201
|
Verbeurgt C, Wilkin F, Tarabichi M, Gregoire F, Dumont JE, Chatelain P. Profiling of olfactory receptor gene expression in whole human olfactory mucosa. PLoS One 2014; 9:e96333. [PMID: 24800820 PMCID: PMC4011832 DOI: 10.1371/journal.pone.0096333] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/07/2014] [Indexed: 11/19/2022] Open
Abstract
Olfactory perception is mediated by a large array of olfactory receptor genes. The human genome contains 851 olfactory receptor gene loci. More than 50% of the loci are annotated as nonfunctional due to frame-disrupting mutations. Furthermore haplotypic missense alleles can be nonfunctional resulting from substitution of key amino acids governing protein folding or interactions with signal transduction components. Beyond their role in odor recognition, functional olfactory receptors are also required for a proper targeting of olfactory neuron axons to their corresponding glomeruli in the olfactory bulb. Therefore, we anticipate that profiling of olfactory receptor gene expression in whole human olfactory mucosa and analysis in the human population of their expression should provide an opportunity to select the frequently expressed and potentially functional olfactory receptors in view of a systematic deorphanization. To address this issue, we designed a TaqMan Low Density Array (Applied Biosystems), containing probes for 356 predicted human olfactory receptor loci to investigate their expression in whole human olfactory mucosa tissues from 26 individuals (13 women, 13 men; aged from 39 to 81 years, with an average of 67±11 years for women and 63±12 years for men). Total RNA isolation, DNase treatment, RNA integrity evaluation and reverse transcription were performed for these 26 samples. Then 384 targeted genes (including endogenous control genes and reference genes specifically expressed in olfactory epithelium for normalization purpose) were analyzed using the same real-time reverse transcription PCR platform. On average, the expression of 273 human olfactory receptor genes was observed in the 26 selected whole human olfactory mucosa analyzed, of which 90 were expressed in all 26 individuals. Most of the olfactory receptors deorphanized to date on the basis of sensitivity to known odorant molecules, which are described in the literature, were found in the expressed olfactory receptors gene set.
Collapse
Affiliation(s)
- Christophe Verbeurgt
- Department of Otorhinolaryngology, Erasme University Hospital, Brussels, Belgium
| | | | - Maxime Tarabichi
- Institute of Interdisciplinary Research in human and molecular Biology, Free University of Brussels, Brussels, Belgium
| | - Françoise Gregoire
- Laboratory of Pathophysiological and Nutritional Biochemistry, Department of Biochemistry, Free University of Brussels, Brussels, Belgium
| | - Jacques E. Dumont
- Institute of Interdisciplinary Research in human and molecular Biology, Free University of Brussels, Brussels, Belgium
| | | |
Collapse
|
202
|
Pascarella G, Lazarevic D, Plessy C, Bertin N, Akalin A, Vlachouli C, Simone R, Faulkner GJ, Zucchelli S, Kawai J, Daub CO, Hayashizaki Y, Lenhard B, Carninci P, Gustincich S. NanoCAGE analysis of the mouse olfactory epithelium identifies the expression of vomeronasal receptors and of proximal LINE elements. Front Cell Neurosci 2014; 8:41. [PMID: 24600346 PMCID: PMC3927265 DOI: 10.3389/fncel.2014.00041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/28/2014] [Indexed: 11/13/2022] Open
Abstract
By coupling laser capture microdissection to nanoCAGE technology and next-generation sequencing we have identified the genome-wide collection of active promoters in the mouse Main Olfactory Epithelium (MOE). Transcription start sites (TSSs) for the large majority of Olfactory Receptors (ORs) have been previously mapped increasing our understanding of their promoter architecture. Here we show that in our nanoCAGE libraries of the mouse MOE we detect a large number of tags mapped in loci hosting Type-1 and Type-2 Vomeronasal Receptors genes (V1Rs and V2Rs). These loci also show a massive expression of Long Interspersed Nuclear Elements (LINEs). We have validated the expression of selected receptors detected by nanoCAGE with in situ hybridization, RT-PCR and qRT-PCR. This work extends the repertory of receptors capable of sensing chemical signals in the MOE, suggesting intriguing interplays between MOE and VNO for pheromone processing and positioning transcribed LINEs as candidate regulatory RNAs for VRs expression.
