201
|
Dufort S, Sancey L, Coll JL. Physico-chemical parameters that govern nanoparticles fate also dictate rules for their molecular evolution. Adv Drug Deliv Rev 2012; 64:179-89. [PMID: 21983079 DOI: 10.1016/j.addr.2011.09.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 06/23/2011] [Accepted: 09/01/2011] [Indexed: 12/23/2022]
Abstract
Nanoparticles are efficient to safely deliver therapeutic and imaging contrast agents to tumors for cancer diagnostic and therapy, if they can escape the reticuloendothelial system (RES) and accumulate in tumors either passively due to the enhanced permeability and retention (EPR) effect or actively via a specific ligand. The main hallmark of nanoparticles is their large surface areas, which, depending of their chemical compositions, surface coatings, electric charges, sizes and shapes, will generate complex, extremely dynamic and continuous interactions and exchanges between the nanoparticles and the different molecules present in the blood. Special attention will be paid to explain how the nanoparticles were improved step by step in order to adapt our increasing knowledge on their biophysics. In particular, we will discuss the influence of PEGylation, the difficulties to generate actively targeted particles and finally the actual trends in the manufacturing of "third-generation" smart particles.
Collapse
|
202
|
Nanocarriers as Nanomedicines. NANOBIOTECHNOLOGY - INORGANIC NANOPARTICLES VS ORGANIC NANOPARTICLES 2012. [DOI: 10.1016/b978-0-12-415769-9.00014-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
203
|
Reed RB, Ladner DA, Higgins CP, Westerhoff P, Ranville JF. Solubility of nano-zinc oxide in environmentally and biologically important matrices. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:93-9. [PMID: 21994124 PMCID: PMC4713012 DOI: 10.1002/etc.708] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Increasing manufacture and use of engineered nanoparticles is leading to a greater probability for release of engineered nanoparticles into the environment and exposure to organisms. In particular, zinc oxide (ZnO) is toxic, although it is unclear whether this toxicity is due to the zinc oxide nanoparticles, dissolution to Zn(2+) , or some combination thereof. The goal of this study was to determine the relative solubilities of both commercially available and in-house synthesized ZnO in matrices used for environmental fate and transport or biological toxicity studies. Dissolution of ZnO was observed in nanopure water (7.18-7.40 mg/L dissolved Zn, as measured by filtration) and Roswell Park Memorial Institute medium (RPMI-1640) (∼5 mg/L), but much more dissolution was observed in Dulbecco's modified Eagle's medium, in which the dissolved Zn concentration exceeded 34 mg/L. Moderately hard water exhibited low Zn solubility, likely because of precipitation of a Zn carbonate solid phase. Precipitation of a Zn-containing solid phase in RPMI also appeared to limit Zn solubility. Equilibrium conditions with respect to ZnO solubility were not apparent in these matrices, even after more than 1,000 h of dissolution. These results suggest that solution chemistry exerts a strong influence on ZnO dissolution and can result in limits on Zn solubility from precipitation of less soluble solid phases.
Collapse
Affiliation(s)
- Robert B. Reed
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado, USA
| | - David A. Ladner
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, South Carolina, USA
| | - Christopher P. Higgins
- Division of Environmental Science and Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
| | - James F. Ranville
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado, USA
- Corresponding Author: James F. Ranville, Colorado School of Mines, Department of Chemistry and Geochemistry, 1500 Illinois St., Golden, CO 80401, Phone: (303) 273-3004, Fax: (303) 273-3629,
| |
Collapse
|
204
|
Cockburn A, Bradford R, Buck N, Constable A, Edwards G, Haber B, Hepburn P, Howlett J, Kampers F, Klein C, Radomski M, Stamm H, Wijnhoven S, Wildemann T. Approaches to the safety assessment of engineered nanomaterials (ENM) in food. Food Chem Toxicol 2011; 50:2224-42. [PMID: 22245376 DOI: 10.1016/j.fct.2011.12.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/24/2011] [Accepted: 12/19/2011] [Indexed: 01/12/2023]
Abstract
A systematic, tiered approach to assess the safety of engineered nanomaterials (ENMs) in foods is presented. The ENM is first compared to its non-nano form counterpart to determine if ENM-specific assessment is required. Of highest concern from a toxicological perspective are ENMs which have potential for systemic translocation, are insoluble or only partially soluble over time or are particulate and bio-persistent. Where ENM-specific assessment is triggered, Tier 1 screening considers the potential for translocation across biological barriers, cytotoxicity, generation of reactive oxygen species, inflammatory response, genotoxicity and general toxicity. In silico and in vitro studies, together with a sub-acute repeat-dose rodent study, could be considered for this phase. Tier 2 hazard characterisation is based on a sentinel 90-day rodent study with an extended range of endpoints, additional parameters being investigated case-by-case. Physicochemical characterisation should be performed in a range of food and biological matrices. A default assumption of 100% bioavailability of the ENM provides a 'worst case' exposure scenario, which could be refined as additional data become available. The safety testing strategy is considered applicable to variations in ENM size within the nanoscale and to new generations of ENM.
