201
|
Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia. Mol Cell 2014; 53:247-61. [PMID: 24389101 DOI: 10.1016/j.molcel.2013.12.001] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/03/2013] [Accepted: 11/26/2013] [Indexed: 12/22/2022]
Abstract
Here we report a comprehensive characterization of our recently developed inhibitor MM-401 that targets the MLL1 H3K4 methyltransferase activity. MM-401 is able to specifically inhibit MLL1 activity by blocking MLL1-WDR5 interaction and thus the complex assembly. This targeting strategy does not affect other mixed-lineage leukemia (MLL) family histone methyltransferases (HMTs), revealing a unique regulatory feature for the MLL1 complex. Using MM-401 and its enantiomer control MM-NC-401, we show that inhibiting MLL1 methyltransferase activity specifically blocks proliferation of MLL cells by inducing cell-cycle arrest, apoptosis, and myeloid differentiation without general toxicity to normal bone marrow cells or non-MLL cells. More importantly, transcriptome analyses show that MM-401 induces changes in gene expression similar to those of MLL1 deletion, supporting a predominant role of MLL1 activity in regulating MLL1-dependent leukemia transcription program. We envision broad applications for MM-401 in basic and translational research.
Collapse
|
202
|
Burke MJ, Bhatla T. Epigenetic modifications in pediatric acute lymphoblastic leukemia. Front Pediatr 2014; 2:42. [PMID: 24860797 PMCID: PMC4030177 DOI: 10.3389/fped.2014.00042] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/29/2014] [Indexed: 12/22/2022] Open
Abstract
Aberrant epigenetic modifications are well-recognized drivers for oncogenesis. Pediatric acute lymphoblastic leukemia (ALL) is no exception and serves as a model toward the significant impact these heritable alterations can have in leukemogenesis. In this brief review, we will focus on the main aspects of epigenetics, which control leukemogenesis in pediatric ALL, mainly DNA methylation, histone modification, and microRNA alterations. As we continue to gain better understanding of the driving mechanisms for pediatric ALL at both diagnosis and relapse, therapeutic interventions directed toward these pathways and mechanisms can be harnessed and introduced into clinical trials for pediatric ALL.
Collapse
Affiliation(s)
- Michael J Burke
- Division of Pediatric Hematology-Oncology, Medical College of Wisconsin , Milwaukee, WI , USA
| | - Teena Bhatla
- Division of Pediatric Hematology-Oncology, New York University Langone Medical Center , New York, NY , USA
| |
Collapse
|
203
|
PU.1 is essential for MLL leukemia partially via crosstalk with the MEIS/HOX pathway. Leukemia 2013; 28:1436-48. [PMID: 24445817 DOI: 10.1038/leu.2013.384] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/22/2013] [Accepted: 12/12/2013] [Indexed: 01/07/2023]
Abstract
Mixed lineage leukemia (MLL) fusion proteins directly activate the expression of key downstream genes such as MEIS1, HOXA9 to drive an aggressive form of human leukemia. However, it is still poorly understood what additional transcriptional regulators, independent of the MLL fusion pathway, contribute to the development of MLL leukemia. Here we show that the transcription factor PU.1 is essential for MLL leukemia and is required for the growth of MLL leukemic cells via the promotion of cell-cycle progression and inhibition of apoptosis. Importantly, PU.1 expression is not under the control of MLL fusion proteins. We further identified a PU.1-governed 15-gene signature, which contains key regulators in the MEIS-HOX program (MEIS1, PBX3, FLT3, and c-KIT). PU.1 directly binds to the genomic loci of its target genes in vivo, and is required to maintain active expression of those genes in both normal hematopoietic stem and progenitor cells and in MLL leukemia. Finally, the clinical significance of the identified PU.1 signature was indicated by its ability to predict survival in acute myelogenous leukemia patients. Together, our findings demonstrate that PU.1 contributes to the development of MLL leukemia, partially via crosstalk with the MEIS/HOX pathway.
Collapse
|
204
|
Ng RK, Kong CT, So CC, Lui WC, Chan YF, Leung KC, So KC, Tsang HM, Chan LC, Sham MH. Epigenetic dysregulation of leukaemic HOX code inMLL-rearranged leukaemia mouse model. J Pathol 2013; 232:65-74. [DOI: 10.1002/path.4279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/19/2013] [Accepted: 09/22/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Ray Kit Ng
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
- Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Cheuk Ting Kong
- Department of Biochemistry; University of Hong Kong, Pokfulam; Hong Kong SAR China
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
- Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Chi Chiu So
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
- Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Wing Chi Lui
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Yuen Fan Chan
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Ka Chun Leung
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Kam Chung So
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Ho Man Tsang
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Li Chong Chan
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
- Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Mai Har Sham
- Department of Biochemistry; University of Hong Kong, Pokfulam; Hong Kong SAR China
- Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine; University of Hong Kong, Pokfulam; Hong Kong SAR China
| |
Collapse
|
205
|
Belkina AC, Blanton WP, Nikolajczyk BS, Denis GV. The double bromodomain protein Brd2 promotes B cell expansion and mitogenesis. J Leukoc Biol 2013; 95:451-60. [PMID: 24319289 DOI: 10.1189/jlb.1112588] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bromodomain-containing transcriptional regulators represent new epigenetic targets in different hematologic malignancies. However, bromodomain-mediated mechanisms that couple histone acetylation to transcription in lymphopoiesis and govern mature lymphocyte mitogenesis are poorly understood. Brd2, a transcriptional coregulator that contains dual bromodomains and an extraterminal domain (the BET family), couples chromatin to cell-cycle progression. We reported previously the first functional characterization of a BET protein as an effector of mammalian mitogenic signal transduction: Eμ-Brd2 Tg mice develop "activated B cell" diffuse large B cell lymphoma. No other animal models exist for genetic or lentiviral expression of BET proteins, hampering testing of novel anti-BET anticancer drugs, such as JQ1. We transduced HSCs with Brd2 lentivirus and reconstituted recipient mice to test the hypothesis that Brd2 regulates hematopoiesis in BM and mitogenesis in the periphery. Forced expression of Brd2 provides an expansion advantage to the donor-derived B cell compartment in BM and increases mature B cell mitogenic responsiveness in vitro. Brd2 binds the cyclin A promoter in B cells, shown by ChIP, and increases cyclin A mRNA and protein levels, and S-phase progression in vitro in mitogen-stimulated primary B cells, but not T cells, reinforcing results from Eμ-Brd2 mice. The small molecule BET inhibitor JQ1 reduces B cell mitogenesis, consistent with the interpretation that BET inhibitors are antiproliferative. Brd2-specific knockdown experiments show that Brd2 is also required for hematopoiesis. We conclude that Brd2 plays a critical, independent role in regulation of mitogenic response genes, particularly cyclin A, in B cells.
Collapse
Affiliation(s)
- Anna C Belkina
- 1.72 East Concord St., Rm. K520, Boston, MA 02118, USA. ; Twitter: http://www.twitter.com/GdenisBoston
| | | | | | | |
Collapse
|
206
|
Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F, D'Alessio AC, Young RA, Weinberg RA. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 2013; 154:61-74. [PMID: 23827675 DOI: 10.1016/j.cell.2013.06.005] [Citation(s) in RCA: 690] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/29/2013] [Accepted: 06/06/2013] [Indexed: 12/30/2022]
Abstract
The recent discovery that normal and neoplastic epithelial cells re-enter the stem cell state raised the intriguing possibility that the aggressiveness of carcinomas derives not from their existing content of cancer stem cells (CSCs) but from their proclivity to generate new CSCs from non-CSC populations. Here, we demonstrate that non-CSCs of human basal breast cancers are plastic cell populations that readily switch from a non-CSC to CSC state. The observed cell plasticity is dependent on ZEB1, a key regulator of the epithelial-mesenchymal transition. We find that plastic non-CSCs maintain the ZEB1 promoter in a bivalent chromatin configuration, enabling them to respond readily to microenvironmental signals, such as TGFβ. In response, the ZEB1 promoter converts from a bivalent to active chromatin configuration, ZEB1 transcription increases, and non-CSCs subsequently enter the CSC state. Our findings support a dynamic model in which interconversions between low and high tumorigenic states occur frequently, thereby increasing tumorigenic and malignant potential.
