201
|
Kotagal V, Albin RL, Müller MLTM, Koeppe RA, Chervin RD, Frey KA, Bohnen NI. Symptoms of rapid eye movement sleep behavior disorder are associated with cholinergic denervation in Parkinson disease. Ann Neurol 2012; 71:560-8. [PMID: 22522445 DOI: 10.1002/ana.22691] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Rapid eye movement sleep behavior disorder (RBD) is common in Parkinson disease (PD), but its relationship to the varied neurotransmitter deficits of PD and prognostic significance remain incompletely understood. RBD and cholinergic system degeneration are identified independently as risk factors for cognitive impairment in PD. We aimed to assess the association between cholinergic denervation and symptoms of RBD in PD patients without dementia. METHODS Eighty subjects with PD without dementia (age, 64.6 ± 7.0 years; range, 50-82 years; 60 males, 20 females; mean Montreal Cognitive Assessment Test [MoCA] score, 26.2 ± 2.1; range 21-30) underwent clinical assessment, neuropsychological testing, and [(11)C]methylpiperidyl propionate acetylcholinesterase and [(11)C]dihydrotetrabenazine (DTBZ) vesicular monoamine transporter type 2 positron emission tomography (PET) imaging. (11)C3-Amino-4-(2-dimethylaminomethyl-phenylsulfaryl)-benzonitrile (DASB) serotonin transporter PET imaging was performed in a subset of 35 subjects. The presence of RBD symptoms was determined using the Mayo Sleep Questionnaire. RESULTS Twenty-seven of 80 subjects (33.8%) indicated a history of RBD symptoms. Subjects with and without RBD symptoms showed no significant differences in age, motor disease duration, MoCA, Unified Parkinson Disease Rating Scale motor scores, or striatal DTBZ binding. Subjects with RBD symptoms, in comparison to those without, exhibited decreased neocortical, limbic cortical, and thalamic cholinergic innervation (0.0213 ± 0.0018 vs 0.0236 ± 0.0022, t = 4.55, p < 0.0001; 0.0388 ± 0.0029 vs 0.0423 ± 0.0058, t = 2.85, p = 0.0056; 0.0388 ± 0.0025 vs 0.0427 ± 0.0042, t = 4.49, p < 0.0001, respectively). Brainstem and striatal DASB binding showed no significant differences between groups. INTERPRETATION The presence of RBD symptoms in PD is associated with relative neocortical, limbic cortical, and thalamic cholinergic denervation although not with differential serotoninergic or nigrostriatal dopaminergic denervation. The presence of RBD symptoms may signal cholinergic system degeneration.
Collapse
Affiliation(s)
- Vikas Kotagal
- Department of Neurology, University of Michigan, Ann Arbor, USA.
| | | | | | | | | | | | | |
Collapse
|
202
|
Abstract
Diagnosis and treatment strategies for dementia are based on the sensitive and specific detection of the incipient neuropathological characteristics, combined with emerging treatments that counteract molecular processes in its pathogenesis. Positron emission tomography (PET) is used for diverse clinical and basic studies on dementia with a wide range of radiotracers. Approaches to visualize amyloid deposition in human brains non-invasively with PET depend on imaging agents reacting with amyloid fibrils. The most widely used tracer is [(11) C]-6-OH-BTA-1, also known as Pittsburgh Compound-B, which has a high affinity to amyloid β peptide (Aβ) aggregates. Some (18) F-labeled amyloid ligands with a longer radioactive half-life have also been developed for broader clinical applications. In addition, there have been demonstrated advantages of tracers with high specific radioactivity in the sensitive detection of amyloid, which have indicated the significance of Aβ-N3-pyroglutamate as a new diagnostic and therapeutic target. Furthermore, beneficial outcomes of Aβ and tau immunization in humans and mouse models have highlighted crucial roles of immunocompetent glia in the protection of neurons against amyloid toxicities. The utility of PET with a radioligand for translocator protein as a biomarker for tau-triggered toxicity, and as a complement to amyloid and tau imaging for diagnostic assessment of tauopathies with and without Aβ pathologies, has also been demonstrated. Meanwhile, brain cholinergic function can be estimated by measuring acetylcholinesterase activity in the brain with PET and radiolabeled acetylcholine analogues. It has been reported that patients with early Parkinson's disease exhibit a reduction in acetylcholinesterase activity in the cerebral cortex, and this decline is more profound in patients with Parkinson's disease with dementia and dementia with Lewy bodies than in patients with Parkinson's disease without dementia. The Alzheimer's Disease Neuroimaging Initiative was a multicentre research project conducted over 6 years that studied changes in cognition, brain structure, and biomarkers in healthy elderly controls and subjects with mild cognitive impairment and Alzheimer's disease. An international workgroup of the National Institute on Aging-Alzheimer's Association has suggested that Alzheimer's disease would be optimally treated before significant cognitive impairment, defined as a 'presymptomatic' or 'preclinical' stage. Therefore, PET will be of technical importance for both clinical and basic research aimed at prodromal pathologies of Alzheimer's disease.
Collapse
Affiliation(s)
- Takaaki Mori
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
203
|
Doty RL. Olfaction in Parkinson's disease and related disorders. Neurobiol Dis 2012; 46:527-52. [PMID: 22192366 PMCID: PMC3429117 DOI: 10.1016/j.nbd.2011.10.026] [Citation(s) in RCA: 310] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 10/26/2011] [Accepted: 10/31/2011] [Indexed: 02/06/2023] Open
Abstract
Olfactory dysfunction is an early 'pre-clinical' sign of Parkinson's disease (PD). The present review is a comprehensive and up-to-date assessment of such dysfunction in PD and related disorders. The olfactory bulb is implicated in the dysfunction, since only those syndromes with olfactory bulb pathology exhibit significant smell loss. The role of dopamine in the production of olfactory system pathology is enigmatic, as overexpression of dopaminergic cells within the bulb's glomerular layer is a common feature of PD and most animal models of PD. Damage to cholinergic, serotonergic, and noradrenergic systems is likely involved, since such damage is most marked in those diseases with the most smell loss. When compromised, these systems, which regulate microglial activity, can influence the induction of localized brain inflammation, oxidative damage, and cytosolic disruption of cellular processes. In monogenetic forms of PD, olfactory dysfunction is rarely observed in asymptomatic gene carriers, but is present in many of those that exhibit the motor phenotype. This suggests that such gene-related influences on olfaction, when present, take time to develop and depend upon additional factors, such as those from aging, other genes, formation of α-synuclein- and tau-related pathology, or lowered thresholds to oxidative stress from toxic insults. The limited data available suggest that the physiological determinants of the early changes in PD-related olfactory function are likely multifactorial and may include the same determinants as those responsible for a number of other non-motor symptoms of PD, such as dysautonomia and sleep disturbances.
Collapse
Affiliation(s)
- Richard L Doty
- Smell & Taste Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
204
|
Abstract
Dementia with Lewy bodies (DLB) is a relative newcomer to the field of late-life dementia. Although a diversity of imaging methodologies is now available for the study of dementia, these have been applied most often to Alzheimer's disease (AD). Studies on DLB, although fewer, have yielded fascinating and important insights into the underlying pathophysiology of this condition and allowed clinical differentiation of DLB from other dementias. Imaging research on DLB has had significant ramifications in terms of raising the profile of DLB and helping define it as a distinctive and separate disease entity from AD.
