201
|
Adolph O, Köster S, Georgieff M, Bäder S, Föhr KJ, Kammer T, Herrnberger B, Grön G. Xenon-induced changes in CNS sensitization to pain. Neuroimage 2009; 49:720-30. [PMID: 19703572 DOI: 10.1016/j.neuroimage.2009.08.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 08/13/2009] [Accepted: 08/16/2009] [Indexed: 11/26/2022] Open
Abstract
Electrophysiological investigations of the spinal cord in animals have shown that pain sensitizes the central nervous system via glutamate receptor dependent long-term potentiation (LTP) related to an enhancement of pain perception. To expand these findings, we used functional magnetic resonance (fMRI), blood oxygen level dependent (BOLD) and perfusion imaging in combination with repeated electrical stimulation in humans. Specifically we monitored modulation of somatosensory processing during inhibition of excitatory transmission by ocular application of the glutamate receptor antagonist xenon. BOLD responses upon secondary stimulation increased in mid insular and in primary/secondary sensory cortices under placebo and decreased under xenon treatments. Xenon-induced decreases in regional perfusion were confined to stimulation responsive brain regions and correlated with time courses of xenon concentrations in the cranial blood. Moreover, effects of xenon on behavioral, fMRI and perfusion data scaled with stimulus intensity. The dependence of pain sensitization on sufficient pre-activation reflects a multistage process which is characteristic for glutamate receptor related processes of LTP. This study demonstrates how LTP related processes known from the cellular level can be investigated at the brain systems level.
Collapse
Affiliation(s)
- Oliver Adolph
- Department of Anesthesiology, University Hospital of Ulm, Steinhoevelstrasse 9, Ulm, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
202
|
Roles of the AMPA receptor subunit GluA1 but not GluA2 in synaptic potentiation and activation of ERK in the anterior cingulate cortex. Mol Pain 2009; 5:46. [PMID: 19664265 PMCID: PMC2734546 DOI: 10.1186/1744-8069-5-46] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 08/10/2009] [Indexed: 01/22/2023] Open
Abstract
Cortical areas including the anterior cingulate cortex (ACC) are important for pain and pleasure. Recent studies using genetic and physiological approaches have demonstrated that the investigation of basic mechanism for long-term potentiation (LTP) in the ACC may reveal key cellular and molecular mechanisms for chronic pain in the cortex. Glutamate N-methyl D-aspartate (NMDA) receptors in the ACC are critical for the induction of LTP, including both NR2A and NR2B subunits. However, cellular and molecular mechanisms for the expression of ACC LTP have been less investigated. Here, we report that the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit, GluA1 but not GluA2 contributes to LTP in the ACC using genetic manipulated mice lacking GluA1 or GluA2 gene. Furthermore, GluA1 knockout mice showed decreased extracellular signal-regulated kinase (ERK) phosphorylation in the ACC in inflammatory pain models in vivo. Our results demonstrate that AMPA receptor subunit GluA1 is a key mechanism for the expression of ACC LTP and inflammation-induced long-term plastic changes in the ACC.
Collapse
|
203
|
Paraventricular oxytocinergic hypothalamic prevention or interruption of long-term potentiation in dorsal horn nociceptive neurons: Electrophysiological and behavioral evidence. Pain 2009; 144:320-328. [DOI: 10.1016/j.pain.2009.05.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 04/23/2009] [Accepted: 05/01/2009] [Indexed: 11/22/2022]
|
204
|
Spinal cord long-term potentiation (LTP) is associated with increased dorsal horn gene expression of IL-1beta, GDNF and iNOS. Eur J Pain 2009; 14:255-60. [PMID: 19596210 DOI: 10.1016/j.ejpain.2009.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 04/24/2009] [Accepted: 05/26/2009] [Indexed: 12/20/2022]
Abstract
Previous data show that spinal cord long-term potentiation (LTP) can be induced by electrical high-frequency stimulation (HFS) conditioning applied to the sciatic nerve. It has been suggested that the cellular events leading to this form of plasticity may contribute to central hyperalgesia. In the present study, extracellular recordings from single dorsal horn neurons and quantitative real-time reverse-transcriptase polymerase chain reaction (RT-PCR) on rat dorsal horn tissue were used to examine whether maintenance of spinal LTP is associated with changes in gene expression of the proinflammatory interleukin-1beta (IL-1beta), glial cell-line derived neurotrophic factor (GDNF), inducible nitric oxide synthase (iNOS), p38 mitogen-activated protein kinase (p38 MAPK), cyclooxygenase 2 (COX2) and tumor necrosis factor alpha (TNFalpha). The data demonstrated that the HFS conditioning induced a robust increase in the dorsal horn C-fibre responses, which outlasted the duration of the experiments of 6h (p<0.05, HFS vs. control). Moreover, a significant increase in the expression of mRNA for IL-1beta, GDNF and iNOS were observed 6h following the HFS conditioning (p<0.05, HFS vs. control). For the first time we show that spinal cord LTP is associated with an increased dorsal horn expression of the genes for IL-1beta, GDNF and iNOS.
Collapse
|
205
|
Fitzgerald M. When is an analgesic not an analgesic? Pain 2009; 144:9. [DOI: 10.1016/j.pain.2009.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 03/16/2009] [Indexed: 10/20/2022]
|
206
|
Liu WT, Han Y, Li HC, Adams B, Zheng JH, Wu YP, Henkemeyer M, Song XJ. An in vivo mouse model of long-term potentiation at synapses between primary afferent C-fibers and spinal dorsal horn neurons: essential role of EphB1 receptor. Mol Pain 2009; 5:29. [PMID: 19523204 PMCID: PMC2704201 DOI: 10.1186/1744-8069-5-29] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 06/12/2009] [Indexed: 11/10/2022] Open
Abstract
Background Long-term potentiation (LTP), a much studied cellular model of synaptic plasticity, has not been demonstrated at synapses between primary afferent C-fibers and spinal dorsal horn (DH) neurons in mice in vivo. EphrinB-EphB receptor signaling plays important roles in synaptic connection and plasticity in the nervous system, but its role in spinal synaptic plasticity remains unclear. Results This study characterizes properties of LTP at synapses of C-fibers onto neurons in the superficial DH following high-frequency stimulation (HFS) of a peripheral nerve at an intensity that activates C-fibers and examines associated activation of Ca2+/calmodulin-activated protein kinase II (p-CaMKII), extracellular signal-regulated kinase (p-ERK) and the cyclic AMP response element binding protein (p-CREB) and expression of c-Fos, and it investigates further roles for the EphB1 receptor in LTP. HFS induced LTP within 5 min and lasts for 3–8 h during the period of recording and resulted in upregulation of p-CaMKII, p-ERK and p-CREB protein levels in the spinal cord and expression of c-Fos in DH. Intrathecal pretreatment of MK-801 or EphB2-Fc prevented LTP and significantly reduced upregulation of p-CaMKII, p-ERK, p-CREB and c-Fos. Further, targeted mutation of EphB1 receptor prevented induction of LTP and associated increases in phosphorylation of CaMKII, ERK, and CREB. Conclusion This study provides an in vivo mouse model of LTP at synapses of C-fibers onto the superficial DH neurons that will be valuable for studying the DH neuron excitability and their synaptic plasticity and hyperalgesia. It further takes advantage of examining functional implications of a specific gene targeted mice and demonstrates that the EphB1 receptor is essential for development of LTP.
