the retention of tissue niches. J Tissue Eng 2022; 13:20417314221101151. [PMID: 35620656 PMCID: PMC9128068 DOI: 10.1177/20417314221101151] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/01/2022] [Indexed: 12/25/2022] Open
Abstract
Decellularization of natural tissues to produce extracellular matrix is a promising method for three-dimensional scaffolding and for understanding microenvironment of the tissue of interest. Due to the lack of a universal standard protocol for tissue decellularization, recent investigations seek to develop novel methods for whole or partial organ decellularization capable of supporting cell differentiation and implantation towards appropriate tissue regeneration. This review provides a comprehensive and updated perspective on the most recent advances in decellularization strategies for a variety of organs and tissues, highlighting techniques of chemical, physical, biological, enzymatic, or combinative-based methods to remove cellular contents from tissues. In addition, the review presents modernized approaches for improving standard decellularization protocols for numerous organ types.
Collapse
Affiliation(s)
- Deana Moffat
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
| | - Kaiming Ye
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
- Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
| | - Sha Jin
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
- Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
| |
Collapse
|
234
|
Development of decellularization protocol for caprine small intestine submucosa as a biomaterial. BIOMATERIALS AND BIOSYSTEMS 2021; 5:100035. [PMID: 36825113 PMCID: PMC9934478 DOI: 10.1016/j.bbiosy.2021.100035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/10/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
Decellularized animal tissues have been proven to be promising biomaterials for various tissue engineering (TE) applications. Among various animal tissues, small intestine submucosa (SIS) has gained attention of many researchers due to its easy availability from the abattoir waste, excellent physicochemical and biological characteristics of a good biomaterial. In this study, Caprine SIS was decellularized to get decellularized caprine SIS (DG-SIS). For decellularization, several physical, chemical and enzymatic protocols have been described in the literature. To optimize the decellularization of caprine SIS, several decellularization protocol (DP), including an in-house developed by us, had been attempted, and effect of the different DPs on the obtained DG-SIS were assessed in terms of decellularization, physiochemical and biological properties. All the DPs differ in terms of decellularization, but three DPs where ionic detergent like sodium dodecyl sulphate (SDS) has been used, largely affect the native composition (e.g. glycosaminoglycans (GAGs)), biological properties and other physiochemical properties of the G-SIS as compared to the DP that uses hypertonic solution of potassium iodide (KI) and non-ionic detergent (TritonX-100). The obtained DG-SISs were fibrous, hemocompatible, biocompatible, hydrophilic, biodegradable and exhibited significant antibacterial activity. Therefore, the DG-SIS will be a prospective biomaterial for TE applications.
Collapse
|
235
|
Büyük Nİ, Tüfekçi K, Cumbul A, Ayşan E, Torun Köse G. A novel method for providing scaffold: Decellularization of parathyroid capsule. J Biomater Appl 2021; 36:1201-1212. [PMID: 34918999 DOI: 10.1177/08853282211054321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study aimed to generate a novel biomatrix from the decellularized human parathyroid capsule using different methods and to compare the efficiency of decellularization in the means of cell removal, structural integrity and extracellular matrix preservation. The parathyroid capsules, which were carefully dissected from the parathyroid tissue, were randomly divided into four groups and then decellularized using three different protocols: freeze-thaw only, sodium dodecyl sulphate and Triton X-100 treatments after freeze-thawing. Quantitative DNA analysis, agarose gel electrophoresis, sulphated glycosaminoglycan assay, histological analysis, immunohistochemistry and scanning electron microscopy were used to observe the efficiency of parathyroid capsule decellularization and preservation of extracellular matrix components. Considering all the results, it can be said that only freeze-thawing is not an effective method in parathyroid capsule decellularization. When the tissue was treated with a detergent agent in addition to freeze-thawing, the amount of DNA decreased by 90% while sulphated glycosaminoglycan amount maintained 50% compared to untreated tissue. Comparing the effects of the two detergents on the preservation of extracellular matrix such as collagen and sulphated glycosaminoglycan, it was seen that the integrity of tissues treated with Triton X-100 was preserved more than tissues treated with sodium dodecyl sulphate. It is concluded that Triton X-100 treatment with freeze-thawing is the most suitable and effective method for decellularizing the human parathyroid capsule. The biomatrix obtained with this method can be applied in the transplantation of parathyroid tissue and other endocrine tissue types in the body.