Collapse
Affiliation(s)
- John-Paul Taylor
- Institute for Ageing and Health, Wolfson Research Centre, Campus for Aging and Vitality, Newcastle University, Newcastle Upon Tyne, NE4 5PL, UK.
| | | |
Collapse
|
205
|
Sinha N, Firbank M, O'Brien JT. Biomarkers in dementia with Lewy bodies: a review. Int J Geriatr Psychiatry 2012; 27:443-53. [PMID: 21721045 DOI: 10.1002/gps.2749] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 05/02/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) shares common clinical, neuropsychological and pathological features with other dementia subtypes, such as Alzheimer's disease (AD), making it difficult to differentiate in clinical practice. Despite the development of consensus diagnostic criteria, many cases are missed, and biomarkers to assist with diagnosis would represent important advances. Our aim was to review the literature to identify potential biomarkers that may distinguish DLB from other dementia subtypes, especially AD. METHOD The literature search was performed using Medline up to October 2010 for imaging studies [single-photon emission computed tomography (SPECT), positron emission tomography (PET), magnetic resonance imaging (MRI) and amyloid imaging] and cerebrospinal fluid (CSF) markers in DLB. Individual articles were examined for additional references. The abstracts of the identified articles were read to determine the most relevant papers, which became the basis for this review. RESULTS The most robust evidence available was for striatal dopamine transporter activity visualised by (123) I-labelled N-(3-fluoropropyl)-2β-carbomethoxy-3β-(4-iodophenyl)nortropane ((123) I-FP-CIT) SPECT. Several other imaging techniques have also reported promising results, such as [(18) F]fluorodopa PET, which assesses nigrostriatal integrity; [(18) F]fluorodeoxyglucose PET, which assesses metabolic deficits; and meta-iodobenzylguanidine imaging, which assesses sympathetic cardiac denervation. Data from studies using CSF measures of amyloid and tau, occipital hypoperfusion on SPECT and preservation of medial temporal lobe structures on MRI suggest that they may offer less diagnostic discrimination. CONCLUSION Several potential biomarkers have shown good diagnostic accuracy for DLB, but apart from FP-CIT SPECT, there is now a need for larger clinical multi-site studies, as well as for studies with pathological verification of diagnosis, before their use could be recommended for routine clinical practice.
Collapse
Affiliation(s)
- Namrta Sinha
- Institute for Ageing and Health, Newcastle University, Wolfson Research Centre, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.
| | | | | |
Collapse
|
206
|
Petrou M, Kotagal V, Bohnen NI. An update on brain imaging in parkinsonian dementia. ACTA ACUST UNITED AC 2012; 4:201-213. [PMID: 22768021 DOI: 10.2217/iim.12.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Disturbances of cognition are frequent in Parkinson's disease (PD). Unlike severe loss of dopamine early in PD, extensive cholinergic losses have been consistently reported in PD with dementia. Cholinergic imaging suggests that basal forebrain cholinergic system degeneration appears early in PD and worsens with dementia development. Cortical cholinergic denervation is similar in PD with dementia and dementia with Lewy bodies, supporting a common disease spectrum, at least with respect to cholinergic pathology. Presence of cerebral amyloidopathy in the setting of parkinsonism may accelerate cognitive decline. Novel MRI techniques illustrate the widespread presence of neurodegeneration in PD with dementia, affecting white matter tracts and connectivity functions. This review will outline current concepts regarding dementia development in PD and discuss their correlation with functional and structural neuroimaging including PET and MRI.
Collapse
|
207
|
Sato K, Fukushi K, Shinotoh H, Shimada H, Tanaka N, Hirano S, Irie T. A short-scan method for k(3) estimation with moderately reversible PET ligands: application of irreversible model to early-phase PET data. Neuroimage 2012; 59:3149-58. [PMID: 22079452 DOI: 10.1016/j.neuroimage.2011.10.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 10/08/2011] [Accepted: 10/25/2011] [Indexed: 10/15/2022] Open
Abstract
Long dynamic scans (60-120 min) are often required for estimating the k(3) value, an index of receptor density, by positron emission tomography (PET). However, the precision of k(3) is usually low in kinetic analyses for reversible PET ligands compared with irreversible ligands. That is largely due to unstable estimation of the dissociation rate constant, k(4). We propose a novel '3P+' method for estimating k(3) of moderately reversible ligands, where a 3-parameter model without k(4) is applied to early-phase PET data to obtain a good model-fit of k(3) estimation. By using [(11)C] Pittsburgh compound B (PIB) (k(4) = 0.018/min) as an example of a moderately reversible ligand, the 3P+ method simulation with a 28 min PET scan yielded less than 3% k(3) relative bias with a +100% k(3) change. In [(11)C]PIB PET scans of 15 normal controls (NC) and nine patients with Alzheimer's disease (AD), the 3P+ method provided a precise k(3) estimate (mean SE of 13.6% in parietal cortex; covariance matrix method). The results revealed linear correlations (r = 0.964) of parietal k(3) values in 24 subjects between 28minute 3P+ method and conventional 90 minute 4-parameter method. A good separation of k(3) between NC and AD groups (P < 0.001; t-test) was replicated in 28 minute 3P+ method. The short-scan 3P+ method may be a practical alternative method for analyzing reversible ligands.
Collapse
Affiliation(s)
- Koichi Sato
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 260-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
208
|
Dressel AJ, van der Mijn JC, Aalders IJ, Rinkel RNPM, van der Vliet HJ. Irinotecan-induced dysarthria. Case Rep Oncol 2012; 5:47-51. [PMID: 22379477 PMCID: PMC3290033 DOI: 10.1159/000336156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Colorectal carcinomas are among the most common tumor types and are generally treated with palliative chemotherapy in case of metastatic disease. Here, we describe the case of a 46-year-old patient with metastatic rectal carcinoma who received second-line therapy with irinotecan and developed isolated transient dysarthria (with normal MR imaging of the brain) following each administration of irinotecan. Neurological and logopedical evaluation revealed that the dysarthria predominantly resulted from a reduced capacity in fine-tuning of motor functions of the tip of the tongue and a minimal reduction in the power of speech at labiodental contact. As hypoglossal nerve activity has been reported to be especially susceptible to cholinergic stimulation and irinotecan can cause cholinergic side effects by binding to and inactivating acetylcholinesterase, we suspect this mechanism to be responsible for irinotecan-induced dysarthria.
Collapse
Affiliation(s)
- Albertine J Dressel
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
209
|
Abstract
AbstractGenetic, neuropathological and biochemical evidence implicates α-synuclein, a 140 amino acid presynaptic neuronal protein, in the pathogenesis of Parkinson’s disease and other neurodegenerative disorders. The aggregated protein inclusions mainly containing aberrant α-synuclein are widely accepted as morphological hallmarks of α-synucleinopathies, but their composition and location vary between disorders along with neuronal networks affected. α-Synuclein exists physiologically in both soluble and membran-bound states, in unstructured and α-helical conformations, respectively, while posttranslational modifications due to proteostatic deficits are involved in β-pleated aggregation resulting in formation of typical inclusions. The physiological function of α-synuclein and its role linked to neurodegeneration, however, are incompletely understood. Soluble oligomeric, not fully fibrillar α-synuclein is thought to be neurotoxic, main targets might be the synapse, axons and glia. The effects of aberrant α-synuclein include alterations of calcium homeostasis, mitochondrial dysfunction, oxidative and nitric injuries, cytoskeletal effects, and neuroinflammation. Proteasomal dysfunction might be a common mechanism in the pathogenesis of neuronal degeneration in α-synucleinopathies. However, how α-synuclein induces neurodegeneration remains elusive as its physiological function. Genome wide association studies demonstrated the important role for genetic variants of the SNCA gene encoding α-synuclein in the etiology of Parkinson’s disease, possibly through effects on oxidation, mitochondria, autophagy, and lysosomal function. The neuropathology of synucleinopathies and the role of α-synuclein as a potential biomarker are briefly summarized. Although animal models provided new insights into the pathogenesis of Parkinson disease and multiple system atrophy, most of them do not adequately reproduce the cardinal features of these disorders. Emerging evidence, in addition to synergistic interactions of α-synuclein with various pathogenic proteins, suggests that prionlike induction and seeding of α-synuclein could lead to the spread of the pathology and disease progression. Intervention in the early aggregation pathway, aberrant cellular effects, or secretion of α-synuclein might be targets for neuroprotection and disease-modifying therapy.