Collapse
Affiliation(s)
- Andrew Cockburn
- University of Newcastle, School of Biology, Ridley Building, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Caracciolo G, Pozzi D, Capriotti AL, Cavaliere C, Foglia P, Amenitsch H, Laganà A. Evolution of the protein corona of lipid gene vectors as a function of plasma concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:15048-53. [PMID: 22043822 DOI: 10.1021/la202912f] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The concept that the effective unit of interest in the cell-nanomaterial interaction is the particle and its corona of associated proteins is emerging. Here we investigate the compositional evolution of the protein corona of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) cationic liposomes (CLs) and DOTAP/DNA lipoplexes over a wide range of plasma concentrations (2.5-80%). The composition of the hard corona of lipoplexes is quite stable, but that of CLs does evolve considerably. We show that the protein corona of CLs is made of both low-affinity and competitive-binding proteins whose relative abundance changes with the plasma concentration. This result may have deep biological implications for the application of lipid-based gene vectors both in vitro and in vivo.
Collapse
Affiliation(s)
- Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
206
|
Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes VF. Hardening of the nanoparticle-protein corona in metal (Au, Ag) and oxide (Fe3O4, CoO, and CeO2) nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:3479-3486. [PMID: 22058075 DOI: 10.1002/smll.201101511] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Indexed: 05/28/2023]
Abstract
The surface modifications of metal and metal oxide nanoparticles with sizes ranging from 7 to 20 nm dispersed in commonly used cell culture medium supplemented with serum are investigated. All the tested nanoparticles adsorb proteins onto their surface, thereby forming a protein corona through a dynamic process evolving towards an irreversible coating (hard protein corona). Despite the fact that the studied nanomaterials have similar characteristics of hydrophobicity and surface charge, different temporal patterns of the protein corona formation are observed that can be considered a fingerprint for nanoparticle identification. Some of the biological and toxicological implications of the formation of the nanoparticle-protein corona are studied using the human monocytic cell line THP-1 exposed to cobalt oxide nanoparticles. Results show that production of reactive oxygen species is decreased if the nanoparticles are preincubated for 48 h with serum.
Collapse
Affiliation(s)
- Eudald Casals
- CIN2(ICN-CSIC), Catalan Institute of Nanotechnology and Universitat, Autònoma de Barcelona (UAB), Campus de la UAB, Edifici Q, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
207
|
Cukalevski R, Lundqvist M, Oslakovic C, Dahlbäck B, Linse S, Cedervall T. Structural changes in apolipoproteins bound to nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:14360-14369. [PMID: 21978381 DOI: 10.1021/la203290a] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Nanoparticles are widely used in the pharmaceutical and food industries, but the consequences of exposure to the human body have not been thoroughly investigated. Apolipoprotein A-I (apoAI), the major protein in high-density lipoprotein (HDL), and other lipoproteins are found in the corona around many nanoparticles, but data on protein structural and functional effects are lacking. Here we investigate the structural consequences of the adsorption of apoAI, apolipoprotein B100 (apoB100), and HDL on polystyrene nanoparticles with different surface charges. The results of circular dichroism, fluorescence spectroscopy, and limited proteolysis experiments indicate effects on both secondary and tertiary structures. Plain and negatively charged nanoparticles induce helical structure in apoAI (negative net charge) whereas positively charged nanoparticles reduce the amount of helical structure. Plain and negatively charged particles induce a small blue shift in the tryptophan fluorescence spectrum, which is not noticed with the positively charged particles. Similar results are observed with reconstituted HDL. In apoB100, both secondary and tertiary structures are perturbed by all particles. To investigate the generality of the role of surface charge, parallel experiments were performed using human serum albumin (HSA, negative net charge) and lysozyme (positive net charge). Again, the secondary structure is most affected by nanoparticles carrying an opposite surface charge relative to the protein. Nanoparticles carrying the same net charge as the protein induce only minor structural changes in lysozyme whereas a moderate change is observed for HSA. Thus, surface charge is a critical parameter for predicting structural changes in adsorbed proteins, yet the effect is specific for each protein.
