201
|
Natriuretic peptides in vascular physiology and pathology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 268:59-93. [PMID: 18703404 DOI: 10.1016/s1937-6448(08)00803-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Four major natriuretic peptides have been isolated: atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP), and Dendroaspis-type natriuretic peptide (DNP). Natriuretic peptides play an important role in the regulation of cardiovascular homeostasis maintaining blood pressure and extracellular fluid volume. The classical endocrine effects of natriuretic peptides to modulate fluid and electrolyte balance and vascular smooth muscle tone are complemented by autocrine and paracrine actions that include regulation of coronary blood flow and, therefore, myocardial perfusion; modulation of proliferative responses during myocardial and vascular remodeling; and cytoprotective anti-ischemic effects. The actions of natriuretic peptides are mediated by the specific binding of these peptides to three cell surface receptors: type A natriuretic peptide receptor (NPR-A), type B natriuretic peptide receptor (NPR-B), and type C natriuretic peptide receptor (NPR-C). NPR-A and NPR-B are guanylyl cyclase receptors that increase intracellular cGMP concentration and activate cGMP-dependent protein kinases. NPR-C has been presented as a clearance receptor and its activation also results in inhibition of adenylyl cyclase activity. The wide range of effects of natriuretic peptides might be the base for the development of new therapeutic strategies of great benefit in patients with cardiovascular problems including coronary artery disease or heart failure. This review summarizes current literature concerning natriuretic peptides, their receptors and their effects on fluid/electrolyte balance, and vascular and cardiac physiology and pathology, including primary hypertension and myocardial infarction. In addition, we will attempt to provide an update on important issues regarding natriuretic peptides in congestive heart failure.
Collapse
|
203
|
Stringari J, Nunes AKC, Franco JL, Bohrer D, Garcia SC, Dafre AL, Milatovic D, Souza DO, Rocha JBT, Aschner M, Farina M. Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicol Appl Pharmacol 2007; 227:147-54. [PMID: 18023834 DOI: 10.1016/j.taap.2007.10.010] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/04/2007] [Accepted: 10/14/2007] [Indexed: 11/15/2022]
Abstract
During the perinatal period, the central nervous system (CNS) is extremely sensitive to metals, including methylmercury (MeHg). Although the mechanism(s) associated with MeHg-induced developmental neurotoxicity remains obscure, several studies point to the glutathione (GSH) antioxidant system as an important molecular target for this toxicant. To extend our recent findings of MeHg-induced GSH dyshomeostasis, the present study was designed to assess the developmental profile of the GSH antioxidant system in the mouse brain during the early postnatal period after in utero exposure to MeHg. Pregnant mice were exposed to different doses of MeHg (1, 3 and 10 mg/l, diluted in drinking water, ad libitum) during the gestational period. After delivery, pups were killed at different time points - postnatal days (PND) 1, 11 and 21 - and the whole brain was used for determining biochemical parameters related to the antioxidant GSH system, as well as mercury content and the levels of F(2)-isoprostane. In control animals, cerebral GSH levels significantly increased over time during the early postnatal period; gestational exposure to MeHg caused a dose-dependent inhibition of this developmental event. Cerebral glutathione peroxidase (GPx) and glutathione reductase (GR) activities significantly increased over time during the early postnatal period in control animals; gestational MeHg exposure induced a dose-dependent inhibitory effect on both developmental phenomena. These adverse effects of prenatal MeHg exposure were corroborated by marked increases in cerebral F(2)-isoprostanes levels at all time points. Significant negative correlations were found between F(2)-isoprostanes and GSH, as well as between F(2)-isoprostanes and GPx activity, suggesting that MeHg-induced disruption of the GSH system maturation is related to MeHg-induced increased lipid peroxidation in the pup brain. In utero MeHg exposure also caused a dose-dependent increase in the cerebral levels of mercury at birth. Even though the cerebral mercury concentration decreased to nearly basal levels at postnatal day 21, GSH levels, GPx and GR activities remained decreased in MeHg-exposed mice, indicating that prenatal exposure to MeHg affects the cerebral GSH antioxidant systems by inducing biochemical alterations that endure even when mercury tissue levels decrease and become indistinguishable from those noted in pups born to control dams. This study is the first to show that prenatal exposure to MeHg disrupts the postnatal development of the glutathione antioxidant system in the mouse brain, pointing to an additional molecular mechanism by which MeHg induces pro-oxidative damage in the developing CNS. Moreover, our experimental observation corroborates previous reports on the permanent functional deficits observed after prenatal MeHg exposure.