Collapse
|
210
|
Kim HJ, Lee JE, Shin SJ, Sohn YH, Lee PH. Analysis of the substantia innominata volume in patients with Parkinson's disease with dementia, dementia with lewy bodies, and Alzheimer's disease. J Mov Disord 2011; 4:68-72. [PMID: 24868398 PMCID: PMC4027689 DOI: 10.14802/jmd.11014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/21/2011] [Indexed: 11/24/2022] Open
Abstract
Background and Purpose The substantia innominata (SI) contains the nucleus basalis of Meynert, which is the major source of cholinergic input to the cerebral cortex. We hypothesized that degeneration of the SI and its relationship to general cognitive performance differs in amyloidopathy and synucleinopathy. Methods We used magnetic resonance imaging (MRI)-based volumetric analysis to evaluate the SI volume in patients with amnestic mild cognitive impairment (aMCI), Alzheimer’s disease (AD), Parkinson’s disease-mild cognitive impairment (PD-MCI), PD with dementia (PDD), dementia with Lewy bodies (DLB), and healthy elderly controls. The correlation between SI volume and general cognitive performance, measured using the Korean version of the Mini-Mental State Examination (K-MMSE), was examined. Results Compared to control subjects, the mean normalized SI volume was significantly decreased in all of the other groups. The normalized SI volume did not differ between the subjects with PDD and DLB, whereas it was significantly smaller in subjects with PDD (p = 0.029) and DLB (p = 0.011) compared with AD. In subjects with PD-related cognitive impairment (PD-MCI, PDD, or DLB), there was a significant positive correlation between the SI volume and K-MMSE score (r = 0.366, p < 0.001), whereas no correlation was seen in subjects with AD-related cognitive impairment (aMCI or AD). Conclusions Our data suggest that the SI loss is greater in synucleinopathy-related dementia (PDD or DLB) than in AD and that the contribution of the SI to cognitive performance is greater in synucleinopathy than in amyloidopathy.
Collapse
Affiliation(s)
- Hee Jin Kim
- Department of Neurology and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Eun Lee
- Department of Neurology and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Jeong Shin
- Department of Neurology and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young Ho Sohn
- Department of Neurology and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Phil Hyu Lee
- Department of Neurology and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
211
|
Kantarci K, Lowe VJ, Boeve BF, Weigand SD, Senjem ML, Przybelski SA, Dickson DW, Parisi JE, Knopman DS, Smith GE, Ferman TJ, Petersen RC, Jack CR. Multimodality imaging characteristics of dementia with Lewy bodies. Neurobiol Aging 2011; 33:2091-105. [PMID: 22018896 DOI: 10.1016/j.neurobiolaging.2011.09.024] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 09/06/2011] [Accepted: 09/16/2011] [Indexed: 12/14/2022]
Abstract
Dementia with Lewy bodies (DLB) is the second most common cause of neurodegenerative dementia after Alzheimer's disease (AD). Our objective was to determine whether the (11)C-Pittsburgh Compound-B (PiB) retention and regional hypometabolism on positron emission tomography (PET) and regional cortical atrophy on magnetic resonance imaging (MRI) are complementary in characterizing patients with DLB and differentiating them from AD. We studied age-, gender-, and education-matched patients with a clinical diagnosis of DLB (n = 21), AD (n = 21), and cognitively normal subjects (n = 42). Hippocampal atrophy, global cortical PiB retention and occipital lobe metabolism in combination distinguished DLB from AD better than any of the measurements alone (area under the receiver operating characteristic = 0.98). Five of the DLB and AD patients who underwent autopsy were distinguished through multimodality imaging. These data demonstrate that magnetic resonance imaging and PiB positron emission tomography contribute to characterizing the distinct pathological mechanisms in patients with AD compared with DLB. Occipital and posterior parietotemporal lobe hypometabolism is a distinguishing feature of DLB and this regional hypometabolic pattern is independent of the amyloid pathology.
Collapse
Affiliation(s)
- Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Fernández-Seara MA, Mengual E, Vidorreta M, Aznárez-Sanado M, Loayza FR, Villagra F, Irigoyen J, Pastor MA. Cortical hypoperfusion in Parkinson's disease assessed using arterial spin labeled perfusion MRI. Neuroimage 2011; 59:2743-50. [PMID: 22032942 DOI: 10.1016/j.neuroimage.2011.10.033] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/06/2011] [Accepted: 10/10/2011] [Indexed: 12/18/2022] Open
Abstract
Alterations in cerebral perfusion and metabolism in Parkinson's disease have been assessed in several studies, using nuclear imaging techniques and more recently magnetic resonance imaging. However, to date there is no consensus in the literature regarding the extent and the magnitude of these alterations. In this work, arterial spin labeled perfusion MRI was employed to quantify absolute cerebral blood flow in a group of early-to-moderate Parkinson's disease patients and age-matched healthy controls. Perfusion comparisons between the two groups showed that Parkinson's disease is characterized by wide-spread cortical hypoperfusion. Subcortically, hypoperfusion was also found in the caudate nucleus. This pattern of hypoperfusion could be related to cognitive dysfunctions that have been previously observed even at the disease early stages. The present results were obtained by means of whole brain voxel-wise comparisons of absolute perfusion values, using statistical parametric mapping, thus avoiding the potentially biased global mean normalization procedure. In addition, this work demonstrates that between-group comparison of relative perfusion values after global mean normalization, introduced artifactual relative perfusion increases, where absolute perfusion was in fact preserved. This has implications for perfusion studies of other brain disorders.
Collapse
Affiliation(s)
- María A Fernández-Seara
- Neuroimaging Laboratory, Division of Neuroscience, Center for Applied Medical Research (CIMA), Department of Anatomy, Medical School, University of Navarra, Pamplona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
213
|
Borghammer P, Cumming P, Østergaard K, Gjedde A, Rodell A, Bailey CJ, Vafaee MS. Cerebral oxygen metabolism in patients with early Parkinson's disease. J Neurol Sci 2011; 313:123-8. [PMID: 21975016 DOI: 10.1016/j.jns.2011.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 08/02/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
Abstract
AIM Decreased activity of the mitochondrial electron transport chain (ETC) has been implicated in the pathogenesis of Parkinson's disease (PD). This model would most likely predict a decrease in the rate of cerebral oxygen consumption (CMRO(2)). To test this hypothesis, we compared CMRO(2) and cerebral blood flow (CBF) PET scans from PD patients and healthy controls. MATERIALS AND METHODS Nine early-stage PD patients and 15 healthy age-matched controls underwent PET scans for quantitative mapping of CMRO(2) and CBF. Between-group differences were evaluated for absolute data and intensity-normalized values. RESULTS No group differences were detected in regional magnitudes of CMRO(2) or CBF. Upon normalization using the reference cluster method, significant relative CMRO(2) decreases were evident in widespread prefrontal, parieto-occipital, and lateral temporal regions. Sensory-motor and subcortical regions, brainstem, and the cerebellum were spared. A similar pattern was evident in normalized CBF data, as described previously. CONCLUSION While the data did not reveal substantially altered absolute CMRO(2) in brain of PD patients, employing data-driven intensity normalization revealed widespread relative CMRO(2) decreases in cerebral cortex. The detected pattern was very similar to that reported in earlier CBF and CMRglc studies of PD, and in the CBF images from the same subjects. Thus, the present results are consistent with the occurrence of parallel declines in CMRO(2), CBF, and CMRglc in spatially contiguous cortical regions in early PD, and support the hypothesis that ETC dysfunction could be a primary pathogenic mechanism in early PD.
Collapse
Affiliation(s)
- Per Borghammer
- Deparment of Nuclear Medicine, Aarhus University Hospital, Denmark.
| | | | | | | | | | | | | |
Collapse
|
214
|
Yarnall A, Rochester L, Burn DJ. The interplay of cholinergic function, attention, and falls in Parkinson's disease. Mov Disord 2011; 26:2496-503. [DOI: 10.1002/mds.23932] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/22/2011] [Accepted: 08/02/2011] [Indexed: 11/09/2022] Open
|
215
|
Abstract
Clinical use of positron emission tomography (PET) is now well established in neurodegenerative disorders, especially in the diagnosis of dementia. Measurement of cerebral glucose metabolism is of significant value, and it facilitates early diagnosis, appropriate differential diagnosis, and the evaluation of drug treatment in patients with dementia. In addition, tracers offer new perspectives for studying the neuropathology of underlying dementia, such as the accumulation of amyloid proteins, tau-proteins, or the presence of neuroinflammation. Finally, PET tracer studies of different neurotransmitter systems in dementia may not only increase the understanding of pathophysiologic mechanisms of the different disorders, but also improve diagnostic accuracy. In conclusion, PET imaging with different tracers offers reliable biomarkers in dementia, which can assist clinicians in the diagnosis of different dementing disorders, especially in the situation of overlapping phenotypes.