Collapse
|
207
|
Shen C, Jo SY, Liao C, Hess JL, Nikolovska-Coleska Z. Targeting recruitment of disruptor of telomeric silencing 1-like (DOT1L): characterizing the interactions between DOT1L and mixed lineage leukemia (MLL) fusion proteins. J Biol Chem 2013; 288:30585-30596. [PMID: 23996074 DOI: 10.1074/jbc.m113.457135] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MLL fusion proteins, AF9 and ENL, activate target genes in part via recruitment of the histone methyltransferase DOT1L (disruptor of telomeric silencing 1-like). Here we report biochemical, biophysical, and functional characterization of the interaction between DOT1L and MLL fusion proteins, AF9/ENL. The AF9/ENL-binding site in human DOT1L was mapped, and the interaction site was identified to a 10-amino acid region (DOT1L865-874). This region is highly conserved in DOT1L from a variety of species. Alanine scanning mutagenesis analysis shows that four conserved hydrophobic residues from the identified binding motif are essential for the interactions with AF9/ENL. Binding studies demonstrate that the entire intact C-terminal domain of AF9/ENL is required for optimal interaction with DOT1L. Functional studies show that the mapped AF9/ENL interacting site is essential for immortalization by MLL-AF9, indicating that DOT1L interaction with MLL-AF9 and its recruitment are required for transformation by MLL-AF9. These results strongly suggest that disruption of interaction between DOT1L and AF9/ENL is a promising therapeutic strategy with potentially fewer adverse effects than enzymatic inhibition of DOT1L for MLL fusion protein-associated leukemia.
Collapse
Affiliation(s)
- Chenxi Shen
- From the Department of Pathology and; the Chemical Biology Doctoral Program, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | | | - Chenzhong Liao
- the School of Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jay L Hess
- From the Department of Pathology and; the Chemical Biology Doctoral Program, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | - Zaneta Nikolovska-Coleska
- From the Department of Pathology and; the Chemical Biology Doctoral Program, University of Michigan Medical School, Ann Arbor, Michigan 48109 and.
| |
Collapse
|
208
|
Abstract
The protein methyltransferases (PMT) constitute a large and important class of enzymes that catalyze site-specific methylation of lysine or arginine residues on histones and other proteins. Site-specific histone methylation is a critical component of chromatin regulation of gene transcription-a pathway that is often genetically altered in human cancers. Oncogenic alterations (e.g., mutations, chromosomal translocations, and others) of PMTs, or of associated proteins, have been found to confer unique dependencies of cancer cells on the activity of specific PMTs. Examples of potent, selective small-molecule inhibitors of specific PMTs are reviewed that have been shown to kill cancers cells bearing such oncogenic alterations, while having minimal effect on proliferation of nonaltered cells. Selective inhibitors of the PMTs, DOT1L and EZH2, have entered phase I clinical studies and additional examples of selective PMT inhibitors are likely to enter the clinic soon. The current state of efforts toward clinical testing of selective PMT inhibitors as personalized cancer therapeutics is reviewed here.
Collapse
|
209
|
Affiliation(s)
- Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Marchioninistrasse 25, 81377 Munich,
Germany
| | - Matthias Geyer
- Center of Advanced European Studies and Research, Group Physical Biochemistry,
Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| |
Collapse
|
210
|
Anglin JL, Song Y. A medicinal chemistry perspective for targeting histone H3 lysine-79 methyltransferase DOT1L. J Med Chem 2013; 56:8972-83. [PMID: 23879463 DOI: 10.1021/jm4007752] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Histone H3 lysine79 (H3K79) methyltransferase DOT1L plays an important role in the activation and maintenance of gene transcription. It is essential for embryonic development as well as normal functions of the hematopoietic system, heart, and kidney in adults. DOT1L has been found to be a drug target for acute leukemia with mixed lineage leukemia (MLL) gene translocations. The rearranged onco-MLL can recruit DOT1L, causing aberrant H3K79 methylation, overexpression of leukemia relevant genes, and eventually leukemogenesis. Potent DOT1L inhibitors possess selective activity against this type of leukemia in cell-based and animal studies, with the most advanced compound being in clinical trials. In the medicinal chemistry point of view, we review the biochemistry, cancer biology, and current inhibitors of DOT1L, as well as biophysical (including X-ray crystallographic) investigation of DOT1L-inhibitor interactions. Potential future directions in the context of drug discovery and development targeting DOT1L are discussed.
Collapse
Affiliation(s)
- Justin L Anglin
- Department of Pharmacology, Baylor College of Medicine , 1 Baylor Plaza, Houston, Texas 77030, United States
| | | |
Collapse
|
211
|
MLL fusion protein-driven AML is selectively inhibited by targeted disruption of the MLL-PAFc interaction. Blood 2013; 122:1914-22. [PMID: 23900238 DOI: 10.1182/blood-2013-02-486977] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MLL rearrangements are common in leukemia and considered an adverse risk factor. Through interactions with the polymerase-associated factor complex (PAFc), mixed lineage leukemia (MLL) fusion proteins activate genes critical for blocking differentiation, such as HOXA9. Here we investigate whether the MLL-PAFc interaction can be exploited therapeutically using both genetic and biochemical approaches. We tested the genetic requirement of the PAFc in acute myeloid leukemia (AML) using a conditional allele of the PAFc subunit, Cdc73. We show that the PAFc is indiscriminately necessary for the proliferation of AML cells through the epigenetic regulation of proleukemogenic target genes, such as MEIS1 and Bcl2. To investigate the therapeutic potential of targeting the MLL-PAFc interaction, we engineered a dominant negative fragment of MLL capable of binding to the PAFc. Disruption of the MLL-PAFc interaction selectively inhibits the proliferation of MLL leukemic cells without affecting cells transformed by an unrelated E2A-HLF fusion protein. Using in vivo hematopoietic reconstitution assays, we demonstrate that disruption of the MLL-PAFc does not alter normal hematopoietic stem cell function. Together, our data show a selective growth inhibition of MLL-associated leukemic cells and tolerance of normal hematopoiesis to disruption of the MLL-PAFc interaction establishing the MLL-PAFc interaction as an attractive therapeutic target.
Collapse
|
212
|
Malik B, Hemenway CS. CBX8, a component of the Polycomb PRC1 complex, modulates DOT1L-mediated gene expression through AF9/MLLT3. FEBS Lett 2013; 587:3038-44. [PMID: 23891621 DOI: 10.1016/j.febslet.2013.07.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 07/03/2013] [Accepted: 07/05/2013] [Indexed: 11/15/2022]
Abstract
AF9 is known to interact with multiple proteins including activators and repressors of transcription. Our data indicate that other AF9 binding proteins compete with the histone methyltransferase DOT1L for AF9 binding thus diminishing its ability to methylate lysine 79 of histone 3. Specifically, we show that AF9 is part of a protein multimer containing members of Polycomb group (PcG) PRC1 complex, CBX8, RING1B, and BMI1. Interaction with CBX8 precludes AF9-DOT1L binding. Knockdown of CBX8 with short-hairpin RNA (shRNA) leads to decreased expression of the AF9 target gene ENaCα. In contrast, CBX8 overexpression results in increased ENaCα mRNA levels and this effect can be partially overcome by co-overexpression of AF9.
Collapse
Affiliation(s)
- Bhavna Malik
- Department of Molecular and Cellular Biochemistry, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | | |
Collapse
|
213
|
Abstract
Rearrangements of the MLL gene define a genetically distinct subset of acute leukemias with poor prognosis. Current treatment options are of limited effectiveness; thus, there is a pressing need for new therapies for this disease. Genetic and small molecule inhibitor studies have demonstrated that the histone methyltransferase DOT1L is required for the development and maintenance of MLL-rearranged leukemia in model systems. Here we describe the characterization of EPZ-5676, a potent and selective aminonucleoside inhibitor of DOT1L histone methyltransferase activity. The compound has an inhibition constant value of 80 pM, and demonstrates 37 000-fold selectivity over all other methyltransferases tested. In cellular studies, EPZ-5676 inhibited H3K79 methylation and MLL-fusion target gene expression and demonstrated potent cell killing that was selective for acute leukemia lines bearing MLL translocations. Continuous IV infusion of EPZ-5676 in a rat xenograft model of MLL-rearranged leukemia caused complete tumor regressions that were sustained well beyond the compound infusion period with no significant weight loss or signs of toxicity. EPZ-5676 is therefore a potential treatment of MLL-rearranged leukemia and is under clinical investigation.