Collapse
Affiliation(s)
- Risto Cukalevski
- Biochemistry and Structural Biology, Lund University, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
208
|
Barshtein G, Arbell D, Yedgar S. Hemolytic Effect of Polymeric Nanoparticles: Role of Albumin. IEEE Trans Nanobioscience 2011; 10:259-61. [DOI: 10.1109/tnb.2011.2175745] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
209
|
Walkey CD, Chan WCW. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 2011; 41:2780-99. [PMID: 22086677 DOI: 10.1039/c1cs15233e] [Citation(s) in RCA: 1147] [Impact Index Per Article: 88.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nanomaterials hold promise as multifunctional diagnostic and therapeutic agents. However, the effective application of nanomaterials is hampered by limited understanding and control over their interactions with complex biological systems. When a nanomaterial enters a physiological environment, it rapidly adsorbs proteins forming what is known as the protein 'corona'. The protein corona alters the size and interfacial composition of a nanomaterial, giving it a biological identity that is distinct from its synthetic identity. The biological identity determines the physiological response including signalling, kinetics, transport, accumulation, and toxicity. The structure and composition of the protein corona depends on the synthetic identity of the nanomaterial (size, shape, and composition), the nature of the physiological environment (blood, interstitial fluid, cell cytoplasm, etc.), and the duration of exposure. In this critical review, we discuss the formation of the protein corona, its structure and composition, and its influence on the physiological response. We also present an 'adsorbome' of 125 plasma proteins that are known to associate with nanomaterials. We further describe how the protein corona is related to the synthetic identity of a nanomaterial, and highlight efforts to control protein-nanomaterial interactions. We conclude by discussing gaps in the understanding of protein-nanomaterial interactions along with strategies to fill them (167 references).
Collapse
Affiliation(s)
- Carl D Walkey
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | |
Collapse
|
210
|
Zhang H, Burnum KE, Luna ML, Petritis BO, Kim JS, Qian WJ, Moore RJ, Heredia-Langner A, Webb-Robertson BJM, Thrall BD, Camp DG, Smith RD, Pounds JG, Liu T. Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size. Proteomics 2011; 11:4569-77. [PMID: 21956884 DOI: 10.1002/pmic.201100037] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/10/2011] [Accepted: 09/13/2011] [Indexed: 12/21/2022]
Abstract
Nanoparticle biological activity, biocompatibility and fate can be directly affected by layers of readily adsorbed host proteins in biofluids. Here, we report a study on the interactions between human blood plasma proteins and nanoparticles with a controlled systematic variation of properties using (18)O-labeling and LC-MS-based quantitative proteomics. We developed a novel protocol to both simplify isolation of nanoparticle bound proteins and improve reproducibility. LC-MS analysis identified and quantified 88 human plasma proteins associated with polystyrene nanoparticles consisting of three different surface chemistries and two sizes, as well as, for four different exposure times (for a total of 24 different samples). Quantitative comparison of relative protein abundances was achieved by spiking an (18)O-labeled "universal" reference into each individually processed unlabeled sample as an internal standard, enabling simultaneous application of both label-free and isotopic labeling quantification across the entire sample set. Clustering analysis of the quantitative proteomics data resulted in distinctive patterns that classified the nanoparticles based on their surface properties and size. In addition, temporal data indicated that the formation of the stable protein corona was at equilibrium within 5 min. The comprehensive quantitative proteomics results obtained in this study provide rich data for computational modeling and have potential implications towards predicting nanoparticle biocompatibility.