Collapse
Affiliation(s)
- Wen-Tao Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Zhang L, Hammond DL. Substance P enhances excitatory synaptic transmission on spinally projecting neurons in the rostral ventromedial medulla after inflammatory injury. J Neurophysiol 2009; 102:1139-51. [PMID: 19494188 DOI: 10.1152/jn.91337.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
It has been proposed, but not directly tested, that persistent inflammatory nociception enhances excitatory glutamatergic inputs to neurons in the rostral ventromedial medulla (RVM), altering the activity and function of these neurons. This study used whole cell patch-clamp methods to record evoked excitatory postsynaptic currents (eEPSCs) in spinally projecting RVM neurons from rats injected with saline or complete Freund's adjuvant (CFA) 3-4 days earlier and to examine the role of substance P (SP) in modulating excitatory synaptic transmission. Input-output relationships demonstrated that CFA treatment facilitated fast excitatory glutamatergic inputs to type 1 and type 2 nonserotonergic spinally projecting RVM neurons, but not to type 3 neurons. The facilitation in type 1 and 2 neurons was dependent on neurokinin-1 (NK1) and N-methyl-d-aspartate (NMDA) receptors and prevented by the PKC inhibitor GF109203X. In a subset of neurons from naïve rats, SP mimicked the effects of CFA and increased the potency and efficacy of glutamatergic synaptic transmission. The facilitation was prevented by 10 microM GF109203X, but not by 10 microM KN93, a CaMKII inhibitor. SP (0.3-3 microM) by itself produced concentration-dependent inward currents in most nonserotonergic, but not serotonergic neurons. The present study is the first demonstration, at the cellular level, that persistent inflammatory nociception leads to a sustained facilitation of fast excitatory glutamatergic inputs to RVM neurons by an NK1 and NMDA receptor-dependent mechanism that involves PKC. Further, it demonstrates that the facilitation is restricted to specific populations of RVM neurons that by inference may be pain facilitatory neurons.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Anesthesia, The University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
208
|
Price TJ, Géranton SM. Translating nociceptor sensitivity: the role of axonal protein synthesis in nociceptor physiology. Eur J Neurosci 2009; 29:2253-63. [PMID: 19490023 DOI: 10.1111/j.1460-9568.2009.06786.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The increased sensitivity of peripheral pain-sensing neurons, or nociceptors, is a major cause of the sensation of pain that follows injury. This plasticity is thought to contribute to the maintenance of chronic pain states. Although we have a broad knowledge of the factors that stimulate changes in nociceptor sensitivity, the cellular mechanisms that underlie this plasticity are still poorly understood; however, they are likely to involve changes in gene expression required for the phenotypic and functional changes seen in nociceptive neurons after injury. While the regulation of gene expression at the transcriptional level has been studied extensively, the regulation of protein synthesis, which is also a tightly controlled process, has only recently received more attention. Despite the established role of protein synthesis in the plasticity of neuronal cell bodies and dendrites, little attention has been paid to the role of translation control in mature undamaged axons. In this regard, several recent studies have demonstrated that the control of protein synthesis within the axonal compartment is crucial for the normal function and regulation of sensitivity of nociceptors. Pathways and proteins regulating this process, such as the mammalian target of rapamycin signaling cascade and the fragile X mental retardation protein, have recently been identified. We review here recent evidence for the regulation of protein synthesis within a nociceptor's axonal compartment and its contribution to this neuron's plasticity. We believe that an increased understanding of this process will lead to the identification of novel targets for the treatment of chronic pain.
Collapse
Affiliation(s)
- Theodore J Price
- The University of Arizona, School of Medicine, Department of Pharmacology, 1501 N Campbell Ave, Tucson, AZ 85724, USA.
| | | |
Collapse
|
209
|
Pain and learning in a spinal system: contradictory outcomes from common origins. ACTA ACUST UNITED AC 2009; 61:124-43. [PMID: 19481111 DOI: 10.1016/j.brainresrev.2009.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 03/18/2009] [Accepted: 05/19/2009] [Indexed: 11/21/2022]
Abstract
The long-standing belief that the spinal cord serves merely as a conduit for information traveling to and from the brain is changing. Over the past decade, research has shown that the spinal cord is sensitive to response-outcome contingencies, demonstrating that spinal circuits have the capacity to modify behavior in response to differential environmental cues. If spinally transected rats are administered shock contingent on leg extension (controllable shock), they will maintain a flexion response that minimizes shock exposure. If, however, this contingency is broken, and shock is administered irrespective of limb position (uncontrollable shock), subjects cannot acquire the same flexion response. Interestingly, each of these treatments has a lasting effect on behavior; controllable shock enables future learning, while uncontrollable shock produces a long-lasting learning deficit. Here we suggest that the mechanisms underlying learning and the deficit may have evolved from machinery responsible for the spinal processing of noxious information. Experiments have shown that learning and the deficit require receptors and signaling cascades shown to be involved in central sensitization, including activation of NMDA and neurokinin receptors, as well as CaMKII. Further supporting this link between pain and learning, research has also shown that uncontrollable stimulation results in allodynia. Moreover, systemic inflammation and neonatal hindpaw injury each facilitate pain responding and undermine the ability of the spinal cord to support learning. These results suggest that the plasticity associated with learning and pain must be placed in a balance in order for adaptive outcomes to be observed.