Collapse
|
214
|
Abstract
Advances in our understanding of the genetic determinants of leukemia have translated to better treatment options and improved survival of patients with acute myeloid and acute lymphoid leukemia. However, some leukemias, such as those bearing 11q23 (MLL) translocations, result in aggressive diseases with a relatively poor prognosis, despite improved treatments such as allogeneic hematopoietic stem cell transplantation. This article will briefly review the functions and regulation of wild-type MLL during normal hematopoiesis, while focusing on recent advances in our understanding of the molecular mechanisms governing MLL leukemias. The transcriptional targets, cooperating signaling pathways and molecular machinery involved in MLL-associated leukemias will be discussed, as well as how these may be harnessed for more personalized treatment of this disease.
Collapse
Affiliation(s)
- Andrew G Muntean
- Department of Pathology, Department of Medicine, University of Michigan Medical School, 7520B Medical Science Research Building I, 1301 Catherine Road, Ann Arbor, MI 48109-5602, USA
| |
Collapse
|
215
|
Abstract
The importance of epigenetic gene regulatory mechanisms in normal and cancer development is increasingly evident. Genome-wide analyses have revealed the mutation, deletion, and dysregulated expression of chromatin-modifying enzymes in a number of cancers, including hematologic malignancies. Genome-wide studies of DNA methylation and histone modifications are beginning to reveal the landscape of cancer-specific chromatin patterns. In parallel, recent genetic loss-of-function studies in murine models are demonstrating functional involvement of chromatin-modifying enzymes in malignant cell proliferation and self-renewal. Paradoxically, the same chromatin modifiers can, depending on cancer type, be either hyperactive or inactivated. Increasingly, cross talk between epigenetic pathways is being identified. Leukemias carrying MLL rearrangements are quintessential cancers driven by dysregulated epigenetic mechanisms in which fusion proteins containing N-terminal sequences of MLL require few or perhaps no additional mutations to cause human leukemia. Here, we review how recent progress in the field of epigenetics opens potential mechanism-based therapeutic avenues.
Collapse
|
216
|
Maethner E, Garcia-Cuellar MP, Breitinger C, Takacova S, Divoky V, Hess JL, Slany RK. MLL-ENL inhibits polycomb repressive complex 1 to achieve efficient transformation of hematopoietic cells. Cell Rep 2013; 3:1553-66. [PMID: 23623499 DOI: 10.1016/j.celrep.2013.03.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 03/12/2013] [Accepted: 03/22/2013] [Indexed: 01/08/2023] Open
Abstract
Stimulation of transcriptional elongation is a key activity of leukemogenic MLL fusion proteins. Here, we provide evidence that MLL-ENL also inhibits Polycomb-mediated silencing as a prerequisite for efficient transformation. Biochemical studies identified ENL as a scaffold that contacted the elongation machinery as well as the Polycomb repressive complex 1 (PRC1) component CBX8. These interactions were mutually exclusive in vitro, corresponding to an antagonistic behavior of MLL-ENL and CBX8 in vivo. CBX8 inhibited elongation in a specific reporter assay, and this effect was neutralized by direct association with ENL. Correspondingly, CBX8-binding-defective MLL-ENL could not fully activate gene loci necessary for transformation. Finally, we demonstrate dimerization of MLL-ENL as a neomorphic activity that may augment Polycomb inhibition and transformation.
Collapse
Affiliation(s)
- Emanuel Maethner
- Department of Genetics, University Erlangen, 91058 Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
217
|
Gao G, Wu X, Zhou J, He M, He JJ, Guo D. Inhibition of HIV-1 transcription and replication by a newly identified cyclin T1 splice variant. J Biol Chem 2013; 288:14297-14309. [PMID: 23569210 DOI: 10.1074/jbc.m112.438465] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A variety of cellular factors participates in the HIV-1 life cycle. Among them is the well characterized cyclin T1 (CYCT1). CycT1 binds to cyclin-dependent kinase 9 (CDK9) and forms the positive transcription elongation factor-b (P-TEFb). P-TEFb is then recruited by HIV-1 TAT to the HIV-1 long terminal repeat (LTR) promoter and subsequently leads to phosphorylation of the C-terminal domain of RNA polymerase II (pol II), enhanced processivity of pol II, and transcription of a full-length HIV-1 RNA. In this study, we report the identification of a new CYCT1 splice variant, designated as CYCT1b, and accordingly we renamed CYCT1 as CYCT1a. CYCT1b was detected in several cell lines, including primary human CD4 T cells, and its expression was subject to cell cycle regulation. Similar to CYCT1a, CYCT1b was primarily localized in the nucleus. CYCT1b expression was found to be inversely correlated with HIV-1 gene expression and replication. This inverse correlation appeared to involve TAT transactivation, CDK9 binding, and subsequent recruitment of P-TEFb to the HIV-1 LTR promoter and pol II C-terminal domain phosphorylation. In agreement with these findings, CYCT1b expression led to direct inhibition of TAT-transactivated transcription of the HIV-1 LTR promoter. Taken together, these results show that the newly identified CYCT1b splice variant inhibits HIV-1 transcription and may provide new clues for the development of anti-HIV strategies.
Collapse
Affiliation(s)
- Guozhen Gao
- State Key Laboratory of Virology and Modern Virology Research Center, Wuhan University College of Life Sciences, 430072 Wuhan, China; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xiaoyun Wu
- State Key Laboratory of Virology and Modern Virology Research Center, Wuhan University College of Life Sciences, 430072 Wuhan, China
| | - Jieqiong Zhou
- State Key Laboratory of Virology and Modern Virology Research Center, Wuhan University College of Life Sciences, 430072 Wuhan, China
| | - Mingfeng He
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Johnny J He
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202; Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana 46202; University of North Texas Health Science Center, Fort Worth, Texas 76107.
| | - Deyin Guo
- State Key Laboratory of Virology and Modern Virology Research Center, Wuhan University College of Life Sciences, 430072 Wuhan, China; Institute of Medical Virology, Wuhan University School of Medicine, 430071 Wuhan, China.
| |
Collapse
|
218
|
Melko M, Nguyen LS, Shaw M, Jolly L, Bardoni B, Gecz J. Loss of FMR2 further emphasizes the link between deregulation of immediate early response genes FOS and JUN and intellectual disability. Hum Mol Genet 2013; 22:2984-91. [PMID: 23562910 DOI: 10.1093/hmg/ddt155] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Loss of FMR2 causes Fragile X E (FRAXE) site-associated intellectual disability (ID). FMR2 regulates transcription, promotes alternative splicing with preference for G-quartet structure harbouring exons and is localized to the nuclear speckles. In primary skin fibroblasts from FRAXE patients (n = 8), we found a significant reduction in the number, but a significant increase in the size, of nuclear speckles, when compared with the controls (n = 4). Since nuclear speckles are enriched with factors involved in pre-mRNA processing, we explored the consequence of these defects and the loss of FMR2 on the transcriptome. We performed whole genome expression profiling using total RNA extracted from these cell lines and found 27 genes significantly deregulated by at least 2-fold at P < 0.05 in the patients. Among these genes, FOS was significantly upregulated and was further investigated due to its established role in neuronal cell function. We showed that (i) 30% depletion of Fmr2 in mouse primary cortical neurons led to a 2-fold increase in Fos expression, (ii) overexpression of FMR2 significantly decreased FOS promoter activity in luciferase assays, and (iii) as FOS promoter contains a serum response element, we found that not FOS, but JUN, which encodes for a protein that forms a transcriptional activator complex with FOS, was significantly upregulated in the patients' cell lines upon mitogen stimulation. These results suggest that FMR2 is an upstream regulator of FOS and JUN, and further link deregulation of the immediate early response genes to the pathology of ID- and FRAXE-associated ID in particular.
Collapse
Affiliation(s)
- Mireille Melko
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, 660 Route des Lucioles, F-06560 Valbonne, France
| | | | | | | | | | | |
Collapse
|
219
|
Abstract
The molecular mechanisms underlying oncogenesis in leukemias associated with rearrangement of the Mixed Lineage Leukemia (MLL) gene have received a considerable amount of attention over the last two decades. In this review we will focus on recent studies, published over the past year, that reveal new insights into the multi-protein complexes formed by MLL and MLL fusion proteins, the role of epigenetic deregulation in MLL fusion function, downstream transcriptional target genes, the importance of the leukemia cell of origin, the role played by microRNAs, cooperating mutations and the implications that recent research has for the therapy of MLL-rearranged leukemia.