Collapse
Affiliation(s)
- James Stringari
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Franco JL, Braga HC, Stringari J, Missau FC, Posser T, Mendes BG, Leal RB, Santos ARS, Dafre AL, Pizzolatti MG, Farina M. Mercurial-Induced Hydrogen Peroxide Generation in Mouse Brain Mitochondria: Protective Effects of Quercetin. Chem Res Toxicol 2007; 20:1919-26. [DOI: 10.1021/tx7002323] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jeferson L. Franco
- Departamento de Bioquímica, Centro de Ciências Biológicas, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, and Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Hugo C. Braga
- Departamento de Bioquímica, Centro de Ciências Biológicas, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, and Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - James Stringari
- Departamento de Bioquímica, Centro de Ciências Biológicas, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, and Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Fabiana C. Missau
- Departamento de Bioquímica, Centro de Ciências Biológicas, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, and Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Thais Posser
- Departamento de Bioquímica, Centro de Ciências Biológicas, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, and Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Beatriz G. Mendes
- Departamento de Bioquímica, Centro de Ciências Biológicas, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, and Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Rodrigo B. Leal
- Departamento de Bioquímica, Centro de Ciências Biológicas, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, and Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Adair R. S. Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, and Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Alcir L. Dafre
- Departamento de Bioquímica, Centro de Ciências Biológicas, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, and Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Moacir G. Pizzolatti
- Departamento de Bioquímica, Centro de Ciências Biológicas, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, and Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, and Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| |
Collapse
|
205
|
da Silva AP, Farina M, Franco JL, Dafre AL, Kassa J, Kuca K. Temporal effects of newly developed oximes (K027, K048) on malathion-induced acetylcholinesterase inhibition and lipid peroxidation in mouse prefrontal cortex. Neurotoxicology 2007; 29:184-9. [PMID: 18035420 DOI: 10.1016/j.neuro.2007.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 10/07/2007] [Accepted: 10/10/2007] [Indexed: 11/15/2022]
Abstract
The potency of newly developed asymmetric bispyridinium oximes (K027, K048) in reactivating acetylcholinesterase and in eliminating oxidative stress induced by acute exposure to malathion was evaluated in mouse prefrontal cortex using in vivo methods. Malathion (1g/kg, dissolved in saline) was administered subcutaneously. The asymmetric bispyridinium oximes K027 or K048 (1/4 of LD(50), dissolved in saline, i.p.) were administered immediately after malathion and atropine sulfate (20mg/kg, dissolved in saline, i.p.). Control group received saline instead of malathion and antidotes. Acetylcholinesterase activity and biochemical parameters related to oxidative stress (glutathione levels, glutathione peroxidase and glutathione reductase activity and lipid peroxidation) were evaluated in mouse prefrontal cortex at two different time points (3 or 24 h after malathion poisoning). Malathion administration markedly inhibited cortical acetylcholinesterase activity (around 55%) at 3h after malathion challenge and such inhibition was maintained till 24 h after poisoning. Although neither atropine sulfate nor oximes were able to eliminate cortical acetylcholinesterase inhibition at 3h after malathion poisoning, K027 (in combination with atropine) completely eliminated the inhibitory effect of malathion exposure on cortical acetylcholinesterase activity at 24 h after malathion administration. K048 (in combination with atropine) significantly decreased acetylcholinesterase inhibition at 24 h after malathion poisoning. Even though glutathione levels and glutathione peroxidase and glutathione reductase activities were not affected, malathion administration markedly increased lipid peroxidation in the prefrontal cortex at 24 h after poisoning and the oxime K027 (in combination with atropine) was able to significantly decrease such phenomenon. Thus, our results clearly demonstrate that the newly developed asymmetric bispyridinium oximes K027 and K048 are able to reverse malathion-induced acetylcholinesterase inhibition in mouse prefrontal cortex. Moreover, the ameliorative effect of the oxime K027 on the increased lipid peroxidation observed at 24 h after malathion poisoning suggests a potential link between the hyperstimulation of cholinergic system and oxidative stress in the mouse prefrontal cortex after malathion exposure.