Collapse
Affiliation(s)
- Valentina Berti
- Department of Clinical Pathophysiology, Nuclear Medicine Unit, University of Florence, Florence, Italy.
| | | | | |
Collapse
|
216
|
Kato S, Watanabe H, Senda J, Hirayama M, Ito M, Atsuta N, Kaga T, Katsuno M, Naganawa S, Sobue G. Widespread cortical and subcortical brain atrophy in Parkinson’s disease with excessive daytime sleepiness. J Neurol 2011; 259:318-26. [DOI: 10.1007/s00415-011-6187-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/02/2011] [Accepted: 06/24/2011] [Indexed: 11/29/2022]
|
217
|
Bohnen NI, Albin RL. The cholinergic system and Parkinson disease. Behav Brain Res 2011; 221:564-73. [PMID: 20060022 PMCID: PMC2888997 DOI: 10.1016/j.bbr.2009.12.048] [Citation(s) in RCA: 380] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 12/26/2009] [Indexed: 01/08/2023]
Abstract
Although Parkinson disease (PD) is viewed traditionally as a motor syndrome secondary to nigrostriatal dopaminergic denervation, recent studies emphasize non-motor features. Non-motor comorbidities, such as cognitive impairment, are likely the result of an intricate interplay of multi-system degenerations and neurotransmitter deficiencies extending beyond the loss of dopaminergic nigral neurons. The pathological hallmark of parkinsonian dementia is the presence of extra-nigral Lewy bodies that can be accompanied by other pathologies, such as senile plaques. Lewy first identified the eponymous Lewy body in neurons of the nucleus basalis of Meynert (nbM), the source of cholinergic innervation of the cerebral cortex. Although cholinergic denervation is recognized as a pathological hallmark of Alzheimer disease (AD), in vivo neuroimaging studies reveal loss of cerebral cholinergic markers in parkinsonian dementia similar to or more severe than in prototypical AD. Imaging studies agree with post-mortem evidence suggesting that basal forebrain cholinergic system degeneration appears early in PD and worsens coincident with the appearance of dementia. Early cholinergic denervation in PD without dementia appears to be heterogeneous and may make specific contributions to the PD clinical phenotype. Apart from well-known cognitive and behavioral deficits, central, in particular limbic, cholinergic denervation may be associated with progressive deficits of odor identification in PD. Recent evidence indicates also that subcortical cholinergic denervation, probably due to degeneration of brainstem pedunculopontine nucleus neurons, may relate to the presence of dopamine non-responsive gait and balance impairments, including falls, in PD.
Collapse
Affiliation(s)
- Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
218
|
Nobili F, Morbelli S, Arnaldi D, Ferrara M, Campus C, Brugnolo A, Mazzei D, Mehrdad N, Sambuceti G, Rodriguez G. Radionuclide brain imaging correlates of cognitive impairment in Parkinson's disease (PD). J Neurol Sci 2011; 310:31-5. [PMID: 21762928 DOI: 10.1016/j.jns.2011.06.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 06/19/2011] [Accepted: 06/29/2011] [Indexed: 10/18/2022]
Abstract
A subtle cognitive impairment can be detected early in the course of Parkinson's disease (PD). Executive, memory and visuospatial functions are specifically affected, but the underlying pathophysiological basis is not well elucidated yet and may be heterogeneous. The recent identification of a PD-related cognitive metabolic pattern (PDCP), including hypometabolism in associative frontal, parietal and posterior limbic structures, has integrated the classical notion of a striato-frontal syndrome at the basis of cognitive dys-function. Recent evidence suggests that whilst executive dys-function is seen in virtually all PD patients, visuospatial and memory impairment may share a higher risk for the subsequent development of dementia. By means of perfusion SPECT and [18F]FDG-PET, cortical dys-function may be highlighted since the early stages, it is more evident in PD patients with Mild Cognitive Impairment (MCI), and reaches the maximum in PD dementia (PDD). Posterior temporo-parieto-occipital dys-function in associative and limbic cortex, closely resembling that found in Alzheimer's disease patients, is found in PDD, with a more severe occipital hypometabolism and a relatively milder hypometabolism in medial temporal lobe structures. Furthermore, deficit of acetylcholinesterase (AchE) can be found by means of [11C]MP4A-PET already in early stage of PD, especially in posterior regions, then becoming more severe in PDD and in dementia with Lewy bodies (DLB). Administration of AchE inhibitors to PDD patients increased brain metabolism in bilateral frontal and left parietal regions, and left posterior cingulate. Finally, the recent availability of radiopharmaceuticals able to disclose amyloid brain deposition has allowed to demonstrate amyloid load in a part of patients with PDD, possibly due to diffuse rather than neuritic plaques. Brain PET and SPECT have strongly contributed to the understanding of the pathophysiology of cognitive impairment in PD and may serve as probes to monitor the effects of therapeutic interventions.
Collapse
Affiliation(s)
- Flavio Nobili
- Clinical Neurophysiology, Dept. of Neurosciences, Ophthalmology and Genetics, University of Genoa, Genoa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Brain perfusion correlates of cognitive and nigrostriatal functions in de novo Parkinson’s disease. Eur J Nucl Med Mol Imaging 2011; 38:2209-18. [DOI: 10.1007/s00259-011-1874-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 06/22/2011] [Indexed: 11/26/2022]
|
220
|
Ho GJ, Liang W, Waragai M, Sekiyama K, Masliah E, Hashimoto M. Bridging molecular genetics and biomarkers in lewy body and related disorders. Int J Alzheimers Dis 2011; 2011:842475. [PMID: 21760990 PMCID: PMC3132544 DOI: 10.4061/2011/842475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 04/20/2011] [Indexed: 12/16/2022] Open
Abstract
Recent advances have been made in defining the genetic and molecular basis of dementia with Lewy bodies (DLBs) and related neurodegenerative disorders such as Parkinson's disease (PD) and Parkinson's disease dementia (PDD) which comprise the spectrum of “Lewy body disorders” (LBDs). The genetic alterations and underlying disease mechanisms in the LBD overlap substantially, suggesting common disease mechanisms. As with the other neurodegenerative dementias, early diagnosis in LBD or even identification prior to symptom onset is key to developing effective therapeutic strategies, but this is dependent upon the development of robust, specific, and sensitive biomarkers as diagnostic tools and therapeutic endpoints. Recently identified mutations in the synucleins and other relevant genes in PD and DLB as well as related biomolecular pathways suggest candidate markers from biological fluids and imaging modalities that reflect the underlying disease mechanisms. In this context, several promising biomarkers for the LBD have already been identified and examined, while other intriguing possible candidates have recently emerged. Challenges remain in defining their correlation with pathological processes and their ability to detect DLB and related disorders, and perhaps a combined array of biomarkers may be needed to distinguish various LBDs.