Collapse
Affiliation(s)
- Giovanni Pascarella
- Area of Neuroscience, International School for Advanced Studies (SISSA) Trieste, Italy ; RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Dejan Lazarevic
- Area of Neuroscience, International School for Advanced Studies (SISSA) Trieste, Italy ; Cluster in Biomedicine (CBM), AREA Science Park Trieste, Italy
| | - Charles Plessy
- RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Nicolas Bertin
- RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Altuna Akalin
- Bergen Center for Computational Science - Computational Biology Unit and Sars Centre for Marine Molecular Biology, University of Bergen Bergen, Norway
| | - Christina Vlachouli
- Area of Neuroscience, International School for Advanced Studies (SISSA) Trieste, Italy
| | - Roberto Simone
- Area of Neuroscience, International School for Advanced Studies (SISSA) Trieste, Italy
| | - Geoffrey J Faulkner
- Cancer Biology Program, Mater Medical Research Institute South Brisbane, QLD, Australia ; School of Biomedical Sciences, University of Queensland Brisbane, QLD, Australia
| | - Silvia Zucchelli
- Area of Neuroscience, International School for Advanced Studies (SISSA) Trieste, Italy ; Department of Health Sciences, University of Eastern Piedmont "A. Avogadro," Novara, Italy
| | - Jun Kawai
- RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Carsten O Daub
- RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Yoshihide Hayashizaki
- RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Boris Lenhard
- Bergen Center for Computational Science - Computational Biology Unit and Sars Centre for Marine Molecular Biology, University of Bergen Bergen, Norway
| | - Piero Carninci
- RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Stefano Gustincich
- Area of Neuroscience, International School for Advanced Studies (SISSA) Trieste, Italy
| |
Collapse
|
203
|
Promotion of cancer cell invasiveness and metastasis emergence caused by olfactory receptor stimulation. PLoS One 2014; 9:e85110. [PMID: 24416348 PMCID: PMC3885679 DOI: 10.1371/journal.pone.0085110] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 12/01/2013] [Indexed: 12/14/2022] Open
Abstract
Olfactory receptors (ORs) are expressed in the olfactory epithelium, where they detect odorants, but also in other tissues with additional functions. Some ORs are even overexpressed in tumor cells. In this study, we identified ORs expressed in enterochromaffin tumor cells by RT-PCR, showing that single cells can co-express several ORs. Some of the receptors identified were already reported in other tumors, but they are orphan (without known ligand), as it is the case for most of the hundreds of human ORs. Thus, genes coding for human ORs with known ligands were transfected into these cells, expressing functional heterologous ORs. The in vitro stimulation of these cells by the corresponding OR odorant agonists promoted cell invasion of collagen gels. Using LNCaP prostate cancer cells, the stimulation of the PSGR (Prostate Specific G protein-coupled Receptor), an endogenously overexpressed OR, by β-ionone, its odorant agonist, resulted in the same phenotypic change. We also showed the involvement of a PI3 kinase γ dependent signaling pathway in this promotion of tumor cell invasiveness triggered by OR stimulation. Finally, after subcutaneous inoculation of LNCaP cells into NSG immunodeficient mice, the in vivo stimulation of these cells by the PSGR agonist β-ionone significantly enhanced metastasis emergence and spreading.
Collapse
|
204
|
Extrasensory perception: odorant and taste receptors beyond the nose and mouth. Pharmacol Ther 2013; 142:41-61. [PMID: 24280065 DOI: 10.1016/j.pharmthera.2013.11.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/04/2013] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane receptors and are prime therapeutic targets. The odorant and taste receptors account for over half of the GPCR repertoire, yet they are generally excluded from large-scale, drug candidate analyses. Accumulating molecular evidence indicates that the odorant and taste receptors are widely expressed throughout the body and functional beyond the oronasal cavity - with roles including nutrient sensing, autophagy, muscle regeneration, regulation of gut motility, protective airway reflexes, bronchodilation, and respiratory disease. Given this expanding array of actions, the restricted perception of these GPCRs as mere mediators of smell and taste is outdated. Moreover, delineation of the precise actions of odorant and taste GPCRs continues to be hampered by the relative paucity of selective and specific experimental tools, as well as the lack of defined receptor pharmacology. In this review, we summarize the evidence for expression and function of odorant and taste receptors in tissues beyond the nose and mouth, and we highlight their broad potential in physiology and pathophysiology.