Collapse
Affiliation(s)
- Aline P da Silva
- Departamento de Bioquímica and Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | | | | |
Collapse
|
206
|
Lucena GMRDS, Franco JL, Ribas CM, Azevedo MS, Meotti FC, Gadotti VM, Dafre AL, Santos ARS, Farina M. Cipura paludosa extract prevents methyl mercury-induced neurotoxicity in mice. Basic Clin Pharmacol Toxicol 2007; 101:127-31. [PMID: 17651315 DOI: 10.1111/j.1742-7843.2007.00091.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cipura paludosa (Iridaceae), a native plant widely distributed in the north of Brazil, is used in traditional medicine as an anti-inflammatory and analgesic agent, against tuberculosis and gonorrhoea and for regulation of menstrual flow. However, scientific studies on the pharmacological properties of C. paludosa are scarce. We have examined the potential protective effects of the ethanolic extract of C. paludosa against methyl mercury (MeHg)-induced neurotoxicity in adult mice. MeHg was diluted in drinking water (40 mg/l, freely available) and the ethanolic C. paludosa extract (CE) was diluted in a 150 mM NaCl solution and administered by gavage (10 and 100 mg/kg body weight, respectively, twice a day). Because treatment lasted for 14 days and each animal weighed around 40 g, the total dosage of plant extract given to each mouse was 5.6 and 56 g, respectively. After the treatment period, MeHg exposure induced a significant deficit in the motor coordination, which was evident by a reduction (90%) in the falling latency in the rotarod apparatus. Interestingly, this phenomenon was completely recovered to control levels by CE co-administration, independent of dosages. MeHg exposure inhibited cerebellar glutathione peroxidase (mean percentage inhibition of 42%) - an important enzyme involved in the detoxification of endogenous peroxides - and this effect was prevented by co-administration of CE. Conversely, MeHg exposure increased cerebellar glutathione reductase activity (mean percentage inhibition of 70%), and this phenomenon was not affected by C. paludosa co-administration. Neither MeHg nor CE changed the cerebellar glutathione levels. This study has shown for the first time, the in vivo protective effects of CE against MeHg-induced neurotoxicity. In addition, our findings encourage studies concerning the beneficial effects of C. paludosa on neurological conditions related to excitotoxicity and oxidative stress.