Collapse
Affiliation(s)
- Nisa İrem Büyük
- Genetics & Bioengineering, 52998Yeditepe University, Istanbul, Turkey
| | - Kardelen Tüfekçi
- Genetics & Bioengineering, 52998Yeditepe University, Istanbul, Turkey
| | - Alev Cumbul
- Histology and Embryology, 52998Yeditepe University, Istanbul, Turkey
| | - Erhan Ayşan
- General Surgery, 64173Yeditepe Üniversity Hospital, Istanbul, Turkey
| | - Gamze Torun Köse
- Genetics & Bioengineering, 52998Yeditepe University, Istanbul, Turkey
| |
Collapse
|
236
|
Malagón-Escandón A, Hautefeuille M, Jimenez-Díaz E, Arenas-Alatorre J, Saniger JM, Badillo-Ramírez I, Vazquez N, Piñón-Zarate G, Castell-Rodríguez A. Three-Dimensional Porous Scaffolds Derived from Bovine Cancellous Bone Matrix Promote Osteoinduction, Osteoconduction, and Osteogenesis. Polymers (Basel) 2021; 13:4390. [PMID: 34960941 PMCID: PMC8705055 DOI: 10.3390/polym13244390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022] Open
Abstract
The use of three-dimensional porous scaffolds derived from decellularized extracellular matrix (ECM) is increasing for functional repair and regeneration of injured bone tissue. Because these scaffolds retain their native structures and bioactive molecules, in addition to showing low immunogenicity and good biodegradability, they can promote tissue repair and regeneration. Nonetheless, imitating these features in synthetic materials represents a challenging task. Furthermore, due to the complexity of bone tissue, different processes are necessary to maintain these characteristics. We present a novel approach using decellularized ECM material derived from bovine cancellous bone by demineralization, decellularization, and hydrolysis of collagen to obtain a three-dimensional porous scaffold. This study demonstrates that the three-dimensional porous scaffold obtained from bovine bone retained its osteoconductive and osteoinductive properties and presented osteogenic potential when seeded with human Wharton's jelly mesenchymal stromal cells (hWJ-MSCs). Based on its characteristics, the scaffold described in this work potentially represents a therapeutic strategy for bone repair.
Collapse
Affiliation(s)
- Alda Malagón-Escandón
- Facultad de Medicina, UNAM, Mexico City C.P. 04510, Mexico; (A.M.-E.); (N.V.); (G.P.-Z.)
| | | | - Edgar Jimenez-Díaz
- Facultad de Ciencias, UNAM, Mexico City C.P. 04510, Mexico; (M.H.); (E.J.-D.)
| | | | - José Manuel Saniger
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), UNAM, Mexico City C.P. 04510, Mexico; (J.M.S.); (I.B.-R.)
| | - Isidro Badillo-Ramírez
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), UNAM, Mexico City C.P. 04510, Mexico; (J.M.S.); (I.B.-R.)
| | - Nadia Vazquez
- Facultad de Medicina, UNAM, Mexico City C.P. 04510, Mexico; (A.M.-E.); (N.V.); (G.P.-Z.)
| | - Gabriela Piñón-Zarate
- Facultad de Medicina, UNAM, Mexico City C.P. 04510, Mexico; (A.M.-E.); (N.V.); (G.P.-Z.)
| | | |
Collapse
|
237
|
Koo MA, Jeong H, Hong SH, Seon GM, Lee MH, Park JC. Preconditioning process for dermal tissue decellularization using electroporation with sonication. Regen Biomater 2021; 9:rbab071. [PMID: 35449827 PMCID: PMC9017362 DOI: 10.1093/rb/rbab071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 12/02/2022] Open
Abstract
Decellularization to produce bioscaffolds composed of the extracellular matrix (ECM) uses enzymatic, chemical and physical methods to remove antigens and cellular components from tissues. Effective decellularization methods depend on the characteristics of tissues, and in particular, tissues with dense, complex structure and abundant lipid content are difficult to completely decellularize. Our study enables future research on the development of methods and treatments for fabricating bioscaffolds via decellularization of complex and rigid skin tissues, which are not commonly considered for decellularization to date as their structural and functional characteristics could not be preserved after severe decellularization. In this study, decellularization of human dermal tissue was done by a combination of both chemical (0.05% trypsin-EDTA, 2% SDS and 1% Triton X-100) and physical methods (electroporation and sonication). After decellularization, the content of DNA remaining in the tissue was quantitatively confirmed, and the structural change of the tissue and the retention and distribution of ECM components were evaluated through histological and histochemical analysis, respectively. Conditions of the chemical pretreatment that increase the efficiency of physical stimulation as well as decellularization, and conditions for electroporation and sonication without the use of detergents, unlike the methods performed in previous studies, were established to enable the complete decellularization of the skin tissue. The combinatorial decellularization treatment formed micropores in the lipid bilayers of the skin tissues while removing all cell and cellular residues without affecting the ECM properties. Therefore, this procedure can be widely used to fabricate bioscaffolds by decellularizing biological tissues with dense and complex structures.