Collapse
|
220
|
Sarris M, Nikolaou K, Talianidis I. Context-specific regulation of cancer epigenomes by histone and transcription factor methylation. Oncogene 2013; 33:1207-17. [PMID: 23503463 DOI: 10.1038/onc.2013.87] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/01/2013] [Indexed: 12/18/2022]
Abstract
Altered expression or activity of histone lysine methylases and demethylases in cancer lead to aberrant chromatin modification patterns, which contribute to uncontrolled cell proliferation via cancer-specific deregulation of gene expression programs or the induction of genome instability. Several transcription factors that regulate growth-associated genes undergo lysine methylation, expanding the repertoire of regulatory targets modulated by histone-methylating enzymes during tumorigenesis. In certain specific tumor types or specific physiological conditions, these enzymes may trigger chromatin structure and/or transcription factor activity changes that result in opposite effects on cancer initiation or progression. The mechanisms of such context-specific dual functions and those involved in the crosstalk between factor and histone modifications are subject to extensive research, which is beginning to shed light into this novel level of complexity of cancer-related epigenetic pathways.
Collapse
Affiliation(s)
- M Sarris
- Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | - K Nikolaou
- Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | - I Talianidis
- Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| |
Collapse
|
221
|
DOT1L-mediated H3K79 methylation in chromatin is dispensable for Wnt pathway-specific and other intestinal epithelial functions. Mol Cell Biol 2013; 33:1735-45. [PMID: 23428873 DOI: 10.1128/mcb.01463-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Methylation of H3K79 is associated with chromatin at expressed genes, though it is unclear if this histone modification is required for transcription of all genes. Recent studies suggest that Wnt-responsive genes depend particularly on H3K79 methylation, which is catalyzed by the methyltransferase DOT1L. Human leukemias carrying MLL gene rearrangements show DOT1L-mediated H3K79 methylation and aberrant expression of leukemogenic genes. DOT1L inhibitors reverse these effects, but their clinical use is potentially limited by toxicity in Wnt-dependent tissues such as intestinal epithelium. Genome-wide positioning of the H3K79me2 mark in Lgr5(+) mouse intestinal stem cells and mature intestinal villus epithelium correlated with expression levels of all transcripts and not with Wnt-responsive genes per se. Selective Dot1l disruption in Lgr5(+) stem cells or in whole intestinal epithelium eliminated H3K79me2 from the respective compartments, allowing genetic evaluation of DOT1L requirements. The absence of methylated H3K79 did not impair health, intestinal homeostasis, or expression of Wnt target genes in crypt epithelium for up to 4 months, despite increased crypt cell apoptosis. Global transcript profiles in Dot1l-null cells were barely altered. Thus, H3K79 methylation is not essential for transcription of Wnt-responsive or other intestinal genes, and intestinal toxicity is not imperative when DOT1L is rendered inactive in vivo.
Collapse
|
222
|
Wilkinson A, Ballabio E, Geng H, North P, Tapia M, Kerry J, Biswas D, Roeder R, Allis C, Melnick A, de Bruijn M, Milne T. RUNX1 is a key target in t(4;11) leukemias that contributes to gene activation through an AF4-MLL complex interaction. Cell Rep 2013; 3:116-27. [PMID: 23352661 PMCID: PMC3607232 DOI: 10.1016/j.celrep.2012.12.016] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 11/08/2012] [Accepted: 12/26/2012] [Indexed: 12/22/2022] Open
Abstract
The Mixed Lineage Leukemia (MLL) protein is an important epigenetic regulator required for the maintenance of gene activation during development. MLL chromosomal translocations produce novel fusion proteins that cause aggressive leukemias in humans. Individual MLL fusion proteins have distinct leukemic phenotypes even when expressed in the same cell type, but how this distinction is delineated on a molecular level is poorly understood. Here, we highlight a unique molecular mechanism whereby the RUNX1 gene is directly activated by MLL-AF4 and the RUNX1 protein interacts with the product of the reciprocal AF4-MLL translocation. These results support a mechanism of transformation whereby two oncogenic fusion proteins cooperate by activating a target gene and then modulating the function of its downstream product.
Collapse
Affiliation(s)
- Adam C. Wilkinson
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Erica Ballabio
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Huimin Geng
- Departments of Medicine/Hematology and Oncology Division, Weill Medical College of Cornell University, New York, NY, 10065, USA
- Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, NY, 10065, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Phillip North
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Marta Tapia
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Jon Kerry
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Debabrata Biswas
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Robert G. Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - C. David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Ari Melnick
- Departments of Medicine/Hematology and Oncology Division, Weill Medical College of Cornell University, New York, NY, 10065, USA
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Marella F.T.R. de Bruijn
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Thomas A. Milne
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
223
|
Leukemic transformation by the MLL-AF6 fusion oncogene requires the H3K79 methyltransferase Dot1l. Blood 2013; 121:2533-41. [PMID: 23361907 DOI: 10.1182/blood-2012-11-465120] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The t(6;11)(q27;q23) is a recurrent chromosomal rearrangement that encodes the MLLAF6 fusion oncoprotein and is observed in patients with diverse hematologic malignancies. The presence of the t(6;11)(q27;q23) has been linked to poor overall survival in patients with AML. In this study, we demonstrate that MLL-AF6 requires continued activity of the histone-methyltransferase DOT1L to maintain expression of the MLL-AF6-driven oncogenic gene-expression program. Using gene-expression analysis and genome-wide chromatin immunoprecipitation studies followed by next generation sequencing, we found that MLL-fusion target genes display markedly high levels of histone 3 at lysine 79 (H3K79) dimethylation in murine MLL-AF6 leukemias as well as in ML2, a human myelomonocytic leukemia cell line bearing the t(6;11)(q27;q23) translocation. Targeted disruption of Dot1l using a conditional knockout mouse model inhibited leukemogenesis mediated by the MLL-AF6 fusion oncogene. Moreover, both murine MLL-AF6-transformed cells as well as the human MLL-AF6-positive ML2 leukemia cell line displayed specific sensitivity to EPZ0004777, a recently described, selective, small-molecule inhibitor of Dot1l. Dot1l inhibition resulted in significantly decreased proliferation, decreased expression of MLL-AF6 target genes, and cell cycle arrest of MLL-AF6-transformed cells. These results indicate that patients bearing the t(6;11)(q27;q23) translocation may benefit from therapeutic agents targeting aberrant H3K79 methylation.
Collapse
|
224
|
Sabra M, Texier P, El Maalouf J, Lomonte P. The tudor protein survival motor neuron (SMN) is a chromatin-binding protein that interacts with methylated histone H3 lysine 79. J Cell Sci 2013; 126:3664-77. [DOI: 10.1242/jcs.126003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a muscular disease characterized by the death of motoneurons, and is a major genetic cause of infant mortality. Mutations in the SMN1 gene, which encodes the protein survival motor neuron (SMN), are responsible for the disease due to compensation deficit. SMN belongs to the Tudor domain protein family, whose members are known to interact with methylated arginine (R) or lysine (K) residues. SMN has well-defined roles in the metabolism of small non-coding ribonucleoproteins (snRNPs) and spliceosome activity. We previously showed that SMN relocated to damaged interphase centromeres, together with the Cajal body-associated proteins coilin and fibrillarin, during the so-called interphase centromere damage response (iCDR). Here we reveal that SMN is a chromatin-binding protein that specifically interacts with methylated histone H3K79, a gene expression- and splicing-associated histone modification. SMN relocation to damaged centromeres requires its functional Tudor domain and activity of the H3K79 methyltransferase DOT1-L. In vitro pull-down assays showed that SMN interacts with H3K79me1,2 via its functional Tudor domain. Chromatin immunoprecipitation confirmed that SMN binds to H3K79me1,2-containing chromatin in iCDR-induced cells. These data reveal a novel SMN property in the detection of specific chromatin modifications, and shed new light on the involvement of a putative epigenetic dimension to the occurrence of SMA.