Collapse
Affiliation(s)
- Greice M R de S Lucena
- Health Center, Federal University of Rondônia, Campus Universitário, José Ribeiro Filho, Porto Velho, RO, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Carvalho MC, Franco JL, Ghizoni H, Kobus K, Nazari EM, Rocha JBT, Nogueira CW, Dafre AL, Müller YMR, Farina M. Effects of 2,3-dimercapto-1-propanesulfonic acid (DMPS) on methylmercury-induced locomotor deficits and cerebellar toxicity in mice. Toxicology 2007; 239:195-203. [PMID: 17703864 DOI: 10.1016/j.tox.2007.07.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 07/01/2007] [Accepted: 07/09/2007] [Indexed: 11/30/2022]
Abstract
Chelating therapy has been reported as a useful approach for counteracting mercurial toxicity. Moreover, 2,3-dimercapto-1-propanesulfonic acid (DMPS), a tissue-permeable metal chelator, was found to increase urinary mercury excretion and decrease mercury content in rat brain after methylmercury (MeHg) exposure. We evaluated the capability of DMPS to reduce MeHg-induced motor impairment and cerebellar toxicity in adult mice. Animals were exposed to MeHg (40 mg/L in drinking water, ad libitum) during 17 days. In the last 3 days of exposure (days 15-17), animals received DMPS injections (150 mg/kg, i.p.; once a day) in order to reverse MeHg-induced neurotoxicity. Twenty-four hours after the last injection (day 18), behavioral tests related to the motor function (open field and rotarod tasks) and biochemical analyses on oxidative stress-related parameters (cerebellar glutathione, protein thiol and malondyaldehyde levels, glutathione peroxidase and glutathione reductase activities) were carried out. Histological analyses for quantifying cellular damage and mercury deposition in the cerebellum were also performed. MeHg exposure induced a significant motor deficit, observed as decreased locomotor activity in the open field and decreased falling latency in the rotarod apparatus. DMPS treatment displayed an ameliorative effect toward such behavioral parameters. Cerebellar glutathione and protein thiol levels were not changed by MeHg or DMPS treatment. Conversely, the levels of cerebellar thiobarbituric acid reactive substances (TBARS), a marker for lipid peroxidation, were increased in MeHg-exposed mice and DMPS administration minimized such phenomenon. Cerebellar glutathione peroxidase activity was decreased in the MeHg-exposed animals, but DMPS treatment did not prevent such event. Histological analyses showed a reduced number of cerebellar Purkinje cells in MeHg-treated mice and this phenomenon was completely reversed by DMPS treatment. A marked mercury deposition in the cerebellar cortex was observed in MeHg-exposed animals (granular layer>Purkinje cells>molecular layer) and DMPS treatment displayed a significant ameliorative effect toward these phenomena. These findings indicate that DMPS displays beneficial effects on reversing MeHg-induced motor deficits and cerebellar damage in mice. Histological analyses indicate that these phenomena are related to its capability of removing mercury from cerebellar cortex.
Collapse
Affiliation(s)
- Márcia C Carvalho
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Kaur P, Schulz K, Aschner M, Syversen T. Role of Docosahexaenoic Acid in Modulating Methylmercury-Induced Neurotoxicity. Toxicol Sci 2007; 100:423-32. [PMID: 17728287 DOI: 10.1093/toxsci/kfm224] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The effect of docosahexaenoic acid (DHA) in modulating methylmercury (MeHg)-induced neurotoxicity was investigated in C6-glial and B35-neuronal cell lines. Gas chromatography measurements indicated increased DHA content in both the cell lines after 24 h supplementation. Mitochondrial activity evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyltetrazolium bromide (MTT) reduction indicated that 10 microM MeHg treatment for 50 min led to a significant (p < 0.001) and similar decrease in MTT activity in both the cell lines. However, DHA pretreatment led to more pronounced depletion (p < 0.05) in the MTT activity in C6 cells as compared to B35 cells. The depletion of glutathione (GSH) content measured with the fluorescent indicator monochlorobimane was more apparent (p < 0.001) in C6 cells treated with DHA and MeHg. The amount of reactive oxygen species (ROS) detected with the fluorescent indicator -- chloromethyl derivative of dichloro dihydro fluorescein diacetate (CMH(2)DCFDA) -- indicated a fourfold increase in C6 cells (p < 0.001) as compared to twofold increase in B35 cells (p < 0.001) upon DHA and MeHg exposure. However, the cell-associated MeHg measurement using (14)C-labeled MeHg indicated a decrease (p < 0.05) in MeHg accumulation upon DHA exposure in both the cell lines. These findings provide experimental evidence that although pretreatment with DHA reduces cell-associated MeHg, it causes an increased ROS (p < 0.001) and GSH depletion (p < 0.05) in C6 cells.
Collapse
Affiliation(s)
- Parvinder Kaur
- Department of Neuroscience, Norwegian University of Science and Technology, N-7489, Trondheim, Norway.
| | | | | | | |
Collapse
|