Collapse
|
205
|
Manteniotis S, Lehmann R, Flegel C, Vogel F, Hofreuter A, Schreiner BSP, Altmüller J, Becker C, Schöbel N, Hatt H, Gisselmann G. Comprehensive RNA-Seq expression analysis of sensory ganglia with a focus on ion channels and GPCRs in Trigeminal ganglia. PLoS One 2013; 8:e79523. [PMID: 24260241 PMCID: PMC3832644 DOI: 10.1371/journal.pone.0079523] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/02/2013] [Indexed: 12/14/2022] Open
Abstract
The specific functions of sensory systems depend on the tissue-specific expression of genes that code for molecular sensor proteins that are necessary for stimulus detection and membrane signaling. Using the Next Generation Sequencing technique (RNA-Seq), we analyzed the complete transcriptome of the trigeminal ganglia (TG) and dorsal root ganglia (DRG) of adult mice. Focusing on genes with an expression level higher than 1 FPKM (fragments per kilobase of transcript per million mapped reads), we detected the expression of 12984 genes in the TG and 13195 in the DRG. To analyze the specific gene expression patterns of the peripheral neuronal tissues, we compared their gene expression profiles with that of the liver, brain, olfactory epithelium, and skeletal muscle. The transcriptome data of the TG and DRG were scanned for virtually all known G-protein-coupled receptors (GPCRs) as well as for ion channels. The expression profile was ranked with regard to the level and specificity for the TG. In total, we detected 106 non-olfactory GPCRs and 33 ion channels that had not been previously described as expressed in the TG. To validate the RNA-Seq data, in situ hybridization experiments were performed for several of the newly detected transcripts. To identify differences in expression profiles between the sensory ganglia, the RNA-Seq data of the TG and DRG were compared. Among the differentially expressed genes (> 1 FPKM), 65 and 117 were expressed at least 10-fold higher in the TG and DRG, respectively. Our transcriptome analysis allows a comprehensive overview of all ion channels and G protein-coupled receptors that are expressed in trigeminal ganglia and provides additional approaches for the investigation of trigeminal sensing as well as for the physiological and pathophysiological mechanisms of pain.
Collapse
|
206
|
Pluznick JL. Renal and cardiovascular sensory receptors and blood pressure regulation. Am J Physiol Renal Physiol 2013; 305:F439-44. [PMID: 23761671 DOI: 10.1152/ajprenal.00252.2013] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Studies over the past decade have highlighted important roles played by sensory receptors outside of traditionally sensory tissues; for example, taste receptors participate in pH sensing in the cerebrospinal fluid, bitter taste receptors mediate bronchodilation and ciliary beating in the lung (Deshpande DA, Wang WC, McIlmoyle EL, Robinett KS, Schillinger RM, An SS, Sham JS, Liggett SB. Nat Med 16: 1299-1304, 2010; Shah AS, Ben-Shahar Y, Moninger TO, Kline JN, Welsh MJ. Science 325: 1131-1134, 2009), and olfactory receptors play roles in both sperm chemotaxis and muscle cell migration (Griffin CA, Kafadar KA, Pavlath GK. Cell 17: 649-661, 2009). More recently, several studies have shown that sensory receptors also play important roles in the regulation of blood pressure. This review will focus on several recent studies examining the roles that sensory receptors play in blood pressure regulation, with an emphasis on three pathways: the adenylate cyclase 3 (AC3) pathway, the Gpr91-succinate signaling pathway, and the Olfr78/Gpr41 short-chain fatty acid signaling pathway. Together, these pathways demonstrate that sensory receptors play important roles in mediating blood pressure control and that blood pressure regulation is coupled to the metabolism of the host as well as the metabolism of the gut microbiota.
Collapse
Affiliation(s)
- Jennifer L Pluznick
- Dept. of Physiology, Johns Hopkins Univ. School of Medicine, Baltimore, MD 21205.
| |
Collapse
|