201
|
Mao R, Wang Z, Zhang Y, Chen Y, Liu Q, Zhang T, Liu Y. Development and validation of a novel prognostic signature in gastric adenocarcinoma. Aging (Albany NY) 2020; 12:22233-22252. [PMID: 33188157 DOI: 10.18632/aging.104161] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/27/2020] [Indexed: 11/25/2022]
Abstract
Competing endogenous RNA networks have attracted increasing attention in gastric adenocarcinoma (GA). The current study aimed to explore ceRNA-based prognostic biomarkers for GA. RNA expression profiles were downloaded from TCGA and GEO databases. A ceRNA network was constructed based on the most relevant modules in the weighted gene coexpression network analysis. Kaplan-Meier (KM) survival analysis revealed prognosis-related RNAs, which were subjected to the multivariate Cox regression analysis. The predictive accuracy and discriminative ability of the signature were determined by KM analyses, receiver operating characteristic curves and area under the curve values. Ultimately, we constructed a ceRNA network consisting of 55 lncRNAs, 17 miRNAs and 73 mRNAs. Survival analyses revealed 3 lncRNAs (LINC01106, FOXD2-AS1, and AC103702.2) and 3 mRNAs (CCDC34, ORC6, and SOX4) as crucial prognostic factors; these factors were then used to construct a survival specific ceRNA network. Patients with high risk scores exhibited significantly worse overall survival than patients with low risk scores, and the AUC for 5-year survival was 0.801. A total of 112 GA specimens and the GSE84437 dataset were used to successfully validate the robustness of our signature by qRT-PCR. In summary, we developed a prognostic signature for GA, that shows better accuracy than the traditional TNM pathological staging system.
Collapse
Affiliation(s)
- Rui Mao
- Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610036, China
| | - Zheng Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuanchuan Zhang
- The Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - YuanYuan Chen
- Department of Pathology, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Qian Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tongtong Zhang
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, Sichuan, China
| | - Yanjun Liu
- Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610036, China.,The Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| |
Collapse
|
202
|
Wang J, Yang X, Li R, Zhang R, Hu D, Zhang Y, Gao L. LncRNA SNHG6 Inhibits Apoptosis by Regulating EZH2 Expression via the Sponging of MiR-101-3p in Esophageal Squamous-Cell Carcinoma. Onco Targets Ther 2020; 13:11411-11420. [PMID: 33192074 PMCID: PMC7656962 DOI: 10.2147/ott.s275135] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022] Open
Abstract
Background The long non-coding RNA (lncRNA) SNHG6 was significantly upregulated in esophageal squamous-cell carcinoma (ESCC), and it promoted ESCC cell proliferation, invasion, and migration. However, the effects of SNHG6 on cell apoptosis and the corresponding underlying mechanisms have not yet reported. Methods Apoptosis was detected by flow cytometric analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used for mRNA and protein quantification, respectively. A luciferase reporter assay was performed to verify downstream target genes for SNHG6 and miR-101-3p. Results Dysregulation of SNHG6 inhibited apoptosis in ESCC cells and regulated the expression of apoptosis-related proteins such as Bcl-2, Mcl-1, Bax and Caspase-3. Functionally, miR-101-3p could compete binding with 3′-untranslated region of SNHG6 and downregulation of miR-101-3p reversed its effect on cell apoptosis in SNHG6 knockdown cells. EZH2 was confirmed as a downstream target gene of miR-101-3p, silencing EZH2 expression had the same effect on apoptosis and protein expression as knocking down SNHG6. Overexpression of EZH2 reversed the effects of miR-101-3p overexpression on cell apoptosis in ESCC cells. Conclusion In this study, we found that upregulation of the lncRNA SNHG6 inhibited apoptosis via miR-101-3p/EZH2 axis in ESCC. These findings may contribute to the diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- Jiang Wang
- Department of Gastrointestinal Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaorui Yang
- Department of Clinical Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ruijia Li
- Department of Pharmacy, The Eight Hospital of Xian, Xian, People's Republic of China
| | - Rui Zhang
- Emergency Department, Shaanxi Provincial Cancer Hospital, College of Medicine, Xi'an Jiaotong University, Xian, People's Republic of China
| | - Desheng Hu
- Department of Gastrointestinal Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yueli Zhang
- Department of Clinical Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| | - Lei Gao
- Department of Gastrointestinal Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
203
|
Cui D, Ni C. LncRNA Lnc712 Promotes Tumorigenesis in Hepatocellular Carcinoma by Targeting miR-142-3p/Bach-1 Axis. Cancer Manag Res 2020; 12:11285-11294. [PMID: 33177878 PMCID: PMC7652235 DOI: 10.2147/cmar.s254950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 09/04/2020] [Indexed: 01/20/2023] Open
Abstract
Background It is known that Lnc712 plays an important role in the pathogenesis of breast cancer. However, whether it is involved in hepatocellular carcinoma (HCC) remains unknown. In this study, we aimed to investigate the role and underlying mechanism of Lnc712 in HCC. Methods Sixty-four HCC patients were enrolled and followed up for 5 years to analyze the prognostic value of Lnc712 for HCC. HCC cells were transfected with Lnc712 expression vector, Bach-1 expression vector (or siRNA) and miR-142-3p mimic (or inhibitor) to explore the interactions among Lnc712, miR-142-3p and Bach-1. Cell proliferation, migration, invasion and cell cycle were analyzed by CCK-8 assay, transwell assay, wound healing assay and flow cytometry assay, respectively. Results The expression of Lnc712 was upregulated in HCC, and the upregulated Lnc712 expression was significantly related to poor overall survival in HCC patients. In HCC cells, Lnc712 interacted with miR-142-3p and upregulated Bach-1, a target of miR-142-3p. In addition, Lnc712 promoted HCC cell proliferation, migration, invasion and cell cycle, while its effects were abolished by miR-142-3p mimic. Moreover, miR-142-3p mimic enhanced HCC cell proliferation, migration, invasion and cell cycle, while its effects were abolished by Bach-1 overexpression. miR-142-3p inhibitor repressed cell proliferation, migration, invasion and cell cycle in HCC cells, while its effects were abolished by Bach-1 knockdown. Furthermore, Lnc712 knockdown remarkably inhibited HCC tumor growth in nude mice. Conclusion Lnc712 may promote the development of HCC by targeting the miR-142-3p/Bach-1 axis.
Collapse
Affiliation(s)
- Dan Cui
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215006, People's Republic of China
| | - Caifang Ni
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215006, People's Republic of China
| |
Collapse
|
204
|
Abstract
PURPOSE OF REVIEW Hyperadiposity, as present in obesity, is a substantial threat to cancer risk and prognosis. Studies that have investigated the link between obesity and tumor progression have proposed several mechanistic frameworks, yet, these mechanisms are not fully defined. Further, a comprehensive understanding of how these various mechanisms may interact to create a dynamic disease state is lacking in the current literature. RECENT FINDINGS Recent work has begun to explore not only discrete mechanisms by which obesity may promote tumor growth (for instance, metabolic and growth factor functions of insulin; inflammatory cytokines; adipokines; and others), but also how these putative tumor-promoting factors may interact. SUMMARY This review will highlight the present understanding of obesity, as it relates to tumor development and progression. First, we will introduce the impact of obesity in cancer within the dynamic tumor microenvironment, which will serve as a theme to frame this review. The core of this review will discuss recently proposed mechanisms that implicate obesity in tumor progression, including chronic inflammation and the role of pro-inflammatory cytokines, adipokines, hormones, and genetic approaches. Furthermore, we intend to offer current insight in targeting adipose tissue during the development of cancer prevention and treatment strategies.
Collapse
Affiliation(s)
- Andin Fosam
- Department of Internal Medicine
- Department of Cellular & Molecular Physiology, School of Medicine Yale University, TAC, New Haven, Connecticut, USA
| | - Rachel J Perry
- Department of Internal Medicine
- Department of Cellular & Molecular Physiology, School of Medicine Yale University, TAC, New Haven, Connecticut, USA
| |
Collapse
|
205
|
Liu Z, Mo H, Sun L, Wang L, Chen T, Yao B, Liu R, Niu Y, Tu K, Xu Q, Yang N. Long noncoding RNA PICSAR/miR-588/EIF6 axis regulates tumorigenesis of hepatocellular carcinoma by activating PI3K/AKT/mTOR signaling pathway. Cancer Sci 2020; 111:4118-4128. [PMID: 32860321 PMCID: PMC7648049 DOI: 10.1111/cas.14631] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence has identified long noncoding RNAs (lncRNAs) as regulators in tumor progression and development. Here, we elucidated the function and possible molecular mechanisms of the effect of lncRNA-PICSAR (p38 inhibited cutaneous squamous cell carcinoma associated lincRNA) on the biological behaviors of HCC. In the present study, we found that PICSAR was upregulated in HCC tissues and cells and correlated with progression and poor prognosis in HCC patients. Gain- and loss-of-function experiments indicated that PICSAR enhanced cell proliferation, colony formation, and cell cycle progression and inhibited apoptosis of HCC cells. PICSAR could function as a competing endogenous RNA by sponging microRNA (miR)-588 in HCC cells. Mechanically, miR-588 inhibited HCC progression and alternation of miR-588 reversed the promotive effects of PICSAR on HCC cells. In addition, we confirmed that eukaryotic initiation factor 6 (EIF6) was a direct target of miR-588 in HCC and mediated the biological effects of miR-588 and PICSAR in HCC, resulting in PI3K/AKT/mTOR pathway activation. Our data identified PICSAR as a novel oncogenic lncRNA associated with malignant clinical outcomes in HCC patients. PICSAR played an oncogenic role by targeting miR-588 and subsequently promoted EIF6 expression and PI3K/AKT/mTOR activation in HCC. Our results revealed that PICSAR could be a potential prognostic biomarker and therapeutic target for HCC.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Biomarkers, Tumor
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation/genetics
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Disease Models, Animal
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Male
- Mice
- MicroRNAs/genetics
- Peptide Initiation Factors/genetics
- Peptide Initiation Factors/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Prognosis
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Long Noncoding/genetics
- Signal Transduction
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Zhikui Liu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Huanye Mo
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Liankang Sun
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Liang Wang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Tianxiang Chen
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Bowen Yao
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Runkun Liu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Yongshen Niu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Kangsheng Tu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceZhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College)HangzhouChina
| | - Nan Yang
- Department of Infectious DiseasesThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| |
Collapse
|
206
|
Xie C, Li SY, Fang JH, Zhu Y, Yang JE. Functional long non-coding RNAs in hepatocellular carcinoma. Cancer Lett 2020; 500:281-291. [PMID: 33129957 DOI: 10.1016/j.canlet.2020.10.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent human malignancy with high morbidity worldwide. Hepatocarcinogenesis is a complex multistep process, and its underlying molecular mechanisms remain largely unknown. Recently, long non-coding RNAs (lncRNAs), a class of newly discovered molecules, have been revealed as essential regulators in the development of HCC. HCC-associated lncRNAs affect multiple malignant phenotypes by modulating gene expression or protein activity. Moreover, the dysregulation of lncRNAs in the liver is also associated with diseases predisposing to HCC, such as chronic viral infection, nonalcoholic steatohepatitis, and liver fibrosis/cirrhosis. A deeper understanding of the lncRNA regulatory network in the multistep processes of HCC development will provide new insights into the diagnosis and treatment of HCC. In this review, we introduce the biogenesis and function of lncRNAs and summarize recent knowledge on how lncRNAs regulate the malignant hallmarks of HCC, such as uncontrolled cell proliferation, resistance to cell death, metabolic reprogramming, immune escape, angiogenesis, and metastasis. We also review emerging insights into the role of lncRNAs in HCC-associated liver diseases. Finally, we discuss the potential applications of lncRNAs as early diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Chen Xie
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou 510275, PR China
| | - Song-Yang Li
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou 510275, PR China
| | - Jian-Hong Fang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou 510275, PR China
| | - Ying Zhu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou 510275, PR China
| | - Jin-E Yang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou 510275, PR China.
| |
Collapse
|
207
|
Zhang DY, Sun QC, Zou XJ, Song Y, Li WW, Guo ZQ, Liu SS, Liu L, Wu DH. Long noncoding RNA UPK1A-AS1 indicates poor prognosis of hepatocellular carcinoma and promotes cell proliferation through interaction with EZH2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:229. [PMID: 33121524 PMCID: PMC7596966 DOI: 10.1186/s13046-020-01748-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Dysregulation of long non-coding RNAs (lncRNAs) is responsible for cancer initiation and development, positioning lncRNAs as not only biomarkers but also promising therapeutic targets for cancer treatment. A growing number of lncRNAs have been reported in hepatocellular carcinoma (HCC), but their functional and mechanistic roles remain unclear. METHODS Gene Set Enrichment Analysis was used to investigate the molecular mechanism of UPK1A antisense RNA 1 (UPK1A-AS1). Cell Counting Kit-8 assays, EdU assays, flow cytometry, western blotting, and xenograft assays were used to confirm the role of UPK1A-AS1 in the proliferation of HCC cells in vitro and in vivo. Bioinformatics analyses and quantitative polymerase chain reaction (qRT-PCR) were performed to explore the interplay between UPK1A-AS1 and enhancer of zeste homologue 2 (EZH2). RNA immunoprecipitation (RIP), RNA pull-down assays, western blotting, and qRT-PCR were conducted to confirm the interaction between UPK1A-AS1 and EZH2. The interaction between UPK1A-AS1 and miR-138-5p was examined by luciferase reporter and RIP assays. Finally, the expression level and prognosis value of UPK1A-AS1 in HCC were analyzed using RNA sequencing data from The Cancer Genome Atlas datasets. RESULTS We showed that UPK1A-AS1, a newly identified lncRNA, promoted cellular proliferation and tumor growth by accelerating cell cycle progression. Cell cycle-related genes, including CCND1, CDK2, CDK4, CCNB1, and CCNB2, were significantly upregulated in HCC cells overexpressing UPK1A-AS1. Furthermore, overexpression of UPK1A-AS1 could protect HCC cells from cis-platinum toxicity. Mechanistically, UPK1A-AS1 interacted with EZH2 to mediate its nuclear translocation and reinforce its binding to SUZ12, leading to increased H27K3 trimethylation. Targeting EZH2 with specific small interfering RNA impaired the UPK1A-AS1-mediated upregulation of proliferation and cell cycle progression-related genes. Moreover, miR-138-5p was identified as a direct target of UPK1A-AS1. Additionally, UPK1A-AS1 was significantly upregulated in HCC, and the upregulation of UPK1A-AS1 predicted poor prognosis for patients with HCC. CONCLUSIONS Our study revealed that UPK1A-AS1 promotes HCC development by accelerating cell cycle progression through interaction with EZH2 and sponging of miR-138-5p, suggesting that UPK1A-AS1 possesses substantial potential as a novel biomarker for HCC prognosis and therapy.