Collapse
Affiliation(s)
- Gilbert J Ho
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0624, USA
| | | | | | | | | | | |
Collapse
|
221
|
Increased dopaminergic cells and protein aggregates in the olfactory bulb of patients with neurodegenerative disorders. Acta Neuropathol 2011; 122:61-74. [PMID: 21553300 DOI: 10.1007/s00401-011-0830-2] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 04/20/2011] [Accepted: 04/23/2011] [Indexed: 01/16/2023]
Abstract
Olfactory dysfunction is a frequent and early feature of patients with neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD) and is very uncommon in patients with frontotemporal dementia (FTD). Mechanisms underlying this clinical manifestation are poorly understood but the premature deposition of protein aggregates in the olfactory bulb (OB) of these patients might impair its synaptic organization, thus accounting for the smell deficits. Tau, β-amyloid and alpha-synuclein deposits were studied in 41 human OBs with histological diagnosis of AD (n = 24), PD (n = 6), FTD (n = 11) and compared with the OB of 15 control subjects. Tau pathology was present in the OB of all patients, irrespective of the histological diagnosis, while β-amyloid and alpha-synuclein protein deposit were frequently observed in AD and PD, respectively. Using stereological techniques we found an increased number of dopaminergic periglomerular neurons in the OB of AD, PD and FTD patients when compared with age-matched controls. Moreover, volumetric measurements of OBs showed a significant decrease only in AD patients, while the OB volume was similar to control in PD or FTD cases. The increased dopaminergic tone created in the OBs of these patients could reflect a compensatory mechanism created by the early degeneration of other neurotransmitter systems and might contribute to the olfactory dysfunction exhibited by patients with neurodegenerative disorders.
Collapse
|
222
|
Rektorova I. Mild cognitive impairment exists in Parkinson’s disease. J Neural Transm (Vienna) 2011; 118:1179-83. [DOI: 10.1007/s00702-011-0674-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 06/08/2011] [Indexed: 11/29/2022]
|
223
|
Antonelli F, Ray N, Strafella AP. Imaging cognitive and behavioral symptoms in Parkinson's disease. Expert Rev Neurother 2011; 10:1827-38. [PMID: 21091314 DOI: 10.1586/ern.10.173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Non-motor symptoms are a major and often unrecognized cause of morbidity of Parkinson's disease. In the past few years, imaging technology, such as functional MRI and PET, have provided a large bulk of information about the phenomena. Here, we provide an overview of those imaging studies that may help us understand the neuronal correlates associated with non-motor symptoms in Parkinson's disease, with a particular focus on cognitive and neuropsychiatric deficits.
Collapse
Affiliation(s)
- Francesca Antonelli
- Toronto Western Research Institute and Hospital, UHN, University of Toronto, 399 Bathurst Street, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
224
|
Bohnen NI, Koeppe RA, Minoshima S, Giordani B, Albin RL, Frey KA, Kuhl DE. Cerebral glucose metabolic features of Parkinson disease and incident dementia: longitudinal study. J Nucl Med 2011; 52:848-55. [PMID: 21571793 DOI: 10.2967/jnumed.111.089946] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Longitudinal studies in nondemented Parkinson disease (PD) subjects offer an opportunity to study the earliest regional cerebral subcortical and cortical metabolic changes underlying incident dementia in this disorder. METHODS Twenty-three PD subjects without dementia (Hoehn and Yahr stages I-III; age, 61.8 ± 9.7 y; Mini-Mental State Examination, 28.0 ± 1.4) and 27 controls (age, 59.8 ± 11.5 y) underwent (18)F-FDG PET at study entry. PD subjects underwent yearly clinical assessment to determine conversion to dementia. The mean duration of follow-up was 3.9 ± 1.2 y (range, 2.0-6.8 y). Follow-up (18)F-FDG PET was available in a subset of subjects at 2 or more years. Both volume-of-interest and 3-dimensional stereotactic surface projection (3D-SSP) analyses were performed. RESULTS Six subjects became demented (PDD), with a mean time of 3.8 ± 1.7 y (range, 1.9-6.0 y) to development of dementia. Mean duration of disease before onset of dementia was 9.7 ± 4.2 y (range, 3.1-14 y). There were significant metabolic reductions in the occipital (-11.8% vs. controls, F((2,22)) = 7.0, P = 0.002) and posterior cingulate (-12.1% vs. controls, F((2,22)) = 5.2, P = 0.009) cortices in PDD subjects at baseline, before diagnosis of dementia, compared with controls. Metabolism was most diminished in the visual association cortex (Brodmann area [BA] 18; -20.0% vs. control, F((2,22)) = 8.45, P = 0.0007) of PDD subjects. There was mild hypometabolism in the caudate nucleus (-8.4% vs. control, F((2,22)) = 3.2, P < 0.05). There was no significant hypometabolism in the temporal or frontal lobes. PD subjects who did not become demented (non-PDD), compared with controls, had reduced cerebral metabolism in the primary occipital cortex (BA 17) that was revealed only by 3D-SSP analysis. Follow-up scans in 5 PDD subjects at 2 y after study entry demonstrated a significant interval within-subject change in the thalamus (-11.4%), posterior cingulate (-9%), occipital (-7%), parietal (-7%), and frontal cortices (-7%) and mild reductions in the temporal cortex (-5%) and hippocampus (-3%), compared with study entry scans. CONCLUSION Incident dementia in idiopathic PD is heralded by decreased metabolism in the visual association (BA 18) and posterior cingulate cortices, with mild involvement also of the caudate nucleus. Two-year follow-up data from 5 PDD converters show that progression to dementia is associated with mixed subcortical and cortical changes that involve the mesiofrontal lobes also. These findings provide insights into early metabolic features of parkinsonian dementia.
Collapse
Affiliation(s)
- Nicolaas I Bohnen
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109-0028, USA.
| | | | | | | | | | | | | |
Collapse
|
225
|
A précis of recent advances in the neuropsychology of mild cognitive impairment(s) in Parkinson's disease and a proposal of preliminary research criteria. J Int Neuropsychol Soc 2011; 17:393-406. [PMID: 21473805 DOI: 10.1017/s1355617711000257] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cognitive changes of Parkinson's disease (PD) manifest earlier and are more heterogeneous than previously appreciated. Approximately one-third of patients have at least mild cognitive changes at PD diagnosis, and subtle changes might be appreciable among those at risk for PD. Executive dysfunction is the most common cognitive change, but other phenotypes exist. Pathobiologic and potential prognostic differences among cognitive phenotypes remain poorly understood. Progress in the neuropsychology, epidemiology and pathobiology of mild cognitive impairment (MCI) in PD is hampered by lack of diagnostic criteria. This study proposes preliminary research criteria for two categories of PD non-dementia cognitive impairment.
Collapse
|
226
|
Fong TG, Inouye SK, Dai W, Press DZ, Alsop DC. Association cortex hypoperfusion in mild dementia with Lewy bodies: a potential indicator of cholinergic dysfunction? Brain Imaging Behav 2011; 5:25-35. [PMID: 20924800 DOI: 10.1007/s11682-010-9108-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dementia with Lewy bodies (DLB) is often associated with occipital hypometabolism or hypoperfusion, as well as deficits in cholinergic neurotransmission. In this study, 11 mild DLB, 16 mild AD and 16 age-matched controls underwent arterial spin-labeled perfusion MRI (ASL-pMRI) and neuropsychological testing. Patterns of cerebral blood flow (CBF) and cognitive performance were compared. In addition, combined ASL-pMRI and ChEI drug challenge (pharmacologic MRI) was tested as a probe of cholinergic function in 4 of the DLB participants. Frontal and parieto-occipital hypoperfusion was observed in both DLB and AD but was more pronounced in DLB. Following ChEI treatment, perfusion increased in temporal and parieto-occipital cortex, and cognitive performance improved on a verbal fluency task. If confirmed in a larger study, these results provide further evidence for brain cholinergic dysfunction in DLB pathophysiology, and use of pharmacologic MRI as an in vivo measure of cholinergic function.