Collapse
Affiliation(s)
- Min-Ah Koo
- Cellbiocontrol Laboratory
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | | | - Seung Hee Hong
- Cellbiocontrol Laboratory
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | | | | | - Jong-Chul Park
- Cellbiocontrol Laboratory
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| |
Collapse
|
238
|
Hu X, Zhang Y. Developing biomaterials to mediate the spatial distribution of integrins. BIOPHYSICS REVIEWS 2021; 2:041302. [PMID: 38504718 PMCID: PMC10903404 DOI: 10.1063/5.0055746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/21/2021] [Indexed: 03/21/2024]
Abstract
Innovation in material design to regulate cell behavior and function is one of the primary tasks in materials science. Integrins, a family of cell surface-adhesion receptors that mechanically connect the extracellular matrix (ECM) to the intracellular cytoskeleton, have long served as primary targets for the design of biomaterials because their activity is not only critical to a wide range of cell and tissue functions but also subject to very tight and complex regulations from the outside environment. To review the recent progress of material innovations targeting the spatial distribution of integrins, we first introduce the interaction mechanisms between cells and the ECM by highlighting integrin-based cell adhesions, describing how integrins respond to environmental stimuli, including variations in ligand presentation, mechanical cues, and topographical variations. Then, we overview the current development of soft materials in guiding cell behaviors and functions via spatial regulation of integrins. Finally, we discuss the current limitations of these technologies and the advances that may be achieved in the future. Undoubtedly, synthetic soft materials that mediate the spatial distribution of integrins play an important role in biomaterial innovations for advancing biomedical applications and addressing fundamental biological questions.
Collapse
Affiliation(s)
- Xunwu Hu
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
239
|
Milian L, Sancho-Tello M, Roig-Soriano J, Foschini G, Martínez-Hernández NJ, Más-Estellés J, Ruiz-Sauri A, Zurriaga J, Carda C, Mata M. Optimization of a decellularization protocol of porcine tracheas. Long-term effects of cryopreservation. A histological study. Int J Artif Organs 2021; 44:998-1012. [PMID: 33863248 DOI: 10.1177/03913988211008912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The aim of this study was to optimize a decellularization protocol in the trachea of Sus scrofa domestica (pig) as well as to study the effects of long-term cryopreservation on the extracellular matrix of decellularized tracheas. METHODS Porcine tracheas were decellularized using Triton X-100, SDC, and SDS alone or in combination. The effect of these detergents on the extracellular matrix characteristics of decellularized porcine tracheas was evaluated at the histological, biomechanical, and biocompatibility level. Morphometric approaches were used to estimate the effect of detergents on the collagen and elastic fibers content as well as on the removal of chondrocytes from decellularized organs. Moreover, the long-term structural, ultrastructural, and biomechanical effect of cryopreservation of decellularized tracheas were also estimated. RESULTS Two percent SDS was the most effective detergent tested concerning cell removal and preservation of the histological and biomechanical properties of the tracheal wall. However, long-term cryopreservation had no an appreciable effect on the structure, ultrastructure, and biomechanics of decellularized tracheal rings. CONCLUSION The results presented here reinforce the use of SDS as a valuable decellularizing agent for porcine tracheas. Furthermore, a cryogenic preservation protocol is described, which has minimal impact on the histological and biomechanical properties of decellularized porcine tracheas.