Collapse
Affiliation(s)
- Dong-Yan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Qing-Can Sun
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Xue-Jing Zou
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Yang Song
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Wen-Wen Li
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Ze-Qin Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Shan-Shan Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Li Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| | - De-Hua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
208
|
Gao S, Chen T, Li L, Liu X, Liu Y, Zhao J, Lu Q, Zeng Z, Xu Q, Huang D, Tu K. Hypoxia-Inducible Ubiquitin Specific Peptidase 13 Contributes to Tumor Growth and Metastasis via Enhancing the Toll-Like Receptor 4/Myeloid Differentiation Primary Response Gene 88/Nuclear Factor-κB Pathway in Hepatocellular Carcinoma. Front Cell Dev Biol 2020; 8:587389. [PMID: 33195243 PMCID: PMC7604352 DOI: 10.3389/fcell.2020.587389] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide. The activation of the toll-like receptor 4/myeloid differentiation primary response gene 88/nuclear factor-κB (TLR4/MyD88/NF-κB) pathway contributes to the development and progression of HCC. The ubiquitin-proteasome system regulates TLR4 expression. However, whether ubiquitin specific peptidase 13 (USP13) stabilizes TLR4 and facilitates HCC progression remains unclear. Here, quantitative real-time PCR (qRT-PCR) and immunohistochemistry analysis revealed that USP13 expression in HCC tissues was higher than in non-tumor liver tissues. Moreover, the elevated expression of USP13 was detected in HCC cells (SK-HEP-1, HepG2, Huh7, and Hep3B) compared to LO2 cells. Interestingly, the positive staining of USP13 was closely correlated with tumor size ≥ 5 cm and advanced tumor stage and conferred to significantly lower survival of HCC patients. Next, USP13 knockdown prominently reduced the proliferation, epithelial-mesenchymal transition (EMT), migration, and invasion of Hep3B and Huh7 cells, while USP13 overexpression enhanced these biological behaviors of HepG2 and LO2 cells. The silencing of USP13 significantly restrained the growth and lung metastasis of HCC cells in vivo. Mechanistically, the USP13 depletion markedly inhibited the TLR4/MyD88/NF-κB pathway in HCC cells. USP13 interacted with TLR4 and inhibited the ubiquitin-mediated degradation of TLR4. Significantly, TLR4 re-expression remarkably reversed the effects of USP13 knockdown on HCC cells. USP13 expression was markedly upregulated in HCC cells under hypoxia conditions. Notably, USP13 knockdown repressed hypoxia-induced activation of the TLR4/MyD88/NF-κB pathway in HCC cells. In conclusion, our study uncovered that hypoxia-induced USP13 facilitated HCC progression via enhancing TLR4 deubiquitination and subsequently activating the TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Shan Gao
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tianxiang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lijie Li
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou, China
| | - Xin Liu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou, China
| | - Yang Liu
- The Medical College of Qingdao University, Qingdao, China
| | - Junjun Zhao
- Graduate Department, Bengbu Medical College, Bengbu, China
| | - Qiliang Lu
- Graduate Department, Bengbu Medical College, Bengbu, China
| | - Zhi Zeng
- Graduate Department, Bengbu Medical College, Bengbu, China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou, China
| | - Dongsheng Huang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
209
|
Xu G, Xu WY, Xiao Y, Jin B, Du SD, Mao YL, Zhang ZT. The emerging roles of non-coding competing endogenous RNA in hepatocellular carcinoma. Cancer Cell Int 2020; 20:496. [PMID: 33061848 PMCID: PMC7552539 DOI: 10.1186/s12935-020-01581-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/28/2020] [Indexed: 01/17/2023] Open
Abstract
Accumulating evidence has emerged revealing that noncoding RNAs (ncRNAs) play essential roles in the occurrence and development of hepatocellular carcinoma (HCC). However, the complicated regulatory interactions among various ncRNAs in the development of HCC are not entirely understood. The newly discovered mechanism of competing endogenous RNAs (ceRNAs) uncovered regulatory interactions among different varieties of RNAs. In recent years, a growing number of studies have suggested that ncRNAs, including long ncRNAs, circular RNAs and pseudogenes, play major roles in the biological functions of the ceRNA network in HCC. These ncRNAs can share microRNA response elements to affect microRNA affinity with target RNAs, thus regulating gene expression at the transcriptional level and both physiological and pathological processes. The ncRNAs that function as ceRNAs are involved in diverse biological processes in HCC cells, such as tumor cell proliferation, epithelial-mesenchymal transition, invasion, metastasis and chemoresistance. Based on these findings, ncRNAs that act as ceRNAs may be promising candidates for clinical diagnosis and treatments. In this review, we discuss the mechanisms and research methods of ceRNA networks. We also reviewed the recent advances in studying the roles of ncRNAs as ceRNAs in HCC and highlight possible directions and possibilities of ceRNAs as diagnostic biomarkers or therapeutic targets. Finally, the limitations, gaps in knowledge and opportunities for future research are also discussed.
Collapse
Affiliation(s)
- Gang Xu
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital and Chinese Academy of Medical Sciences, 1# Shuaifuyuan, Wangfujing, Dong-Cheng District, Beijing, 100730 China
| | - Wei-Yu Xu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, No. 95 Yong-An Road, Xi-Cheng District, Beijing, 100050 People's Republic of China
| | - Yao Xiao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital and Chinese Academy of Medical Sciences, 1# Shuaifuyuan, Wangfujing, Dong-Cheng District, Beijing, 100730 China
| | - Bao Jin
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital and Chinese Academy of Medical Sciences, 1# Shuaifuyuan, Wangfujing, Dong-Cheng District, Beijing, 100730 China
| | - Shun-Da Du
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital and Chinese Academy of Medical Sciences, 1# Shuaifuyuan, Wangfujing, Dong-Cheng District, Beijing, 100730 China
| | - Yi-Lei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital and Chinese Academy of Medical Sciences, 1# Shuaifuyuan, Wangfujing, Dong-Cheng District, Beijing, 100730 China
| | - Zhong-Tao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, No. 95 Yong-An Road, Xi-Cheng District, Beijing, 100050 People's Republic of China
| |
Collapse
|
210
|
Epigenetic regulation of VENTXP1 suppresses tumor proliferation via miR-205-5p/ANKRD2/NF-kB signaling in head and neck squamous cell carcinoma. Cell Death Dis 2020; 11:838. [PMID: 33037177 PMCID: PMC7547684 DOI: 10.1038/s41419-020-03057-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023]
Abstract
An increasing number of studies have shown that long noncoding RNAs (lncRNAs) play important roles in tumor development and progression. However, their involvement in head and neck squamous cell carcinoma (HNSCC) remains largely unknown. Epigenetic regulation is one major mechanism utilized by cancer cells to control lncRNA expression. We identified that lncRNA VENTXP1 was epigenetically silenced in multiple cancer types, and its lower expression was correlated with poorer survival in HNSCC patients. Through in silico analysis and experimental validation, we identified miR-205-5p and its direct interacting partner of VENTXP1, which regulates HNSCC cell proliferation and tumorigenicity. Using RNA-seq and differential gene expression analysis, we further identified ANKRD2 as a miR-205-5p target, which plays an essential role in modulating NF-kB signaling. These findings suggest that VENTXP1 inhibits tumor growth via suppressing miR-205-5p/ANKRD2-mediated NF-kB signaling in HNSCC. Thus, pharmaceutical targeting of DNA methylation to restore VENTXP1 expression might constitute a therapeutic strategy for HNSCC.
Collapse
|
211
|
Nan CC, Zhang N, Cheung KCP, Zhang HD, Li W, Hong CY, Chen HS, Liu XY, Li N, Cheng L. Knockdown of lncRNA MALAT1 Alleviates LPS-Induced Acute Lung Injury via Inhibiting Apoptosis Through the miR-194-5p/FOXP2 Axis. Front Cell Dev Biol 2020; 8:586869. [PMID: 33117815 PMCID: PMC7575725 DOI: 10.3389/fcell.2020.586869] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/02/2020] [Indexed: 01/07/2023] Open
Abstract
Purpose We aimed to identify and verify the key genes and lncRNAs associated with acute lung injury (ALI) and explore the pathogenesis of ALI. Research showed that lower expression of the lncRNA metastasis-associated lung carcinoma transcript 1 (MALAT1) alleviates lung injury induced by lipopolysaccharide (LPS). Nevertheless, the mechanisms of MALAT1 on cellular apoptosis remain unclear in LPS-stimulated ALI. We investigated the mechanism of MALAT1 in modulating the apoptosis of LPS-induced human pulmonary alveolar epithelial cells (HPAEpiC). Methods Differentially expressed lncRNAs between the ALI samples and normal controls were identified using gene expression profiles. ALI-related genes were determined by the overlap of differentially expressed genes (DEGs), genes correlated with lung, genes correlated with key lncRNAs, and genes sharing significantly high proportions of microRNA targets with MALAT1. Quantitative real-time PCR (qPCR) was applied to detect the expression of MALAT1, microRNA (miR)-194-5p, and forkhead box P2 (FOXP2) mRNA in 1 μg/ml LPS-treated HPAEpiC. MALAT1 knockdown vectors, miR-194-5p inhibitors, and ov-FOXP2 were constructed and used to transfect HPAEpiC. The influence of MALAT1 knockdown on LPS-induced HPAEpiC proliferation and apoptosis via the miR-194-5p/FOXP2 axis was determined using Cell counting kit-8 (CCK-8) assay, flow cytometry, and Western blotting analysis, respectively. The interactions between MALAT1, miR-194-5p, and FOXP2 were verified using dual-luciferase reporter gene assay. Results We identified a key lncRNA (MALAT1) and three key genes (EYA1, WNT5A, and FOXP2) that are closely correlated with the pathogenesis of ALI. LPS stimulation promoted MALAT1 expression and apoptosis and also inhibited HPAEpiC viability. MALAT1 knockdown significantly improved viability and suppressed the apoptosis of LPS-stimulated HPAEpiC. Moreover, MALAT1 directly targeted miR-194-5p, a downregulated miRNA in LPS-stimulated HPAEpiC, when FOXP2 was overexpressed. MALAT1 knockdown led to the overexpression of miR-194-5p and restrained FOXP2 expression. Furthermore, inhibition of miR-194-5p exerted a rescue effect on MALAT1 knockdown of FOXP2, whereas the overexpression of FOXP2 reversed the effect of MALAT1 knockdown on viability and apoptosis of LPS-stimulated HPAEpiC. Conclusion Our results demonstrated that MALAT1 knockdown alleviated HPAEpiC apoptosis by competitively binding to miR-194-5p and then elevating the inhibitory effect on its target FOXP2. These data provide a novel insight into the role of MALAT1 in the progression of ALI and potential diagnostic and therapeutic strategies for ALI patients.
Collapse
Affiliation(s)
- Chuan-Chuan Nan
- Department of Critical Care Medicine, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Ning Zhang
- Department of Critical Care Medicine, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.,Department of Stomatology Center, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Kenneth C P Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, China
| | - Hua-Dong Zhang
- Department of Critical Care Medicine, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Wei Li
- Department of Critical Care Medicine, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Cheng-Ying Hong
- Department of Critical Care Medicine, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Huai-Sheng Chen
- Department of Critical Care Medicine, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xue-Yan Liu
- Department of Critical Care Medicine, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Nan Li
- Department of Stomatology Center, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Lixin Cheng
- Department of Critical Care Medicine, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
212
|
Zhu X, Bu F, Tan T, Luo Q, Zhu J, Lin K, Huang J, Luo C, Zhu Z. Long noncoding RNA RP11-757G1.5 sponges miR-139-5p and upregulates YAP1 thereby promoting the proliferation and liver, spleen metastasis of colorectal cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:207. [PMID: 33023613 PMCID: PMC7541316 DOI: 10.1186/s13046-020-01717-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Accumulating evidence indicates that long non-coding RNAs (lncRNAs) acting as crucial regulators in tumorigenesis. However, its biological functions of lncRNAs in colorectal cancer (CRC) have not been systematically clarified. METHODS An unbiased screening was performed to identify disregulated lncRNAs revealed to be implicated in CRC carcinogenesis according to an online-available data dataset. In situ hybridization (ISH), RT-qPCR and RNA fluorescence in situ hybridization (RNA-FISH) were applied to detect RP11-757G1.5 expression in CRC tissues and cell lines. The associations of RP11-757G1.5 with clinicopathological characteristics were analyzed. Their effects on prognosis were analyzed by the Kaplan-Meier analysis, Log-rank test, Univariate and Multivariate Cox regression analysis. The potential biological function of RP11-757G1.5 in CRC was investigated by Colony formation, Edu cell proliferation, Flow cytometry, Wound healing and Transwell assays. Bioinformatics binding site analysis, Luciferase reporter assay, Ago2 immunoprecipitation assays, RNA pull-down assay, RT-qPCR and Western blotting were utilized to demonstrate the mechanism of RP11-757G1.5 acts as a molecular sponge of miR-139-5p to regulate the expression of YAP1. Finally, we further explore the potential role of RP11-757G1.5 in CRC orthotopic xenografts in vivo. RESULTS We discovered a novel oncogenic lncRNA RP11-757G1.5, that was overexpressed in CRC tissues, especially in aggressive cases. Moreover, up-regulation of RP11-757G1.5 strongly correlated with poor clinical outcomes of patients with CRC. Functional analyses revealed that RP11-757G1.5 promoted cell proliferation in vitro and in vivo. Furthermore, RP11-757G1.5 stimulated cell migration and invasion in vitro and in vivo. Mechanistic studies illustrated that RP11-757G1.5 regulated the expression of YAP1 through sponging miR-139-5p and inhibiting its activity thereby promoting CRC progression and development. CONCLUSIONS Altogether, these results reveal a novel RP11-757G1.5/miR-139-5p/YAP1 regulatory axis that participates in CRC carcinogenesis and progression.