Collapse
|
210
|
Abstract
Hyperalgesia and allodynia are frequent symptoms of disease and may be useful adaptations to protect vulnerable tissues. Both may, however, also emerge as diseases in their own right. Considerable progress has been made in developing clinically relevant animal models for identifying the most significant underlying mechanisms. This review deals with experimental models that are currently used to measure (sect. II) or to induce (sect. III) hyperalgesia and allodynia in animals. Induction and expression of hyperalgesia and allodynia are context sensitive. This is discussed in section IV. Neuronal and nonneuronal cell populations have been identified that are indispensable for the induction and/or the expression of hyperalgesia and allodynia as summarized in section V. This review focuses on highly topical spinal mechanisms of hyperalgesia and allodynia including intrinsic and synaptic plasticity, the modulation of inhibitory control (sect. VI), and neuroimmune interactions (sect. VII). The scientific use of language improves also in the field of pain research. Refined definitions of some technical terms including the new definitions of hyperalgesia and allodynia by the International Association for the Study of Pain are illustrated and annotated in section I.
Collapse
Affiliation(s)
- Jürgen Sandkühler
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
211
|
rTMS for suppressing neuropathic pain: a meta-analysis. THE JOURNAL OF PAIN 2009; 10:1205-16. [PMID: 19464959 DOI: 10.1016/j.jpain.2009.03.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 01/21/2009] [Indexed: 12/31/2022]
Abstract
UNLABELLED This pooled individual data (PID)-based meta-analysis collectively assessed the analgesic effect of repetitive transcranial magnetic stimulation (rTMS) on various neuropathic pain states based on their neuroanatomical hierarchy. Available randomized controlled trials (RCTs) were screened. PID was coded for age, gender, pain neuroanatomical origins, pain duration, and treatment parameters analyses. Coded pain neuroanatomical origins consist of peripheral nerve (PN); nerve root (NR); spinal cord (SC); trigeminal nerve or ganglion (TGN); and post-stroke supraspinal related pain (PSP). Raw data of 149 patients were extracted from 5 (1 parallel, 4 cross-over) selected (from 235 articles) RCTs. A significant (P < .001) overall analgesic effect (mean percent difference in pain visual analog scale (VAS) score reduction with 95% confidence interval) was detected with greater reduction in VAS with rTMS in comparison to sham. Including the parallel study (Khedr et al), the TGN subgroup was found to have the greatest analgesic effect (28.8%), followed by PSP (16.7%), SC (14.7%), NR (10.0%), and PN (1.5%). The results were similar when we excluded the parallel study with the greatest analgesic effect observed in TGN (33.0%), followed by SC (14.7%), PSP (10.5%), NR (10.0%), and PN (1.5%). In addition, multiple (vs single, P = .003) sessions and lower (>1 and < or =10 Hz) treatment frequency range (vs >10 Hz) appears to generate better analgesic outcome. In short, rTMS appears to be more effective in suppressing centrally than peripherally originated neuropathic pain states. PERSPECTIVE This is the first PID-based meta-analysis to assess the differential analgesic effect of rTMS on neuropathic pain based on the neuroanatomical origins of the pain pathophysiology and treatment parameters. The derived information serves as a useful resource in regards to treatment parameters and patient population selection for future rTMS-pain studies.
Collapse
|
212
|
Gong QJ, Li YY, Xin WJ, Zang Y, Ren WJ, Wei XH, Li YY, Zhang T, Liu XG. ATP induces long-term potentiation of C-fiber-evoked field potentials in spinal dorsal horn: the roles of P2X4 receptors and p38 MAPK in microglia. Glia 2009; 57:583-91. [PMID: 18837052 DOI: 10.1002/glia.20786] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Many studies have shown that adenosine triphosphate (ATP), as a neurotransmitter, is involved in plastic changes of synaptic transmission in central nervous system. In the present study, we tested whether extracellular ATP can induce long-term potentiation (LTP) of C-fiber-evoked field potentials in spinal dorsal horn. The results showed the following: (1) ATP at a concentration of 0.3 mM induced spinal LTP of C-fiber-evoked field potentials, lasting for at least 5 h; (2) spinal application of 2',3'-O-(2,4,6-trinitrophenyl)adenosine-5-triphosphate (TNP-ATP; an antagonist of P2X(1-4) receptors), but not pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS; an antagonist of P2X(1,2,3,5,7) receptors), 30 min before ATP blocked ATP-induced LTP, indicating that ATP may induce spinal LTP by activation of P2X(4) receptors; (3) at 60 min after LTP induction the level of phospho-p38 mitogen-activated protein kinase (p-p38 MAPK) was significantly elevated and at 180 min after LTP the number of P2X(4) receptors increased significantly; both p-p38 and P2X(4) receptors were exclusively co-located with the microglia marker, but not with neuronal or astrocyte marker; (4) spinal application of TNP-ATP but not PPADS prevented p38 activation; (5) spinal application of SB203580, a p38 MAPK inhibitor, prevented both spinal LTP and the upregulation of P2X(4) receptors. The results suggested that ATP may activate p38 MAPK by binding to intrinsic P2X(4) receptors in microglia, and subsequently enhance the expression of P2X(4) receptors, contributing to spinal LTP.
Collapse
Affiliation(s)
- Qing-Juan Gong
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Spinal cord hyperexcitability and its role in pain and hyperalgesia. Exp Brain Res 2009; 196:129-37. [DOI: 10.1007/s00221-009-1789-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Accepted: 03/26/2009] [Indexed: 01/21/2023]
|
214
|
Ikeda H, Kiritoshi T, Murase K. Synaptic plasticity in the spinal dorsal horn. Neurosci Res 2009; 64:133-6. [PMID: 19428692 DOI: 10.1016/j.neures.2009.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 03/03/2009] [Accepted: 03/05/2009] [Indexed: 11/17/2022]
Abstract
Long-term potentiation (LTP) at synapses in the spinal dorsal horn is thought to be a cellular mechanism for abnormal pain sensitivity. In this article, we review LTP in spinal projection neurons and presynaptic mechanisms of LTP in the spinal dorsal horn revealed by patch-clamp recording and optical imaging with voltage-sensitive dye.