Collapse
Affiliation(s)
- Tamara G Fong
- Aging Brain Center, Institute for Aging Research, Hebrew SeniorLife, 1200 Centre Street, Boston, MA 02131, USA.
| | | | | | | | | |
Collapse
|
227
|
Virta JR, Laatu S, Parkkola R, Oikonen V, Rinne JO, Ruutiainen J. Cerebral acetylcholinesterase activity is not decreased in MS patients with cognitive impairment. Mult Scler 2011; 17:931-8. [PMID: 21372113 DOI: 10.1177/1352458511399613] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Neuropsychological studies have extensively described the presence of cognitive dysfunction in MS patients. One possible pharmacological treatment of the impairment could be based on acetylcholinesterase inhibitors (AChEIs), which have shown efficacy in alleviating cognitive impairment in many other disorders. The findings on the efficacy of AChEI medication in MS associated cognitive symptoms are preliminary and no studies concerning cerebral acetylcholinesterase (AChE) activity in these patients have been published. OBJECTIVE The objective of the study was to examine cerebral AChE activity in cognitively deteriorated MS patients. Cerebral AChE activity of 10 MS patients with secondary progressive disease and marked cognitive impairment, and 10 healthy controls, was studied with positron emission tomography using tracer (11)C-MP4A. METHODS The cognitive profile of the patients was assessed with CERAD (Consortium to Establish a Registry for Alzheimer's Disease). RESULTS No differences in cortical AChE activity between MS patients and controls were seen. CONCLUSIONS In the patient group regional AChE activities had inverse correlations with Word learning and MMSE (Mini-Mental State Examination) scores. In the group of cognitively deteriorated MS patients no change in cerebral AChE activity, compared with controls, was observed, but within the patient group more pronounced cognitive symptoms were associated with higher cerebral AChE activity.
Collapse
|
228
|
Ferrer I. Neuropathology and neurochemistry of nonmotor symptoms in Parkinson's disease. PARKINSON'S DISEASE 2011; 2011:708404. [PMID: 21403906 PMCID: PMC3043318 DOI: 10.4061/2011/708404] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 12/16/2010] [Indexed: 02/02/2023]
Abstract
Parkinson disease (PD) is no longer considered a complex motor disorder characterized by Parkinsonism but rather a systemic disease with variegated non-motor deficits and neurological symptoms, including impaired olfaction, autonomic failure, cognitive impairment, and psychiatric symptoms. Many of these alterations appear before or in parallel with motor deficits and then worsen with disease progression. Although there is a close relation between motor symptoms and the presence of Lewy bodies (LBs) and neurites filled with abnormal α-synuclein, other neurological alterations are independent of the amount of α-synuclein inclusions in neurons and neurites, thereby indicating that different mechanisms probably converge in the degenerative process. Involvement of the cerebral cortex that may lead to altered behaviour and cognition are related to several convergent factors such as (a) abnormal α-synuclein and other proteins at the synapses, rather than LBs and neurites, (b) impaired dopaminergic, noradrenergic, cholinergic and serotoninergic cortical innervation, and (c) altered neuronal function resulting from reduced energy production and increased energy demands. These alterations appear at early stages of the disease and may precede by years the appearance of cell loss and cortical atrophy.
Collapse
Affiliation(s)
- Isidro Ferrer
- Institut de Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, carrer Feixa LLarga sn, CIBERNED, 08907 Hospitalet de LLobregat, Spain
| |
Collapse
|
229
|
Abstract
Cognitive impairment and dementia associated with Parkinson's disease (PD) are common and often have devastating effects upon the patient and their family. Early cognitive impairment in PD is frequent, and the functional impact may be underestimated. Optimal management will rely upon better identification of the predominant symptoms and greater knowledge of their pathophysiological basis. The management of dementia in PD (PD-D) also has to consider the significant neuropsychiatric burden that frequently accompanies the cognitive decline, as well as fluctuations in attention. Atypical anti-psychotics have a limited role at present in treating PD-D, although new drugs are under development. The mainstay of drug management for people with PD-D is cholinesterase inhibitors, although recent trials have suggested that the N-methyl-D aspartate antagonist memantine may also have some benefit. Disease modification remains the ultimate goal for preventing the inexorable decline in PD-D, although effective interventions are still some way off. Limited benefit may, however, be possible through exercise programmes and so-called "medical foods", although randomised trials are required to confirm largely anecdotal observations.
Collapse
Affiliation(s)
- David J Burn
- Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
230
|
Abstract
The prevalence of cognitive impairment and dementia in Parkinson's disease (PD) is high and can potentially occur as the result of multiple differing pathologies. Neuroimaging has provided evidence of decreased cortical volume, increased white matter diffusion changes, and decreased resting metabolic activity that appears to begin prior to the onset of dementia in PD patients. Cognitive impairment has been found to be associated with multiple neurotransmitter transmission deficiencies, including dopamine and acetylcholine, indicating a widespread neurotransmitter dysfunction in PD-related dementia. Findings of increased Pittsburgh Compound B (PiB) binding in subjects with Lewy Body Disease (LBD) compared with Parkinson's disease and dementia (PDD) may explain phenotype differences in the spectrum of Dementia with Lewy Bodies (DLB), and show promise in guiding future therapeutic trials aimed at this disease. Advances in neuroimaging now allow for the detection of volumetric, pharmacologic, and pathological changes that may assist in the diagnosis and prediction of cognitive impairment in Parkinson's patients so that better evaluation of disease progression and treatment can be obtained.
Collapse
Affiliation(s)
- Lisa C Silbert
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | |
Collapse
|
231
|
Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson's disease. Lancet Neurol 2010; 9:1200-1213. [PMID: 20880750 DOI: 10.1016/s1474-4422(10)70212-x] [Citation(s) in RCA: 636] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
232
|
Harris T, Giraudeau P, Frydman L. Kinetics from indirectly detected hyperpolarized NMR spectroscopy by using spatially selective coherence transfers. Chemistry 2010; 17:697-703. [PMID: 21207591 DOI: 10.1002/chem.201002151] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Indexed: 11/11/2022]
Abstract
An important recent development in NMR spectroscopy is the advent of ex situ dynamic nuclear polarization (DNP) approaches, which are capable of yielding liquid-state sensitivities that exceed considerably those afforded by the highest-field spectrometers. This increase in sensitivity has triggered new research avenues, particularly concerning the in vivo monitoring of metabolism and disease by NMR spectroscopy. So far such gains have mainly materialized for experiments that focus on nonprotonated, low-γ nuclei; targets favored by relatively long relaxation times T(1), which enable them to withstand the transfer from the cryogenic hyperpolarizer to the reacting centers of interest. Recent studies have also shown that transferring this hyperpolarization to protons by indirectly detected methods could successfully give rise to (1)H NMR spectra of hyperpolarized compounds with a high sensitivity. The present study demonstrates that, when merged with spatially encoded methods, indirectly detected (1)H NMR spectroscopy can also be exploited as time-resolved hyperpolarized spectroscopy. A methodology is thus introduced that can successfully deliver a series of hyperpolarized (1)H NMR spectra over a minutes-long timescale. The principles and opportunities presented by this approach are exemplified by following the in vitro phosphorylation of choline by choline kinase, a potential metabolic marker of cancer; and by tracking acetylcholine's hydrolysis by acetylcholine esterase, an important enzyme partaking in synaptic transmission and neuronal degradation.
Collapse
Affiliation(s)
- Talia Harris
- Department of Chemical Physics, Weizmann Institute, Rehovot, 76100, Israel
| | | | | |
Collapse
|
233
|
Mukaetova-Ladinska EB, Monteith R, Perry EK. Cerebrospinal fluid biomarkers for dementia with lewy bodies. Int J Alzheimers Dis 2010; 2010:536538. [PMID: 21048932 PMCID: PMC2965495 DOI: 10.4061/2010/536538] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/06/2010] [Accepted: 08/04/2010] [Indexed: 01/05/2023] Open
Abstract
More than 750,000 of the UK population suffer from some form of cognitive
impairment and dementia. Of these, 5–20% will have Dementia with Lewy Bodies
(DLB). Clinico-pathological studies have shown that it is the low frequency of DLB
clinical core features that makes the DLB diagnosis hardly recognisable during life,
and easily misdiagnosed for other forms of dementia. This has an impact on the
treatment and long-term care of the affected subjects. Having a biochemical test,
based on quantification of a specific DLB biomarker within Cerebrospinal Fluid
(CSF) could be an effective diagnostic method to improve the differential diagnosis.
Although some of the investigated DLB CSF biomarkers are well within the
clinical criteria for sensitivity and specificity (>90%), they all seem to be confounded
by the contradictory data for each of the major groups of biomarkers (α-synuclein, tau
and amyloid proteins). However, a combination of CSF measures appear to emerge,
that may well be able to differentiate DLB from other dementias: α-synuclein
reduction in early DLB, a correlation between CSF α-synuclein and Aβ42 measures
(characteristic for DLB only), and t-tau and p-tau181 profile (differentiating AD from
DLB).