Collapse
Affiliation(s)
- Xiaojian Zhu
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Fanqin Bu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.,Jiangxi Medical College of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Ting Tan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.,Jiangxi Medical College of Nanchang University, Nanchang, China.,Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qilin Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jinfeng Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.,Jiangxi Medical College of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Kang Lin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.,Jiangxi Medical College of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Jun Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.,Jiangxi Medical College of Nanchang University, Nanchang, China
| | - Chen Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China. .,Jiangxi Medical College of Nanchang University, Nanchang, China. .,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China.
| | - Zhengming Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China. .,Jiangxi Medical College of Nanchang University, Nanchang, China.
| |
Collapse
|
213
|
Wen J, Han S, Cui M, Wang Y. Long non‑coding RNA MCM3AP‑AS1 drives ovarian cancer progression via the microRNA‑143‑3p/TAK1 axis. Oncol Rep 2020; 44:1375-1384. [PMID: 32945454 PMCID: PMC7448503 DOI: 10.3892/or.2020.7694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
The long non‑coding RNA (lncRNA) MCM3AP antisense 1 (MCM3AP‑AS1) has previously been shown to be a key regulator of multiple types of cancer; however whether it is important in the context of ovarian cancer (OC) is uncertain. The present study determined that MCM3AP‑AS1 expression in samples from patients with OC was significantly increased, and was associated with tumor stage, presence of lymph node metastases and poorer overall survival. The role of this lncRNA was investigated in vitro, and it was observed that knockdown of MCM3AP‑AS1 impaired OC cell proliferation, migration and colony formation. Similarly, it disrupted tumor growth in vivo. The present study further determined that MCM3AP‑AS1 was able to directly interact with microRNA (miRNA or miR)‑143‑3p as a competing endogenous (ce)RNA for this miRNA, thereby regulating the expression of transforming growth factor‑β‑activated kinase 1 (TAK1), a known target of miR‑143‑3p in OC. Consistent with this, inhibition of miR‑143‑3p was sufficient to partially reverse the effects of MCM3AP‑AS1‑knockdown, which inhibited the proliferation, migration and invasion of OC cells. Together, these results indicate that MCM3AP‑AS1 serves as an oncogenic lncRNA in OC by binding to miR‑143‑3p and thereby promoting TAK1 expression, and suggest that this lncRNA may be a possible target for therapy in OC.
Collapse
Affiliation(s)
- Jihong Wen
- Department of Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shumei Han
- Department of Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Man Cui
- Department of Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanli Wang
- Department of Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
214
|
LncRNA ST8SIA6-AS1 promotes hepatocellular carcinoma progression by regulating MAGEA3 and DCAF4L2 expression. Biochem Biophys Res Commun 2020; 533:1039-1047. [PMID: 33012505 DOI: 10.1016/j.bbrc.2020.09.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer. In this study, we aimed to explore the role and mechanism of lncRNA ST8SIA6-AS1 in HCC. We found that ST8SIA6-AS1 was upregulated in HCC tissues and associated with poorer overall survival of HCC patients from TCGA. Moreover, ST8SIA6-AS1 was highly expressed in HCC in-house tissues and cells, and ST8SIA6-AS1 upregulation was related to aggressive tumor phenotypes and the poor overall survival of HCC patients. Downregulation of ST8SIA6-AS1 suppressed HCC cell proliferation, migration and invasion in vitro and restrained HCC tumorigenesis in vivo. In terms of mechanism, ST8SIA6-AS1 regulated melanoma-associated antigen (MAGE)-A3 (MAGEA3) and DDB1-and Cul4-associated factor 4-like 2 (DCAF4L2) expression, and rescue experiments verified that ST8SIA6-AS1 played a protumorigenic role in HCC via the regulation of MAGEA3 and DCAF4L2. ST8SIA6-AS1 partly directly bound to miR-129-5p and functioned as a competing endogenous RNA (ceRNA), subsequently facilitating the expression of the miR-129-5p target gene DCAF4L2 to play its role in HCC. In summary, our results identified ST8SIA6-AS1 as an oncogenic lncRNA predicting poor clinical outcomes of patients with HCC. These findings suggest that ST8SIA6-AS1 is a potential therapeutic target for HCC.
Collapse
|
215
|
Hypoxia-inducible long noncoding RNA NPSR1-AS1 promotes the proliferation and glycolysis of hepatocellular carcinoma cells by regulating the MAPK/ERK pathway. Biochem Biophys Res Commun 2020; 533:886-892. [PMID: 33008585 DOI: 10.1016/j.bbrc.2020.09.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 09/19/2020] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC), which accounts for approximately 90% of primary liver cancer, is commonly treated with surgical resection. However, most patients lose the opportunity to receive this therapeutic strategy due to delayed diagnosis and rapid tumor progression. Long noncoding RNAs (lncRNAs) have been demonstrated to play essential roles in the initiation and progression of HCC. However, the function of the novel lncRNA neuropeptide S receptor 1 antisense RNA 1 (NPSR1-AS1) in HCC and its potential mechanism, is unclear. Here, our microarray data revealed NPSR1-AS1 as a novel hypoxia-responsive lncRNA in HCC cells. Interestingly, hypoxia-inducible factor-1α (HIF-1α) knockdown abolished hypoxia-induced NPSR1-AS1 expression in HCC cells. NPSR1-AS1 expression was upregulated in HCC tissues and cell lines. Next, the ectopic expression of NPSR1-AS1 facilitated the proliferation and glycolysis of HCC cells. In contrast, NPSR1-AS1 silencing repressed HCC cell proliferation and glycolysis. Mechanistically, NPSR1-AS1 overexpression increased the levels of p-ERK1/2 and pyruvate kinase M2 (PKM2) in HCC cells. NPSR1-AS1 knockdown abrogated hypoxia-induced the activation of the MAPK/ERK pathway in HCC cells. Importantly, NPSR1-AS1 depletion partially reversed hypoxia-induced proliferation and glycolysis of HCC cells in vitro. In conclusion, hypoxia-inducible NPSR1-AS1 promotes the proliferation and glycolysis of HCC cells, possibly by regulating the MAPK/ERK pathway, suggesting an underlying therapeutic strategy for HCC.
Collapse
|
216
|
Chen Q, Guo SM, Huang HQ, Huang GP, Li Y, Li ZH, Huang R, Xiao L, Fan CR, Yuan Q, Zheng SL. Long noncoding RNA SBF2-AS1 contributes to the growth and metastatic phenotypes of NSCLC via regulating miR-338-3p/ADAM17 axis. Aging (Albany NY) 2020; 12:17902-17920. [PMID: 32976115 PMCID: PMC7585082 DOI: 10.18632/aging.103332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/31/2020] [Indexed: 01/24/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a type of refractory malignant lung cancer with a high rate of metastasis and mortality. Currently, long non-coding RNA (lncRNA) SBF2 Antisense RNA 1 (SBF2-AS1) is considered as a biomarker for a variety of tumors. However, the function of SBF2-AS1 in the growth and metastasis of NSCLC needs to be further studied. In this study, we revealed that SBF2-AS1 was overexpressed in NSCLC tissues compared with that in normal tissues. SBF2-AS1 silencing restrained the growth and aggressive phenotypes of NSCLC cell in vitro. Consistently, SBF2-AS1 knockdown hindered the growth of NSCLC cell in nude mice. The following luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay suggested the relationship between miR-338-3p and SBF2-AS1. The rescue experiments showed that miR-338-3p inhibitor abolished SBF2-AS1 silencing caused inhibition on the growth, migration and invasiveness of NSCLC cell. The luciferase reporter assay and immunoblotting assay validated that A Disintegrin and Metalloprotease 17 (ADAM17) was a target of miR-338-3p. In addition, SBF2-AS1 positively regulated the level of ADAM17 through sponging for miR-338-3p. Finally, we revealed that SBF2-AS1 contributed to the proliferation and metastatic phenotypes of NSCLC cell via regulating miR-338-3p/ADAM17 axis.
Collapse
Affiliation(s)
- Qi Chen
- Nursing Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Sheng Min Guo
- Rehabilitation Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Hou Qiang Huang
- Nursing Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Guo Ping Huang
- Laboratory Medicine, Zigong Maternal and Child Care Service Centre, Zigong 643000, Sichuan, China
| | - Yi Li
- School of Basic Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zi Hui Li
- Nursing Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Run Huang
- School of Basic Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Lu Xiao
- Nursing Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Chun Rong Fan
- Nursing Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Qing Yuan
- School of Basic Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Si Lin Zheng
- Nursing Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| |
Collapse
|
217
|
Jia Z, Li W, Bian P, Liu H, Pan D, Dou Z. LncRNA MCM3AP-AS1 Promotes Cell Proliferation and Invasion Through Regulating miR-543-3p/SLC39A10/PTEN Axis in Prostate Cancer. Onco Targets Ther 2020; 13:9365-9376. [PMID: 33061424 PMCID: PMC7519818 DOI: 10.2147/ott.s245537] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
Objective Long-chain noncoding RNAs (lncRNAs) are key players in a wide range of biological processes, especially the pathogenesis and development of tumors. LncRNA MCM3AP-AS1 has been demonstrated to be involved in the invasion of various tumors including prostate cancer (PCa). However, its functions in PCa have not been fully elucidated. Methods qRT-PCR was conducted to measure the expression levels of lncRNA MCM3AP-AS1 and miR-543-3p in PCa tissue samples and cell lines. The expression levels of E-cadherin and SLC39A10 proteins were detected by Western blots. CCK-8 test, cell scratch test and trans-well test were used to evaluate the proliferation, invasion and migration abilities of PCa cells, respectively. Annexin V-FITC/PI experiments were carried out to determine the status of apoptosis. Bioinformatics analysis and Luciferase assay were used to explore the relationship between lncRNA MCM3AP-AS1, miR-543-3p and SLC39A10. Results In PCa tissue samples and cell lines, lncRNA MCM3AP-AS1 was up-regulated while miR-543-3p was down-regulated. Over-expression of MCM3AP-AS1 could promote the proliferation and invasion of PCa cells. Correlation analysis showed that the expression of MCM3AP-AS1 and miR-543-3p was significantly and inversely correlated. We further verified that miR-543-3p inhibitor was able to reverse si-MCM3AP-AS1-mediated inhibitory effects on the PCa cell proliferation, migration and invasion through regulating the downstream protein axis SLC39A10/PTEN/Akt. Finally, in vivo experiments indicated that knocking down of MCM3AP-AS1 could largely reduce tumor volumes, and decreased the ratio of Ki67-positive cells and the expression of SLC39A10 in tumor samples. Conclusion LncRNA MCM3AP-AS1 can promote the proliferation, migration and invasion abilities of PCa cells through regulating the miR-543-3p/SLC39A10/PTEN axis, which suggests that lncRNA MCM3AP-AS1 might be a potential target for prostate cancer therapy.
Collapse
Affiliation(s)
- Zhaohui Jia
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, People's Republic of China
| | - Wensheng Li
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, People's Republic of China
| | - Pan Bian
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, People's Republic of China
| | - Hui Liu
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, People's Republic of China
| | - Dong Pan
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, People's Republic of China
| | - Zhongling Dou
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, People's Republic of China
| |
Collapse
|
218
|
Zhang L, Liu B, Han J, Wang T, Han L. Competing endogenous RNA network analysis for screening inflammation‑related long non‑coding RNAs for acute ischemic stroke. Mol Med Rep 2020; 22:3081-3094. [PMID: 32945445 PMCID: PMC7453507 DOI: 10.3892/mmr.2020.11415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/21/2019] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) represent potential biomarkers for the diagnosis and treatment of various diseases; however, the role of circulating acute ischemic stroke (AIS)-related lncRNAs remains relatively unknown. The present study aimed to screen crucial lncRNAs for AIS based on the competing endogenous RNA (ceRNA) hypothesis. The expression profile datasets for one mRNA, accession no. GSE16561, and four microRNAs (miRNAs), accession nos. GSE95204, GSE86291, GSE55937 and GSE110993, were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs), lncRNAs (DELs), and miRNAs (DEMs) were identified, and ClusterProfiler was used to interpret the function of the DEGs. Based on the protein-protein interaction (PPI) network and module analyses, hub DEGs were identified. A ceRNA network was established based on miRNA-mRNA or miRNA-lncRNA interaction pairs. In total, 2,041 DEGs and 5 DELs were identified between the AIS and controls samples in GSE16561, and 10 DEMs between at least two of the four miRNA expression profiles. A PPI network was constructed with 1,235 DEGs, among which 20 genes were suggested to be hub genes. The hub genes paxillin (PXN), FYN-proto-oncogene, Src family tyrosine kinase (FYN), ras homolog family member A (RHOA), STAT1, and growth factor receptor-bound protein 2 (GRB2), were amongst the most significantly enriched modules extracted from the PPI network. Functional analysis revealed that these hub genes were associated with inflammation-related signaling pathways. An AIS-related ceRNA network was constructed, in which 4 DELs were predicted to function as ceRNAs for 9 DEMs, to regulate the five identified hub genes; that is, minichromosome maintenance complex component 3 associated protein-antisense RNA 1 (MCM3AP-AS1)/long intergenic non-protein coding RNA 1089 (LINC01089)/hsa-miRNA (miR)-125a/FYN, inositol-tetrakisphosphate 1-kinase-antisense RNA 1 (ITPK1-AS1)/hsa-let-7i/RHOA/GRB2/STAT1, and human leukocyte antigen complex group 27 (HCG27)/hsa-miR-19a/PXN interaction axes. In conclusion, MCM3AP-AS1, LINC01089, ITPK1-AS1, and HCG27 may represent new biomarkers and underlying targets for the treatment of AIS.