Collapse
Affiliation(s)
- Hiroshi Ikeda
- Department of Human and Artificial Intelligence Systems, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan.
| | | | | |
Collapse
|
215
|
Calcium-permeable acid-sensing ion channel in nociceptive plasticity: A new target for pain control. Prog Neurobiol 2009; 87:171-80. [DOI: 10.1016/j.pneurobio.2009.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
216
|
|
217
|
Neuropathic pain memory is maintained by Rac1-regulated dendritic spine remodeling after spinal cord injury. J Neurosci 2009; 28:13173-83. [PMID: 19052208 DOI: 10.1523/jneurosci.3142-08.2008] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Localized increases in synaptic strength constitute a synaptic basis for learning and memory in the CNS and may also contribute to the maintenance of neuropathic pain after spinal cord injury (SCI) through the de novo formation or elaboration of postsynaptic dendritic structures. To determine whether SCI-induced dendritic spine remodeling contributes to neuronal hyperexcitability and neuropathic pain, we analyzed spine morphometry, localization, and functional influence in dorsal horn (DH) neurons in adult rats 1 month after sham surgery, contusion SCI, and SCI treated with a selective inhibitor of Rac1 activation, NSC23766. After SCI, DH neurons located in lamina IV-V exhibited increased spine density, redistributed spines, and mature spines compared with control neurons, which was associated with enhancement of EPSCs in computer simulations and hyperexcitable responsiveness to innocuous and noxious peripheral stimuli in unit recordings in vivo. SCI animals also exhibited symptoms of tactile allodynia and thermal hyperalgesia. Inhibition of the small GTP-binding protein Rac1 ameliorated post-SCI changes in spine morphology, attenuated injury-induced hyperexcitability of wide-dynamic range neurons, and progressively increased pain thresholds over a 3 d period. This suggests that Rac1 is an important intracellular signaling molecule involved in a spinal dendritic spine pathology associated with chronic neuropathic pain after SCI. Our report provides robust evidence for a novel conceptual bridge between learning and memory on the one hand, and neuropathic pain on the other.
Collapse
|
218
|
Fitzgerald M, Walker SM. Infant pain management: a developmental neurobiological approach. ACTA ACUST UNITED AC 2009; 5:35-50. [DOI: 10.1038/ncpneuro0984] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 10/31/2008] [Indexed: 12/21/2022]
|
219
|
Abstract
Analgesic therapy is not without risk. However, the risk of most analgesic interventions is minor compared to the risk of the inadequate treatment of pain and insufficient treatment may lead to chronic pain.A correct diagnosis should be the basis of any specific treatment of pain disorders. Only a diagnosis which implicates a multi-disciplinary assessment and which considers both the pathoanatomical, functional and biopsychosocial dysfunctions can lead to an adequate therapeutic intervention. Furthermore, therapeutic planning should include the personal needs of the patient and should have realistic aims.Pharmacological treatment is guided by the WHO pain ladder. The risks of the relevant substance groups must be considered. NSAIDs (non-steroidal anti-inflammatory drugs) which are included in all steps of the WHO pain ladder carry specific risks for the gastrointestinal, cardiovascular and renal systems and are contraindicated in many patients in need of analgesic therapy, e.g. in many elderly patients. Opioids which are recommended at steps 2 and 3 of the WHO pain ladder have less organ toxicity but they are still used reluctantly. Coanalgetics, especially antidepressants bear specific risks and the discussion on suicide rates under antidepressant medication is ongoing.Invasive methods such as the intrathecal application of analgesics are valuable procedures if the indication is correct and the treating physician has sufficient experience. Pain therapy is essential and the risks of the procedures are manageable. Considering the current knowledge on the mechanisms of pain sensitisation, the lack of adequate pain control can lead to chronic pain with severe consequences for the patient.
Collapse
|
220
|
Li B, Wang C, Ye K, Yu A, Chen Y, Zuo Z. Differential gene expression in the brain of Sebastiscus marmoratus in response to exposure to polychlorinated biphenyls (PCBs). MARINE ENVIRONMENTAL RESEARCH 2008; 66:548-552. [PMID: 18952277 DOI: 10.1016/j.marenvres.2008.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/30/2008] [Accepted: 09/05/2008] [Indexed: 05/27/2023]
Abstract
Effects of exposure to polychlorinated biphenyls (PCBs) on Sebastiscus marmoratus were investigated using a suppression subtractive hybridization method. A total of 108 gene sequences were identified as having the potential for being differentially expressed, and 45 could be identified with homologous database sequences. Functions with which they were associated included long-term potentiation and neurotransmitter release, neuroendocrine, mitosis and cell proliferation, energy-related metabolism, general metabolism, signal protein, hemopoiesis system, immune system, and structure. The expression of 17 of these genes was analyzed in the brain using real time fluorescent quantitative PCR. The present study provided a basis for studying the response of fish to PCB exposure and allowed the characterization of new potential neurotoxicol biomarkers of PCB contamination in seawater.
Collapse
Affiliation(s)
- Bowen Li
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen City 361005, P R China
| | | | | | | | | | | |
Collapse
|
221
|
Qu XX, Cai J, Li MJ, Chi YN, Liao FF, Liu FY, Wan Y, Han JS, Xing GG. Role of the spinal cord NR2B-containing NMDA receptors in the development of neuropathic pain. Exp Neurol 2008; 215:298-307. [PMID: 19046970 DOI: 10.1016/j.expneurol.2008.10.018] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 10/22/2008] [Accepted: 10/24/2008] [Indexed: 12/27/2022]
Abstract
Activation of N-methyl-d-aspartate (NMDA) receptors in the spinal dorsal horn has been shown to be essential for the initiation of central sensitization and the hyperexcitability of dorsal horn neurons in chronic pain. However, whether the spinal NR2B-containing NMDA (NMDA-2B) receptors are involved still remains largely unclear. Using behavioral test and in vivo extracellular electrophysiological recording in L5 spinal nerve-ligated (SNL) neuropathic rats, we investigate the roles of spinal cord NMDA-2B receptors in the development of neuropathic pain. Our study showed that intrathecal (i.t.) injection of Ro 25-6981, a selective NMDA-2B receptor antagonist, had a dose-dependent anti-allodynic effect without causing motor dysfunction. Furthermore, i.t. application of another NMDA-2B receptor antagonist ifenprodil prior to SNL also significantly inhibited the mechanical allodynia but not the thermal hyperalgesia. These data suggest that NMDA-2B receptors at the spinal cord level play an important role in the development of neuropathic pain, especially at the early stage following nerve injury. In addition, spinal administration of Ro 25-6981 not only had a dose-dependent inhibitory effect on the C-fiber responses of dorsal horn wide dynamic range (WDR) neurons in both normal and SNL rats, but also significantly inhibited the long-term potentiation (LTP) in the C-fiber responses of WDR neurons induced by high-frequency stimulation (HFS) applied to the sciatic nerve. These results indicate that activation of the dorsal horn NMDA-2B receptors may be crucial for the spinal nociceptive synaptic transmission and for the development of long-lasting spinal hyperexcitability following nerve injury. In conclusion, the spinal cord NMDA-2B receptors play a role in the development of central sensitization and neuropathic pain via the induction of LTP in dorsal horn nociceptive synaptic transmission. Therefore, the spinal cord NMDA-2B receptor is likely to be a target for clinical pain therapy.