Collapse
Affiliation(s)
- Lara Milian
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- Research Foundation of the Clinical Hospital of the Comunidad Valenciana (INCLIVA), Valencia, Spain
| | - María Sancho-Tello
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- Research Foundation of the Clinical Hospital of the Comunidad Valenciana (INCLIVA), Valencia, Spain
| | - Joan Roig-Soriano
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
| | | | | | - Jorge Más-Estellés
- Biomaterials Center, Universitat Politècnica de València, València, Spain
| | - Amparo Ruiz-Sauri
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- Research Foundation of the Clinical Hospital of the Comunidad Valenciana (INCLIVA), Valencia, Spain
| | - Javier Zurriaga
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
| | - Carmen Carda
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- Research Foundation of the Clinical Hospital of the Comunidad Valenciana (INCLIVA), Valencia, Spain
- Center for Biomedical Research Network in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - Manuel Mata
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- Research Foundation of the Clinical Hospital of the Comunidad Valenciana (INCLIVA), Valencia, Spain
- Center for Biomedical Research Network of Respiratory Diseases, Madrid, Spain
| |
Collapse
|
240
|
Efficient Decellularization by Application of Moderate High Hydrostatic Pressure with Supercooling Pretreatment. MICROMACHINES 2021; 12:mi12121486. [PMID: 34945339 PMCID: PMC8708072 DOI: 10.3390/mi12121486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 12/17/2022]
Abstract
Decellularized tissues are considered superior scaffolds for cell cultures, preserving the microstructure of native tissues and delivering many kinds of cytokines. High hydrostatic pressure (HHP) treatment could remove cells physically from biological tissues rather than chemical methods. However, there are some risks of inducing destruction or denaturation of extracellular matrices (ECMs) at an ultrahigh level of HHP. Therefore, efficient decellularization using moderate HHP is required to remove almost all cells simultaneously to suppress tissue damage. In this study, we proposed a novel decellularization method using a moderate HHP with supercooling pretreatment. To validate the decellularization method, a supercooling device was developed to incubate human dermal fibroblasts or collagen gels in a supercooled state. The cell suspension and collagen gels were subjected to 100, 150, and 200 MPa of HHP after supercooling pretreatment, respectively. After applying HHP, the viability and morphology of the cells and the collagen network structure of the gels were evaluated. The viability of cells decreased dramatically after HHP application with supercooling pretreatment, whereas the microstructures of collagen gels were preserved and cell adhesivity was retained after HHP application. In conclusion, it was revealed that supercooling pretreatment promoted the denaturation of the cell membrane to improve the efficacy of decellularization using static application of moderate HHP. Furthermore, it was demonstrated that the HHP with supercooling pretreatment did not degenerate and damage the microstructure in collagen gels.
Collapse
|
241
|
Ben Hamouda S, Miglino MA, de Sá Schiavo Matias G, Beauchamp G, Lavoie JP. Asthmatic Bronchial Matrices Determine the Gene Expression and Behavior of Smooth Muscle Cells in a 3D Culture Model. FRONTIERS IN ALLERGY 2021; 2:762026. [PMID: 35387054 PMCID: PMC8974673 DOI: 10.3389/falgy.2021.762026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Asthma is associated with increased deposition and altered phenotype of airway smooth muscle (ASM) cells. However, little is known about the processes responsible for these changes. It has been suggested that alterations of the extracellular matrix (ECM) contribute to the remodeling of ASM cells in asthma. Three-dimensional matrices allow the in vitro study of complex cellular responses to different stimuli in a close-to-natural environment. Thus, we investigated the ultrastructural and genic variations of ASM cells cultured on acellular asthmatic and control bronchial matrices. We studied horses, as they spontaneously develop a human asthma-like condition (heaves) with similarities to chronic pulmonary changes observed in human asthma. Primary bronchial ASM cells from asthmatic (n = 3) and control (n = 3) horses were cultured on decellularized bronchi from control (n = 3) and asthmatic (n = 3) horses. Each cell lineage was used to recellularize six different bronchi for 41 days. Histomorphometry on HEPS-stained-recellularized matrices revealed an increased ASM cell number in the control cell/control matrix (p = 0.02) and asthmatic cell/control matrix group (p = 0.04) compared with the asthmatic cell/asthmatic matrix group. Scan electron microscopy revealed a cell invasion of the ECM. While ASM cells showed high adhesion and proliferation processes on the control ECM, the presence of senescent cells and cellular debris in the asthmatic ECM with control or asthmatic ASM cells suggested cell death. When comparing asthmatic with control cell/matrix combinations by targeted next generation sequencing, only AGC1 (p = 0.04), MYO10 (p = 0.009), JAM3 (p = 0.02), and TAGLN (p = 0.001) were differentially expressed out of a 70-gene pool previously associated with smooth muscle remodeling. To our knowledge, this is the first attempt to evaluate the effects of asthmatic ECM on an ASM cell phenotype using a biological bronchial matrix. Our results indicate that bronchial ECM health status contributes to ASM cell gene expression and, possibly, its survival.