Collapse
Affiliation(s)
- Elizabeta B Mukaetova-Ladinska
- Institute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Westgate Road, Newcastle upon Tyne, Newcastle NE5 5PL, UK
| | | | | |
Collapse
|
234
|
Kadir A, Nordberg A. Target-specific PET probes for neurodegenerative disorders related to dementia. J Nucl Med 2010; 51:1418-30. [PMID: 20810758 DOI: 10.2967/jnumed.110.077164] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Dementia is a highly prevalent problem causing considerable disability and mortality and exacting great costs to individuals, their families, and society. The 4 most common neurodegenerative disorders that cause dementia-Alzheimer disease, frontotemporal dementia, dementia with Lewy bodies, and dementia in Parkinson disease-have different underlying etiologies and pathogenetic mechanisms. There is a great need for early diagnostic markers; functional brain imaging may therefore assist in the detection and differential diagnosis of dementia due to neurodegenerative diseases. Functional imaging such as PET allows in vivo imaging of functional brain activity indicating cerebral blood flow and cerebral glucose metabolism, and PET allows imaging of neurotransmitter activity, including that of the cholinergic, dopaminergic, and serotonergic systems. New PET neuroimaging tracers are being developed for detecting pathologic parameters such as amyloid plaque and microglial activity. The development of molecular imaging is important for early diagnosis of dementia, selection of patients for therapies, and evaluation of therapies.
Collapse
Affiliation(s)
- Ahmadul Kadir
- Division of Alzheimer Neurobiology, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | |
Collapse
|
235
|
Hirano S, Shinotoh H, Shimada H, Aotsuka A, Tanaka N, Ota T, Sato K, Ito H, Kuwabara S, Fukushi K, Irie T, Suhara T. Cholinergic imaging in corticobasal syndrome, progressive supranuclear palsy and frontotemporal dementia. ACTA ACUST UNITED AC 2010; 133:2058-68. [PMID: 20558417 DOI: 10.1093/brain/awq120] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Corticobasal syndrome, progressive supranuclear palsy and frontotemporal dementia are all part of a disease spectrum that includes common cognitive impairment and movement disorders. The aim of this study was to characterize brain cholinergic deficits in these disorders. We measured brain acetylcholinesterase activity by [11C] N-methylpiperidin-4-yl acetate and positron emission tomography in seven patients with corticobasal syndrome (67.6+/-5.9 years), 12 with progressive supranuclear palsy (68.5+/-4.1 years), eight with frontotemporal dementia (59.8+/-6.9 years) and 16 healthy controls (61.2+/-8.5 years). Two-tissue compartment three-parameter model and non-linear least squares analysis with arterial input function were performed. k3 value, an index of acetylcholinesterase activity, was calculated voxel-by-voxel in the brain of each subject. The k3 images in each disease group were compared with the control group by using Statistical Parametric Mapping 2. Volume of interest analysis was performed on spatially normalized k3 images. The corticobasal syndrome group showed decreased acetylcholinesterase activity (k3 values) in the paracentral region, frontal, parietal and occipital cortices (P<0.05, cluster corrected). The group with progressive supranuclear palsy had reduced acetylcholinesterase activity in the paracentral region and thalamus (P<0.05, cluster corrected). The frontotemporal dementia group showed no significant differences in acetylcholinesterase activity. Volume of interest analysis showed mean cortical acetylcholinesterase activity to be reduced by 17.5% in corticobasal syndrome (P<0.001), 9.4% in progressive supranuclear palsy (P<0.05) and 4.4% in frontotemporal dementia (non-significant), when compared with the control group. Thalamic acetylcholinesterase activity was reduced by 6.4% in corticobasal syndrome (non-significant), 24.0% in progressive supranuclear palsy (P<0.03) and increased by 3.3% in frontotemporal dementia (non-significant). Both corticobasal syndrome and progressive supranuclear palsy showed brain cholinergic deficits, but their distribution differed somewhat. Significant brain cholinergic deficits were not seen in frontotemporal dementia, which may explain the unresponsiveness of this condition to cholinergic modulation therapy.
Collapse
Affiliation(s)
- Shigeki Hirano
- Molecular Neuroimaging Group, Molecular Imaging Centre, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Vernon AC, Ballard C, Modo M. Neuroimaging for Lewy body disease: is the in vivo molecular imaging of α-synuclein neuropathology required and feasible? ACTA ACUST UNITED AC 2010; 65:28-55. [PMID: 20685363 DOI: 10.1016/j.brainresrev.2010.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 05/26/2010] [Accepted: 05/26/2010] [Indexed: 12/21/2022]
Abstract
Alpha-synuclein aggregation is a neuropathological hallmark of many neurodegenerative diseases including Parkinson's disease (PD), Parkinson's disease with dementia (PDD) and dementia with Lewy bodies (DLB), collectively termed the α-synucleinopathies. Substantial advances in clinical criteria and neuroimaging technology over the last 20 years have allowed great strides in the detection and differential diagnosis of these disorders. Nevertheless, it is clear that whilst the array of different imaging modalities in clinical use allow for a robust diagnosis of α-synucleinopathy in comparison to healthy subjects, there is no clear diagnostic imaging marker that affords a reliable differential diagnosis between the different forms of Lewy body disease (LBD) or that could facilitate tracking of disease progression. This has led to a call for a biomarker based on the pathological hallmarks of these diseases, namely α-synuclein-positive Lewy bodies (LBs). This potentially may be advantageous in terms of early disease detection, but may also be leveraged into a potential marker of disease progression. We here aim to firstly review the current status of neuroimaging biomarkers in PD and related synucleinopathies. Secondly, we outline the rationale behind α-synuclein imaging as a potential novel biomarker as well as the potential benefits and limitations of this approach. Thirdly, we attempt to illustrate the likely technical hurdles to be overcome to permit successful in vivo imaging of α-synuclein pathology in the diseased brain. Our overriding aim is to provide a framework for discussion of how to address this major unmet clinical need.
Collapse
Affiliation(s)
- Anthony C Vernon
- Kings College London, Institute of Psychiatry, Department of Neuroscience, Denmark Hill campus, London, UK
| | | | | |
Collapse
|
237
|
Bohnen NI, Müller MLTM, Kotagal V, Koeppe RA, Kilbourn MA, Albin RL, Frey KA. Olfactory dysfunction, central cholinergic integrity and cognitive impairment in Parkinson's disease. Brain 2010; 133:1747-54. [PMID: 20413575 PMCID: PMC2877903 DOI: 10.1093/brain/awq079] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Olfactory dysfunction is common in subjects with Parkinson’s disease. The pathophysiology of such dysfunction, however, remains poorly understood. Neurodegeneration within central regions involved in odour perception may contribute to olfactory dysfunction in Parkinson’s disease. Central cholinergic deficits occur in Parkinson’s disease and cholinergic neurons innervate regions, such as the limbic archicortex, involved in odour perception. We investigated the relationship between performance on an odour identification task and forebrain cholinergic denervation in Parkinson’s disease subjects without dementia. Fifty-eight patients with Parkinson’s disease (mean Hoehn and Yahr stage 2.5 ± 0.5) without dementia (mean Mini-Mental State Examination, 29.0 ± 1.4) underwent a clinical assessment, [11C]methyl-4-piperidinyl propionate acetylcholinesterase brain positron emission tomography and olfactory testing with the University of Pennsylvania Smell Identification Test. The diagnosis of Parkinson’s disease was confirmed by [11C]dihydrotetrabenazine vesicular monoamine transporter type 2 positron emission tomography. We found that odour identification test scores correlated positively with acetylcholinesterase activity in the hippocampal formation (r = 0.56, P < 0.0001), amygdala (r = 0.50, P < 0.0001) and neocortex (r = 0.46, P = 0.0003). Striatal monoaminergic activity correlated positively with odour identification scores (r = 0.30, P < 0.05). Multiple regression analysis including limbic (hippocampal and amygdala) and neocortical acetylcholinesterase activity as well as striatal monoaminergic activity, using odour identification scores as the dependent variable, demonstrated a significant regressor effect for limbic acetylcholinesterase activity (F = 10.1, P < 0.0001), borderline for striatal monoaminergic activity (F = 1.6, P = 0.13), but not significant for cortical acetylcholinesterase activity (F = 0.3, P = 0.75). Odour identification scores correlated positively with scores on cognitive measures of episodic verbal learning (r = 0.30, P < 0.05). These findings indicate that cholinergic denervation of the limbic archicortex is a more robust determinant of hyposmia than nigrostriatal dopaminergic denervation in subjects with moderately severe Parkinson's disease. Greater deficits in odour identification may identify patients with Parkinson's disease at risk for clinically significant cognitive impairment.