Collapse
Affiliation(s)
- Xiao-Xiu Qu
- Neuroscience Research Institute and Department of Neurobiology, Peking University, 38 Xue-Yuan Road, Beijing 100191, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Hjornevik T, Jacobsen LM, Qu H, Bjaalie JG, Gjerstad J, Willoch F. Metabolic plasticity in the supraspinal pain modulating circuitry after noxious stimulus-induced spinal cord LTP. Pain 2008; 140:456-464. [PMID: 19004552 DOI: 10.1016/j.pain.2008.09.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 09/09/2008] [Accepted: 09/24/2008] [Indexed: 02/01/2023]
Abstract
It has been suggested that spinal cord long-term potentiation (LTP) may contribute to hypersensitivity and hyperalgesia. We have investigated if noxious stimulus-induced spinal cord LTP might have a long lasting effect on supraspinal neuronal activity. First, we verified that spinal LTP was induced by electrical high frequency stimuli (HFS) conditioning applied to the sciatic nerve. The C-fibre response in the dorsal horn reached a twofold increase 150 min after HFS (t-test, p<0.01, n=6). Then, to study the metabolic supraspinal activity following the same stimulation protocol, we used small animal positron emission tomography (PET) and the glucose analog [(18)F]-fluorodeoxyglucose (FDG). With this combined approach we measured changes in regional supraspinal activity at two time points in HFS conditioned and in sham animals; acute (immediately after HFS/sham, n=4) and late phase (150 min after HFS/sham, n=10). Comparisons between HFS and sham groups revealed that induction of spinal LTP was followed by an acute metabolic response in the primary somatosensory cortex (S1), but also various slower metabolic adaptations in brain regions involved in modulation of nociceptive signaling and descending inhibition, i.e., amygdala, periaqueductal gray (PAG), rostral ventromedial medulla (RVM), and the dorsolateral pontomesencephalic tegmentum (DLPT) (t-test, p<0.05). The study demonstrates that PET may be used as an in vivo method to study regional brain metabolic activity between different conditions. It is concluded that noxious sciatic stimuli which induce spinal cord LTP also affect supraspinal metabolic activity. We suggest that these changes might illustrate a supraspinal maladaptive dysfunction involved in pain hypersensitivity and hyperalgesia.
Collapse
Affiliation(s)
- Trine Hjornevik
- Centre for Molecular Biology and Neuroscience & Institute of Basic Medical Sciences, University of Oslo, Norway National Institute of Occupational Health, Norway Department of Molecular Biosciences, University of Oslo, Norway Department of Radiology, Aker University Hospital, Norway
| | | | | | | | | | | |
Collapse
|
223
|
Klein T, Stahn S, Magerl W, Treede RD. The role of heterosynaptic facilitation in long-term potentiation (LTP) of human pain sensation. Pain 2008; 139:507-519. [DOI: 10.1016/j.pain.2008.06.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 05/02/2008] [Accepted: 06/02/2008] [Indexed: 10/21/2022]
|
224
|
Wu LJ, Steenland HW, Kim SS, Isiegas C, Abel T, Kaang BK, Zhuo M. Enhancement of presynaptic glutamate release and persistent inflammatory pain by increasing neuronal cAMP in the anterior cingulate cortex. Mol Pain 2008; 4:40. [PMID: 18823548 PMCID: PMC2570662 DOI: 10.1186/1744-8069-4-40] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 09/29/2008] [Indexed: 01/20/2023] Open
Abstract
Both presynaptic and postsynaptic alterations are associated with plastic changes of brain circuits, such as learning and memory, drug addiction and chronic pain. However, the dissection of the relative contributions of pre- and postsynaptic components to brain functions is difficult. We have previously shown peripheral inflammation caused both presynaptic and postsynaptic changes and calcium-stimulated cyclic AMP (cAMP) pathway in the anterior cingulate cortex (ACC) is critical in the synaptic plasticity and behavioral sensitization to pain. It remains to be elucidated whether presynaptic or postsynaptic modulation by cAMP in the ACC could be sufficient for enhancing inflammatory pain. In order to address this question, we took advantage of a novel transgenic mouse model, heterologously expressing an Aplysia octopamine receptor (Ap oa1). This receptor is G protein-coupled and selectively activates the cAMP pathway. We found that activation of Ap oa1 by octopamine enhanced glutamatergic synaptic transmission in the ACC by increasing presynaptic glutamate release in vitro. Bilateral microinjection of octopamine into the ACC significantly facilitated behavioral responses to inflammatory pain but not acute pain. The present study provides the first evidence linking enhanced presynaptic glutamate release in the ACC to behavioral sensitization caused by peripheral inflammation.
Collapse
Affiliation(s)
- Long-Jun Wu
- Department of Physiology, Faculty of Medicine, University of Toronto Centre for Study of Pain, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | | | | | | | | | | | | |
Collapse
|
225
|
De R, Maihöfner C. Centrally mediated sensory decline induced by differential C-fiber stimulation. Pain 2008; 138:556-564. [DOI: 10.1016/j.pain.2008.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 01/21/2008] [Accepted: 02/04/2008] [Indexed: 11/24/2022]
|
226
|
Presynaptic and postsynaptic amplifications of neuropathic pain in the anterior cingulate cortex. J Neurosci 2008; 28:7445-53. [PMID: 18632948 DOI: 10.1523/jneurosci.1812-08.2008] [Citation(s) in RCA: 298] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuropathic pain is caused by a primary lesion or dysfunction in the nervous system. Investigations have mainly focused on the spinal mechanisms of neuropathic pain, and less is known about cortical changes in neuropathic pain. Here, we report that peripheral nerve injury triggered long-term changes in excitatory synaptic transmission in layer II/III neurons within the anterior cingulate cortex (ACC). Both the presynaptic release probability of glutamate and postsynaptic glutamate AMPA receptor-mediated responses were enhanced after injury using the mouse peripheral nerve injury model. Western blot showed upregulated phosphorylation of GluR1 in the ACC after nerve injury. Finally, we found that both presynaptic and postsynaptic changes after nerve injury were absent in genetic mice lacking calcium-stimulated adenylyl cyclase 1 (AC1). Our studies therefore provide direct integrative evidence for both long-term presynaptic and postsynaptic changes in cortical synapses after nerve injury, and that AC1 is critical for such long-term changes. AC1 thus may serve as a potential therapeutic target for treating neuropathic pain.