Collapse
Affiliation(s)
- Li Zhang
- Department of Emergency Medicine, The Second Hospital of Jilin University, Chuangchun, Jilin 130041, P.R. China
| | - Baihui Liu
- Department of Emergency Medicine, The Second Hospital of Jilin University, Chuangchun, Jilin 130041, P.R. China
| | - Jinhua Han
- Department of Radiotherapy, The Second Hospital of Jilin University, Chuangchun, Jilin 130041, P.R. China
| | - Tingting Wang
- Department of Tumor Hematology, The Second Hospital of Jilin University, Chuangchun, Jilin 130041, P.R. China
| | - Lin Han
- Internal Medicine‑Neurology, China‑Japan Union Hospital of Jilin University, Chuangchun, Jilin 130033, P.R. China
| |
Collapse
|
219
|
Song XZ, Xu XJ, Ren XN, Ruan XX, Wang YL, Yao TT. LncRNA ANCR Suppresses the Progression of Hepatocellular Carcinoma Through the Inhibition of Wnt/β-Catenin Signaling Pathway. Onco Targets Ther 2020; 13:8907-8917. [PMID: 32982283 PMCID: PMC7490438 DOI: 10.2147/ott.s260556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Objective Our study aimed to investigate the effect of anti-differentiation noncoding RNA (ANCR) on hepatocellular carcinoma (HCC) and its potential molecular mechanisms. Methods The expression of ANCR was detected by qRT-RCR in both HCC tissues and HCC cells. Moreover, the relationship between ANCR expression and clinical parameters in HCC patients was investigated. The proliferation, cell clones, migration, invasion and apoptosis of MHCC97H and HCCLM3 cells were measured by MTT assay, colony formation assay, transwell assay and flow cytometry, respectively. The expressions of N-cadherin, vimentin, E-cadherin, cleaved caspase-3, Bax, Bcl-2, Wnt1, β-catenin and GSK-3β in MHCC97H and HCCLM3 cells were measured by Western blot. Results Our results showed that ANCR was lowly expressed in both HCC tissues and HCC cells. ANCR expression was closely associated with tumor size, tumor-node-metastasis (TNM) stages and vascular invasion in HCC. ANCR could dramatically inhibit cell proliferation, migration and invasion, as well as promote apoptosis in MHCC97H and HCCLM3 cells. ANCR could significantly increase the expression of cleaved caspase-3, Bax, E-cadherin and GSK-3β but reduce the expression of Bcl-2, N-cadherin, vimentin, Wnt1 and β-catenin in MHCC97H and HCCLM3 cells. In addition, Wnt/β-catenin pathway inhibitor (IWP-2) partially reversed the effects of silencing ANCR on the proliferation, migration, invasion and apoptosis of HCCLM3 cells. Conclusion Our study demonstrated that ANCR can suppress cell proliferation, migration and invasion, as well as promote apoptosis of HCC cells via modulation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xue-Zhen Song
- Department of Blood Transfusion, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, People's Republic of China
| | - Xiao-Jun Xu
- Department of Blood Transfusion, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, People's Republic of China
| | - Xiao-Ning Ren
- Department of Blood Transfusion, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, People's Republic of China
| | - Xiao-Xuan Ruan
- Department of Blood Transfusion, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, People's Republic of China
| | - Yi-Li Wang
- Department of Hematology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, People's Republic of China
| | - Ting-Ting Yao
- Department of Blood Transfusion, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, People's Republic of China
| |
Collapse
|
220
|
Riahi A, Hosseinpour-Feizi M, Rajabi A, Akbarzadeh M, Montazeri V, Safaralizadeh R. Overexpression of long non-coding RNA MCM3AP-AS1 in breast cancer tissues compared to adjacent non-tumour tissues. Br J Biomed Sci 2020; 78:53-57. [PMID: 32678686 DOI: 10.1080/09674845.2020.1798058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Altered expression of several long non-coding RNAs (lncRNAs) has been described in numerous malignancies, including breast cancer, and some may have a role in carcinogenesis. We hypothesised differences in the expression of lncRNA MCM3AP-AS1 in breast cancer tissues compared to nearby healthy tissues and potential links with clinical features. METHODS We tested our hypothesis in 102 pairs of breast cancer tumours and adjacent non-tumour tissues from female patients. After RNA extraction, cDNA synthesis was performed for all specimens. The differential gene expression was assessed using Quantitative Real-Time PCR Technique. RESULTS There was a significant overexpression of the lncRNAs in tumour tissues as compared with their adjacent non-tumour tissues (P < 0.001). Expression was significantly linked with the tumour oestrogen receptor expression (P = 0.023) and tumour progesterone receptor expression (P < 0.001). ROC analysis showed an AUC of 0.67 (95% CI 0.60-0.75) (P < 0.001) with sensitivity and specificity of 58% and 76%, respectively. CONCLUSION The lncRNA MCM3AP-AS1 may be a novel breast cancer lncRNA with high expression levels in breast cancer patients' tissue. Further investigations are needed to confirm its uses as a potential molecular marker and therapeutic target.
Collapse
Affiliation(s)
- A Riahi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz , Tabriz, Iran
| | - M Hosseinpour-Feizi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz , Tabriz, Iran
| | - A Rajabi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz , Tabriz, Iran
| | - M Akbarzadeh
- Department of Biology, Faculty of Sciences, Azerbaijan Shahid Madani University , Tabriz, Iran
| | - V Montazeri
- Department of Thoracic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences\Surgery Ward, Nour-Nejat Hospital , Tabriz, Iran
| | - R Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz , Tabriz, Iran
| |
Collapse
|
221
|
Ma X, Luo J, Zhang Y, Sun D, Lin Y. LncRNA MCM3AP-AS1 Upregulates CDK4 by Sponging miR-545 to Suppress G1 Arrest in Colorectal Cancer. Cancer Manag Res 2020; 12:8117-8124. [PMID: 32982409 PMCID: PMC7494958 DOI: 10.2147/cmar.s247330] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction This study aimed to investigate the role of lncRNA MCM3AP-AS1 in colorectal cancer (CRC). Methods Paired tumor and non-tumor tissues were collected from 60 CRC patients. Expression of MCM3AP-AS1 was determined by RT-qPCR. Overexpression of MCM3AP-AS1, miR-545, and CDK4 in CRC cells was achieved to explore the interactions between them. Cell cycle assay was performed to analyze the roles of MCM3AP-AS1, miR-545, and CDK4 in regulating the cell cycle progression of CRC cells. Results We found that MCM3AP-AS1 was upregulated in CRC and its high expression levels predicted poor survival of CRC patients. MCM3AP-AS1 is predicted to interact with miR-545. In CRC cells, overexpression of MCM3AP-AS1 and miR-545 was achieved, while their overexpression did not affect the expression of each other. Instead, overexpression of MCM3AP-AS1 led to the increased expression levels of CDK4, which is a downstream target of miR-545. Cell cycle analysis showed that overexpression of MCM3AP-AS1 and CDK4 suppressed G1 arrest induced by miR-545. In addition, overexpression of MCM3AP-AS1 reduced the enhancing effects of overexpressing miR-545 on cell cycle progression. Conclusion MCM3AP-AS1 may upregulate CDK4 by sponging miR-545 to induce G1 arrest in CRC cells.
Collapse
Affiliation(s)
- Xudong Ma
- Gastrointestinal Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province 650031, People's Republic of China
| | - Jing Luo
- Gastrointestinal Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province 650031, People's Republic of China
| | - Yi Zhang
- The General Surgery Department, The Teng-Chong People's Hospital, Tengchong City, Yunan Province, 679100, People's Republic of China
| | - Dali Sun
- Gastrointestinal Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province 650031, People's Republic of China
| | - Yueying Lin
- Gastrointestinal Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province 650031, People's Republic of China
| |
Collapse
|
222
|
Kong W, Wang X, Zuo X, Mao Z, Cheng Y, Chen W. Development and Validation of an Immune-Related lncRNA Signature for Predicting the Prognosis of Hepatocellular Carcinoma. Front Genet 2020; 11:1037. [PMID: 33101369 PMCID: PMC7500314 DOI: 10.3389/fgene.2020.01037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Aim Immunotherapy is currently being explored as a potential treatment for hepatocellular carcinoma (HCC). This study investigated the prognostic value of immune-related long non-coding RNAs (lncRNAs) in patients with HCC. Methods The Wilcoxon test was used to compare differentially expressed lncRNAs between HCC tissue and non-tumor tissue. Moreover, co-expression analysis was used to determine immune-related lncRNA. Univariate cox regression analysis and the least absolute shrinkage and selection operator (LASSO) regression were used to identify immune-related prognostic lncRNA. The immune risk score was calculated by the sum of the product from each lncRNA expression and its coefficient. Furthermore, the prognostic significance of the lncRNA signature was determined in the training group, testing group, and the entire group. A prognostic nomogram was established by integrating immune risk score and clinicopathological features. Results PRRT3-AS1 and AL031985.3 were identified as immune-related prognostic lncRNAs in HCC patients. HCC patients were divided into high and low-risk groups based on the optimal cutoff value of risk score in the training group. The prognosis of HCC patients in the high-risk group was worse compared with the low-risk group. Besides, the immune-related lncRNA score was regarded as an independent risk factor for the prognosis of HCC patients. The predictive nomogram showed satisfactory discrimination and consistency. Gene enrichment analysis results indicated that the high-risk group was associated with immune-related signaling pathways. Conclusion This study screened a 2-lncRNA signature and constructed a nomogram to predict the survival of HCC patients, thereby provided guidelines for undertaking medical decisions.
Collapse
Affiliation(s)
- Weihao Kong
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Emergency Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xingyu Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Emergency Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaomin Zuo
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhongxiang Mao
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Emergency Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ya Cheng
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Emergency Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
223
|
Song F, Liu J, Feng Y, Jin Y. Propofol‑induced HOXA11‑AS promotes proliferation, migration and invasion, but inhibits apoptosis in hepatocellular carcinoma cells by targeting miR‑4458. Int J Mol Med 2020; 46:1135-1145. [PMID: 32705160 PMCID: PMC7387087 DOI: 10.3892/ijmm.2020.4667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Propofol is a commonly used drug for the induction and maintenance of anesthesia. Previous studies have reported that propofol is involved in the progression of numerous human cancer types, including hepatocellular carcinoma (HCC). However, the underlying molecular mechanisms in HCC are yet to be elucidated. The present study aimed to investigate the potential mechanism of propofol in HCC development. MTT assay, flow cytometry analysis and Transwell assays were conducted to examine cell proliferation, apoptosis, migration and invasion, respectively. Western blotting was also performed to determine the protein expression levels of Bcl‑2 and cleaved‑caspase 3. An in vivo experiment was performed to assess the effect of propofol on tumor growth. Moreover, reverse transcription‑quantitative PCR was conducted to measure the mRNA expression levels of HOMEOBOX A11 (HOXA11) antisense RNA (HOXA11‑AS) and microRNA (miR)‑4458. Dual‑luciferase reporter and RNA pull‑down assays were performed to evaluate the target relationship between HOXA11‑AS and miR‑4458. It was demonstrated that propofol inhibited HCC cell proliferation, migration and invasion, and promoted cell apoptosis in vitro. Furthermore, propofol could suppress tumor growth in vivo. Propofol suppressed the expression of HOXA11‑AS in HCC cells, while HOXA11‑AS overexpression reversed the inhibitory effect of propofol treatment on cell progression in HCC. In addition, miR‑4458 was identified as a target of HOXA11‑AS, and miR‑4458 inhibition reversed the effect of HOXA11‑AS knockdown on HCC cell progression. The results also indicated that propofol promoted the expression of miR‑4458, while HOXA11‑AS restored this effect in HCC. Thus, it was suggested that propofol suppressed cell progression by modulating the HOXA11‑AS/miR‑4458 axis in HCC.
Collapse
Affiliation(s)
- Furong Song
- Department of Anesthesiology
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jun Liu
- Department of Anesthesiology
| | | | - Yi Jin
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
224
|
Zhao K, Tu C, Liang K, Li Y, Yu Y. Long noncoding RNA MCM3AP antisense RNA 1 is downregulated in chronic obstructive pulmonary disease and regulates human bronchial smooth muscle cell proliferation. J Int Med Res 2020; 48:300060520935215. [PMID: 32940099 PMCID: PMC7503009 DOI: 10.1177/0300060520935215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/26/2020] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES This study aimed to investigate the involvement of MCM3AP antisense RNA 1 (MCM3AP-AS1) in chronic obstructive pulmonary disease (COPD). METHODS The expression levels of plasma MCM3AP-AS1 in COPD patients and healthy controls were measured by quantitative PCR before treatment and at 3 months after the initiation of treatment (post-treatment) from COPD patients. The role of MCM3AP-AS1 in regulating the proliferation of human bronchial smooth muscle cells (HBSMCs) was explored by a cell proliferation assay. RESULTS We found that MCM3AP-AS1 expression was downregulated in the plasma of COPD patients compared with controls. Among controls, MCM3AP-AS1 expression was lower in smokers than never-smokers. A 3-year follow-up study showed that, among smokers, patients with low MCM3AP-AS1 expression showed a higher incidence of COPD. After treatment for COPD, MCM3AP-AS1 expression significantly increased. The cell proliferation assay showed that MCM3AP-AS1 overexpression decreased the proliferation rate of HBSMCs. MCM3AP-AS1 silencing had the opposite effect. CONCLUSIONS MCM3AP-AS1 appears to be downregulated in COPD and to predict its occurrence. MCM3AP-AS1 regulates the proliferation of HBSMCs to participate in airway remodeling.