Collapse
Affiliation(s)
- Selma Ben Hamouda
- Faculty of Veterinary Medicine, Université de Montréal, Quebec City, QC, Canada
| | - Maria Angélica Miglino
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Guy Beauchamp
- Faculty of Veterinary Medicine, Université de Montréal, Quebec City, QC, Canada
| | - Jean-Pierre Lavoie
- Faculty of Veterinary Medicine, Université de Montréal, Quebec City, QC, Canada
- *Correspondence: Jean-Pierre Lavoie
| |
Collapse
|
242
|
Chiti MC, Vanacker J, Ouni E, Tatic N, Viswanath A, des Rieux A, Dolmans MM, White LJ, Amorim CA. Ovarian extracellular matrix-based hydrogel for human ovarian follicle survival in vivo: A pilot work. J Biomed Mater Res B Appl Biomater 2021; 110:1012-1022. [PMID: 34825466 DOI: 10.1002/jbm.b.34974] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/11/2021] [Accepted: 11/13/2021] [Indexed: 12/13/2022]
Abstract
To successfully assemble a bio-engineered ovary, we need to create a three-dimensional matrix able to accommodate isolated follicles and cells. The goal of this study was to develop an extracellular matrix hydrogel (oECM) derived from decellularized bovine ovaries able to support, in combination with alginate, human ovarian follicle survival and growth in vitro. Two different hydrogels (oECM1, oECM2) were produced and compared in terms of decellularization efficiency (dsDNA), ECM preservation (collagen and glycosaminoglycan levels), ultrastructure, rigidity, and cytotoxicity. oECM2 showed significantly less dsDNA, greater retention of glycosaminoglycans and better rigidity than oECM1. Isolated human ovarian follicles were then encapsulated in four selected hydrogel combinations: (1) 100% oECM2, (2) 90% oECM2 + 10% alginate, (3) 75% oECM2 + 25% alginate, and (4) 100% alginate. After 1 week of in vitro culture, follicle recovery rate, viability, and growth were analyzed. On day 7 of in vitro culture, follicle recovery rates were 0%, 23%, 65%, 82% in groups 1-4, respectively, rising proportionally with increased alginate content. However, there was no difference in follicle viability or growth between groups 2 and 3 and controls (group 4). In conclusion, since pure alginate cannot be used to graft preantral follicles due to its poor revascularization and degradation after grafting, oECM2 hydrogel combined with alginate may provide a new and promising alternative to graft isolated human follicles in a bio-engineered ovary.
Collapse
Affiliation(s)
- Maria-Costanza Chiti
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Julie Vanacker
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Unit, Université Catholique de Louvain, Brussels, Belgium
| | - Emna Ouni
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Natalija Tatic
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Aiswarya Viswanath
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Unit, Université Catholique de Louvain, Brussels, Belgium
| | - Anne des Rieux
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Unit, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Gynecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Lisa Jane White
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Christiani Andrade Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
243
|
Cintron Pregosin N, Bronstein R, Mallipattu SK. Recent Advances in Kidney Bioengineering. Front Pediatr 2021; 9:743301. [PMID: 34900859 PMCID: PMC8655860 DOI: 10.3389/fped.2021.743301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/02/2021] [Indexed: 12/03/2022] Open
Abstract
Kidney disease is an epidemic that affects more than 600 million people worldwide. The socioeconomic impacts of the disease disproportionately affect Hispanic and non-Hispanic Black Americans, making the disease an issue of social inequality. The urgency of this situation has only become worse during the COVID-19 pandemic, as those who are hospitalized for COVID-19 have an increased risk of kidney failure. For researchers, the kidney is a complex organ that is difficult to accurately model and understand. Traditional cell culture models are not adequate for studying the functional intricacies of the kidney, but recent experiments have offered improvements for understanding these systems. Recent progress includes organoid modeling, 3D bioprinting, decellularization, and microfluidics. Here, we offer a review of the most recent advances in kidney bioengineering.