Collapse
|
227
|
Zhou LJ, Zhong Y, Ren WJ, Li YY, Zhang T, Liu XG. BDNF induces late-phase LTP of C-fiber evoked field potentials in rat spinal dorsal horn. Exp Neurol 2008; 212:507-14. [DOI: 10.1016/j.expneurol.2008.04.034] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 04/24/2008] [Accepted: 04/28/2008] [Indexed: 12/30/2022]
|
228
|
|
229
|
Drdla R, Sandkühler J. Long-term potentiation at C-fibre synapses by low-level presynaptic activity in vivo. Mol Pain 2008; 4:18. [PMID: 18507818 PMCID: PMC2424039 DOI: 10.1186/1744-8069-4-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 05/28/2008] [Indexed: 11/10/2022] Open
Abstract
Inflammation, trauma or nerve injury trigger low-level activity in C-fibres and may cause long-lasting hyperalgesia. Long-term potentiation (LTP) at synapses of primary afferent C-fibres is considered to underlie some forms of hyperalgesia. In previous studies, high- but not low-frequency conditioning stimulation of C-fibres has, however, been used to induce LTP in pain pathways. Recently we could show that also conditioning low-frequency stimulation (LFS) at C-fibre intensity induces LTP in vitro as well as in the intact animal, i.e. with tonic descending inhibition fully active. In the slice preparation, this form of LTP requires a rise in postsynaptic Ca2+-concentration and activation of Ca2+-dependent signalling pathways. Here, we investigated the signalling mechanisms underlying this novel form of LTP in vivo. We found that the signal transduction pathways causing LFS-induced LTP in vivo include activation of neurokinin 1 and N-methyl-D-aspartate receptors, rise of [Ca2+]i from intracellular stores and via T-type voltage-dependent Ca2+ channels, activation of phospholipase C, protein kinase C and Ca2+-calmodulin dependent kinase II. These pathways match those leading to hyperalgesia in behaving animals and humans. We thus propose that LTP induced by low-level activity in C-fibres may underlie some forms of hyperalgesia.
Collapse
Affiliation(s)
- Ruth Drdla
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | | |
Collapse
|
230
|
Haugan F, Wibrand K, Fiskå A, Bramham CR, Tjølsen A. Stability of long term facilitation and expression of zif268 and Arc in the spinal cord dorsal horn is modulated by conditioning stimulation within the physiological frequency range of primary afferent fibers. Neuroscience 2008; 154:1568-75. [PMID: 18555615 DOI: 10.1016/j.neuroscience.2008.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 05/12/2008] [Accepted: 05/12/2008] [Indexed: 12/20/2022]
Abstract
Long term facilitation (LTF) of C-fiber-evoked firing of wide dynamic range neurons in the spinal dorsal horn in response to conditioning stimulation (CS) of afferent fibers is a widely studied cellular model of spinal nociceptive sensitization. Although 100 Hz CS of primary afferent fibers is commonly used to induce spinal cord LTF, this frequency exceeds the physiological firing range. Here, we examined the effects of electrical stimulation of the sciatic nerve within the physiological frequency range on the magnitude and stability of the C-fiber-evoked responses of wide dynamic range neurons and the expression of immediate early genes (c-fos, zif268, and Arc) in anesthetized rats. Stimulation frequencies of 3, 30 and 100 Hz all induced facilitation of similar magnitude as recorded at 1 h post-CS. Strikingly, however, 3 Hz-induced potentiation of the C-fiber responses was decremental, whereas both 30 and 100 Hz stimulation resulted in stable, non-decremental facilitation over 3 h of recording. The number of dorsal horn neurons expressing c-fos, but not zif268 or Arc, was significantly elevated after 3 Hz CS and increased proportionally with stimulation rate. In contrast, a stable LTF of C-fiber responses was obtained at 30 and 100 Hz CS, and at these frequencies there was a sharp increase in zif268 expression and appearance of Arc-positive neurons. The results show that response facilitation can be induced by stimulation frequencies in the physiological range (3 and 30 Hz). Three hertz stimulation induced the early phase of LTF, but the responses were decremental. Arc and zif268, two genes previously coupled to LTP of synaptic transmission in the adult brain, are upregulated at the same frequencies that give stable LTF (30 and 100 Hz). This frequency-dependence is important for understanding how the afferent firing pattern affects neuronal plasticity and nociception in the spinal dorsal horn.
Collapse
Affiliation(s)
- F Haugan
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | | | | | | |
Collapse
|
231
|
Phosphatidylinositol 3-kinase is a key mediator of central sensitization in painful inflammatory conditions. J Neurosci 2008; 28:4261-70. [PMID: 18417706 DOI: 10.1523/jneurosci.5392-07.2008] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Here, we show that phosphatidylinositol 3-kinase (PI3K) is a key player in the establishment of central sensitization, the spinal cord phenomenon associated with persistent afferent inputs and contributing to chronic pain states. We demonstrated electrophysiologically that PI3K is required for the full expression of spinal neuronal wind-up. In an inflammatory pain model, intrathecal administration of LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one], a potent PI3K inhibitor, dose-dependently inhibited pain-related behavior. This effect was correlated with a reduction of the phosphorylation of ERK (extracellular signal-regulated kinase) and CaMKII (calcium/calmodulin-dependent protein kinase II). In addition, we observed a significant decrease in the phosphorylation of the NMDA receptor subunit NR2B, decreased translocation to the plasma membrane of the GluR1 (glutamate receptor 1) AMPA receptor subunit in the spinal cord, and a reduction of evoked neuronal activity as measured using c-Fos immunohistochemistry. Our study suggests that PI3K is a major factor in the expression of central sensitization after noxious inflammatory stimuli.