Collapse
Affiliation(s)
| | | | - Kaiyi Liang
- Department of Radiology, Jiading Central Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, P. R. China
| | - Ying Li
- Department of Respiratory Medicine, Jiading Central Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, P. R. China
| | - Yanfang Yu
- Department of Respiratory Medicine, Jiading Central Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, P. R. China
| |
Collapse
|
225
|
Yu Z, Chen T, Mo H, Guo C, Liu Q. BRD8, which is negatively regulated by miR-876-3p, promotes the proliferation and apoptosis resistance of hepatocellular carcinoma cells via KAT5. Arch Biochem Biophys 2020; 693:108550. [PMID: 32860757 DOI: 10.1016/j.abb.2020.108550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/30/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022]
Abstract
Bromodomain-containing 8 (BRD8), which belongs to the histone acetyl transferase (HAT) complex, functions as a driver in colorectal cancer. However, the role of BRD8 and its related regulatory mechanisms in hepatocellular carcinoma (HCC) remain unexplored. In this study, we found that the level of BRD8 mRNA in HCC was prominently higher than that in nontumor tissues. Furthermore, immunohistochemistry analysis indicated that BRD8 protein expression was upregulated in HCC compared to noncancerous tissues. The positive expression of BRD8 was closely associated with HBV infection, a tumor size ≥5 cm and an advanced TNM stage. Moreover, HCC patients with an elevated expression of BRD8 had an obvious poorer survival rate. Functionally, BRD8 knockdown markedly reduced the proliferation of Hep3B and Huh7 cells. Depletion of BRD8 obviously induced the apoptosis of HCC cells. Conversely, BRD8 overexpression promoted the proliferation and apoptosis resistance of Huh7 cells. Lysine acetyltransferase 5 (KAT5) expression was significantly upregulated in HCC tissues. In addition, BRD8 knockdown obviously reduced the level of KAT5 protein and the mRNA expression of KAT5-induced genes in both Hep3B and Huh7 cells. KAT5 knockdown showed similar effects as BRD8 silencing on HCC cell proliferation and apoptosis. The expression of miR-876-3p was downregulated and inversely correlated with the BRD8 mRNA level in HCC tissues. The expression of BRD8 protein in HCC cells was reduced by the overexpression of miR-876-3p and enhanced by the knockdown of miR-876-3p. A luciferase reporter assay demonstrated that BRD8 was a direct target of miR-876-3p. Notably, in HCC cells, the ectopic expression of miR-876-3p inhibited proliferation and induced apoptosis. In conclusion, BRD8, which was negatively regulated by miR-876-3p, facilitated proliferation and inhibited apoptosis in HCC cells by modulating KAT5.
Collapse
Affiliation(s)
- Zhaoxiang Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Department of General Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, PR China.
| | - Tianxiang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - Huanye Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - Cheng Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
226
|
Wu Z, Wei ZH, Chen SH. LncUBE2R2-AS1 acts as a microRNA sponge of miR-302b to promote HCC progression via activation EGFR-PI3K-AKT signaling pathway. Cell Cycle 2020; 19:2426-2435. [PMID: 32835579 DOI: 10.1080/15384101.2020.1795991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a main cause of cancer-related deaths globally. Long non-coding RNAs (lncRNAs) play important roles in diverse cancers. LncRNA-UBE2R2-AS1 has been reported to promote apoptosis in glioma cell. However, the expressions, functions, and mechanisms of action of UBE2R2-AS1 in HCC are still unclear. UBE2R2-AS1 is increased in HCC tissues and cell lines. Increased expression of UBE2R2-AS1 is associated with large tumor size, multiple tumor number, advanced TNM stage, and poor survival of HCC patients. Functional experiments showed that knockdown UBE2R2-AS1 inhibited HCC growth and metastasis through in vitro and in vivo experiments. Regarding the mechanism, UBE2R2-AS1/miR-302b/EGFR established the ceRNA network involved in the modulation of cell progression of HCC cells via activation of PI3K-AKT signaling pathway. Overall, UBE2R2-AS1 may exhibit an oncogenic function in HCC via acting as a sponge for miR-302b to up-regulate EGFR, and may serve as a potential therapeutic target and a prognostic biomarker for HCC patients.
Collapse
Affiliation(s)
- Zhe Wu
- Department of Hepatology Surgery, 900 Hospital of the Joint Logistics Team , Fuzhou, Fujian, China
| | - Zhi-Hong Wei
- Department of Hepatology Surgery, 900 Hospital of the Joint Logistics Team , Fuzhou, Fujian, China
| | - Shao-Hua Chen
- Department of Hepatology Surgery, 900 Hospital of the Joint Logistics Team , Fuzhou, Fujian, China
| |
Collapse
|
227
|
Shen C, Wang Y, Wu Z, Da L, Gao S, Xie L, Qie Y, Wang Y, Zhang Z, Tian D, Hu H. Long noncoding RNAs, ENST00000598996 and ENST00000524265, are correlated with favorable prognosis and act as potential tumor suppressors in bladder cancer. Oncol Rep 2020; 44:1831-1850. [PMID: 33000254 PMCID: PMC7550980 DOI: 10.3892/or.2020.7733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) is a serious malignancy worldwide due to its distant metastasis and high recurrence rates. Increasing evidence has indicated that dysregulated long non-coding RNAs (lncRNAs) are involved in tumorigenesis and progression in multiple malignancies. However, their clinical significances, biological functions and molecular mechanisms in BC remain poorly understood. Hence, the present study investigated the expression profile of lncRNAs and mRNAs in five BC tissues and the corresponding adjacent normal specimens using high-throughput RNA sequencing (RNA-seq). A total of 103 differentially expressed (DE) lncRNAs were identified, including 35 upregulated and 68 downregulated ones in BC tissues. Similarly, a total of 2,756 DE-mRNAs were detected, including 1,467 upregulated and 1,289 downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, and lncRNA-miRNA-mRNA network analyses suggested that these dysregulated lncRNAs are potentially implicated in the onset and progression of BC. Subsequently, four lncRNAs (upregulated ENST00000433108; downregulated ENST00000598996, ENST00000524265 and ENST00000398461) and two mRNAs (upregulated CCNB1 and CDK1) in 64 pairs of BC and adjacent normal tissues and four BC cell lines were detected using reverse transcription-quantitative PCR and these results were consistent with the sequencing data. Additionally, Fisher's exact test, Kaplan-Meier plots, and Cox regression analyses were used for elucidating the clinical values of ENST00000598996 and ENST00000524265. Furthermore, a receiver operating characteristic curve was constructed to assess their diagnostic values. The low expression level of ENST00000598996 and ENST00000524265 was correlated with unfavorable clinicopathological parameters, and shorter progression-free and overall survival time, whereas, ENST00000433108 was not associated with either. The in vitro functional experiments also revealed that the overexpression of ENST00000598996 and ENST00000524265 decreased the proliferation, migration, and invasion abilities of BC cells. Collectively, the results of the present study provide a novel landscape of lncRNA and mRNA expression profiles in BC. In addition, the results also indicated that ENST00000598996 and ENST00000524265 may serve as tumor suppressors, potential diagnostic biomarkers and prognostic predictors for patients with BC.
Collapse
Affiliation(s)
- Chong Shen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Yujie Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Zhouliang Wu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - La Da
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Shen Gao
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Linguo Xie
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Yunkai Qie
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Yinlei Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Zhe Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Dawei Tian
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Hailong Hu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
228
|
Zhao W, Jiang X, Yang S. lncRNA TUG1 Promotes Cell Proliferation, Migration, and Invasion in Hepatocellular Carcinoma via Regulating miR-29c-3p/ COL1A1 Axis. Cancer Manag Res 2020; 12:6837-6847. [PMID: 32821161 PMCID: PMC7425090 DOI: 10.2147/cmar.s256624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Background Taurine upregulated gene 1 (TUG1) has been recognized as a novel oncogenic gene. The current study was established to explore the function and regulatory mechanism of TUG1 in hepatocellular carcinoma (HCC). Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of TUG1, miR-29c-3p, and COL1A1 in tissues and cell lines. MTT assay, wound-healing and transwell assay were utilized for the detection of cell viability, migration and invasion, respectively. The interactions between miR-29c-3p and TUG1/COL1A1 were predicted by starBase v2.0 (http://starbase.sysu.edu.cn/) and verified by the dual-luciferase reporter or RNA immunoprecipitation assay. Western blot assay was performed to determine the protein levels of COL1A1, cyclin D1, E-cadherin, N-cadherin, Bcl-2, and Bax. Results Dramatically increased expression of TUG1 was noticed in HCC tissues and cell lines. TUG1 knockdown restrained the proliferation, migration, and invasion, and promoted the apoptosis of HCC cells. TUG1 targeted miR-29c-3p and inhibited miR-29c-3p expression. Overexpression of miR-29c-3p inhibited the proliferation, migration and invasion of HCC cells. MiR-29c-3p directly targeted COL1A1 and down-regulated COL1A1 expression. In addition, downregulation of miR-29c-3p and upregulation of COL1A1 both reversed the effects of TUG1 knockdown on the proliferation, apoptosis, migration, and invasion of HCC cells. Conclusion TUG1 could promote the proliferation, migration and invasion of HCC cells through regulating miR-29c-3p/COL1A1 axis. This novel finding might provide a latent target for the treatment of HCC.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Functional Examination, The Sixth People's Hospital of Qingdao, Qingdao City, Shandong Province 266033, People's Republic of China
| | - Xue Jiang
- Health Examination Center, The Sixth People's Hospital of Qingdao, Qingdao City, Shandong Province 266033, People's Republic of China
| | - Shuxia Yang
- Health Examination Center, The Sixth People's Hospital of Qingdao, Qingdao City, Shandong Province 266033, People's Republic of China
| |
Collapse
|
229
|
Han H, Shao Q, Liu X. LINC00441 promotes cervical cancer progression by modulating miR-450b-5p/RAB10 axis. Cancer Cell Int 2020; 20:368. [PMID: 32774162 PMCID: PMC7409438 DOI: 10.1186/s12935-020-01400-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background As one of the most common gynaecological malignant tumors, cervical cancer (CC) has become an important public health issue. Emerging evidence has revealed long non-coding RNAs (lncRNAs) are crucial regulators of biological functions in cancers, including CC. And the oncogenic role of LINC00441 has been verified in hepatocellular carcinoma (HCC). But the molecular mechanism and biological functions of LINC00441 in CC remain unknown. Methods qRT-PCR analysis detected the expression of genes in CC tissues or cells. CCK-8, colony formation, flow cytometry, transwell, western blot assays as well as animal studies were conducted to analyze the function of LINC00441 in CC. Luciferase reporter, RIP and RNA pull down assays were applied to verify the binding relations among the indicated genes. Results LINC00441 was upregulated in CC tissues and cells. Further, LINC00441 depletion repressed cell proliferation and motility in vitro as well as tumor growth in vivo. LINC00441 could sponge miR-450b-5p to upregulate RAB10 expression. Finally, miR-450b-5p inhibitor or RAB10 upregulation counteracted LINC00441 knockdown-mediated function on the development of CC. Conclusions LINC00441 drives CC progression by targeting miR-450b-5p/RAB10 axis, which might provide new idea for researching CC-related molecular mechanism.
Collapse
Affiliation(s)
- Haiyan Han
- Reproductive Center, Affiliated Hospital of Weifang Medical College, No. 2428 Yuhe Road, Kuiwen District, Weifang, 261031 Shandong China
| | - Qingchun Shao
- Obstetrical Department 1, Affiliated Hospital of Weifang Medical College, No. 2428 Yuhe Road, Kuiwen District, Weifang, 261031 Shandong China
| | - Xuejie Liu
- Reproductive Center, Affiliated Hospital of Weifang Medical College, No. 2428 Yuhe Road, Kuiwen District, Weifang, 261031 Shandong China
| |
Collapse
|
230
|
Wang K, Xu J, Zhao L, Liu S, Liu C, Zhang L. Prognostic lncRNA, miRNA, and mRNA Signatures in Papillary Thyroid Carcinoma. Front Genet 2020; 11:805. [PMID: 32849806 PMCID: PMC7417634 DOI: 10.3389/fgene.2020.00805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
The current focus in the treatment of papillary thyroid carcinoma (PTC) is tumor progression. The aim of this study was to build RNA-based classifiers and develop a comprehensive model to provide progression-free interval (PFI) risk prediction for PTC. The RNAseq data, miRNAseq data, and clinical information of PTC were downloaded from The Cancer Genome Atlas database. Based on the differently expressed RNAs, the least absolute shrinkage and selection operator (LASSO) Cox regression model was utilized to build the RNA-based classifiers for PFI of the patients with PTC. A 6-messenger RNA (mRNA)-based classifier, a 5-long non-coding RNA (lncRNA)-based classifier, and a 4-microRNA (miRNA)-based classifier were constructed to predict the PFI. Patients with high risk based on the constructed RNA-based classifiers had worse prognosis in Kaplan–Meier curve analysis with log-rank test. The areas under the curves of the first, third, and fifth years in the training and testing set were 0.83, 0.82, and 0.82 and 0.67, 0.72, and 0.73 for the 6-mRNA-based classifier, respectively; 0.75, 0.84, and 0.85 and 0.71, 0.67, and 0.71 for the 5-lncRNA-based classifier, respectively; and 0.70, 0.77, and 0.79 and 0.74, 0.67, and 0.66 for the 4-miRNA-based classifier, respectively. The prediction capability of the three RNA-based classifiers was superior to the TNM stage system. Furthermore, a nomogram based on the verified independent prognostic factors was established for the prognostic prediction. The C-index and calibration plots indicated good predictive accuracy of the nomogram. In summary, the 6-mRNA-based classifier and 5-lncRNA-based classifier constructed in this study were independent prognostic factors for PTC.
Collapse
Affiliation(s)
- Kun Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Zhao
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyang Liu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenguang Liu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
231
|
Sun X, Qian Y, Wang X, Cao R, Zhang J, Chen W, Fang M. LncRNA TRG-AS1 stimulates hepatocellular carcinoma progression by sponging miR-4500 to modulate BACH1. Cancer Cell Int 2020; 20:367. [PMID: 32774161 PMCID: PMC7401190 DOI: 10.1186/s12935-020-01440-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Background T cell receptor gamma locus antisense RNA 1 (TRG-AS1) has been reported to involve in the progression of glioblastoma, however the role and its underlying molecular mechanism in hepatocellular carcinoma (HCC) remain unknown. Methods Quantitative real-time polymerase chain reaction (RT-qPCR) was applied to detect TRG-AS1 expression in HCC cells. Besides, the proliferation abilities of HCC cells were assessed by colony formation and EdU assays. The migratory and invasive abilities of HCC cells were examined by transwell assays. Imunofluorescence staining (IF) was used to analyze the epithelial–mesenchymal transitions (EMT). The interaction among TRG-AS1, miR-4500 and BTB domain and CNC homolog 1 (BACH1) were proofed by means of RIP and RNA pull down and luciferase reporter assays. Results TRG-AS1 was conspicuously overexpressed in HCC cells. TRG-AS1 silencing apparently suppressed HCC cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT). Mechanism exploration revealed that TRG-AS1 acted as a molecular sponge of miR-4500 to regulate BACH1. MiR-4500 silencing or BACH1 overexpression in BACH1-downregulated cells fully rescued cell proliferation migration, invasion and EMT progress. Conclusion TRG-AS1 regulates HCC progression by targeting miR-4500/BACH1 axis.