Collapse
Affiliation(s)
- Haizhen Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Fenoglio I, Fubini B, Ghibaudi EM, Turci F. Multiple aspects of the interaction of biomacromolecules with inorganic surfaces. Adv Drug Deliv Rev 2011; 63:1186-209. [PMID: 21871508 DOI: 10.1016/j.addr.2011.08.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/01/2011] [Accepted: 08/02/2011] [Indexed: 12/19/2022]
Abstract
The understanding of the mechanisms involved in the interaction of biological systems with inorganic materials is of interest in both fundamental and applied disciplines. The adsorption of proteins modulates the formation of biofilms onto surfaces, a process important in infections associated to medical implants, in dental caries, in environmental technologies. The interaction with biomacromolecules is crucial to determine the beneficial/adverse response of cells to foreign inorganic materials as implants, engineered or accidentally produced inorganic nanoparticles. A detailed knowledge of the surface/biological fluids interface processes is needed for the design of new biocompatible materials. Researchers involved in the different disciplines face up with similar difficulties in describing and predicting phenomena occurring at the interface between solid phases and biological fluids. This review represents an attempt to integrate the knowledge from different research areas by focussing on the search for determinants driving the interaction of inorganic surfaces with biological matter.
Collapse
|
212
|
Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer SK, Bantz C, Nawroth T, Bier C, Sirirattanapan J, Mann W, Treuel L, Zellner R, Maskos M, Schild H, Stauber RH. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS NANO 2011; 5:7155-67. [PMID: 21866933 DOI: 10.1021/nn201950e] [Citation(s) in RCA: 606] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In biological fluids, proteins associate with nanoparticles, leading to a protein "corona" defining the biological identity of the particle. However, a comprehensive knowledge of particle-guided protein fingerprints and their dependence on nanomaterial properties is incomplete. We studied the long-lived ("hard") blood plasma derived corona on monodispersed amorphous silica nanoparticles differing in size (20, 30, and 100 nm). Employing label-free liquid chromatography mass spectrometry, one- and two-dimensional gel electrophoresis, and immunoblotting the composition of the protein corona was analyzed not only qualitatively but also quantitatively. Detected proteins were bioinformatically classified according to their physicochemical and biological properties. Binding of the 125 identified proteins did not simply reflect their relative abundance in the plasma but revealed an enrichment of specific lipoproteins as well as proteins involved in coagulation and the complement pathway. In contrast, immunoglobulins and acute phase response proteins displayed a lower affinity for the particles. Protein decoration of the negatively charged particles did not correlate with protein size or charge, demonstrating that electrostatic effects alone are not the major driving force regulating the nanoparticle-protein interaction. Remarkably, even differences in particle size of only 10 nm significantly determined the nanoparticle corona, although no clear correlation with particle surface volume, protein size, or charge was evident. Particle size quantitatively influenced the particle's decoration with 37% of all identified proteins, including (patho)biologically relevant candidates. We demonstrate the complexity of the plasma corona and its still unresolved physicochemical regulation, which need to be considered in nanobioscience in the future.
Collapse
Affiliation(s)
- Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Lundqvist M, Stigler J, Cedervall T, Berggård T, Flanagan MB, Lynch I, Elia G, Dawson K. The evolution of the protein corona around nanoparticles: a test study. ACS NANO 2011; 5:7503-9. [PMID: 21861491 DOI: 10.1021/nn202458g] [Citation(s) in RCA: 545] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The importance of the protein corona formed around nanoparticles upon entering a biological fluid has recently been highlighted. This corona is, when sufficiently long-lived, thought to govern the particles' biological fate. However, even this long-lived "hard" corona evolves and re-equilibrates as particles pass from one biological fluid to another, and may be an important feature for long-term fate. Here we show the evolution of the protein corona as a result of transfer of nanoparticles from one biological fluid (plasma) into another (cytosolic fluid), a simple illustrative model for the uptake of nanoparticles into cells. While no direct comparison can be made to what would happen in, for example, the uptake pathway, the results confirm that significant evolution of the corona occurs in the second biological solution, but that the final corona contains a "fingerprint" of its history. This could be evolved to map the transport pathways utilized by nanoparticles, and eventually to predict nanoparticle fate and behavior.