Collapse
|
225
|
Richon VM. Drug discovery in rare indications: opportunities and challenges. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2013; 2013:19-23. [PMID: 24319157 DOI: 10.1182/asheducation-2013.1.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Over the past decade, the number of new therapies developed for the treatment of rare diseases continues to increase. The most rapid growth has been in the development of new drugs for oncology indications. One focus in drug discovery for oncology indications is the development of targeted therapies for select patient subgroups characterized by genetic alterations. The identification of these patient subgroups has increased in the past decade and has resulted in a corresponding increase in the development of new drugs for genetically defined patient subgroups. As an example of the development of new therapeutics for rare indications, I describe here the drug discovery efforts leading to the development of DOT1L inhibitors for the treatment of MLL-rearranged leukemia.
Collapse
|
226
|
Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 2012; 13:720-31. [PMID: 22986266 DOI: 10.1038/nrg3293] [Citation(s) in RCA: 906] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent years have witnessed a sea change in our understanding of transcription regulation: whereas traditional models focused solely on the events that brought RNA polymerase II (Pol II) to a gene promoter to initiate RNA synthesis, emerging evidence points to the pausing of Pol II during early elongation as a widespread regulatory mechanism in higher eukaryotes. Current data indicate that pausing is particularly enriched at genes in signal-responsive pathways. Here the evidence for pausing of Pol II from recent high-throughput studies will be discussed, as well as the potential interconnected functions of promoter-proximally paused Pol II.
Collapse
|
227
|
Abstract
The PIT1/SLC20A1 protein, a well-described sodium/phosphate cotransporter and retrovirus receptor, has been identified recently as a modular of proliferation and apoptosis in vitro. The targeted deletion of the PIT1 gene in mice revealed a lethal phenotype due to severe anemia attributed to defects in liver development. However, the presence of immature erythroid cells associated with impaired maturation of the globin switch led us to investigate the role of PIT1 in hematopoietic development. In the present study, specific deletion of PIT1 in the hematopoietic system and fetal liver transplantation experiments demonstrated that anemia was associated with an erythroid cell- autonomous defect. Moreover, anemia was not due to RBC destruction but rather to maturation defects. Because Erythroid Krüppel-like Factor (EKLF)-knockout mice showed similar maturation defects, we investigated the functional link between PIT1 and EKLF. We demonstrated that EKLF increases PIT1 expression during RBC maturation by binding to its promoter in vivo and that shRNA-driven depletion of either PIT1 or EKLF impairs erythroid maturation of G1E cells in vitro, whereas reexpression of PIT1 in EKLF-depleted G1E cells partially restores erythroid maturation. This is the first demonstration of a physiologic involvement of PIT1 in erythroid maturation in vivo.
Collapse
|
228
|
Bjørnstad LG, Meza TJ, Otterlei M, Olafsrud SM, Meza-Zepeda LA, Falnes PØ. Human ALKBH4 interacts with proteins associated with transcription. PLoS One 2012; 7:e49045. [PMID: 23145062 PMCID: PMC3493508 DOI: 10.1371/journal.pone.0049045] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/03/2012] [Indexed: 01/24/2023] Open
Abstract
The Fe(II)- and 2-oxoglutarate (2OG)-dependent dioxygenase AlkB from E. coli is a demethylase which repairs alkyl lesions in DNA, as well as RNA, through a direct reversal mechanism. Humans possess nine AlkB homologs (ALKBH1-8 and FTO). ALKBH2 and ALKBH3 display demethylase activities corresponding to that of AlkB, and both ALKBH8 and FTO are RNA modification enzymes. The biochemical functions of the rest of the homologs are still unknown. To increase our knowledge on the functions of ALKBH4 and ALKBH7 we have here performed yeast two-hybrid screens to identify interaction partners of the two proteins. While no high-confidence hits were detected in the case of ALKBH7, several proteins associated with chromatin and/or involved in transcription were found to interact with ALKBH4. For all interaction partners, the regions mediating binding to ALKBH4 comprised domains previously reported to be involved in interaction with DNA or chromatin. Furthermore, some of these partners showed nuclear co-localization with ALKBH4. However, the global gene expression pattern was only marginally altered upon ALKBH4 over-expression, and larger effects were observed in the case of ALKBH7. Although the molecular function of both proteins remains to be revealed, our findings suggest a role for ALKBH4 in regulation of gene expression or chromatin state.
Collapse
Affiliation(s)
- Linn G. Bjørnstad
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Trine J. Meza
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Marit Otterlei
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Solveig M. Olafsrud
- Genomics Core Facility, Department of Molecular Biosciences, University of Oslo, Oslo, Norway
- Department of Tumor Biology, the Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Leonardo A. Meza-Zepeda
- Genomics Core Facility, Department of Molecular Biosciences, University of Oslo, Oslo, Norway
- Department of Tumor Biology, the Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Pål Ø. Falnes
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
229
|
Kim SK, Jung I, Lee H, Kang K, Kim M, Jeong K, Kwon CS, Han YM, Kim YS, Kim D, Lee D. Human histone H3K79 methyltransferase DOT1L protein [corrected] binds actively transcribing RNA polymerase II to regulate gene expression. J Biol Chem 2012; 287:39698-709. [PMID: 23012353 DOI: 10.1074/jbc.m112.384057] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone-modifying enzymes play a pivotal role in gene expression and repression. In human, DOT1L (Dot1-like) is the only known histone H3 lysine 79 methyltransferase. hDOT1L is associated with transcriptional activation, but the general mechanism connecting hDOT1L to active transcription remains largely unknown. Here, we report that hDOT1L interacts with the phosphorylated C-terminal domain of actively transcribing RNA polymerase II (RNAPII) through a region conserved uniquely in multicellular DOT1 proteins. Genome-wide profiling analyses indicate that the occupancy of hDOT1L largely overlaps with that of RNAPII at actively transcribed genes, especially surrounding transcriptional start sites, in embryonic carcinoma NCCIT cells. We also find that C-terminal domain binding or H3K79 methylations by hDOT1L is important for the expression of target genes such as NANOG and OCT4 and a marker for pluripotency in NCCIT cells. Our results indicate that a functional interaction between hDOT1L and RNAPII targets hDOT1L and subsequent H3K79 methylations to actively transcribed genes.
Collapse
Affiliation(s)
- Seung-Kyoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Ballabio E, Milne TA. Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis. Cancers (Basel) 2012; 4:904-44. [PMID: 24213472 PMCID: PMC3712720 DOI: 10.3390/cancers4030904] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 01/20/2023] Open
Abstract
Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC) inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL) protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis.
Collapse
Affiliation(s)
- Erica Ballabio
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital Headington, Oxford OX3 9DS, UK.
| | | |
Collapse
|
231
|
Smolle M, Workman JL. Transcription-associated histone modifications and cryptic transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:84-97. [PMID: 22982198 DOI: 10.1016/j.bbagrm.2012.08.008] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/14/2012] [Accepted: 08/29/2012] [Indexed: 12/21/2022]
Abstract
Eukaryotic genomes are packaged into chromatin, a highly organized structure consisting of DNA and histone proteins. All nuclear processes take place in the context of chromatin. Modifications of either DNA or histone proteins have fundamental effects on chromatin structure and function, and thus influence processes such as transcription, replication or recombination. In this review we highlight histone modifications specifically associated with gene transcription by RNA polymerase II and summarize their genomic distributions. Finally, we discuss how (mis-)regulation of these histone modifications perturbs chromatin organization over coding regions and results in the appearance of aberrant, intragenic transcription. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Michaela Smolle
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | |
Collapse
|
232
|
Deshpande AJ, Bradner J, Armstrong SA. Chromatin modifications as therapeutic targets in MLL-rearranged leukemia. Trends Immunol 2012; 33:563-70. [PMID: 22867873 DOI: 10.1016/j.it.2012.06.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/31/2012] [Accepted: 06/11/2012] [Indexed: 11/26/2022]
Abstract
MLL-rearranged leukemias exemplify malignancies with perturbations of the epigenetic landscape. Specific chromatin modifications that aid in the perpetuation of MLL fusion gene driven oncogenic programs are being defined, presenting novel avenues for therapeutic intervention. Proof-of-concept studies have recently been reported, using small-molecule inhibitors targeting the histone methyltransferase disruptor of telomeric silencing 1-like (DOT1L), or the acetyl-histone binding protein bromodomain containing protein 4 (BRD4) showing potent activity against MLL-rearranged leukemias in preclinical models. It is apparent that intensive efforts will be made toward the further development of small-molecule inhibitors targeting these, and other chromatin-associated protein targets. These studies may lead to the advent of a new generation of much-needed therapeutic modalities in leukemia and other cancers.