Collapse
Affiliation(s)
- Xuehu Sun
- Department of Emergency Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230000 Anhui China
| | - Yeben Qian
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230000 Anhui China
| | - Xingyu Wang
- Department of Emergency Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230000 Anhui China
| | - Rongge Cao
- Department of Emergency, the First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001 Anhui China
| | - Jianlin Zhang
- Department of Emergency Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230000 Anhui China
| | - Weidong Chen
- Department of Emergency Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230000 Anhui China
| | - Maoyong Fang
- Department of Emergency Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230000 Anhui China
| |
Collapse
|
232
|
Guo R, Qin Y. LEMD1-AS1 Suppresses Ovarian Cancer Progression Through Regulating miR-183-5p/TP53 Axis. Onco Targets Ther 2020; 13:7387-7398. [PMID: 32801762 PMCID: PMC7395824 DOI: 10.2147/ott.s250850] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022] Open
Abstract
Background/Aims Long noncoding RNAs (lncRNAs) play a critical role in tumorigenesis and progression of ovarian cancer (OC). This study focused on the function and potential mechanism toward LEMD1-AS1 (LEMD1 antisense RNA 1) in the progression of ovarian cancer. Materials and Methods The expression of LEMD1-AS1 in OC tissues was evaluated in TCGA and Gene Expression Omnibus datasets (GSE119056) and confirmed in OC cell lines via qRT-PCR (quantitative real-time polymerase chain reaction). Then, the location of LEMD1-AS1 in the cytoplasmic and nuclear RNAs extracted from OV cells was detected by qRT-PCR. Cell Counting Kit-8 (CCK-8), colony formation, wound-healing and transwell assays were applied to examine cell viability, proliferation, migration and invasion, respectively. Further, the effect of LEMD1-AS1 on OC tumor growth was determined via subcutaneous xenotransplanted tumor model. The potential target for LEMD1-AS1 was validated via dual-luciferase activity assay, RNA pull-down and RNA immunoprecipitation. Results The expression of LEMD1-AS1 was decreased in OC tissues and cell lines. Forced overexpression of LEMD1-AS1 inhibited the proliferation, migration and invasion of ovarian cancer cells and transplanted tumor growth in nude mice. We found that LEMD1-AS1 was mainly located in the cytoplasm of OC cells and contained complementary sites of miR-183-5p. Mechanistically, our results showed that LEMD1-AS1 could directly interact with miR-183-5p and tumor protein p53 (TP53). The anti-tumor role of LEMD1-AS1 on OC progression depended on miR-183-5p-mediated TP53 expression. Conclusion LEMD1-AS1 suppresses OC progression through sponging miR-183-5p and regulation of TP53, suggesting a novel biomarker and target for OC.
Collapse
Affiliation(s)
- Ruowen Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Yide Qin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| |
Collapse
|
233
|
Mishan MA, Tabari MAK, Parnian J, Fallahi J, Mahrooz A, Bagheri A. Functional mechanisms of miR-192 family in cancer. Genes Chromosomes Cancer 2020; 59:722-735. [PMID: 32706406 DOI: 10.1002/gcc.22889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
By growing research on the mechanisms and functions of microRNAs (miRNAs, miRs), the role of these noncoding RNAs gained more attention in healthcare. Due to the remarkable regulatory role of miRNAs, any dysregulation in their expression causes cellular functional impairment. In recent years, it has become increasingly apparent that these small molecules contribute to development, cell differentiation, proliferation, apoptosis, and tumor growth. In many studies, the miR-192 family has been suggested as a potential prognostic and diagnostic biomarker and even as a possible therapeutic target for several cancers. However, the mechanistic effects of the miR-192 family on cancer cells are still controversial. Here, we have reviewed each family member of the miR-192 including miR-192, miR-194, and miR-215, and discussed their mechanistic roles in various cancers.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Parnian
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Jafar Fallahi
- Molecular Medicine Department, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolkarim Mahrooz
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
234
|
Javed Z, Khan K, Iqbal MZ, Ahmad T, Raza Q, Sadia H, Raza S, Salehi B, Sharifi-Rad J, Cho WC. Long non-coding RNA regulation of TRAIL in breast cancer: A tangle of non-coding threads. Oncol Lett 2020; 20:37. [PMID: 32802161 PMCID: PMC7412712 DOI: 10.3892/ol.2020.11896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is a complex disease posing a serious threat to the female population worldwide. A complex molecular landscape and tumor heterogeneity render breast cancer cells resistant to drugs and able to promote metastasis and invasiveness. Despite the recent advancements in diagnostics and drug discovery, finding an effective cure for breast cancer is still a major challenge. Positive and negative regulation of apoptosis has been a subject of extensive study over the years. Numerous studies have shed light on the mechanisms that impede the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling cascade. Long non-coding RNAs (lncRNAs) have been implicated in the orchestration, development, proliferation, differentiation and metastasis of breast cancer. However, the roles of lncRNAs in fine-tuning apoptosis regulating machinery in breast cancer remain to be elucidated. The present review illuminates the roles of these molecules in the regulation of breast cancer and the interplay between lncRNA and TRAIL in breast cancer. The present review also attempts to reveal their role in the regulation of apoptosis in breast cancer appears a promising approach for the development of new diagnostic and therapeutic regimens.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Punjab 54792, Pakistan
| | - Khushbukhat Khan
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab 44000, Pakistan
| | - Muhammad Zaheer Iqbal
- Center for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab 53700, Pakistan
| | - Touqeer Ahmad
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Punjab 54000, Pakistan
| | - Qamar Raza
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Punjab 54000, Pakistan
| | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Balochistan 87100, Pakistan
| | - Shahid Raza
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Punjab 54792, Pakistan
| | - Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam 44340847, Iran.,Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, P.R. China
| |
Collapse
|
235
|
Li H, Jiang J. LncRNA MCM3AP-AS1 promotes proliferation, migration and invasion of oral squamous cell carcinoma cells via regulating miR-204-5p/FOXC1. J Investig Med 2020; 68:1282-1288. [PMID: 32690597 DOI: 10.1136/jim-2020-001415] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2020] [Indexed: 12/18/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a lethal malignancy. It is reportedly demonstrated that long non-coding RNA (lncRNA) participates in the development of OSCC. The purpose of this study was to clarify the function and possible molecular mechanisms of lncRNA MCM3AP antisense RNA 1 (lncRNA MCM3AP-AS1) in OSCC. Quantitative real-time PCR (qRT-PCR) was adopted to investigate MCM3AP-AS1 expressions in OSCC tissues and cells. The proliferation, migration and invasion of HN-6 and SCC-9 cells were probed by cell counting kit-8 and Transwell assays, respectively. Dual luciferase reporter gene assay, Pearson's correlation analysis, qRT-PCR and western blot were used to detect the binding relationship among miR-204-5 p, MCM3AP-AS1 and forkheadbox C1 (FOXC1). MCM3AP-AS1 expression was elevated in OSCC tissues and cell lines. Overexpression of MCM3AP-AS1 facilitated the proliferation, migration and invasion of OSCC cells, while the knockdown of MCM3AP-AS1 suppressed these malignant phenotypes. Besides, MCM3AP-AS1 impeded miR-204-5 p by binding with it. MCM3AP-AS1 could also upregulate the expression of FOXC1 via repressing miR-204-5 p.MCM3AP-AS1 promotes the progression of OSCC cells by adsorbing miR-204-5 p and upregulating FOXC1 expressions.
Collapse
Affiliation(s)
- Hui Li
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Junhong Jiang
- Department of Stomatology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
236
|
Guo C, Gong M, Li Z. Knockdown of lncRNA MCM3AP-AS1 Attenuates Chemoresistance of Burkitt Lymphoma to Doxorubicin Treatment via Targeting the miR-15a/EIF4E Axis. Cancer Manag Res 2020; 12:5845-5855. [PMID: 32765087 PMCID: PMC7371474 DOI: 10.2147/cmar.s248698] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose The long-noncoding RNA MCM3AP-AS1 has been shown to participate in the tumorigenesis and growth of several types of cancer, but little is known about the role of MCM3AP-AS1 in the chemoresistance of lymphoma. Methods A series of patients with Burkitt lymphoma were enrolled for clinical analysis. Daudi and Namalwa cells were used for further experiments. CCK-8 and apoptosis assays were used to assess the response to doxorubicin. Mitochondrial membrane potential assays and high-resolution respirometry were used to assess mitochondrial function. Western blotting was used to detect the expression of certain molecules. Luciferase assays and microRNA transfection were used to clarify the regulatory mechanisms of MCM3AP-AS1. An in vivo model using BALB/c nude mice was utilized to investigate the effects of MCM3AP-AS1 on cell proliferation and tumor growth. Results The expression level of MCM3AP-AS1 was increased in tumors compared with normal lymph nodes, which indicated poor prognosis in patients with Burkitt lymphoma. Moreover, compared with siNC transfection, MCM3AP-AS1 knockdown decreased cell viability and increased apoptosis rates upon doxorubicin treatment compared with siNC. Further studies indicated that upregulation of several antiapoptotic factors, downstream of EIF4E, was partially responsible for MCM3AP-AS1-induced chemoresistance. Moreover, miR-15a functioned as a link between MCM3AP-AS1 and EIF4E, and was sponged by MCM3AP-AS1. Finally, we showed that the MCM3AP-AS1/miR-15a/EIF4E axis regulated the chemoresistance of lymphoma cells in vitro and in vivo. Conclusion MCM3AP-AS1/miR-15a/EIF4E axis plays a role in the chemoresistance of Burkitt lymphoma, and it might become a promising target for lymphoma therapeutics.
Collapse
Affiliation(s)
- Chao Guo
- Department of Hematology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Ming Gong
- Department of Hematology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Zhenling Li
- Department of Hematology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| |
Collapse
|
237
|
Wu J, Lv Y, Li Y, Jiang Y, Wang L, Zhang X, Sun M, Zou Y, Xu J, Zhang L. MCM3AP-AS1/miR-876-5p/WNT5A axis regulates the proliferation of prostate cancer cells. Cancer Cell Int 2020; 20:307. [PMID: 32684844 PMCID: PMC7359251 DOI: 10.1186/s12935-020-01365-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/18/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although the fact that long non-coding RNA MCM3AP antisense RNA 1 (MCM3AP-AS1) is oncogenic in several cancers is well documented, very few researchers investigate its expression and function in prostate cancer. METHODS Paired prostate cancer samples were selected, and expressions of MCM3AP-AS1, miR-876-5p and WNT5A were examined by qRT-PCR. MCM3AP-AS1 shRNA was transfected into LNCaP and PC-3 cell lines, and then the proliferative activity and apoptosis of cancer cells were detected by CCK-8 assay, EdU assay and flow cytometry analysis, respectively. qRT-PCR and Western blot were used to analyze the changes of miR-876-5p and WNT5A. Luciferase reporter gene assay was employed to determine the regulatory relationship between miR-876-5p and MCM3AP-AS1, miR-876-5p and WNT5A. RESULTS MCM3AP-AS1 was significantly up-regulated in cancerous tissues of prostate cancer samples, positively correlated with the expression of WNT5A, while negatively related with miR-876-5p. After transfection of MCM3AP-AS1 shRNA into prostate cancer cells, the proliferative ability of cancer cells was signally inhibited, but the apoptosis of cancer cells was increased. MCM3AP-AS1 shRNA could reduce the expression of WNT5A on both mRNA and protein levels. Besides, MCM3AP-AS1 was identified as a sponge of miR-876-5p. WNT5A was validated as a target gene of miR- 876-5p. CONCLUSION MCM3AP-AS1 is abnormally up-regulated in prostate cancer tissues and can modulate the proliferation and apoptosis of prostate cancer cells, which has the potential to be the "ceRNA" to regulate the expression of WNT5A by targeting miR-876-5p.
Collapse
Affiliation(s)
- Jie Wu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Jiangsu Road, South District, Qingdao, 266003 Shandong China
| | - Yalin Lv
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003 China
| | - Yujun Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Jiangsu Road, South District, Qingdao, 266003 Shandong China
| | - Yanxia Jiang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Jiangsu Road, South District, Qingdao, 266003 Shandong China
| | - Lili Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Jiangsu Road, South District, Qingdao, 266003 Shandong China
| | - Xiangyan Zhang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Jiangsu Road, South District, Qingdao, 266003 Shandong China
| | - Mengqi Sun
- Department of Pathology, The Affiliated Hospital of Qingdao University, Jiangsu Road, South District, Qingdao, 266003 Shandong China
| | - Yuwei Zou
- Department of Pathology, The Affiliated Hospital of Qingdao University, Jiangsu Road, South District, Qingdao, 266003 Shandong China
| | - Jin Xu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Jiangsu Road, South District, Qingdao, 266003 Shandong China
| | - Li Zhang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Jiangsu Road, South District, Qingdao, 266003 Shandong China
| |
Collapse
|
238
|
Fu D, Shi Y, Liu JB, Wu TM, Jia CY, Yang HQ, Zhang DD, Yang XL, Wang HM, Ma YS. Targeting Long Non-coding RNA to Therapeutically Regulate Gene Expression in Cancer. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:712-724. [PMID: 32771923 PMCID: PMC7412722 DOI: 10.1016/j.omtn.2020.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/12/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023]
Abstract
Long-chain non-coding RNAs (lncRNAs) are RNA molecules with a length greater than 200 nt and no function of encoding proteins. lncRNAs play a precise regulatory function at different levels of transcription and post-transcription, and they interact with various regulatory factors to regulate gene expression, and then participate in cell growth, differentiation, apoptosis, and other life processes. In recent years, studies have shown that the abnormal expression of lncRNAs is closely related to the occurrence and development of tumors, which is expected to become an effective biomarker in tumor diagnosis. The sequencing analysis of mutations in the whole tumor genome suggests that mutations in non-coding regions may play an important role in the occurrence and development of tumors. Therefore, in-depth study of lncRNAs is helpful to clarify the molecular mechanism of tumor occurrence and development and to provide new targets for tumor diagnosis and treatment. This review introduces the molecular mechanism and clinical application prospect of lncRNAs affecting tumor development from the perspective of gene expression and regulation.