Collapse
Affiliation(s)
- Nicolaas I Bohnen
- Department of Radiology, Division of Nuclear Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
238
|
Cortical hypometabolism and hypoperfusion in Parkinson's disease is extensive: probably even at early disease stages. Brain Struct Funct 2010; 214:303-17. [PMID: 20361208 DOI: 10.1007/s00429-010-0246-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
Abstract
Recent cerebral blood flow (CBF) and glucose consumption (CMRglc) studies of Parkinson's disease (PD) revealed conflicting results. Using simulated data, we previously demonstrated that the often-reported subcortical hypermetabolism in PD could be explained as an artifact of biased global mean (GM) normalization, and that low-magnitude, extensive cortical hypometabolism is best detected by alternative data-driven normalization methods. Thus, we hypothesized that PD is characterized by extensive cortical hypometabolism but no concurrent widespread subcortical hypermetabolism and tested it on three independent samples of PD patients. We compared SPECT CBF images of 32 early-stage and 33 late-stage PD patients with that of 60 matched controls. We also compared PET FDG images from 23 late-stage PD patients with that of 13 controls. Three different normalization methods were compared: (1) GM normalization, (2) cerebellum normalization, (3) reference cluster normalization (Yakushev et al.). We employed standard voxel-based statistics (fMRIstat) and principal component analysis (SSM). Additionally, we performed a meta-analysis of all quantitative CBF and CMRglc studies in the literature to investigate whether the global mean (GM) values in PD are decreased. Voxel-based analysis with GM normalization and the SSM method performed similarly, i.e., both detected decreases in small cortical clusters and concomitant increases in extensive subcortical regions. Cerebellum normalization revealed more widespread cortical decreases but no subcortical increase. In all comparisons, the Yakushev method detected nearly identical patterns of very extensive cortical hypometabolism. Lastly, the meta-analyses demonstrated that global CBF and CMRglc values are decreased in PD. Based on the results, we conclude that PD most likely has widespread cortical hypometabolism, even at early disease stages. In contrast, extensive subcortical hypermetabolism is probably not a feature of PD.
Collapse
|
239
|
|
240
|
Johansen KK, White LR, Sando SB, Aasly JO. Biomarkers: Parkinson disease with dementia and dementia with Lewy bodies. Parkinsonism Relat Disord 2010; 16:307-15. [PMID: 20338799 DOI: 10.1016/j.parkreldis.2010.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/23/2010] [Accepted: 02/27/2010] [Indexed: 12/31/2022]
Abstract
Dementia is a common feature in Parkinson disease (PD), the time of onset determining how patients are classified. Those patients where dementia develops prior to parkinsonism or during the first year of disease are designated as having dementia with Lewy bodies (DLB). In those where dementia develops over a year after the onset of motor signs, the condition is known as Parkinson's disease with dementia (PDD). While this seems at first sight to be a definitive way to distinguish these conditions, reality is rather different. The overlap between them is considerable, and there is much uncertainty associated with patients who have both motor symptoms and early cognitive impairment. The diagnosis is still based on medical history and clinical evaluation. It is not even certain that they can be accurately distinguished at autopsy. For this reason, the data concerning these entities have been reviewed, to examine various markers employed or measured in clinical, neuropathological, neuroimaging, and biochemical investigations. The concept of PDD and DLB being separate conditions is comparatively new, and the most promising tools with which to separate them at present are cerebrospinal fluid (CSF) markers and positron emission tomography (PET) scanning that indicate increased amyloid-beta burden in DLB compared to PDD. However as yet there are no markers that unequivocally distinguish between PDD and DLB.
Collapse
Affiliation(s)
- Krisztina K Johansen
- Department of Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | | | | |
Collapse
|
241
|
Klein JC, Eggers C, Kalbe E, Weisenbach S, Hohmann C, Vollmar S, Baudrexel S, Diederich NJ, Heiss WD, Hilker R. Neurotransmitter changes in dementia with Lewy bodies and Parkinson disease dementia in vivo. Neurology 2010; 74:885-92. [PMID: 20181924 DOI: 10.1212/wnl.0b013e3181d55f61] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Although Parkinson disease with dementia (PDD) and dementia with Lewy bodies (DLB) show a wide clinical and neuropathologic overlap, they are differentiated according to the order and latency of cognitive and motor symptom appearance. Whether both are distinct disease entities is an ongoing controversy. Therefore, we directly compared patients with DLB and PDD with multitracer PET. METHODS PET with (18)fluorodopa (FDOPA), N-(11)C-methyl-4-piperidyl acetate (MP4A), and (18)fluorodeoxyglucose (FDG) was performed in 8 patients with PDD, 6 patients with DLB, and 9 patients with PD without dementia vs age-matched controls. Data were analyzed with voxel-based statistical parametric mapping and region of interest-based statistics. RESULTS We found a reduced FDOPA uptake in the striatum and in limbic and associative prefrontal areas in all patient groups. Patients with PDD and patients with DLB showed a severe MP4A and FDG binding reduction in the neocortex with increasing signal diminution from frontal to occipital regions. Significant differences between PDD and DLB were not found in any of the radioligands used. Patients with PD without dementia had a mild cholinergic deficit and no FDG reductions vs controls. CONCLUSIONS Patients with dementia with Lewy bodies and Parkinson disease dementia share the same dopaminergic and cholinergic deficit profile in the brain and seem to represent 2 sides of the same coin in a continuum of Lewy body diseases. Cholinergic deficits seem to be crucial for the development of dementia in addition to motor symptoms. The spatial congruence of cholinergic deficits and energy hypometabolism argues for cortical deafferentation due to the degeneration of projection fibers from the basal forebrain.
Collapse
Affiliation(s)
- J C Klein
- Department of Neurology, Goethe University, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
|
243
|
Sioka C, Fotopoulos A, Kyritsis AP. Recent advances in PET imaging for evaluation of Parkinson’s disease. Eur J Nucl Med Mol Imaging 2010; 37:1594-603. [DOI: 10.1007/s00259-009-1357-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 12/07/2009] [Indexed: 12/20/2022]
|
244
|
Brooks DJ, Pavese N. Recent imaging advances in the diagnosis and management of Parkinson's disease. F1000 MEDICINE REPORTS 2009; 1. [PMID: 20948696 PMCID: PMC2948338 DOI: 10.3410/m1-82] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review we report novel sensitive imaging biomarkers for Parkinson’s disease (PD) and its atypical variants. Diffusion tensor imaging and transcranial brain sonography are potentially promising techniques that can differentiate typical PD from atypical variants (multiple system atrophy and progressive supranuclear palsy) and from benign tremor disorders. Non-motor symptoms, such as dementia, depression, and sleep disruption, are often more distressing to PD patients than their slowness and stiffness. Dopamine replacement treatment can also lead to complications such as dyskinesias, impulse control disorders, and psychosis. Recent positron emission tomography studies have helped to clarify the physiopathological mechanisms underlying dementia and compulsive gambling in PD and provide a rationale for therapeutic strategies.
Collapse
Affiliation(s)
- David J Brooks
- MRC Clinical Sciences Centre and Division of Neurosciences & Mental Health, Imperial College London Cyclotron Building, Hammersmith Hospital, Du Cane Road, London W12 0NN UK
| | | |
Collapse
|