Collapse
Affiliation(s)
- Aniruddha J Deshpande
- Division of Hematology/Oncology, Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
233
|
Abstract
The bromodomain is a highly conserved motif of 110 amino acids that is bundled into four anti-parallel α-helices and found in proteins that interact with chromatin, such as transcription factors, histone acetylases and nucleosome remodelling complexes. Bromodomain proteins are chromatin 'readers'; they recruit chromatin-regulating enzymes, including 'writers' and 'erasers' of histone modification, to target promoters and to regulate gene expression. Conventional wisdom held that complexes involved in chromatin dynamics are not 'druggable' targets. However, small molecules that inhibit bromodomain and extraterminal (BET) proteins have been described. We examine these developments and discuss the implications for small molecule epigenetic targeting of chromatin networks in cancer.
Collapse
Affiliation(s)
- Anna C Belkina
- Cancer Research Center, Nutrition Obesity Research Center, Departments of Medicine and Pharmacology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | | |
Collapse
|
234
|
Abstract
The proto-oncogene EVI1 (ecotropic viral integration site-1), located on chromosome band 3q26, is aberrantly expressed in human acute myeloid leukemia (AML) with 3q26 rearrangements. In the current study, we showed, in a large AML cohort carrying 11q23 translocations, that ∼ 43% of all mixed lineage leukemia (MLL)-rearranged leukemias are EVI1(pos). High EVI1 expression occurs in AMLs expressing the MLL-AF6, -AF9, -AF10, -ENL, or -ELL fusion genes. In addition, we present evidence that EVI1(pos) MLL-rearranged AMLs differ molecularly, morphologically, and immunophenotypically from EVI1(neg) MLL-rearranged leukemias. In mouse bone marrow cells transduced with MLL-AF9, we show that MLL-AF9 fusion protein maintains Evi1 expression on transformation of Evi1(pos) HSCs. MLL-AF9 does not activate Evi1 expression in MLL-AF9-transformed granulocyte macrophage progenitors (GMPs) that were initially Evi1(neg). Moreover, shRNA-mediated knockdown of Evi1 in an Evi1(pos) MLL-AF9 mouse model inhibits leukemia growth both in vitro and in vivo, suggesting that Evi1 provides a growth-promoting signal. Using the Evi1(pos) MLL-AF9 mouse leukemia model, we demonstrate increased sensitivity to chemotherapeutic agents on reduction of Evi1 expression. We conclude that EVI1 is a critical player in tumor growth in a subset of MLL-rearranged AMLs.
Collapse
|
235
|
Whole-genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal tides. Blood 2012; 120:1060-6. [PMID: 22529291 DOI: 10.1182/blood-2012-01-405977] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The longitudinal evolution of a myeloma genome from diagnosis to plasma cell leukemia has not previously been reported. We used whole-genome sequencing (WGS) on 4 purified tumor samples and patient germline DNA drawn over a 5-year period in a t(4;14) multiple myeloma patient. Tumor samples were acquired at diagnosis, first relapse, second relapse, and end-stage secondary plasma cell leukemia (sPCL). In addition to the t(4;14), all tumor time points also shared 10 common single-nucleotide variants (SNVs) on WGS comprising shared initiating events. Interestingly, we observed genomic sequence variants that waxed and waned with time in progressive tumors, suggesting the presence of multiple independent, yet related, clones at diagnosis that rose and fell in dominance. Five newly acquired SNVs, including truncating mutations of RB1 and ZKSCAN3, were observed only in the final sPCL sample suggesting leukemic transformation events. This longitudinal WGS characterization of the natural history of a high-risk myeloma patient demonstrated tumor heterogeneity at diagnosis with shifting dominance of tumor clones over time and has also identified potential mutations contributing to myelomagenesis as well as transformation from myeloma to overt extramedullary disease such as sPCL.
Collapse
|
236
|
Abstract
The cyclin-dependent kinases (Cdks) regulate many cellular processes, including the cell cycle, neuronal development, transcription, and posttranscriptional processing. To perform their functions, Cdks bind to specific cyclin subunits to form a functional and active cyclin/Cdk complex. This review is focused on Cyclin K, which was originally considered an alternative subunit of Cdk9, and on its newly identified partners, Cdk12 and Cdk13. We briefly summarize research devoted to each of these proteins. We also discuss the proteins' functions in the regulation of gene expression via the phosphorylation of serine 2 in the C-terminal domain of RNA polymerase II, contributions to the maintenance of genome stability, and roles in the onset of human disease and embryo development.
Collapse
Affiliation(s)
- Jiri Kohoutek
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic.
| | | |
Collapse
|
237
|
|
238
|
Johnsen SA. The enigmatic role of H2Bub1 in cancer. FEBS Lett 2012; 586:1592-601. [PMID: 22564770 DOI: 10.1016/j.febslet.2012.04.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 12/19/2022]
Abstract
The post-translational modification of histone proteins plays an important role in controlling cell fate by directing essentially all DNA-associated nuclear processes. Misregulation and mutation of histone modifying enzymes is a hallmark of tumorigenesis. However, how these different epigenetic modifications lead to tumor initiation and/or progression remains poorly understood. Recent studies have uncovered a potential tumor suppressor role for histone H2B monoubiquitination (H2Bub1). Like many other histone modifications, H2Bub1 has diverse functions and plays roles both in transcriptional activation and repression as well as in controlling mRNA processing and directing DNA repair processes. Notably, H2Bub1 has been linked to transcriptional elongation and is preferentially found in the transcribed region of active genes. Its activity is intimately connected to active transcription and the transcriptional elongation regulatory protein cyclin-dependent kinase-9 (CDK9) and the facilitates chromatin transcription (FACT) complex. This review provides an overview of the current understanding of H2Bub1 function in mammalian systems with a particular emphasis on its role in cancer and potential options for exploiting this knowledge for the treatment of cancer.
Collapse
Affiliation(s)
- Steven A Johnsen
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.
| |
Collapse
|
239
|
Abstract
Thirteen years ago, human cyclin T1 was identified as part of the positive transcription elongation factor b (P-TEFb) and the long-sought host cofactor for the HIV-1 transactivator Tat. Recent years have brought new insights into the intricate regulation of P-TEFb function and its relationship with Tat, revealing novel mechanisms for controlling HIV transcription and fueling new efforts to overcome the barrier of transcriptional latency in eradicating HIV. Moreover, the improved understanding of HIV and Tat forms a basis for studying transcription elongation control in general. Here, we review advances in HIV transcription research with a focus on the growing family of cellular P-TEFb complexes, structural insights into the interactions between Tat, P-TEFb, and TAR RNA, and the multifaceted regulation of these interactions by posttranscriptional modifications of Tat.
Collapse
|
240
|
Kim W, Kim R, Park G, Park JW, Kim JE. Deficiency of H3K79 histone methyltransferase Dot1-like protein (DOT1L) inhibits cell proliferation. J Biol Chem 2012; 287:5588-99. [PMID: 22190683 PMCID: PMC3285333 DOI: 10.1074/jbc.m111.328138] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Indexed: 11/06/2022] Open
Abstract
Dot1-like protein (DOT1L) is an evolutionarily conserved histone methyltransferase that methylates lysine 79 of histone H3 (H3K79). Mammalian DOT1L participates in the regulation of transcription, development, erythropoiesis, differentiation, and proliferation of normal cells. However, the role of DOT1L in cancer cell proliferation has not been fully elucidated. DOT1L siRNA-transfected A549 or NCI-H1299 lung cancer cells displayed a nonproliferating multinucleated phenotype. DOT1L-deficient cells also showed abnormal mitotic spindle formation and centrosome number, suggesting that DOT1L deficiency leads to chromosomal missegregation. This chromosomal instability in DOT1L-deficient cells led to cell cycle arrest at the G(1) phase and induced senescence as determined by enhanced activity of senescence-associated β-galactosidase activity. Meanwhile, overexpression of a catalytically active DOT1L, not an inactive mutant, restored DOT1L siRNA-induced phenotypes. Overall, these data imply that down-regulation of DOT1L-mediated H3K79 methylation disturbs proliferation of human cells. In addition, although H3K79 methylation is down-regulated in aged tissues, it is up-regulated in lung cancer cell lines and tumor tissues of lung cancer patients. Therefore, H3K79 methylation is a critical histone modification that regulates cell proliferation and would be a novel histone mark for aging and cancer.
