201
|
Zhou L, Chen J, Li Z, Li X, Hu X, Huang Y, Zhao X, Liang C, Wang Y, Sun L, Shi M, Xu X, Shen F, Chen M, Han Z, Peng Z, Zhai Q, Chen J, Zhang Z, Yang R, Ye J, Guan Z, Yang H, Gui Y, Wang J, Cai Z, Zhang X. Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. PLoS One 2010; 5:e15224. [PMID: 21253009 PMCID: PMC3013074 DOI: 10.1371/journal.pone.0015224] [Citation(s) in RCA: 422] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 11/01/2010] [Indexed: 02/06/2023] Open
Abstract
Background With the advent of second-generation sequencing, the expression of gene transcripts can be digitally measured with high accuracy. The purpose of this study was to systematically profile the expression of both mRNA and miRNA genes in clear cell renal cell carcinoma (ccRCC) using massively parallel sequencing technology. Methodology The expression of mRNAs and miRNAs were analyzed in tumor tissues and matched normal adjacent tissues obtained from 10 ccRCC patients without distant metastases. In a prevalence screen, some of the most interesting results were validated in a large cohort of ccRCC patients. Principal Findings A total of 404 miRNAs and 9,799 mRNAs were detected to be differentially expressed in the 10 ccRCC patients. We also identified 56 novel miRNA candidates in at least two samples. In addition to confirming that canonical cancer genes and miRNAs (including VEGFA, DUSP9 and ERBB4; miR-210, miR-184 and miR-206) play pivotal roles in ccRCC development, promising novel candidates (such as PNCK and miR-122) without previous annotation in ccRCC carcinogenesis were also discovered in this study. Pathways controlling cell fates (e.g., cell cycle and apoptosis pathways) and cell communication (e.g., focal adhesion and ECM-receptor interaction) were found to be significantly more likely to be disrupted in ccRCC. Additionally, the results of the prevalence screen revealed that the expression of a miRNA gene cluster located on Xq27.3 was consistently downregulated in at least 76.7% of ∼50 ccRCC patients. Conclusions Our study provided a two-dimensional map of the mRNA and miRNA expression profiles of ccRCC using deep sequencing technology. Our results indicate that the phenotypic status of ccRCC is characterized by a loss of normal renal function, downregulation of metabolic genes, and upregulation of many signal transduction genes in key pathways. Furthermore, it can be concluded that downregulation of miRNA genes clustered on Xq27.3 is associated with ccRCC.
Collapse
Affiliation(s)
- Liang Zhou
- The Key Laboratory of Stem Cell Biology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Jiahao Chen
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, China
| | - Zhizhong Li
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, China
| | - Xianxin Li
- The Key Laboratory of Stem Cell Biology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Xueda Hu
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Yi Huang
- The Key Laboratory of Stem Cell Biology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Xiaokun Zhao
- Department of Urosurgery, The Second Hospital of Central-Southern University, Changsha, China
| | - Chaozhao Liang
- Department of Urosurgery, The First Hospital of Anhui Medical University, Hefei, China
| | - Yong Wang
- The Key Laboratory of Stem Cell Biology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Liang Sun
- The Key Laboratory of Stem Cell Biology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Min Shi
- The Key Laboratory of Stem Cell Biology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Xiaohong Xu
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Feng Shen
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Maoshan Chen
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Zujing Han
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Zhiyu Peng
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Qingna Zhai
- The Key Laboratory of Stem Cell Biology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Jing Chen
- The Key Laboratory of Stem Cell Biology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Zhongfu Zhang
- The Key Laboratory of Stem Cell Biology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Ruilin Yang
- The Key Laboratory of Stem Cell Biology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Jiongxian Ye
- The Key Laboratory of Stem Cell Biology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Zhichen Guan
- The Key Laboratory of Stem Cell Biology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Huanming Yang
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Yaoting Gui
- The Key Laboratory of Stem Cell Biology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Jun Wang
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Zhiming Cai
- The Key Laboratory of Stem Cell Biology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- * E-mail: (XZ); (ZC)
| | - Xiuqing Zhang
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
- * E-mail: (XZ); (ZC)
| |
Collapse
|
202
|
Irgon J, Huang CC, Zhang Y, Talantov D, Bhanot G, Szalma S. Robust multi-tissue gene panel for cancer detection. BMC Cancer 2010; 10:319. [PMID: 20569444 PMCID: PMC2906482 DOI: 10.1186/1471-2407-10-319] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 06/22/2010] [Indexed: 01/10/2023] Open
Abstract
Background We have identified a set of genes whose relative mRNA expression levels in various solid tumors can be used to robustly distinguish cancer from matching normal tissue. Our current feature set consists of 113 gene probes for 104 unique genes, originally identified as differentially expressed in solid primary tumors in microarray data on Affymetrix HG-U133A platform in five tissue types: breast, colon, lung, prostate and ovary. For each dataset, we first identified a set of genes significantly differentially expressed in tumor vs. normal tissue at p-value = 0.05 using an experimentally derived error model. Our common cancer gene panel is the intersection of these sets of significantly dysregulated genes and can distinguish tumors from normal tissue on all these five tissue types. Methods Frozen tumor specimens were obtained from two commercial vendors Clinomics (Pittsfield, MA) and Asterand (Detroit, MI). Biotinylated targets were prepared using published methods (Affymetrix, CA) and hybridized to Affymetrix U133A GeneChips (Affymetrix, CA). Expression values for each gene were calculated using Affymetrix GeneChip analysis software MAS 5.0. We then used a software package called Genes@Work for differential expression discovery, and SVM light linear kernel for building classification models. Results We validate the predictability of this gene list on several publicly available data sets generated on the same platform. Of note, when analysing the lung cancer data set of Spira et al, using an SVM linear kernel classifier, our gene panel had 94.7% leave-one-out accuracy compared to 87.8% using the gene panel in the original paper. In addition, we performed high-throughput validation on the Dana Farber Cancer Institute GCOD database and several GEO datasets. Conclusions Our result showed the potential for this panel as a robust classification tool for multiple tumor types on the Affymetrix platform, as well as other whole genome arrays. Apart from possible use in diagnosis of early tumorigenesis, some other potential uses of our methodology and gene panel would be in assisting pathologists in diagnosis of pre-cancerous lesions, determining tumor boundaries, assessing levels of contamination in cell populations in vitro and identifying transformations in cell cultures after multiple passages. Moreover, based on the robustness of this gene panel in identifying normal vs. tumor, mislabelled or misinterpreted samples can be pinpointed with high confidence.
Collapse
Affiliation(s)
- Joseph Irgon
- Centocor R&D, Inc, 145 King of Prussia Rd, Radnor, PA 19087, USA
| | | | | | | | | | | |
Collapse
|