Collapse
Affiliation(s)
- Da Fu
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China; Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Yi Shi
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China
| | - Ting-Miao Wu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Cheng-You Jia
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hui-Qiong Yang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Dan-Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hui-Min Wang
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu-Shui Ma
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China; Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
239
|
Li Z, Feng Y, Zhang Z, Cao X, Lu X. TMPO-AS1 promotes cell proliferation of thyroid cancer via sponging miR-498 to modulate TMPO. Cancer Cell Int 2020; 20:294. [PMID: 32669970 PMCID: PMC7346673 DOI: 10.1186/s12935-020-01334-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/09/2020] [Indexed: 01/14/2023] Open
Abstract
Background Thyroid cancer (TC) is the most frequent endocrine malignancy. Long noncoding RNAs (lncRNAs) have been confirmed to act as significant roles in tumor development. The role of lncRNA TMPO-AS1 in TC is still unclear, so it remains to be explored. The aim of the research is to investigate the role and regulatory mechanism of TMPO-AS1 in TC. Methods TMPO-AS1 and TMPO expression in TC tumors and cells was detected by TCGA database and QRT-PCR assay respectively. CCK-8, EDU, TUNEL and western blot assays were conducted to identify the biological functions of TMPO-AS1 in TC. Luciferase reporter and RNA pull down assays were conducted to measure the interaction among TMPO-AS1, TMPO and miR-498. Results TMPO-AS1 was overexpressed in TC tissues and cell lines. Knockdown of TMPO-AS1 suppressed cell growth and accelerated cell apoptosis in TC. Furthermore, downregulation of TMPO-AS1 suppressed TMPO expression in TC. The data suggested that TMPO expression was upregulated in TC tissues and cell lines and was positively correlated with TMPO-AS1 expression in TC. Furthermore, the expression of miR-498 presented low expression in TC cells. And miR-498 expression was negatively regulated by TMPO-AS1, meanwhile, TMPO expression was negatively regulated by miR-498 in TC cells. Besides, it was confirmed that TMPO-AS1 could bind with miR-498 and TMPO in TC cells. In addition, it was validated that TMPO-AS1 elevated the levels of TMPO via sponging miR-498 in TC cells. Conclusions TMPO-AS1 promotes cell proliferation in TC via sponging miR-498 to modulate TMPO.
Collapse
Affiliation(s)
- Zhenyu Li
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhongyuan District, Zhengzhou, 450000 Henan China.,Department of Thyroid Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471000 Henan China
| | - Yun Feng
- Department of Thyroid Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471000 Henan China
| | - Zhen Zhang
- Department of Thyroid Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471000 Henan China
| | - Xiaozhong Cao
- Department of Thyroid Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471000 Henan China
| | - Xiubo Lu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhongyuan District, Zhengzhou, 450000 Henan China
| |
Collapse
|
240
|
Tang SJ, Yang JB. LncRNA SNHG14 aggravates invasion and migration as ceRNA via regulating miR-656-3p/SIRT5 pathway in hepatocellular carcinoma. Mol Cell Biochem 2020; 473:143-153. [PMID: 32607966 DOI: 10.1007/s11010-020-03815-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/20/2020] [Indexed: 12/28/2022]
Abstract
Recurrence and adverse events after hepatocellular carcinoma (HCC) treatment occur frequently even treated with the most efficient therapy for HCC, liver transplantation. Therefore, better understanding of HCC progression is required to advance the therapeutic strategy of HCC. This study aims to explore the effect and mechanism of small nucleolar RNA host gene 14 (SNHG14) on HCC cell invasion and migration. SNHG14 and miR-656-3p expression in HCC tissues and cells were examined by qRT-PCR. After co-transfection with sh-SNHG14, miR-656-3p inhibitor, miR-656-3p mimic, si-SIRT5, pcDNA3.1-SIRT5 and corresponding negative controls, HepG2 and MHCC97H cell proliferation, invasion and migration were detected. Then the expression levels of SNHG14, miR-656-3p and SIRT5 were measured by qRT-PCR and Western blot. Luciferases reporter gene assay and RNA pull down identified the relation between SNHG14 and miR-656-3p and between miR-656-3p and SIRT5. SNHG14 was upregulated and miR-656-3p was downregulated in HCC cells. Inhibition of SNHG14 could inhibit HepG2 and MHCC97H cell proliferation, invasion and migration. Upregulation of miR-656-3p or knockdown of SIRT5 significantly suppressed the biological process of HepG2 and MHCC97H cells. SNHG14 directly acted on miR-656-3p and SIRT5 was a target gene of miR-656-3p. miR-656-3p inhibitor or pcDNA3.1-SIRT5 could reverse the inhibition of sh-SNHG14 on cell proliferation, invasion and migration of HCC cells. SNHG14 promotes HCC cell invasion and migration through regulating miR-656-3p/SIRT5 axis.
Collapse
Affiliation(s)
- Shu-Juan Tang
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, No. 139, Mid Renmin Road, Furong District, Changsha, Hunan, 410011, People's Republic of China
| | - Jing-Bo Yang
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, No. 139, Mid Renmin Road, Furong District, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
241
|
Qiu L, Ma Y, Yang Y, Ren X, Wang D, Jia X. Pro-Angiogenic and Pro-Inflammatory Regulation by lncRNA MCM3AP-AS1-Mediated Upregulation of DPP4 in Clear Cell Renal Cell Carcinoma. Front Oncol 2020; 10:705. [PMID: 32714856 PMCID: PMC7344272 DOI: 10.3389/fonc.2020.00705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/15/2020] [Indexed: 12/20/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) represents the most common type of renal cell carcinoma (RCC) in adults, in addition to the worst prognosis among the common epithelial kidney tumors. Inflammation and angiogenesis seem to potentiate tumor growth and metastasis of the malignancy. The current study explored the contributions of the lncRNA MCM3AP-AS1 in tumor-associated inflammation and angiogenesis in ccRCC with a specific focus on its transcriptional regulation and its interactions with transcription factor E2F1 and DPP4. Tumor tissues and matched adjacent non-tumor tissues were collected from 78 ccRCC patients. Methylation-specific PCR and ChIP assays were applied to detect the methylation at the promoter region of MCM3AP-AS1. Dual-luciferase reporter assay, RIP, RNA pull-down, and ChIP assays were employed to confirm the interactions between MCM3AP-AS1, E2F1, and DPP4. Nude mice were subcutaneously xenografted with human ccRCC cells. Cell proliferation was evaluated by CCK-8 assays and EDU staining in ccRCC cells in vitro and by immunohistochemical staining of Ki67 in vivo. Inflammation was examined by detecting the secretion of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6). Pro-angiogenic ability of ccRCC cells was assessed by the co-culture with human umbilical vein endothelial cells (HUVEC) in vitro and by microvessel density (MVD) measurements and angiogenesis in the chicken chorioallantoic membrane. MCM3AP-AS1 was highly-expressed in ccRCC and associated with poor patient survival. Demethylation of MCM3AP-AS1 was noted in ccRCC tissues and cells. Over-expression of MCM3AP-AS1 enhanced cell proliferation, the release of pro-inflammatory cytokines, and the tube formation of HUVECs in cultured human Caki-1 and 786-O cells. MCM3AP-AS1 was shown to enhance the E2F1 enrichment at the DPP4 promoter, to further increase the expression of DPP4. Knockdown of DPP4 could abate pro-angiogenic and pro-inflammatory abilities of MCM3AP-AS1 in ccRCC cells. Pro-angiogenic and pro-inflammatory abilities of MCM3AP-AS1 in vivo were confirmed in mice subcutaneously xenografted with human ccRCC cells. Our findings demonstrate a novel mechanism by which lncRNA MCM3AP-AS1 exerts pro-angiogenic and pro-inflammatory effects, highlighting the potential of MCM3AP-AS1 as a promising target for treating ccRCC.
Collapse
Affiliation(s)
- Ling Qiu
- Department of Tumor Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Yan Ma
- Department of Tumor Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Yanming Yang
- Department of Tumor Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Xiaojun Ren
- Department of Tumor Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Dongzhou Wang
- Department of Tumor Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Xiaojing Jia
- Department of Tumor Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
242
|
Sun P, Feng Y, Guo H, Li R, Yu P, Zhou X, Pan Z, Liang Y, Yu B, Zheng Y, Shi Y, Wen L, Wei M, Chen Y. MiR-34a Inhibits Cell Proliferation and Induces Apoptosis in Human Nasopharyngeal Carcinoma by Targeting lncRNA MCM3AP-AS1. Cancer Manag Res 2020; 12:4799-4806. [PMID: 32606969 PMCID: PMC7319531 DOI: 10.2147/cmar.s245520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/26/2020] [Indexed: 01/15/2023] Open
Abstract
Introduction MCM3AP-AS1 has been characterized as an oncogenic lncRNA in several types of cancer, while its role in nasopharyngeal carcinoma (NPC) is unknown. This study aimed to investigate the role of MCM3AP-AS1 in NPC. Patients and Methods Paired NPC tissues and non-tumor tissues were collected from 55 NPC patients. Expression of MCM3AP-AS1 and miR-34a in paired tissues was analyzed by RT-qPCR. Interactions between MCM3AP-AS1 and miR-34a were analyzed by overexpression experiments. The roles of MCM3AP-AS1 and miR-34a in regulating NPC cell proliferation and apoptosis were explored by cell proliferation assay and cell apoptosis assay, respectively. Results Our bioinformatics analysis showed that MCM3AP-AS1 may be targeted by miR-34a, which is a well-studied tumor suppressor miRNA. In this study, we showed that miR-34a was downregulated and MCM3AP-AS1 was upregulated in NPC. An inverse correlation between the expression of MCM3AP-AS1 and miR-34a was found across NPC tissue samples. High expression level of MCM3AP-AS1 and low levels of miR-34a in NPC tissues predicted the poor survival. In NPC cells, overexpression of MCM3AP-AS1 did not affect the expression of miR34a, while overexpression of miR-34a led to downregulated MCM3AP-AS1. Cell proliferation and apoptosis assay showed that overexpression of miR-34a reduced the enhancing effects of overexpressing MCM3AP-AS1 on cell proliferation and the inhibitory effects on cell apoptosis. Conclusion MiR-34a inhibits cell proliferation and induces apoptosis in human NPC by targeting MCM3AP-AS1.
Collapse
Affiliation(s)
- Piyun Sun
- Department of Oncology, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou City, Guangxi Province 545001, People's Republic of China
| | - Yuchen Feng
- Department of Oncology, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou City, Guangxi Province 545001, People's Republic of China
| | - Hui Guo
- Department of Oncology, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou City, Guangxi Province 545001, People's Republic of China
| | - Rong Li
- Department of Oncology, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou City, Guangxi Province 545001, People's Republic of China
| | - Peng Yu
- Department of Oncology, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou City, Guangxi Province 545001, People's Republic of China
| | - Xingguang Zhou
- Department of Oncology, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou City, Guangxi Province 545001, People's Republic of China
| | - Zhige Pan
- Department of Oncology, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou City, Guangxi Province 545001, People's Republic of China
| | - Yanyan Liang
- Department of Oncology, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou City, Guangxi Province 545001, People's Republic of China
| | - Bihan Yu
- Department of Oncology, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou City, Guangxi Province 545001, People's Republic of China
| | - Yanyi Zheng
- Department of Oncology, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou City, Guangxi Province 545001, People's Republic of China
| | - Yu Shi
- Department of Oncology, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou City, Guangxi Province 545001, People's Republic of China
| | - Lingbo Wen
- Department of Oncology, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou City, Guangxi Province 545001, People's Republic of China
| | - Minmei Wei
- Department of Oncology, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou City, Guangxi Province 545001, People's Republic of China
| | - Yanhua Chen
- Department of Oncology, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou City, Guangxi Province 545001, People's Republic of China
| |
Collapse
|
243
|
Liu Y, Li X, Zhang H, Huang Y. MIAT inhibits proliferation of cervical cancer cells through regulating miR-150-5p. Cancer Cell Int 2020; 20:242. [PMID: 32549789 PMCID: PMC7296772 DOI: 10.1186/s12935-020-01338-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/09/2020] [Indexed: 12/27/2022] Open
Abstract
Background To characterize the MIAT expression in cervical cancer and elucidate its mechanistic involvement in the tumor biology of this disease. Methods The relative expression of MIAT and miR-150 was determined by real-time PCR. Cell proliferation was measured by the CCK-8 and clonogenic assay. The anchorage-independent growth was evaluated by soft agar assay. The in vivo tumor progression was assayed with xenograft mice model. The regulatory effect of miR-150 on MIAT was interrogated by luciferase reporter assay. The endogenous CNKD1B protein was detected by western blotting. Results The low expression of MIAT was characterized in cervical cancer, which associated with relatively poor prognosis. Ectopic expression of MIAT inhibited malignant growth of cervical cancer both in vitro and in vivo. Mechanistically, MIAT regulated CDKN1B expression via competition with miR-150, and miR-150-inhibition directly suppressed cervical cancer cell growth. Conclusions Our study characterized the anti-tumor property of MIAT in cervical cancer and elucidated its competitively regulation of CDKN1B with miR-150. Our data highlighted the critical role of MIAT-miR-150-CDKN1B signaling axis in cervical cancer.