Collapse
Affiliation(s)
- Wootae Kim
- From the Departments of Pharmacology and Biomedical Science, School of Medicine, Kyung Hee University, Seoul 130-701, Korea and
| | - Ranah Kim
- From the Departments of Pharmacology and Biomedical Science, School of Medicine, Kyung Hee University, Seoul 130-701, Korea and
| | - Geunyeong Park
- From the Departments of Pharmacology and Biomedical Science, School of Medicine, Kyung Hee University, Seoul 130-701, Korea and
| | - Jong-Wan Park
- the Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Ja-Eun Kim
- From the Departments of Pharmacology and Biomedical Science, School of Medicine, Kyung Hee University, Seoul 130-701, Korea and
| |
Collapse
|
241
|
Boehm D, Calvanese V, Dar RD, Xing S, Schroeder S, Martins L, Aull K, Li PC, Planelles V, Bradner JE, Zhou MM, Siliciano RF, Weinberger L, Verdin E, Ott M. BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism. Cell Cycle 2012; 12:452-62. [PMID: 23255218 DOI: 10.4161/cc.23309] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The therapeutic potential of pharmacologic inhibition of bromodomain and extraterminal (BET) proteins has recently emerged in hematological malignancies and chronic inflammation. We find that BET inhibitor compounds (JQ1, I-Bet, I-Bet151 and MS417) reactivate HIV from latency. This is evident in polyclonal Jurkat cell populations containing latent infectious HIV, as well as in a primary T-cell model of HIV latency. Importantly, we show that this activation is dependent on the positive transcription elongation factor p-TEFb but independent from the viral Tat protein, arguing against the possibility that removal of the BET protein BRD4, which functions as a cellular competitor for Tat, serves as a primary mechanism for BET inhibitor action. Instead, we find that the related BET protein, BRD2, enforces HIV latency in the absence of Tat, pointing to a new target for BET inhibitor treatment in HIV infection. In shRNA-mediated knockdown experiments, knockdown of BRD2 activates HIV transcription to the same extent as JQ1 treatment, while a lesser effect is observed with BRD4. In single-cell time-lapse fluorescence microscopy, quantitative analyses across ~2,000 viral integration sites confirm the Tat-independent effect of JQ1 and point to positive effects of JQ1 on transcription elongation, while delaying re-initiation of the polymerase complex at the viral promoter. Collectively, our results identify BRD2 as a new Tat-independent suppressor of HIV transcription in latently infected cells and underscore the therapeutic potential of BET inhibitors in the reversal of HIV latency.
Collapse
Affiliation(s)
- Daniela Boehm
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Shilatifard A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 2012; 81:65-95. [PMID: 22663077 PMCID: PMC4010150 DOI: 10.1146/annurev-biochem-051710-134100] [Citation(s) in RCA: 823] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Saccharomyces cerevisiae Set1/COMPASS was the first histone H3 lysine 4 (H3K4) methylase identified over 10 years ago. Since then, it has been demonstrated that Set1/COMPASS and its enzymatic product, H3K4 methylation, is highly conserved across the evolutionary tree. Although there is only one COMPASS in yeast, Drosophila possesses three and humans bear six COMPASS family members, each capable of methylating H3K4 with nonredundant functions. In yeast, the histone H2B monoubiquitinase Rad6/Bre1 is required for proper H3K4 and H3K79 trimethylations. The machineries involved in this process are also highly conserved from yeast to human. In this review, the process of histone H2B monoubiquitination-dependent and -independent histone H3K4 methylation as a mark of active transcription, enhancer signatures, and developmentally poised genes is discussed. The misregulation of histone H2B monoubiquitination and H3K4 methylation result in the pathogenesis of human diseases, including cancer. Recent findings in this regard are also examined.
Collapse
Affiliation(s)
- Ali Shilatifard
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| |
Collapse
|
243
|
Pathogenetic, Clinical, and Prognostic Features of Adult t(4;11)(q21;q23)/MLL-AF4 Positive B-Cell Acute Lymphoblastic Leukemia. Adv Hematol 2011; 2011:621627. [PMID: 22190943 PMCID: PMC3235494 DOI: 10.1155/2011/621627] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/23/2011] [Accepted: 09/06/2011] [Indexed: 12/23/2022] Open
Abstract
Translocation t(4;11)(q21;q23) leading to formation of MLL-AF4 fusion gene is found in about 10% of newly diagnosed B-cell acute lymphoblastic leukemia (ALL) in adult patients. Patients expressing this chromosomal aberration present typical biological, immunophenotypic, and clinical features. This form of leukemia is universally recognized as high-risk leukemia and treatment intensification with allogeneic hematopoietic stem cell transplantation (HSCT) in first complete remission (CR) could be a valid option to improve prognosis, but data obtained from the literature are controversial. In this review, we briefly describe pathogenetic, clinical, and prognostic characteristics of adult t(4;11)(q21;q23)/MLL-AF4 positive ALL and provide a review of the clinical outcome reported by the most important cooperative groups worldwide.
Collapse
|
244
|
Tan J, Jones M, Koseki H, Nakayama M, Muntean A, Maillard I, Hess JL. CBX8, a polycomb group protein, is essential for MLL-AF9-induced leukemogenesis. Cancer Cell 2011; 20:563-75. [PMID: 22094252 PMCID: PMC3220883 DOI: 10.1016/j.ccr.2011.09.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 07/21/2011] [Accepted: 09/20/2011] [Indexed: 10/15/2022]
Abstract
Chromosomal translocations involving the mixed lineage leukemia (MLL) gene lead to the development of acute leukemias. Constitutive HOX gene activation by MLL fusion proteins is required for MLL-mediated leukemogenesis; however, the underlying mechanisms remain elusive. Here, we show that chromobox homolog 8 (CBX8), a Polycomb Group protein that interacts with MLL-AF9 and TIP60, is required for MLL-AF9-induced transcriptional activation and leukemogenesis. Conversely, both CBX8 ablation and specific disruption of the CBX8 interaction by point mutations in MLL-AF9 abrogate HOX gene upregulation and abolish MLL-AF9 leukemic transformation. Surprisingly, Cbx8-deficient mice are viable and display no apparent hematopoietic defects. Together, our findings demonstrate that CBX8 plays an essential role in MLL-AF9 transcriptional regulation and leukemogenesis.
Collapse
Affiliation(s)
- Jiaying Tan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Morgan Jones
- Center for Stem Cell Biology, Life Sciences Institute, Graduate Program in Cell and Molecular Biology and MSTP, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Research Center for Allergy and Immunology, Yokohama 230-0045, Japan
| | - Manabu Nakayama
- Laboratory of Human Gene Research, Department of Human Genome Research, Kazusa DNA Research Institute, Chiba 292-0818, Japan
| | - Andrew Muntean
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ivan Maillard
- Center for Stem Cell Biology, Life Sciences Institute, Department of Medicine and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jay L. Hess
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Corresponding Author: Jay L. Hess M.D., Ph.D., M5240 Medical Sciences I, 1301 Catherine Avenue, Ann Arbor, MI, 48109-0602, Phone: (734) 763-6384, Fax: (734) 763-4782,
| |
Collapse
|
245
|
Mizukawa B, Wei J, Shrestha M, Wunderlich M, Chou FS, Griesinger A, Harris CE, Kumar AR, Zheng Y, Williams DA, Mulloy JC. Inhibition of Rac GTPase signaling and downstream prosurvival Bcl-2 proteins as combination targeted therapy in MLL-AF9 leukemia. Blood 2011; 118:5235-45. [PMID: 21940819 PMCID: PMC3217406 DOI: 10.1182/blood-2011-04-351817] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 09/04/2011] [Indexed: 12/27/2022] Open
Abstract
The Rac family of small Rho GTPases coordinates diverse cellular functions in hematopoietic cells including adhesion, migration, cytoskeleton rearrangements, gene transcription, proliferation, and survival. The integrity of Rac signaling has also been found to critically regulate cellular functions in the initiation and maintenance of hematopoietic malignancies. Using an in vivo gene targeting approach, we demonstrate that Rac2, but not Rac1, is critical to the initiation of acute myeloid leukemia in a retroviral expression model of MLL-AF9 leukemogenesis. However, loss of either Rac1 or Rac2 is sufficient to impair survival and growth of the transformed MLL-AF9 leukemia. Rac2 is known to positively regulate expression of Bcl-2 family proteins toward a prosurvival balance. We demonstrate that disruption of downstream survival signaling through antiapoptotic Bcl-2 proteins is implicated in mediating the effects of Rac2 deficiency in MLL-AF9 leukemia. Indeed, overexpression of Bcl-xL is able to rescue the effects of Rac2 deficiency and MLL-AF9 cells are exquisitely sensitive to direct inhibition of Bcl-2 family proteins by the BH3-mimetic, ABT-737. Furthermore, concurrent exposure to NSC23766, a small-molecule inhibitor of Rac activation, increases the apoptotic effect of ABT-737, indicating the Rac/Bcl-2 survival pathway may be targeted synergistically.