Collapse
Affiliation(s)
- Nina Cintron Pregosin
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY, United States
| | - Robert Bronstein
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Sandeep K. Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Renal Section, Northport VA Medical Center, Northport, NY, United States
| |
Collapse
|
244
|
Mohan SC, Lee TY, Giuliano AE, Cui X. Current Status of Breast Organoid Models. Front Bioeng Biotechnol 2021; 9:745943. [PMID: 34805107 PMCID: PMC8602090 DOI: 10.3389/fbioe.2021.745943] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/22/2021] [Indexed: 11/28/2022] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy among women globally. Although mouse models have been critical in advancing the knowledge of BC tumorigenesis and progression, human breast models comprising the breast tissue microenvironment are needed to help elucidate the underlying mechanisms of BC risk factors. As such, it is essential to identify an ex vivo human breast tissue mimetic model that can accurately pinpoint the effects of these factors in BC development. While two-dimensional models have been invaluable, they are not suitable for studying patient-specific tumor biology and drug response. Recent developments in three-dimensional (3D) models have led to the prominence of organized structures grown in a 3D environment called “organoids.” Breast organoids can accurately recapitulate the in vivo breast microenvironment and have been used to examine factors that affect signaling transduction, gene expression, and tissue remodeling. In this review, the applications, components, and protocols for development of breast organoids are discussed. We summarize studies that describe the utility of breast organoids, including in the study of normal mammary gland development and tumorigenesis. Finally, we provide an overview of protocols for development of breast organoids, and the advantages and disadvantages of different techniques in studies are described. The included studies have shown that breast organoids will continue to serve as a crucial platform for understanding of progression of BC tumors and the testing of novel therapeutics.
Collapse
Affiliation(s)
- Srivarshini Cherukupalli Mohan
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Tian-Yu Lee
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Armando E Giuliano
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
245
|
Functional survey of decellularized tissues transplantation for infertile females. Cell Tissue Bank 2021; 23:407-415. [PMID: 34806123 DOI: 10.1007/s10561-021-09979-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
Numbers of women worldwide face infertility, which will have a significant impact on a couple's life. As a result, assisting with the treatment of these individuals is seen as a critical step. Successful births following uterus and ovary donation have been reported in recent. When immunosuppressive drugs are used in patients who receive donated tissues, there are always problems with the drugs' side effects. In recent years, tissue engineering has mainly been successful in treating infertility using decellularization techniques. Engineered uterus and ovary prevent immunological reactions and do not require immunosuppressive drugs. The most important aspect of using decellularized tissue is its proper function after transplantation. These tissues must be able to produce follicles, secrete hormones and cause pregnancy. This study aimed to investigate research on decellularized tissues and transplanted into the female reproductive system. In this study, just tissues that, after transplantation, have the proper function for fertility were investigated.
Collapse
|
246
|
Yüksel S, Aşık MD, Aydin HM, Tönük E, Aydın EY, Bozkurt M. Fabrication of a multi-layered decellularized amniotic membranes as tissue engineering constructs. Tissue Cell 2021; 74:101693. [PMID: 34856451 DOI: 10.1016/j.tice.2021.101693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022]
Abstract
As a promising approach in tissue engineering, decellularization has become one of the mostly-studied research areas in tissue engineering thanks to its potential to bring about several advantages over synthetic materials since it can provide a 3-dimensional ECM structure with matching biomechanical properties of the target tissue. Amniotic membranes are the tissues that nurture the embryos during labor. Similarly, these materials have also been proposed for tissue regeneration in several applications. The main drawback in using amniotic membranes is the limited thickness of these materials since most tissues require a 3D matrix for an enhance regeneration. In order to prevent this limitation, here we report a facile fabrication methodology for multilayered amniotic membrane-based tissue constructs. The amniotic membranes of Wistar albino rats were first decellularized with the physical and chemical methods and utilized as scaffolds. Secondly, the prepared decellularized membranes were sutured to form a multilayered 3D structure. Within the study, 7 groups including control (PBS), were prepared based on physical and chemical decellularization methods. UV exposure and freezing techniques were used as a physical decellularization methods while hypertonic medium and SDS (sodium dodecyl sulfate) protocols were used as chemical decellularization methods. The combinations of both protocols were also used. In groups, A was the control and group B was applied just UV. In group C was applied UV and freezing. In addition to UV and freezing, in group D was applied hypertonic solution while group E was applied SDS (0.03 %). In group F was applied UV, freezing, hypertonic solution and SDS (0.03 %). In group G was applied UV, hypertonic solution, SDS (0.03 %) and freezing, respectively. Based on the histological and quantitative analyses, F and G groups were found as the most efficient decellularization protocols in rat amniotic membranes. Then, group F and G decellularized amniotic membranes were used to form scaffolds and thus-formed matrices were further characterized in vitro cell culture studies and mechanical tests. Cytotoxicity analyses performed using MTT showed a good cell viability in F and G groups scaffolds. The percentage viability rate was higher in G group (81.3 %) compared to F (75.33 %) and also cell viability in G group was found more meaningful according to p value which was obtained 0.007. Cellular adhesions after in vitro cell culture and morphology of scaffolds were evaluated by scanning electron microscopy (SEM). It was observed that the cells cultivated in equal amounts of tissue scaffolds were higher in the F compared to that observed in group G. The mechanical testing with 40 N force revealed 0.77 mm displacement in group F while it was 0.75 mm in group G. Moreover, according to force-controlled test, 2.9 mm displacement of F group and 1.2 mm displacement of G group was measured. As a result, this study shows that the multilayered decellularized amniotic membrane scaffolds support cell survival and adhesion and can form a flexible biomaterial with desired handling properties.