Collapse
Affiliation(s)
- Yanbin Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong Province China
| | - Xingzhi Li
- Department of Urological Surgery, Longgang District People's Hospital of Shenzhen, Shenzhen, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong Province China
| | - Yali Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
244
|
Wang C, Chen Y, Chen K, Zhang L. Long Noncoding RNA LINC01134 Promotes Hepatocellular Carcinoma Metastasis via Activating AKT1S1 and NF-κB Signaling. Front Cell Dev Biol 2020; 8:429. [PMID: 32656205 PMCID: PMC7325970 DOI: 10.3389/fcell.2020.00429] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies with poor outcomes. The main causes of HCC-related deaths are recurrence and metastasis. Long noncoding RNAs (lncRNAs) are recently identified as critical regulators in cancers. However, the lncRNAs involved in HCC recurrence and metastasis are poorly understood. In this study, via analyzing The Cancer Genome Atlas Liver Hepatocellular Carcinoma dataset, we identified a novel lncRNA LINC01134, which is highly expressed in HCC tissues and correlated with microvascular invasion, macrovascular invasion, recurrence, and poor overall survival of HCC patients. Functional experiments revealed that ectopic expression of LINC01134 promotes HCC cell migration and invasion in vitro and HCC liver metastasis and lung metastasis in vivo. Knockdown of LINC01134 represses HCC cell migration and invasion in vitro and HCC liver metastasis and lung metastasis in vivo. Mechanistically, we found that LINC01134 directly binds the promoter of AKT1S1 and activates AKT1S1 expression. Via activating AKT1S1, LINC01134 further activates NF-κB signaling. The expression of LINC01134 is significantly positively correlated with that of AKT1S1 in HCC tissues. In line with LINC01134, AKT1S1 is also highly expressed in HCC tissues and correlated with poor survival of HCC patients. Functional rescue experiments showed that repressing AKT1S1 or NF-κB signaling abrogates the roles of LINC01134 in HCC. Taken together, these findings recognized LINC01134 as a novel oncogenic lncRNA, which indicates vascular invasion, recurrence, and poor overall survival of HCC patients. LINC01134 promotes HCC metastasis via activating AKT1S1 expression and subsequently activating NF-κB signaling. This study suggested LINC01134 as a potential prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Chao Wang
- Department of General Surgery, Clinical Research Center of Geriatric Diseases in Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Chen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kunlun Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Zhang
- Hepatic Surgery Center, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
245
|
Fei Q, Song F, Jiang X, Hong H, Xu X, Jin Z, Zhu X, Dai B, Yang J, Sui C, Xu M. LncRNA ST8SIA6-AS1 promotes hepatocellular carcinoma cell proliferation and resistance to apoptosis by targeting miR-4656/HDAC11 axis. Cancer Cell Int 2020; 20:232. [PMID: 32536820 PMCID: PMC7288512 DOI: 10.1186/s12935-020-01325-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
Background Dysregulation of long non-coding RNAs (lncRNAs) results in development of human diseases including hepatocellular carcinoma (HCC). Although several HCC related lncRNAs have been reported, the biological functions of many lncRNAs during the development of HCC remains unknown. Methods The expression of ST8SIA6-AS1 was studied by realtime PCR (RT-qPCR) and bioinformatic analysis. The biological functions of ST8SIA6-AS1 was examined by CCK-8 assay and flow cytometry analysis. The target of ST8SIA6-AS1 was analyzed by bioinformatic analysis and validated by dual luciferase reporter assay, western blotting and RT-qPCR. Results In this study we demonstrated that ST8SIA6-AS1 was an upregulated lncRNA in hepatocellular carcinoma. SiRNA-mediated knockdown of ST8SIA6-AS1 repressed cell proliferation and induced cell apoptosis in HCC cells. Bioinformatic analysis and RT-qPCR further showed that ST8SIA6-AS1 mainly located in cytoplasm. Dual luciferase reporter assay further revealed that ST8SIA6-AS1 interacted with miR-4656 in HCC cells. In addition, HDAC11 was identified as a target gene in HCC cells and ST8SIA6-AS1 could upregulate HDAC11 via sponging miR-4656. Transfection of recombinant HDAC11 partially rescued the inhibition of cell proliferation and increase of cell apoptosis inducing by knockdown of ST8SIA6-AS1. Conclusion In conclusion, our findings suggested that ST8SIA6-AS1 was a novel upregulated lncRNA in HCC and could facilitate cell proliferation and resistance to cell apoptosis via sponging miR-4656 and elevation of HDAC11, which might be a promising biomarker for patients with HCC.
Collapse
Affiliation(s)
- Qiang Fei
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, 215001 Suzhou, China
| | - Feihong Song
- Department of Special Treatment and Liver Transplantation, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438 China
| | - Xinwei Jiang
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, 215001 Suzhou, China
| | - Han Hong
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, 215001 Suzhou, China
| | - Xiaoyong Xu
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, 215001 Suzhou, China
| | - Zhengkang Jin
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, 215001 Suzhou, China
| | - Xiang Zhu
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, 215001 Suzhou, China
| | - Binghua Dai
- Department of Special Treatment and Liver Transplantation, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438 China
| | - Jiamei Yang
- Department of Special Treatment and Liver Transplantation, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438 China
| | - Chengjun Sui
- Department of Special Treatment and Liver Transplantation, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438 China
| | - Minhui Xu
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, 215001 Suzhou, China
| |
Collapse
|
246
|
Jiao M, Guo H, Chen Y, Li L, Zhang L. DARS-AS1 promotes clear cell renal cell carcinoma by sequestering miR-194-5p to up-regulate DARS. Biomed Pharmacother 2020; 128:110323. [PMID: 32526457 DOI: 10.1016/j.biopha.2020.110323] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 02/01/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC), the most frequent subtype of renal cell carcinoma (RCC), is characterized by high relapse rate and mortality. Long non-coding RNAs (lncRNAs) are critical participants during cancer development. LncRNA DARS antisense RNA 1 (DARS-AS1), a newly-found lncRNA, is not specifically reported in ccRCC. However, Gene Expression Profiling Interactive Analysis (GEPIA) and starBase databases revealed the up-regulation of DARS-AS1 in ccRCC. Current study investigated the function and mechanism of DARS-AS1 in ccRCC. Functional assays including colony formation assay, EdU assay, caspase-3 activity detection, flow cytometry analysis and JC-1 assay were implemented to identify the role of DARS-AS1 in ccRCC. As a result, silencing of DARS-AS1 retarded proliferation and facilitated apoptosis in ccRCC cells. Moreover, mainly a cytoplasmic localization of lncRNA DARS-AS1 was verified in ccRCC cells. Then, we demonstrated that DARS-AS1 positively regulated its nearby gene, aspartyl-tRNA synthetase (DARS), by sequestering miR-194-5p. Moreover, DARS was testified as the oncogene in ccRCC and DARS-AS1 worked as a tumor-facilitator in ccRCC through miR-194-5p/DARS signaling. In a summary, this study firstly uncovered that DARS-AS1 boosted DARS expression via absorbing miR-194-5p, therefore contributing to malignancy in ccRCC. Our findings may be helpful for opening new strategies for ccRCC treatment.
Collapse
Affiliation(s)
- Min Jiao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China
| | - Yule Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China
| | - Linlin Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China.
| |
Collapse
|
247
|
Xiao Z, Liu Y, Zhao J, Li L, Hu L, Lu Q, Zeng Z, Liu X, Huang D, Yang W, Xu Q. Long noncoding RNA LINC01123 promotes the proliferation and invasion of hepatocellular carcinoma cells by modulating the miR-34a-5p/TUFT1 axis. Int J Biol Sci 2020; 16:2296-2305. [PMID: 32760198 PMCID: PMC7378647 DOI: 10.7150/ijbs.45457] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), one of the main causes of cancer-related deaths globally, is characterized by rapid growth and high invasiveness. Accumulating evidence demonstrates that long noncoding RNAs (lncRNAs) play critical roles in the growth and metastasis of HCC. Recently, lncRNA LINC01123 has been found to contribute to cell proliferation and aerobic glycolysis in lung cancer. However, the function of LINC01123 in HCC, as well as the underlying mechanism of its action, remain unclear. Here, we found that the expression of LINC01123 was clearly upregulated in HCC tissues compared to nontumor tissues. Furthermore, expression of LINC01123 in HCC cells was significantly higher than in LO2 cells. Importantly, the upregulated level of LINC01123 was related to unfavorable clinical features and poor prognosis of HCC. Next, we demonstrated that LINC01123 knockdown suppressed the proliferation, migration and invasion of HCC cells in vitro. Depletion of LINC01123 inhibited HCC xenograft growth in vivo. Conversely, ectopic expression of LINC01123 facilitated HCC cell proliferation and invasion. Mechanistically, LINC01123 acted as a molecular sponge for miR-34a-5p in HCC cells. Tuftelin1 (TUFT1) was identified as the target gene of miR-34a-5p. LINC01123 positively regulated TUFT1 level by targeting of miR-34a-5p in HCC cells. Notably, TUFT1 restoration can abolish miR-34a-5p-induced inhibitory effects on HCC cell proliferation, migration and invasion. In conclusion, LINC01123 was overexpressed in HCC and accelerated cancer cell proliferation and invasion by regulating the miR-34a-5p/TUFT1 axis.
Collapse
Affiliation(s)
- Zunqiang Xiao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Yang Liu
- The Medical College of Qindao University, Qindao, Shandong, 266071, China
| | - Junjun Zhao
- Graduate Department, BengBu Medical College, BengBu, Anhui 233030, China
| | - Lijie Li
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Linjun Hu
- The Medical College of Qindao University, Qindao, Shandong, 266071, China
| | - Qiliang Lu
- The Medical College of Qindao University, Qindao, Shandong, 266071, China
| | - Zhi Zeng
- The Medical College of Qindao University, Qindao, Shandong, 266071, China
| | - Xin Liu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Dongsheng Huang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Wei Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| |
Collapse
|
248
|
LncRNA MCM3AP-AS1 promotes breast cancer progression via modulating miR-28-5p/CENPF axis. Biomed Pharmacother 2020; 128:110289. [PMID: 32485570 DOI: 10.1016/j.biopha.2020.110289] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/10/2020] [Accepted: 05/16/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the commonly occurred cancers among women and poses a huge threat against female health. Abnormal expression of lncRNA has been confirmed to be an important inducer of cancer. By searching GEO and TCGA database, we found that CENPF was upregulated in breast cancer tissues. Through RT-qPCR, CENPF was found to be upregulated in breast cancer cells. Functional experiments revealed that CENPF had positive effect on the cellular functions, including proliferation, migration and invasion. Subsequently, CENPF was confirmed to combine with miR-28-5p, and its expression was suppressed by miR-28-5p. Furthermore, it was found that miR-28-5p bound to MCM3AP-AS1, and MCM3AP-AS1 expressed at a high level in breast cancer cells. Besides, MCM3AP-AS1 was confirmed as a cytoplasmic RNA. In addition, there was a positive expression correlation between MCM3AP-AS1 and CENPF. Therefore, MCM3AP-AS1 was confirmed to regulate CENPF via competitively binding to miR-28-5p. At last, rescue assays demonstrated that knockdown of CENPF restored miR-28-5p repression-induced cellular processes in MCM3AP-AS1-silenced cells. In vivo assay revealed that MCM3AP-AS1 could hasten tumor growth in breast cancer by targeting CENPF. All results indicated that MCM3AP-AS1/miR-28-5p/CENPF axis accelerates breast cancer progression.
Collapse
|
249
|
Association of Genetic Polymorphisms in FOXA1 with the Progression of Genetic Susceptibility to Gastric Cancer. Gastroenterol Res Pract 2020; 2020:3075837. [PMID: 32411194 PMCID: PMC7204115 DOI: 10.1155/2020/3075837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/15/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
Objective To investigate the relationship between polymorphism of FOXA1 gene rs12894364 and rs7144658 and susceptibility to gastric cancer. Methods A case-control study was conducted to select 577 cases of primary gastric cancer and 678 cases of normal control. We extracted whole blood genomic DNA and amplified the target gene fragment by PCR. The genotyping and allele was tested through a snapshot method. Results There was no significant difference in the frequency distribution of genotype between the case group and control group (P > 0.05). Stratified analyses showed the SNPs were not correlated with the susceptibility of GC according to different age, gender, cigarette smoking, and alcohol drinking status. Conclusion There is no significant correlation between the polymorphisms of FOXA1 gene rs12894364 and rs7144658 and the risk of gastric cancer.
Collapse
|
250
|
Xue C, Zhao Y, Jiang J, Li L. Expression levels of lncRNAs are prognostic for hepatocellular carcinoma overall survival. Am J Transl Res 2020; 12:1873-1883. [PMID: 32509183 PMCID: PMC7269992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Studies have demonstrated that long non-coding RNAs (lncRNAs) play important roles in cancer development and progression. However, associations between the expression patterns and prognostic roles of lncRNAs in hepatocellular carcinoma (HCC) have not been comprehensively described. In this study, we established a prognostic model of lncRNA expression using public datasets of HCC from The Cancer Genome Atlas (TCGA) and adopted the International Cancer Genome Consortium (ICGC) as an independent cohort to validate the stability of our model. Cox regression analysis was used to explore the independent prognostic factor in both training and validation cohorts. Additionally, we explored the functional roles of lncRNAs using bioinformatic analyses. According to lncRNA consensus clusters, we resolved the distribution of molecular and clinical data and observed that individual lncRNA could function as prognostic biomarkers in HCC. Furthermore, the novel lncRNA molecular subtypes were statistically significant for predicting HCC status, which was validated by nested cross-validation. We found that lncRNA subtypes were partially related to gender, histological grade, and mutations within TP53. The lncRNA subtypes were also consistent with mRNA-based subtypes, and pathway enrichment analysis identified the involvement of multiple signaling pathways. In addition, we observed that upregulated DANCR was significantly associated with poor prognosis in HCC patients. In conclusion, our model based on lncRNA expression is statistically significant as a diagnostic and prognostic indicator for patients with HCC.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou 310003, China
| | - Yalei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou 310003, China
| | - Jianwen Jiang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou 310003, China
- Health Management Center, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou 310003, China
| |
Collapse
|