Collapse
MESH Headings
- Aminoquinolines/pharmacology
- Animals
- Biphenyl Compounds/pharmacology
- Cell Line, Tumor
- Gene Expression
- Gene Knockdown Techniques
- Humans
- Leukemia, Biphenotypic, Acute/drug therapy
- Leukemia, Biphenotypic, Acute/genetics
- Leukemia, Biphenotypic, Acute/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Mice, Transgenic
- Neuropeptides/antagonists & inhibitors
- Neuropeptides/deficiency
- Neuropeptides/genetics
- Nitrophenols/pharmacology
- Piperazines/pharmacology
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Pyrimidines/pharmacology
- Signal Transduction
- Sulfonamides/pharmacology
- Transplantation, Heterologous
- bcl-X Protein/genetics
- rac GTP-Binding Proteins/antagonists & inhibitors
- rac GTP-Binding Proteins/deficiency
- rac GTP-Binding Proteins/genetics
- rac1 GTP-Binding Protein
- RAC2 GTP-Binding Protein
Collapse
Affiliation(s)
- Benjamin Mizukawa
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, OH 45229, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Function of leukemogenic mixed lineage leukemia 1 (MLL) fusion proteins through distinct partner protein complexes. Proc Natl Acad Sci U S A 2011; 108:15751-6. [PMID: 21896721 DOI: 10.1073/pnas.1111498108] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A number of acute leukemias arise from fusion of the mixed lineage leukemia 1 protein (MLL) N terminus to a variety of fusion partners that have been reported to reside in one or more poorly defined complexes linked to transcription elongation through interactions with the histone H3-K79 methyltransferase DOT1 and positive transcription elongation factor b (P-TEFb). Here we first identify natural complexes (purified through fusion partners AF9, AF4, and ELL) with overlapping components, different elongation activities, and different cofactor associations that suggest dynamic interactions. Then, through reconstitution of defined, functionally active minimal complexes, we identify stable subcomplexes that, through newly defined protein-protein interactions, form distinct higher order complexes. These definitive analyses show, for example, that (i) through direct interactions with AF9 and cyclinT1, family members AF4 and AFF4 independently mediate association of P-TEFb with AF9, (ii) P-TEFb, through direct interactions, provides the link for association of ELL and ELL-associated factors 1 and 2 (EAF1 and EAF2) with AF4, and (iii) in the absence of other factors, DOT1 forms a stable complex with AF9 and does not interact with AF9•AF4•P-TEFb complexes. Finally, we show the importance of defined higher order complex formation in MLL-AF9-mediated transcriptional up-regulation and cell immortalization potential in vivo. Thus, our study provides direct mechanistic insight into the role of fusion partners in MLL fusion-mediated leukemogenesis.
Collapse
|
247
|
Abstract
DOT1 (disruptor of telomeric silencing; also called Kmt4) was initially discovered in budding yeast in a genetic screen for genes whose deletion confers defects in telomeric silencing. Since the discovery ∼10 years ago that Dot1 and its mammalian homolog, DOT1L (DOT1-Like), possess histone methyltransferase activity toward histone H3 Lys 79, great progress has been made in characterizing their enzymatic activities and the role of Dot1/DOT1L-mediated H3K79 methylation in transcriptional regulation, cell cycle regulation, and the DNA damage response. In addition, gene disruption in mice has revealed that mouse DOT1L plays an essential role in embryonic development, hematopoiesis, cardiac function, and the development of leukemia. The involvement of DOT1L enzymatic activity in leukemogenesis driven by a subset of MLL (mixed-lineage leukemia) fusion proteins raises the possibility of targeting DOT1L for therapeutic intervention.
Collapse
Affiliation(s)
- Anh Tram Nguyen
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | | |
Collapse
|
248
|
Human Polymerase-Associated Factor complex (PAFc) connects the Super Elongation Complex (SEC) to RNA polymerase II on chromatin. Proc Natl Acad Sci U S A 2011; 108:E636-45. [PMID: 21873227 DOI: 10.1073/pnas.1107107108] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Super Elongation Complex (SEC), containing transcription elongation activators/coactivators P-TEFb, ELL2, AFF4/1, ENL, and AF9, is recruited by HIV-1 Tat and mixed lineage leukemia (MLL) proteins to activate the expression of HIV-1 and MLL-target genes, respectively. In the absence of Tat and MLL, however, it is unclear how SEC is targeted to RNA polymerase (Pol) II to stimulate elongation in general. Furthermore, although ENL and AF9 can bind the H3K79 methyltransferase Dot1L, it is unclear whether these bindings are required for SEC-mediated transcription. Here, we show that the homologous ENL and AF9 exist in separate SECs with similar but nonidentical functions. ENL/AF9 contacts the scaffolding protein AFF4 that uses separate domains to recruit different subunits into SEC. ENL/AF9 also exists outside SEC when bound to Dot1L, which is found to inhibit SEC function. The YEATS domain of ENL/AF9 targets SEC to Pol II on chromatin through contacting the human Polymerase-Associated Factor complex (PAFc) complex. This finding explains the YEATS domain's dispensability for leukemogenesis when ENL/AF9 is translocated to MLL, whose interactions with PAFc and DNA likely substitute for the PAFc/chromatin-targeting function of the YEATS domain.
Collapse
|
249
|
Milcarek C, Albring M, Langer C, Park KS. The eleven-nineteen lysine-rich leukemia gene (ELL2) influences the histone H3 protein modifications accompanying the shift to secretory immunoglobulin heavy chain mRNA production. J Biol Chem 2011; 286:33795-803. [PMID: 21832080 DOI: 10.1074/jbc.m111.272096] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In plasma cells, immunoglobulin heavy chain (IgH) secretory-specific mRNA is made in high abundance as a result of both increased promoter proximal poly(A) site choice and weak splice-site skipping. Ell2, the eleven-nineteen lysine rich leukemia gene, is a transcription elongation factor that is induced ∼6-fold in plasma cells and has been shown to drive secretory-specific mRNA production. Reducing ELL2 by siRNA, which reduced processing to the secretion-specific poly(A) site, also influenced the methylations of histone H3K4 and H3K79 on the IgH gene and impacted positive transcription factor b (pTEFb), Ser-2 carboxyl-terminal phosphorylation, and polyadenylation factor additions to RNA polymerase II. The multiple lineage leukemia gene (MLL) and Dot1L associations with the IgH gene were also impaired in the absence of ELL2. To investigate the link between histone modifications, transcription elongation, and alternative RNA processing in IgH mRNA production, we performed chromatin immunoprecipitation on cultured mouse B and plasma cells bearing the identical IgH γ2a gene. In the plasma cells, as compared with the B cells, the H3K4 and H3K79 methylations extended farther downstream, past the IgH enhancer to the end of the transcribed region. Thus the downstream H3K4 and H3K79 methylation of the IgH associated chromatin in plasma cells is associated with increased polyadenylation and exon skipping, resulting from the actions of ELL2 transcription elongation factor.
Collapse
Affiliation(s)
- Christine Milcarek
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | |
Collapse
|
250
|
Nguyen AT, He J, Taranova O, Zhang Y. Essential role of DOT1L in maintaining normal adult hematopoiesis. Cell Res 2011; 21:1370-3. [PMID: 21769133 DOI: 10.1038/cr.2011.115] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|