Collapse
|
232
|
Haugan F, Rygh LJ, Tjølsen A. Ketamine blocks enhancement of spinal long-term potentiation in chronic opioid treated rats. Acta Anaesthesiol Scand 2008; 52:681-7. [PMID: 18419722 DOI: 10.1111/j.1399-6576.2008.01637.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Long-term opioid treatment is associated with the development of hyperalgesia. In a rat model we wanted to study if chronic opioid treatment changed the induction and maintenance of spinal long-term potentiation (LTP), a form of hyperexcitability in the spinal cord. We also wanted to investigate if the clinically available NMDA receptor antagonist ketamine inhibited the effect of chronic opioid treatment on LTP. METHODS The animals were randomized into four groups (saline, morphine 20 mg/kg/day, ketamine 20 mg/kg/day, morphine 20 mg/kg/day and ketamine 20 mg/kg/day). Drugs were given as continuous subcutaneous infusions by means of osmotic minipumps. After 7 days of treatment and during ongoing treatment single unit extracellular recordings were made from the lumbar deep dorsal horn under urethane anesthesia. Single electrical stimuli were applied to the sciatic nerve, and the C-fiber evoked responses of WDR neurons were recorded before and during 3 h following low frequency (3 Hz) electrical conditioning stimulation. RESULTS The potentiation of C-fiber evoked responses by conditioning stimulation was significantly increased in the morphine-treated group compared to the saline group, while there was no significant difference between the saline, the ketamine and the morphine/ketamine groups. The potentiated responses in the morphine/ketamine group were significantly reduced compared to the morphine group (P=0.01). CONCLUSION Our results indicate that animals treated with long-term opioid show amplification of stimulus-induced central sensitisation compared to opioid naïve animals. Ketamine inhibited the morphine-induced enhancement of LTP, supporting the role of ketamine in prevention of opioid induced hyperalgesia.
Collapse
Affiliation(s)
- F Haugan
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
233
|
Ueda H. Peripheral mechanisms of neuropathic pain - involvement of lysophosphatidic acid receptor-mediated demyelination. Mol Pain 2008; 4:11. [PMID: 18377664 PMCID: PMC2365930 DOI: 10.1186/1744-8069-4-11] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 04/01/2008] [Indexed: 01/23/2023] Open
Abstract
Recent advances in pain research provide a clear picture for the molecular mechanisms of acute pain; substantial information concerning plasticity that occurs during neuropathic pain has also become available. The peripheral mechanisms responsible for neuropathic pain are found in the altered gene/protein expression of primary sensory neurons. With damage to peripheral sensory fibers, a variety of changes in pain-related gene expression take place in dorsal root ganglion neurons. These changes, or plasticity, might underlie unique neuropathic pain-specific phenotype modifications - decreased unmyelinated-fiber functions, but increased myelinated A-fiber functions. Another characteristic change is observed in allodynia, the functional change of tactile to nociceptive perception. Throughout a series of studies, using novel nociceptive tests to characterize sensory-fiber or pain modality-specific nociceptive behaviors, it was demonstrated that communication between innocuous and noxious sensory fibers might play a role in allodynia mechanisms. Because neuropathic pain in peripheral and central demyelinating diseases develops as a result of aberrant myelination in experimental animals, demyelination seems to be a key mechanism of plasticity in neuropathic pain. More recently, we discovered that lysophosphatidic acid receptor activation initiates neuropathic pain, as well as possible peripheral mechanism of demyelination after nerve injury. These results lead to further hypotheses of physical communication between innocuous Abeta- and noxious C- or Adelta-fibers to influence the molecular mechanisms of allodynia.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Division of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
234
|
Yukhananov R, Kissin I. Persistent changes in spinal cord gene expression after recovery from inflammatory hyperalgesia: a preliminary study on pain memory. BMC Neurosci 2008; 9:32. [PMID: 18366630 PMCID: PMC2315656 DOI: 10.1186/1471-2202-9-32] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 03/13/2008] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Previous studies found that rats subjected to carrageenan injection develop hyperalgesia, and despite complete recovery in several days, they continue to have an enhanced hyperalgesic response to a new noxious challenge for more than 28d. The study's aim was to identify candidate genes that have a role in the formation of the long-term hyperalgesia-related imprint in the spinal cord. This objective was undertaken with the understanding that the long-lasting imprint of acute pain in the central nervous system may contribute to the transition of acute pain to chronicity. RESULTS To analyze changes in gene expression when carrageenan-induced hyperalgesia has disappeared but propensity for the enhanced hyperalgesic response is still present, we determined the gene expression profile using oligo microarray in the lumbar part of the spinal cord in three groups of rats: 28d after carrageenan injection, 24h after injection (the peak of inflammation), and with no injection (control group). Out of 17,000 annotated genes, 356 were found to be differentially expressed compared with the control group at 28d, and 329 at 24h after carrageenan injection (both groups at p < 0.01). Among differentially expressed genes, 67 (39 in 28d group) were identified as being part of pain-related pathways, altered in different models of pain, or interacting with proteins involved in pain-related pathways. Using gene ontology (GO) classification, we have identified 3 functional classes deserving attention for possible association with pain memory: They are related to cell-to-cell interaction, synaptogenesis, and neurogenesis. CONCLUSION Despite recovery from inflammatory hyperalgesia, persistent changes in spinal cord gene expression may underlie the propensity for the enhanced hyperalgesic response. We suggest that lasting changes in expression of genes involved in the formation of new synapses and neurogenesis may contribute to the transition of acute pain to chronicity.
Collapse
Affiliation(s)
- Rustam Yukhananov
- Neurogenomic Laboratory Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
235
|
Abstract
Acid-sensing ion channels (ASICs) are broadly expressed in the CNS, including the spinal cord. However, very little is known about the properties of ASICs in spinal cord neurons compared with brain. We show here that ASIC1a and ASIC2a are the most abundant ASICs in mouse adult spinal cord and are coexpressed by most neurons throughout all the laminas. ASIC currents in cultured embryonic day 14 mouse dorsal spinal neurons mainly flow through homomeric ASIC1a (34% of neurons) and heteromeric ASIC1a plus 2a channels at a ratio of 2:1 (83% of neurons). ASIC2b only has a minor contribution to these currents. The two channel subtypes show different active pH ranges and different inactivation and reactivation kinetics supporting complementary functional properties. One striking property of native dorsal spinal neuron currents and recombinant currents is the pH dependence of the reactivation process. A light sustained acidosis induces a threefold slow-down of the homomeric ASIC1a (from pH 7.4 to pH 7.3) and heteromeric ASIC1a plus 2a (from pH 7.4 to pH 7.2) current reactivation (T(0.5) increasing from 5.77 to 16.84 s and from 0.98 to 3.2 s, respectively), whereas a larger acidosis to pH 6.6 induces a 32-fold slow-down of the ASIC1a plus 2a current reactivation (T(0.5) values increasing to 31.30 s). The pH dependence of ASIC channel reactivation is likely to modulate neuronal excitability associated with repetitive firing in response to extracellular pH oscillations, which can be induced, for example, by intense synaptic activity of central neurons.