Collapse
Affiliation(s)
- Martin Lundqvist
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Wick P, Clift MJD, Rösslein M, Rothen-Rutishauser B. A brief summary of carbon nanotubes science and technology: a health and safety perspective. CHEMSUSCHEM 2011; 4:905-911. [PMID: 21728250 DOI: 10.1002/cssc.201100161] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Indexed: 05/31/2023]
Abstract
Engineered nanomaterials, particularly carbon nanotubes (CNTs), hold great promise for a variety of industrial, consumer, and biomedical applications, due to their outstanding and novel properties. Over the last two decades many different types of CNTs have been produced at the industrial scale. Therefore, the exposure risk to humans associated with such a mass scale production has also increased substantially. This has led to increased concerns about the potential adverse health effects that may be associated with human exposure to CNTs, predominantly because of to their size, their shape, and chemistry. CNTs are also intended for use in many biomedical applications, and therefore their biocompatibility, biodistribution, and fate needs to be carefully assessed. This Minireview intends to highlight the current state of the assessment of potential adverse human health effects possibly associated with CNT exposure, as well as the challenges related to and posed by CNT safety research. The importance of reliability and comparison within and between different studies, as regards the test systems employed, is discussed as well as many other essential aspects relative to CNT safety research, for example efficient and comprehensive characterization, are discussed in the view of an improvement in data collection.
Collapse
Affiliation(s)
- Peter Wick
- Empa, Swiss Federal Laboratories for Material Testing and Research Materials, St. Gallen, Switzerland.
| | | | | | | |
Collapse
|
215
|
Sanfins E, Dairou J, Rodrigues-Lima F, Dupret JM. Nanoparticle-protein interactions: from crucial plasma proteins to key enzymes. ACTA ACUST UNITED AC 2011. [DOI: 10.1088/1742-6596/304/1/012039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
216
|
Martel J, Young D, Young A, Wu CY, Chen CD, Yu JS, Young JD. Comprehensive proteomic analysis of mineral nanoparticles derived from human body fluids and analyzed by liquid chromatography-tandem mass spectrometry. Anal Biochem 2011; 418:111-25. [PMID: 21741946 DOI: 10.1016/j.ab.2011.06.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 05/09/2011] [Accepted: 06/16/2011] [Indexed: 12/21/2022]
Abstract
Mineralo-protein nanoparticles (NPs) formed spontaneously in the body have been associated with ectopic calcifications seen in atherosclerosis, chronic degenerative diseases, and kidney stone formation. Synthetic NPs are also known to become coated with proteins when they come in contact with body fluids. Identifying the proteins found in NPs should help unravel how NPs are formed in the body and how NPs in general, be they synthetic or naturally formed, interact within the body. Here, we developed a proteomic approach based on liquid chromatography (LC) and tandem mass spectrometry (MS/MS) to determine the protein composition of carbonate-apatite NPs derived from human body fluids (serum, urine, cerebrospinal fluid, ascites, pleural effusion, and synovial fluid). LC-MS/MS provided not only an efficient and comprehensive determination of the protein constituents, but also a semiquantitative ranking of the identified proteins. Notably, the identified NP proteins mirrored the protein composition of the contacting body fluids, with albumin, fetuin-A, complement C3, α-1-antitrypsin, prothrombin, and apolipoproteins A1 and B-100 being consistently associated with the particles. Since several coagulation factors, calcification inhibitors, complement proteins, immune regulators, protease inhibitors, and lipid/molecule carriers can all become NP constituents, our results suggest that mineralo-protein complexes may interface with distinct biochemical pathways in the body depending on their protein composition. We propose that LC-MS/MS be used to characterize proteins found in both synthetic and natural NPs.