Collapse
Affiliation(s)
- Sümeyye Yüksel
- Ankara Yıldırım Beyazıt University, Institute of Health Sciences, Department of Musculoskeletal System and Regenerative Medicine, Ankara, Turkey
| | - Mehmet Doğan Aşık
- Ankara Yıldırım Beyazıt University, Institute of Health Sciences, Department of Musculoskeletal System and Regenerative Medicine, Ankara, Turkey; Ankara Yıldırım Beyazıt University, Faculty of Medicine, Department of Medical Biology, Ankara, Turkey
| | - Halil Murat Aydin
- Hacettepe University, Institute of Science and Engineering, Bioengineering Division, Ankara, Turkey
| | - Ergin Tönük
- Middle East University (METU), Department of Mechanical Engineering, Ankara, Turkey
| | - Emin Yusuf Aydın
- Ankara Yıldırım Beyazıt University, Institute of Health Sciences, Department of Musculoskeletal System and Regenerative Medicine, Ankara, Turkey; Hacettepe University, Institute of Science and Engineering, Bioengineering Division, Ankara, Turkey
| | - Murat Bozkurt
- Ankara Yıldırım Beyazıt University, Institute of Health Sciences, Department of Musculoskeletal System and Regenerative Medicine, Ankara, Turkey; Ankara Yıldırım Beyazıt University, Faculty of Medicine, Department of Orthopedics and Traumatology, Ankara, Turkey.
| |
Collapse
|
247
|
Harris AF, Lacombe J, Zenhausern F. The Emerging Role of Decellularized Plant-Based Scaffolds as a New Biomaterial. Int J Mol Sci 2021; 22:12347. [PMID: 34830229 PMCID: PMC8625747 DOI: 10.3390/ijms222212347] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/30/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
The decellularization of plant-based biomaterials to generate tissue-engineered substitutes or in vitro cellular models has significantly increased in recent years. These vegetal tissues can be sourced from plant leaves and stems or fruits and vegetables, making them a low-cost, accessible, and sustainable resource from which to generate three-dimensional scaffolds. Each construct is distinct, representing a wide range of architectural and mechanical properties as well as innate vasculature networks. Based on the rapid rise in interest, this review aims to detail the current state of the art and presents the future challenges and perspectives of these unique biomaterials. First, we consider the different existing decellularization techniques, including chemical, detergent-free, enzymatic, and supercritical fluid approaches that are used to generate such scaffolds and examine how these protocols can be selected based on plant cellularity. We next examine strategies for cell seeding onto the plant-derived constructs and the importance of the different functionalization methods used to assist in cell adhesion and promote cell viability. Finally, we discuss how their structural features, such as inherent vasculature, porosity, morphology, and mechanical properties (i.e., stiffness, elasticity, etc.) position plant-based scaffolds as a unique biomaterial and drive their use for specific downstream applications. The main challenges in the field are presented throughout the discussion, and future directions are proposed to help improve the development and use of vegetal constructs in biomedical research.