Collapse
|
236
|
Schoffnegger D, Ruscheweyh R, Sandkühler J. Spread of excitation across modality borders in spinal dorsal horn of neuropathic rats. Pain 2008; 135:300-310. [PMID: 18262362 DOI: 10.1016/j.pain.2007.12.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 12/13/2007] [Accepted: 12/20/2007] [Indexed: 01/27/2023]
Abstract
Under physiological conditions, nociceptive information is mainly processed in superficial laminae of the spinal dorsal horn, whereas non-nociceptive information is processed in deeper laminae. Neuropathic pain patients often suffer from touch-evoked pain (allodynia), suggesting that modality borders are disrupted in their nervous system. We studied whether excitation evoked in deep dorsal horn neurons either via stimulation of primary afferent Abeta-fibres, by direct electrical stimulation or via glutamate microinjection leads to activation of neurons in the superficial dorsal horn. We used Ca(2+)-imaging in transversal spinal cord slices of neuropathic and control animals to monitor spread of excitation from the deep to the superficial spinal dorsal horn. In neuropathic but not control animals, a spread of excitation occurred from the deep to the superficial dorsal horn. The spread of excitation was synaptically mediated as it was blocked by the AMPA receptor antagonist CNQX. In contrast, block of NMDA receptors was ineffective. In control animals, the violation of modality borders could be reproduced by bath application of GABA(A) and glycine receptor antagonists. Furthermore, we could show that neuropathic animals were more prone to synchronous network activity than control animals. Thus, following peripheral nerve injury, excitation generated in dorsal horn areas which process non-nociceptive information can invade superficial dorsal horn areas which normally receive nociceptive input. This may be a spinal mechanism of touch-evoked pain.
Collapse
Affiliation(s)
- Doris Schoffnegger
- Department for Neurophysiology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | | | | |
Collapse
|
237
|
Decreased nociceptive sensitization in mice lacking the fragile X mental retardation protein: role of mGluR1/5 and mTOR. J Neurosci 2008; 27:13958-67. [PMID: 18094233 DOI: 10.1523/jneurosci.4383-07.2007] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Fragile X mental retardation is caused by silencing of the gene (FMR1) that encodes the RNA-binding protein (FMRP) that influences translation in neurons. A prominent feature of the human disorder is self-injurious behavior, suggesting an abnormality in pain processing. Moreover, FMRP regulates group I metabotropic glutamate receptor (mGluR1/5)-dependent plasticity, which is known to contribute to nociceptive sensitization. We demonstrate here, using the Fmr1 knock-out (KO) mouse, that FMRP plays an important role in pain processing because Fmr1 KO mice showed (1) decreased (approximately 50%) responses to ongoing nociception (phase 2, formalin test), (2) a 3 week delay in the development of peripheral nerve injury-induced allodynia, and (3) a near absence of wind-up responses in ascending sensory fibers after repetitive C-fiber stimulation. We provide evidence that the behavioral deficits are related to a mGluR1/5- and mammalian target of rapamycin (mTOR)-mediated mechanism because (1) spinal mGluR5 antagonism failed to inhibit the second phase of the formalin test, and we observed a marked reduction in nociceptive response to an intrathecal injection of an mGluR1/5 agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) in Fmr1 KO mice; (2) peripheral DHPG injection had no effect in KO mice yet evoked thermal hyperalgesia in wild types; and (3) the mTOR inhibitor rapamycin inhibited formalin- and DHPG-induced nociception in wild-type but not Fmr1 KO mice. These experiments show that translation regulation via FMRP and mTOR is an important feature of nociceptive plasticity. These observations also support the hypothesis that the persistence of self-injurious behavior observed in fragile X mental retardation patients could be related to deficits in nociceptive sensitization.
Collapse
|
238
|
Matsumoto M, Xie W, Inoue M, Ueda H. Evidence for the tonic inhibition of spinal pain by nicotinic cholinergic transmission through primary afferents. Mol Pain 2007; 3:41. [PMID: 18088441 PMCID: PMC2234393 DOI: 10.1186/1744-8069-3-41] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 12/19/2007] [Indexed: 11/17/2022] Open
Abstract
Background We have proposed that nerve injury-specific loss of spinal tonic cholinergic inhibition may play a role in the analgesic effects of nicotinic acetylcholine receptor (nAChR) agonists on neuropathic pain. However, the tonic cholinergic inhibition of pain remains to be well characterized. Results Here, we show that choline acetyltransferase (ChAT) signals were localized not only in outer dorsal horn fibers (lamina I–III) and motor neurons in the spinal cord, but also in the vast majority of neurons in the dorsal root ganglion (DRG). When mice were treated with an antisense oligodeoxynucleotide (AS-ODN) against ChAT, which decreased ChAT signals in the dorsal horn and DRG, but not in motor neurons, they showed a significant decrease in nociceptive thresholds in paw pressure and thermal paw withdrawal tests. Furthermore, in a novel electrical stimulation-induced paw withdrawal (EPW) test, the thresholds for stimulation through C-, Aδ- and Aβ-fibers were all decreased by AS-ODN-pretreatments. The administration of nicotine (10 nmol i.t.) induced a recovery of the nociceptive thresholds, decreased by the AS-ODN, in the mechanical, thermal and EPW tests. However, nicotine had no effects in control mice or treated with a mismatch scramble (MS)-ODN in all of these nociception tests. Conclusion These findings suggest that primary afferent cholinergic neurons produce tonic inhibition of spinal pain through nAChR activation, and that intrathecal administration of nicotine rescues the loss of tonic cholinergic inhibition.
Collapse
Affiliation(s)
- Misaki Matsumoto
- Division of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | | | | | | |
Collapse
|
239
|
Abstract
Among different forms of persistent pain, neuropathic pain presents as a most difficult task for basic researchers and clinicians. Despite recent rapid development of neuroscience and modern techniques related to drug discovery, effective drugs based on clear basic mechanisms are still lacking. Here, I will review the basic neuronal mechanisms that maybe involved in neuropathic pain. I will present the problem of neuropathic pain as a rather difficult task for neuroscientists, and we may have to wait for a long time before we fully understand how brain encode, store, and retrieve painful information after the injury. I propose that neuropathic pain as a major brain disease, rather being a clinic problem due to peripheral injury.
Collapse
Affiliation(s)
- Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto Centre for the study of Pain, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|