Collapse
Affiliation(s)
- Jan Martel
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan 333, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
217
|
Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S. Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 2011; 111:5610-37. [PMID: 21688848 DOI: 10.1021/cr100440g] [Citation(s) in RCA: 991] [Impact Index Per Article: 76.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
218
|
Choi J, Reipa V, Hitchins VM, Goering PL, Malinauskas RA. Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles. Toxicol Sci 2011; 123:133-43. [PMID: 21652737 DOI: 10.1093/toxsci/kfr149] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Silver nanomaterials are increasingly being used as antimicrobial agents in medical devices. This study assessed the in vitro hemolytic potential of unbound silver particles in human blood to determine which physical and chemical particle properties contribute to mechanisms of red blood cell (RBC) damage. Four silver particle powders (two nano-sized and two micron-sized) were dispersed in water and characterized using transmission electron microscopy, dynamic light scattering, surface-enhanced Raman spectroscopy, and zeta potential measurement. Particle size and agglomeration were dependent on the suspension media. Under similar conditions to the hemolysis assay, with the particles added to phosphate buffered saline (PBS) and plasma, the size of the nanoparticles increased compared with particles suspended in water alone due to interaction with chloride ions and plasma proteins. To determine hemolysis response, aqueous particle suspensions were mixed with heparinized human blood diluted in PBS for 3.5 h at 37°C. Both nanoparticle preparations were significantly more hemolytic than micron-sized particles at equivalent mass concentrations > 220 μg/ml and at estimated surface area concentrations > 10 cm(2)/ml. The presence or absence of surface citrate on nanoparticles showed no significant difference in hemolysis. However, the aqueous nanoparticle preparations released significantly more silver ions than micron-sized particles, which correlated with increased hemolysis. Although significant size changes occurred to the silver particles due to interaction with media components, the higher level of in vitro hemolysis observed with nanoparticles compared with micron-sized particles may be related to their greater surface area, increased silver ion release, and direct interaction with RBCs.
Collapse
Affiliation(s)
- Jonghoon Choi
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | | | | | | | | |
Collapse
|
219
|
Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, Fan C, Huang Q. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS NANO 2011; 5:3693-700. [PMID: 21500856 DOI: 10.1021/nn200021j] [Citation(s) in RCA: 615] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Graphene is a single layer of sp(2)-bonded carbons that has unique and highly attractive electronic, mechanical, and thermal properties. Consequently, the potential impact of graphene and its derivatives (e.g., graphene oxide, GO) on human and environmental health has raised considerable concerns. In this study, we have carried out a systematic investigation on cellular effects of GO nanosheets and identified the effect of fetal bovine serum (FBS), an often-employed component in cell culture medium, on the cytotoxicity of GO. At low concentrations of FBS (1%), human cells were sensitive to the presence of GO and showed concentration-dependent cytotoxicity. Interestingly, the cytotoxicity of GO was greatly mitigated at 10% FBS, the concentration usually employed in cell medium. Our studies have demonstrated that the cytotoxicity of GO nanosheets arises from direct interactions between the cell membrane and GO nanosheets that result in physical damage to the cell membrane. This effect is largely attenuated when GO is incubated with FBS due to the extremely high protein adsorption ability of GO. The observation of this FBS-mitigated GO cytotoxicity effect may provide an alternative and convenient route to engineer nanomaterials for safe biomedical and environmental applications.
Collapse
Affiliation(s)
- Wenbing Hu
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Garcia-Bennett A, Nees M, Fadeel B. In search of the Holy Grail: Folate-targeted nanoparticles for cancer therapy. Biochem Pharmacol 2011; 81:976-84. [DOI: 10.1016/j.bcp.2011.01.023] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/29/2011] [Accepted: 01/31/2011] [Indexed: 12/28/2022]
|
221
|
Lesniak A, Campbell A, Monopoli MP, Lynch I, Salvati A, Dawson KA. Serum heat inactivation affects protein corona composition and nanoparticle uptake. Biomaterials 2011; 31:9511-8. [PMID: 21059466 DOI: 10.1016/j.biomaterials.2010.09.049] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/14/2010] [Indexed: 01/17/2023]
Abstract
Nanoparticles are of an appropriate size to interact with cells, and are likely to use a range of cellular machinery for internalisation and trafficking to various sub-cellular compartments. It is now understood that once in contact with biological fluids, the nanoparticle surface gets covered by a highly specific layer of proteins, forming the nanoparticle protein corona. This protein layer is stable for times longer than the typical time scale of nanoparticle import, and thus can impact on particle uptake and trafficking inside the cells. In this work, the effect of the corona composition on nanoparticle uptake has been investigated, by studying the impact of serum heat inactivation and complement depletion on the load of nanoparticles accumulated inside the cell. For the same material and nanoparticle size, cellular uptake was found to be significantly different when the nanoparticles were dispersed in medium where the serum was heat inactivated or not heat inactivated, even for non-specialized cells, suggesting that different sera can lead to different nanoparticle doses. The fact that uptake was correlated with the amount of protein bound into the nanoparticle corona suggests the need for commonly agreed dispersion protocols for in vitro nanoparticle-cell studies.
Collapse
Affiliation(s)
- Anna Lesniak
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|