Collapse
Affiliation(s)
- Ashlee F. Harris
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA;
| | - Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA;
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA;
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA
- Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
248
|
Rodrigues LDS, Bovolato ALDC, Silva BE, Chizzolini LV, Cruz BLD, Moraes MPDT, Lourenção PLTDA, Bertanha M. Quantification of adhesion of mesenchymal stem cells spread on decellularized vein scaffold. Acta Cir Bras 2021; 36:e361001. [PMID: 34755757 PMCID: PMC8598214 DOI: 10.1590/acb361001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/09/2021] [Indexed: 01/23/2023] Open
Abstract
Purpose: To evaluate methods that improve adipose-derived stem cells (ASCs) population
in decellularized biological venous scaffold for tissue engineering in blood
vessels, a model in rabbits. Methods: The ASC was expanded until the third passage. Inferior vena cava (IVC) was
submitted to the decellularization process using 1% sodium dodecyl sulfate
(SDS) or 2% sodium deoxycholate (SD) to compose 12 study groups (G): pure SD
or SDS, exposed or not to 1% TritonX-100 (TX-100) and exposed or not to
poly-l’lysine and laminin (PL). Scaffolds were covered with 1 ×
105 or 1 × 106 ASCs diluted in 10 μL Puramatrix™.
The histological analysis was done by cell counting in hematoxylin and eosin
(HE) and nuclei count in immunofluorescence (IF) with
4’,6-Diamidine-2’-phenylindole dihydrochloride (DAPI). Results: The study of groups in HE and IF showed similar results. For both
analyses,IVC-SD-1 × 106 ASC and IVC-SD-PL-1 × 106 ASC
provided the best results. The IF technique showed better sensitivity than
HE, with a weak agreement between them. Conclusions: Decellularizing agent and the number of ASC influence scaffolds
cellularization response and the best protocols as those ones using SD with
or without the addition of PL.
Collapse
|
249
|
Mallis P, Michalopoulos E, Stavropoulos-Giokas C. Modern Approaches in Cardiovascular Disease Therapeutics: From Molecular Genetics to Tissue Engineering. Bioengineering (Basel) 2021; 8:bioengineering8110174. [PMID: 34821740 PMCID: PMC8614975 DOI: 10.3390/bioengineering8110174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) currently represents one of the leading causes of death worldwide. It is estimated that more than 17.9 million people die each year due to CVD manifestations. Often, occlusion or stenosis of the vascular network occurs, either in large- or small-diameter blood vessels. Moreover, the obstruction of small vessels such as the coronary arteries may be related to more pronounced events, which can be life-threatening. The gold standard procedure utilizes the transplantation of secondary vessels or the use of synthetic vascular grafts. However, significant adverse reactions have accompanied the use of the above grafts. Therefore, modern therapeutic strategies must be evaluated for better disease administration. In the context of alternative therapies, advanced tissue-engineering approaches including the decellularization procedure and the 3D additive bioprinting methods, have been proposed. In this way the availability of bioengineered vascular grafts will be increased, covering the great demand that exists globally. In this Special Issue of Bioengineering, we tried to highlight the modern approaches which are focused on CVD therapeutics. This issue includes articles related to the efficient development of vascular grafts, 3D printing approaches and suitable atherosclerosis models.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece
| |
Collapse
|
250
|
Topuz B, Aydin HM. Preparation of decellularized optic nerve grafts. Artif Organs 2021; 46:618-632. [PMID: 34714559 DOI: 10.1111/aor.14098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Decellularized tissues based on well-conserved extracellular matrices (ECMs) are a common area of research in tissue engineering. Although several decellularization protocols have been suggested for several types of tissues, studies on the optic nerve have been limited. METHODS We report decellularization protocol with different detergent for the preparation of acellular optic nerve and tissues were examined. DNA, glycosaminoglycan (GAG), and collagen content of the groups were evaluated with biochemical analyses and examined with histological staining. Mechanical properties, chemical components as well as cytotoxic properties of tissues were compared. RESULTS According to the results, it was determined that TX-100 (Triton X-100) was insufficient in decellularization when used alone. In addition, it was noticed that 85% of GAG content was preserved by using TX-100 and TX-100-SD (sodium deoxycholate), while this ratio was calculated as 30% for SDS. In contrast, the effect of the decellularization protocols on ECM structure of the tissues was evaluated by scanning and transmission electron microscopy (SEM and TEM) and determined their mechanical properties. Cytotoxicity analyses were exhibited minimum 95% cell viability for all groups, suggesting that there are no cytotoxic properties of the methods on L929 mouse fibroblast cells. CONCLUSIONS The combination of TX-100-SD and TX-100-SDS (sodium dodecyl sulfate) were was determined as the most effective methods to the literature for optic nerve decellularization.
Collapse
Affiliation(s)
- Bengisu Topuz
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Halil Murat Aydin
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey.,Centre for Bioengineering, Hacettepe University, Ankara, Turkey
| |
Collapse
|